Not logged in.

Contribution Details

Type Journal Article
Scope Discipline-based scholarship
Title Dopamine-induced changes in neural network patterns supporting aversive conditioning
Organization Unit
Authors
  • Andreea Oliviana Diaconescu
  • Mahesh Menon
  • Jimmy Jensen
  • Shitij Kapur
  • Anthony Randal McIntosh
Item Subtype Original Work
Refereed Yes
Status Published in final form
Language
  • English
Journal Title Brain Research
Publisher Elsevier
Geographical Reach international
ISSN 0006-8993 (P) 1872-6240 (E)
Volume 8
Number 1313
Page Range 143 - 161
Date 2010
Abstract Text The aim of the present paper is to assess the effects of altered dopamine (DA) transmission on the functional connectivity among brain regions mediating aversive conditioning in humans. To this aim, we analyzed a previous published data set from a double-blind design combined with functional magnetic resonance imaging (fMRI) recordings in which healthy volunteers were randomly assigned to one of three drug groups: amphetamine (an indirect DA agonist), haloperidol (DA D2 receptor antagonist), and placebo. Participants were exposed to an aversive classical conditioning paradigm using cutaneous electrical stimulation as the unconditioned stimulus (US), and visual cues as the conditioned stimuli (CS) where one colour (CS+) was followed by the US in 33% of the trials and another colour (CS-) had no consequences. All participants reported awareness of stimulus contingencies. Group analysis of fMRI data revealed that the left ventral striatum (VS) and amygdala activated in response to the CS+ in all the three groups. Because of their activation patterns and documented involvement in aversive conditioning, both regions were used as seeds in the functional connectivity analysis. To constrain the functional networks obtained to relate to the conditioned response, we also correlated seed activity with the Galvanic Skin Response (GSR). In the placebo group, the right ventral tegmental area/substantia nigra (VTA/SN), bilateral caudate, right parahippocampal gyrus, left inferior parietal lobule (IPL), bilateral postcentral gyrus, bilateral middle frontal (BA 46), orbitofrontal, and ventromedial prefrontal cortices (PFC, BA 10/11) correlated with the VS and amygdala seeds in response to the CS+ compared to the CS-. Enhancing dopamine transmission via amphetamine was associated with reduced task differences and significant functional connectivity for both CS+ and CS- conditions between the left VS seed and regions modulated by DA, such as the left VTA/SN, right caudate, left amygdala, left middle frontal gyrus (BA 46), and bilateral ventromedial PFC (BA 10). Blocking dopamine transmission via haloperidol was associated with significant functional connectivity across an alternate network of regions including the left amygdala seed and the right insula, the left ACC (BA 24/32), bilateral IPL (BA 40), precuneus (BA 7), post-central gyrus, middle frontal gyrus (BA 46), and supplementary motor area (SMA, BA 6) to the CS+ versus the CS-. These data provide insight into the distinct effects of DA agents on the functional connectivity between striatal, limbic, and prefrontal areas.
Digital Object Identifier 10.1016/j.brainres.2009.11.064
PubMed ID 19961836
PDF File Download from ZORA
Export BibTeX
EP3 XML (ZORA)