Not logged in.

Contribution Details

Type Journal Article
Scope Discipline-based scholarship
Title Forward and backward connections in the brain: A DCM study of functional asymmetries
Organization Unit
Authors
  • C C Chen
  • R N Henson
  • Klaas Enno Stephan
  • J M Kilner
  • K J Friston
Item Subtype Original Work
Refereed Yes
Status Published in final form
Language
  • English
Journal Title NeuroImage
Publisher Elsevier
Geographical Reach international
ISSN 1053-8119
Volume 45
Number 2
Page Range 453 - 462
Date 2009
Abstract Text In this paper, we provide evidence for functional asymmetries in forward and backward connections that define hierarchical architectures in the brain. We exploit the fact that modulatory or nonlinear influences of one neuronal system on another (i.e., effective connectivity) entail coupling between different frequencies. Functional asymmetry in forward and backward connections was addressed by comparing dynamic causal models of MEG responses induced by visual processing of normal and scrambled faces.We compared models with and without nonlinear (between-frequency) coupling in both forward and backward connections. Bayesian model comparison indicated that the best model had nonlinear forward and backward connections. Using the best model we then quantified frequency-specific causal influences mediating observed spectral responses. We found a striking asymmetry between forward and backward connections; in which high (gamma) frequencies in higher cortical areas suppressed low (alpha) frequencies in lower areas. This suppression was significantly greater than the homologous coupling in the forward connections. Furthermore, exactly the asymmetry was observed when we examined face-selective coupling (i.e., coupling under faces minus scrambled faces). These results highlight the importance of nonlinear coupling among brain regions and point to a functional asymmetry between forward and backward connections in the human brain that is consistent with anatomical and physiological evidence from animal studies. This asymmetry is also consistent with functional architectures implied by theories of perceptual inference in the brain, based on hierarchical generative models.
Digital Object Identifier 10.1016/j.neuroimage.2008.12.041
PubMed ID 19162203
PDF File Download from ZORA
Export BibTeX
EP3 XML (ZORA)