Not logged in.

Contribution Details

Type Journal Article
Scope Discipline-based scholarship
Title On a Frank-Wolfe type theorem in cubic optimization
Organization Unit
  • Diethard Klatte
Item Subtype Original Work
Refereed Yes
Status Published in final form
  • English
Journal Title Optimization
Publisher Taylor & Francis
Geographical Reach international
ISSN 0233-1934
Volume 68
Number 2-3
Page Range 539 - 547
Date 2019
Abstract Text A classical result due to Frank and Wolfe (1956) says that a quadratic function $f$ attains its supremum on a nonempty polyhedron $M$ if $f$ is bounded from above on $M$. In this note, we present a stringent proof of the extension of this result to cubic optimization (known from Andronov, Belousov and Shironin (1982)). Further, we discuss related results. In particular, we bring back to attention Kummer's (1977) generalization of the Frank-Wolfe theorem to the case that $f$ is quadratic, but $M$ is the Minkowski sum of a compact set and a polyhedral cone.
Digital Object Identifier 10.1080/02331934.2019.1566327
Other Identification Number merlin-id:17552
PDF File Download from ZORA
Export BibTeX
Additional Information According to the Copyright Agreement the Preprint may be published in Merlin and ZORA. For the published version please contact the author.