
Master Thesis
April 4, 2016

Bifrost Toolkit:
Data-Driven Release

Strategies
Formalize and automate real-time, data-driven

live-testing methods using a DSL

Dominik Schöni
of Sumiswald, Switzerland (10-738-607)

supervised by
Prof. Dr. Harald C. Gall

Gerald Schermann

software evolution & architecture lab

Master Thesis

Bifrost Toolkit:
Data-Driven Release

Strategies
Formalize and automate real-time, data-driven

live-testing methods using a DSL

Dominik Schöni

software evolution & architecture lab

Master Thesis

Author: Dominik Schöni, dominik.schoeni@uzh.ch

Project period: 07.10.2015 - 07.04.2016

Software Evolution & Architecture Lab

Department of Informatics, University of Zurich

Acknowledgements

I would like to thank Prof. Dr. Harald C. Gall for giving me the opportunity to write this thesis
at the software evolution and architecture lab at the University of Zurich. I would also like to
thank Dr. Philipp Leitner for introducing me to the topic of this thesis and Gerald Schermann for
his inputs, guidance and great effort. Moreover, I would like to thank Joel Scheuner and Genc
Mazlami for the great discussions in the s.e.a.l lab. My sincere thanks also goes to Lukas Merz for
proofreading this thesis. Finally, special recognition goes out to my parents, Tiziana and Roland,
for always encouraging and supporting me over the course of my studies, as well as my brother
Pascal for his advice and knowledge from which I was able to benefit tremendously. Last but not
least, I would like to thank my dearest girlfriend Melissa for motivating and inspiring me.

Abstract

The pace of software development has steadily increased, being transformed by the notion of ag-
ile and iterative development. In the meantime, the process of turning source code into releasable
software artifacts is similarly transforming using techniques such as continuous integration, de-
livery and deployment. By automating and streamlining the process of releasing software, devel-
opers receive a new set of methods to leverage real-time customer feedback in their development
processes. Fueled by scalable and flexible approaches to software such as microservices-based ar-
chitecture, companies start to integrate live-testing methods into their applications to benefit from
real-time user data e.g., by conducting A/B tests, silently launching new functionality or gradu-
ally testing new features in production. However, these kind of data-driven release strategies exist
solely in large-scale corporations and few research has been conducted in this area. This thesis
formalizes a general model of data-driven release strategies to allow complex and multi-staged
software releases. Furthermore, a prototype based on the developed model is implemented to
showcase its potential and to discover its pitfalls. In a qualitative evaluation, it is demonstrated
how the prototype and thus the model allows for more complex scenarios in comparison to exist-
ing tools. Furthermore, a quantitative evaluation of the prototype shows that the chosen approach
can be integrated into existing web applications with minimal performance constraints.

Zusammenfassung

Die Entwicklung von Software wurde zunehmend schneller, transfomiert und beeinflusst von
Techniken wie agiler und iterativer Entwicklung. Zugleich passt sich auch der Prozess an, welcher
aus Code auslieferungsfähige Artefakte erstellt, unter anderem durch Techniken wie Continu-
ous Integration, Delivery und Deployment. Durch die zunehmende Automatisierung und Vere-
infachung des Auslieferungsprozesses erhalten Entwickler die Möglichkeit Kundenfeedback in
Echtzeit zu erhalten, indem Metriken ausgewertet werden. Diese Metriken können Feedback-
prozesse der Organisation beschleunigen. Angetrieben durch neuartige und flexible Architektu-
ransätze wie Microservices integrieren Organisationen zunehmend live-testing in ihre Applika-
tionen, um in Echtzeit durch Metriken profitieren zu können. Beispiele dafür sind A/B Tests
oder das versteckte Ausrollen neuer Funktionalitäten. Diese Daten-getriebenen Prozesse ex-
istieren allerdings hauptsächlich in grossen Firmen und bis anhin wurde wenig Forschungsarbeit
in diesem Bereich geleistet. Diese Arbeit präsentiert wie Daten-getriebene Auslieferungsprozesse
in ein generalisiertes Modell formalisiert werden können, welches komplexe und mehrstufige
Prozesse erlaubt. Basierend darauf wird ein Prototyp implementiert, um das Potenzial sowie
mögliche Schwachstellen des Modells aufzuzeigen. Eine qualitative und eine quantitative Eval-
uation des Prototypen zeigen, dass das vorgestellte Modell komplexere Szenarios erlaubt als ex-
istierende Lösungen und dass der gewählte Ansatz es erlaubt das entwickelte Toolkit mit mini-
malem Performanceverlust in bestehende Webapplikationen zu integrieren.

