Not logged in.

Contribution Details

Type Conference or Workshop Paper
Scope Discipline-based scholarship
Published in Proceedings Yes
Title Cuilt: a Scalable, Mix-and-Match Framework for Local Iterative Approximate Best-Response Algorithms
Organization Unit
  • Contribution from another University/Organization than University of Zurich
Authors
  • Coralia-Mihaela Verman
  • Philip Stutz
  • Robin Hafen
  • Abraham Bernstein
Presentation Type paper
Item Subtype Original Work
Refereed Yes
Status Published in final form
Language
  • English
Page Range 1660 - 1661
Event Title 22nd European Conference on Artificial Intelligence
Event Type conference
Event Location The Hague, The Netherlands
Event Start Date August 29 - 2016
Event End Date September 2 - 2016
Publisher IOS Press Ebooks
Abstract Text Many real-world tasks can be modeled as constraint optimization problems. To ensure scalability and mapping to distributed scenarios, distributed constraint optimization problems (DCOPs) have been proposed, where each variable is locally controlled by its own agent. Most practical applications prefer approximate local iterative algorithms to reach a locally optimal and sufficiently good solution fast. Most implementations presented in the literature, however, only explored small-sized problems, typically up to 100 agents/variables. We implement CUILT, a scalable mix-and-match framework for Local Iterative Approximate Best-Response Algorithms for DCOPs, using the graph processing framework SIGNAL/COLLECT, where each agent is modeled as a vertex and communication pathways are represented as edges. Choosing this abstraction allows us to exploit the generic graph-oriented distribution/optimization heuristics and makes our proposed framework scalable, configurable, as well as extensible. We found that this approach allows us to scale to problems more than 3 orders of magnitude larger than results commonly published so far, to easily combine algorithms by mixing and matching, and to run the algorithms fast, in a parallel fashion.
Free access at Official URL
Official URL http://ebooks.iospress.com/volumearticle/44969
Digital Object Identifier 10.3233/978-1-61499-672-9-1660
PubMed ID http://ebooks.iospress.com/volumearticle/44969
Other Identification Number merlin-id:13478
PDF File Download from ZORA
Export BibTeX
EP3 XML (ZORA)