Not logged in.

Contribution Details

Type Journal Article
Scope Discipline-based scholarship
Title Minimum-Time Quadrotor Waypoint Flight in Cluttered Environments
Organization Unit
Authors
  • Robert Penicka
  • Davide Scaramuzza
Item Subtype Original Work
Refereed Yes
Status Published in final form
Language
  • English
Journal Title IEEE Robotics and Automation Letters
Publisher Institute of Electrical and Electronics Engineers
Geographical Reach international
ISSN 2377-3766
Volume 7
Number 2
Page Range 5719 - 5726
Date 2022
Abstract Text We tackle the problem of planning a minimum-time trajectory for a quadrotor over a sequence of specified waypoints in the presence of obstacles while exploiting the full quadrotor dynamics. This problem is crucial for autonomous search and rescue and drone racing scenarios but was, so far, unaddressed by the robotics community in its entirety due to the challenges of minimizing time in the presence of the non-convex constraints posed by collision avoidance. Early works relied on simplified dynamics or polynomial trajectory representations that did not exploit the full actuator potential of a quadrotor and, thus, did not aim at minimizing time. We address this challenging problem by using a hierarchical, sampling-based method with an incrementally more complex quadrotor model. Our method first finds paths in different topologies to guide subsequent trajectory search for a kinodynamic point-mass model. Then, it uses an asymptotically-optimal, kinodynamic sampling-based method based on a full quadrotor model on top of the point-mass solution to find a feasible trajectory with a time-optimal objective. The proposed method is shown to outperform all related baselines in cluttered environments and is further validated in real-world flights at over 60 km/h in one of the world’s largest motion capture systems. We release the code open source.
Digital Object Identifier 10.1109/LRA.2022.3154013
Other Identification Number merlin-id:22185
PDF File Download from ZORA
Export BibTeX
EP3 XML (ZORA)