Not logged in.

Contribution Details

Type Conference or Workshop Paper
Scope Discipline-based scholarship
Published in Proceedings Yes
Title Material flow modelling for environmental exposure assessment – a critical review of four approaches using the comparative implementation of an idealized example
Organization Unit
Authors
  • Nikolaus A Bornhöft
  • Bernd Nowack
  • Lorenz Hilty
Editors
  • Bernd Page
  • Andreas G Fleischer
  • Johannes Göbel
  • Volker Wohlgemuth
Presentation Type paper
Item Subtype Original Work
Refereed Yes
Status Published in final form
Language
  • English
ISBN 978-3-8440-1676-5
ISSN 1616-0886
Page Range 379 - 388
Event Title EnviroInfo 2013 – 27th International Conference on Informatics for Environmental Protection
Event Type conference
Event Location Hamburg, Deutschland
Event Start Date September 2 - 2013
Event End Date September 4 - 2013
Place of Publication Aachen
Publisher Shaker Verlag
Abstract Text Newly developed materials such as engineered nanomaterials are produced in increasing amounts and applied in a growing number of products. Once released to the environment, they can pose a hazard to ecosystems and human health. To assess potential risks, the exposure of the material to humans and the environment has to be determined. For many materials such as engineered nanomaterials, a quantitative measurement of environmental concentrations is not feasible. Material flow models can be used to determine these concentrations indirectly by predicting material flows in the environment. Several modelling approaches can be applied to represent existing knowledge about the flows of materials into and between environmental media or compartments and to consider the uncertainty and variability of the input parameters. In this study we evaluate four existing approaches with regard to their capabilities for indirect exposure assessment, focusing on their ability to treat uncertainty. We first explain how we preselected the four most promising modelling approaches: material flow analysis, system dynamics, material flow networks, and probabilistic material flow modelling. We then define a set of evaluation criteria based on the requirements of environmental exposure assessment and develop a simplified example system that is designed to test these criteria. Based on the comparative modelling and implementation of the example system, we discuss the capabilities and limitations of the approaches and indicate what is missing for a reliable environmental exposure prediction using material flow modelling.
Other Identification Number merlin-id:8351
PDF File Download from ZORA
Export BibTeX
EP3 XML (ZORA)