Contents

1 Introduction 1
1.1 Contribution and Research Questions . 2
1.2 Thesis Outline . 2

2 Background 5
2.1 Building and Releasing Software . 5

2.1.1 Continuous Integration . 5
2.1.2 Continuous Delivery . 6
2.1.3 Continuous Deployment . 7
2.1.4 DevOps . 8
2.1.5 Deployment Pipeline . 9

2.2 Data-Driven Software Release . 9
2.2.1 Methods of Live-Testing . 9
2.2.2 Implementation Techniques . 11

2.3 Microservices Architecture . 13
2.3.1 Definition . 13
2.3.2 Advantages of Microservices . 14
2.3.3 Communication in Microservices . 14
2.3.4 Metrics in Microservices . 14

2.4 Summary . 16

3 Related Work 17
3.1 Releasing Software . 17
3.2 Dynamic Release Management . 18
3.3 Existing Tools . 18

3.3.1 Research Prototypes . 19
3.3.2 Industry Tools . 20

4 Data-Driven Release Strategies using Bifrost 21
4.1 Problem Analysis . 21

4.1.1 Usage Scenario . 21
4.2 A general model for releasing software . 22

4.2.1 Characteristics . 22

viii Contents

4.2.2 Formal Definition . 23
4.3 Bifrost Toolkit Prototype . 25

4.3.1 Requirements . 25
4.3.2 Approach . 26
4.3.3 Technologies . 27

4.4 Bifrost DSL . 28
4.4.1 Converting the Release Model into a DSL . 28
4.4.2 Deployment . 29
4.4.3 Strategies . 30
4.4.4 Actions . 30

4.5 Bifrost Engine . 33
4.5.1 Overview . 33
4.5.2 Interpreter . 34
4.5.3 Deployment . 34
4.5.4 Model . 34

4.6 Bifrost Proxy . 37
4.6.1 Configuration . 37
4.6.2 Sticky Sessions . 37
4.6.3 Filters . 37

4.7 Bifrost CLI . 38
4.7.1 Overview . 38

4.8 Bifrost UI . 39
4.8.1 Overview . 39

5 Evaluation 41
5.1 Qualitative Evaluation . 41

5.1.1 Tools . 41
5.1.2 Dimensions . 43
5.1.3 Analysis and Discussion . 44
5.1.4 Summary . 47

5.2 Quantitative Evaluation . 48
5.2.1 Method . 48
5.2.2 Request Performance . 51
5.2.3 Filter Performance . 53
5.2.4 Release Performance . 55

6 Final Remarks 59
6.1 Conclusion . 59

6.1.1 Threats to Validity . 60
6.2 Future Work . 61

6.2.1 Formal Verification . 61
6.2.2 Extend Bifrost Toolkit . 61
6.2.3 Integration in Deployment Pipeline . 61
6.2.4 Feature Toggles . 62

Contents ix

Glossary 69

Bifrost Sample Release Strategy 73

Performance Evaluation Filter Configurations 77

Bifrost Engine Installation Guide 83

Bifrost Toolkit Integration Guide 85

Bifrost Microservices Sample Application Guide 89

x Contents

List of Figures
2.1 From agile development to DevOps . 8
2.2 Visualization of A/B testing and canary launches 10
2.3 Visualization of shadow launches and blue/green deployments 11
2.4 Dynamic request routing . 13

4.1 Architecture diagram of the Bifrost Toolkit, embedded in a sample application . . 26
4.2 The Bifrost CLI provides real-time status information while a release is running . . 38
4.3 Ongoing release in Bifrost UI, updating its progress in real-time 39

5.1 Bifrost microservices sample application as used in the performance evaluation . . 49
5.2 Average response time per tested endpoint . 51
5.3 Histogram of response times, depicting both proxied and non-proxied 53
5.4 Achieved response time while scaling from 0 to 120 threads 54
5.5 Average response time during the release test in milliseconds 56

List of Tables
5.1 Feature-comparison of analyzed tools . 42
5.2 Comparison of live-testing tools . 45
5.3 Results of request performance test in milliseconds 52
5.4 Average response time in milliseconds grouped by active threads 55
5.5 Average response time during a phase in milliseconds and delta to the baseline . . 57

