Not logged in.

Contribution Details

Type Conference or Workshop Paper
Scope Discipline-based scholarship
Published in Proceedings Yes
Title From Chaos Comes Order: Ordering Event Representations for Object Recognition and Detection
Organization Unit
Authors
  • Nikola Zubić
  • Daniel Gehrig
  • Mathias Gehrig
  • Davide Scaramuzza
Presentation Type paper
Item Subtype Original Work
Refereed No
Status Published in final form
Language
  • English
ISBN 979-8-3503-0718-4
ISSN 1550-5499
Page Range 12800 - 12810
Event Title 2023 IEEE/CVF International Conference on Computer Vision (ICCV)
Event Type conference
Event Location Paris, France
Event Start Date October 1 - 2023
Event End Date October 6 - 2023
Series Name International Conference on Computer Vision (ICCV)
Publisher Computer Vision Foundation
Abstract Text Today, state-of-the-art deep neural networks that process events first convert them into dense, grid-like input representations before using an off-the-shelf network. However, selecting the appropriate representation for the task traditionally requires training a neural network for each representation and selecting the best one based on the validation score, which is very time-consuming. This work eliminates this bottleneck by selecting representations based on the Gromov-Wasserstein Discrepancy (GWD) between raw events and their representation. It is about 200 times faster to compute than training a neural network and preserves the task performance ranking of event representations across multiple representations, network backbones, datasets, and tasks. Thus finding representations with high task scores is equivalent to finding representations with a low GWD. We use this insight to, for the first time, perform a hyperparameter search on a large family of event representations, revealing new and powerful representations that exceed the state-of-the-art. Our optimized representations outperform existing representations by 1.7 mAP on the 1 Mpx dataset and 0.3 mAP on the Gen1 dataset, two established object detection benchmarks, and reach a 3.8% higher classification score on the mini N-ImageNet benchmark. Moreover, we outperform state-of-the-art by 2.1 mAP on Gen1 and state-of-the-art feed-forward methods by 6.0 mAP on the 1 Mpx datasets. This work opens a new unexplored field of explicit representation optimization for event-based learning.
Digital Object Identifier 10.1109/iccv51070.2023.01180
PDF File Download from ZORA
Export BibTeX
EP3 XML (ZORA)