Not logged in.

Contribution Details

Type Journal Article
Scope Discipline-based scholarship
Title Comparing hemodynamic models with DCM
Organization Unit
Authors
  • Klaas Enno Stephan
  • N Weiskopf
  • P M Drysdale
  • P A Robinson
  • K J Friston
Item Subtype Original Work
Refereed Yes
Status Published in final form
Language
  • English
Journal Title NeuroImage
Publisher Elsevier
Geographical Reach international
ISSN 1053-8119
Volume 38
Number 3
Page Range 387 - 401
Date 2007
Abstract Text The classical model of blood oxygen level-dependent (BOLD) responses by Buxton et al. [Buxton, R.B., Wong, E.C., Frank, L.R., 1998. Dynamics of blood flow and oxygenation changes during brain activation: the Balloon model. Magn. Reson. Med. 39, 855-864] has been very important in providing a biophysically plausible framework for explaining different aspects of hemodynamic responses. It also plays an important role in the hemodynamic forward model for dynamic causal modeling (DCM) of fMRI data. A recent study by Obata et al. [Obata, T., Liu, T.T., Miller, K.L., Luh, W.M., Wong, E.C., Frank, L.R., Buxton, R.B., 2004. Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas: application of the Balloon model to the interpretation of BOLD transients. NeuroImage 21, 144-153] linearized the BOLD signal equation and suggested a revised form for the model coefficients. In this paper, we show that the classical and revised models are special cases of a generalized model. The BOLD signal equation of this generalized model can be reduced to that of the classical Buxton model by simplifying the coefficients or can be linearized to give the Obata model. Given the importance of hemodynamic models for investigating BOLD responses and analyses of effective connectivity with DCM, the question arises which formulation is the best model for empirically measured BOLD responses. In this article, we address this question by embedding different variants of the BOLD signal equation in a well-established DCM of functional interactions among visual areas. This allows us to compare the ensuing models using Bayesian model selection. Our model comparison approach had a factorial structure, comparing eight different hemodynamic models based on (i) classical vs. revised forms for the coefficients, (ii) linear vs. non-linear output equations, and (iii) fixed vs. free parameters, epsilon, for region-specific ratios of intra- and extravascular signals. Using fMRI data from a group of twelve subjects, we demonstrate that the best model is a non-linear model with a revised form for the coefficients, in which epsilon is treated as a free parameter.
Free access at PubMed ID
Digital Object Identifier 10.1016/j.neuroimage.2007.07.040
PubMed ID 17884583
PDF File Download from ZORA
Export BibTeX
EP3 XML (ZORA)