List of Listings
2.1 Example of feature toggles using fflip . 12
4.1 EBNF representation of the Bifrost DSL . 29
4.2 Example of a deployment specification in Bifrost . 29
4.3 Example of multiple strategies that make use of the next property 30
4.4 Route action that redirects 50% of the traffic from service A to service B 31
4.5 Request action that checks http://www.google.ch once in 5 seconds for 10 times . 31
4.6 Pause action that stops the release after finishing the running strategy 32
4.7 Metric action that compares CPU-Load using Prometheus as provider 32
4.8 AND action that tests the reachability of two services 33
4.9 Action-class implementation in Bifrost Engine . 36
5.1 Example of how to use Scientist! [jba14] . 43

Chapter 1

Introduction

The process of releasing software has been undergoing significant changes in recent years [Dea07].
Software companies tend to release not yearly or quarterly anymore but weekly, daily or even
per-commit. To support faster processes in a resilient and stable way, automation becomes key.
Whereas software development has adapted to iterative and agile processes for years, opera-
tions has begun to change rapidly as well, influenced by techniques such as continuous inte-
gration [DMG07], delivery [Che15] and deployment [Pul13]. In addition, cloud providers bring
ubiquitous computing to the masses and promise unlimited scalability and flexibility for every-
one. This shift creates challenges and opportunities. The notion of resilient and auto-scalable
services in the cloud means that software architecture has to adapt accordingly. Software de-
velopers adapted, increasingly following an architectural approach called microservices. Addi-
tionally, the deployment of software becomes increasingly agile and more versatile. A shift in
paradigm, commonly referred to as DevOps [FS14], where the separation between the opera-
tions and development teams blurs, embraces infrastructure as code and advocates faster release
cycles. Developers have begun to embrace the fact that software, being a non-physical good, has
properties such as intangibility that allow for interesting and sophisticated delivery mechanisms.
Large-scale companies such as Facebook, Netflix or Etsy started to use these properties to gain
insights about their products using data-driven release methods while collecting customer feed-
back. The transformation from agile development to a feedback driven process is even labeled as
the "stairway to heaven" [OAB12], where the final step is described as follows:

"The entire R&D system responds and acts based on instant customer feedback and
where actual deployment of software functionality is seen as a way of experimenting
and testing what the customer needs." [OAB12]

An example of such a data-driven method are A/B tests, conducted between different user
groups, to find out if a new feature serves its intended purpose. Another popular approach is to
dogfeed applications to internal testing groups in order to find bugs that are hard to detect using
automated testing. This adds a new level of complexity to their release configuration, with which
they deal with using custom-made configuration management tools.

2 Chapter 1. Introduction

1.1 Contribution and Research Questions
As of today no general model of releasing software exists that incorporates live-testing strategies,
e.g., A/B testing. This thesis aims to propose a general model on how to structure software re-
leases in a way that complex release procedures can become a part of automated rollouts using
continuous integration, delivery and deployment. The first posed research question therefore is:

RQ1: How can we formalize a (generic) model for data-driven release and deploy-
ment strategies?

The model is later validated by building a prototype implementation called Bifrost, named
after the burning rainbow bridge between the world and the realm of gods in Norse mythology.
The prototype serves as a first implementation of the developed release model. It explores how
techniques like dynamic request routing can be incorporated into existing applications following
a microservices-based architecture to allow complex, data-driven release methods when deploy-
ing new versions of existing services. Therefore, the second derived research question is:

RQ2: How can we build a tool that supports and automates data-driven release
and deployment strategies for microservices-based architectures in a non-intrusive
way?

The prototype is evaluated in a qualitative comparison to existing approaches, as well as in a
quantitative evaluation concerning its performance impact on applications. Existing approaches
to deliver customer-specific software versions mostly use feature toggles to change the behavior
of software at runtime, depending on the current user. This approach is prone to errors and
can become tedious to manage depending on the application scale. Applications built using the
microservices-based architecture approach allow alternatives such as dynamic routing to serve
customer requests to specifically built versions of services.

1.2 Thesis Outline
The thesis is structured as follows:

• Chapter 2 introduces relevant topics and terms. It focuses on how software deployment
has evolved during the recent years, considering how agile practices influence the way
software gets developed and delivered. Special attention is given to the evolution of the
deployment pipeline and the concepts of continuous integration, delivery and deployment.
It also touches briefly on the notion of DevOps in the context of this thesis. It introduces
and defines a selection of relevant live-testing methods such as canary launches, shadow
launches, A/B testing or blue/green deployments. Furthermore, the approach of microser-
vices architecture is introduced to give an understanding on how modern web applications
are currently developed.

• In Chapter 3, a selection of related work that is close to the chosen topic of this thesis is
presented, containing research papers and showcasing existing tools and approaches from
both research and industry.

1.2 Thesis Outline 3

• Chapter 4 shows the development of a general model to formalize release strategies and ap-
plies the developed model in a prototype implementation called Bifrost. The Bifrost Toolkit
is presented in detail in the second part of this chapter, focusing on its architecture and
selected implementation details.

• The evaluation in Chapter 5 is split into two parts. The first part is a qualitative evaluation
that compares the Bifrost Toolkit to existing research prototypes and industry tools within a
set of defined dimensions. The second part focuses on a quantitative evaluation considering
the performance impact of the Bifrost Toolkit upon existing applications.

• Finally, Chapter 6 summarizes the conclusions of this thesis and discusses potential future
work regarding the presented model and the implemented prototype.

Chapter 2

Background

The rise of the cloud and ubiquitous computing [BYV+09] has given developers new possibilities
in terms of resource availability and ease of provisioning. This allows for faster releases and new
methods of dynamic deployments. The first part of this chapter focuses on the process of building
and releasing software, whereas the second part concentrates on data-driven software releases
considering its methods and techniques. Lastly, the concept of microservices-based architecture
is introduced and discussed in terms of inter-service communication and metrics.

2.1 Building and Releasing Software
While many methods were developed that covered software design, development, and testing,
the process of delivering software was often overlooked in comparison [HF10]. This changed
through the introduction of key concepts that brought the notion of agile development [BBvB+01]
into the software build and release process, beginning with continuous integration.

2.1.1 Continuous Integration
"Continuous Integration (CI) is the process of building software with every change
committed to a project’s version control repository." [DMG07]

Software projects often suffer from lengthy integration periods, commonly referred to as "in-
tegration hell" [Cun09]. As software gets developed by different teams, the phase of bringing the
software together is complex and error-prone, let alone the fact that incompatibilities between
parts and components are often discovered during the integration period [HF10]. These difficul-
ties result in long integration periods and unclear timelines as a result thereof [FF05]. Continuous
integration was first proposed by Booch [Boo91], although the pace of integration is compara-
tively low. Beck [Bec00] explicitly stated that no code "sits unintegrated for more than a couple of
hours", defining the notion of CI.

CI describes a set of techniques and processes that aim to prevent integration problems. It
is able to alleviate these difficulties by "eliminating the blind spot" of knowing where you are

6 Chapter 2. Background

and what bugs are left to be fixed. CI automates tasks such as compiling, static code analy-
sis, running unit or acceptance tests, generating coverage reports or building deployable arti-
facts [FS14, Aga11, Mar07].

According to Fowler [FF05] practices to implement CI include, but are not limited to:

• Maintaining a single source repository

• Build automation

• Self-testing builds, automatically triggered builds upon commits to the main branch of de-
velopment

• Keeping the build process fast and fixing broken builds immediately

The process of continuous integration knows no standardized method [SB14]. It merely de-
scribes a set of goals that can be achieved using different tools. There exist a lot of continuous
build systems that are suitable to implement continuous integration, such as Buildbot1, GitLab2

or Jenkins3.

2.1.2 Continuous Delivery
The industry is quickly embracing the notion of value- and business-driven software develop-
ment. Agile processes allow developers to deliver changes and new features in software to users
quickly, either for use in production or for testing and verification of requirements [Abr08]. Soft-
ware is not evolving slowly in month over month releases, but the process is being streamlined
into weekly, daily or even hourly release schedules. This makes it necessary to continuously have
software available for release, which introduces the concept of continuous delivery. This con-
cept helped customers and developers alike to follow the spirit of the agile manifesto [BBvB+01],
which states that developers should "deliver working software frequently, from a couple of weeks
to a couple of months, with a preference to the shorter timescale". Humble and Farley define con-
tinuous delivery as:

"A software development discipline where you build software in such a way that the
software can be released to production at any time" [HF10]

It includes the process used to build software that can be deployed at any given time. In the in-
dustry, the practice of continuous delivery has been increasingly adopted. A practical example of
how continuous delivery can be applied, was given by Chen for Paddy Power [Che15], describing
their process in implementing it. The company also introduced manual steps at the end of the au-
tomated chain, primarily for user acceptance tests and exploratory testing purposes [Che15]. As
reasons for adopting continuous delivery, they cite advantages such as accelerated time to mar-
ket, building the right product due to a shorter feedback-cycle or generally improved production
and efficiency through automation.

1Buildbot: http://buildbot.net/
2Gitlab - Code, test and deploy together: https://about.gitlab.com/
3Jenkins - Build great things at any scale: https://jenkins.io/index.html

http://buildbot.net/
https://about.gitlab.com/
https://jenkins.io/index.html

2.1 Building and Releasing Software 7

2.1.3 Continuous Deployment
While the process of actually deploying the release is often automated [Che15], the decision
whether the release should be deployed is still manually triggered. While a release-capable build
exists, it still only gets delivered to production on scheduled releases. Releasing software is for
many development teams a tense and stressful process. Humble et al. [HF10] describe manual
deployments as an anti-pattern which should be avoided in favor of fully automated ones. This
facilitates a repeatable, reliable and error-resilient deployment-process that is not susceptible to
human judgment and decision-making. Whereas manual deployments need proper documen-
tation, the scripts that enable automated deployment already serve as up-to-date and complete
documentation of the process. Beck and Andres [BA04] introduced the concept of daily deploy-
ments in 2004. In contrast to the first steps of continuous deployment, nowadays every commit
gets automatically built, tested and if, continuous deployment is practiced, even released directly
into production [HF10]. Continuous deployment is therefore described as:

"A software process that releases software changes automatically to end-users after
they pass the required tests". [HF10]

In reality, the actual implementation of these techniques often differ from the theoretical defi-
nition. A study conducted by Rahman et al. [RHWP15] that aimed to map continuous deployment
practices used in bigger companies, refined the definition of continuous deployment as:

"A software engineering process where incremental software changes are automati-
cally tested, and frequently deployed to production environments". [RHWP15]

Implementing continuous deployment is "harder as it seems" [NS13]. Challenges that devel-
opers face when adopting continuous deployment can be categorized in organizational, technical,
and social.

Organizational Challenges

Adopting continuous deployment is a company-wide effort [CSA15] and cannot be implemented
by one development team itself, as it touches many parts of a product and thus requires effort
from the top-level management to successfully implement these practices [OAB12]. In addition,
software often has dependencies to existing tools or components delivered through suppliers.
These suppliers have to adapt their process as well to make sure that continuous deployment can
deliver its advantages [OAB12].

Technical Challenges

From a technical perspective, introducing continuous deployment also means to introduce new
tools, which sometimes do not meet the required quality or maturity standards [OAB12]. Apart
from an automated testing per se, the fast-paced release schedule also requires fast testing to make
sure that the testing process does not limit the release frequency [NS13]. This problem creates
difficult decisions where companies even drop part of their test suite to "cut the fat and focus on

8 Chapter 2. Background

those test areas which are prone to failure" [MKA+13] in order to adapt rapid-release schedules. A
direct consequence of pushing code directly into production is that bugs slipping through quality
control are now discovered by customers [CSA15], highlighting the need for effective monitoring
and feedback mechanisms.

Social Challenges

Continuous deployment basically removes the notion of versions. What formerly consisted of one
release, now gets split and gradually rolled out. Highlighting changes and new features to cus-
tomers therefore requires an adaption in product marketing [CSA15, NS13]. The transition from
continuous delivery to continuous deployment also benefits from having pro-active customers,
willing to explore such new concepts [OAB12]. Another challenge is that the responsibility for
code quality shifts, adding more pressure to software developers as each commit that passes
quality control also reaches customers directly [CSA15].

Figure 2.1: From agile development to DevOps [Rig14]

2.1.4 DevOps
The concepts and techniques mentioned beforehand, are increasingly part of a wider concept that
glues development and operations together. As the release frequency increased, it became clear
that the historically separated teams of development and operations needed to adapt to the faster
cycle. Emerging techniques such as Infrastructure as Code helped shaping a new collaboration
between development and operations teams, commonly known as DevOps [Dev09].

2.2 Data-Driven Software Release 9

Hüttermann defines DevOps as follows:

"DevOps describes practices that streamline the software delivery process, emphasiz-
ing the learning by streaming feedback from production to development and improv-
ing the cycle time." [Hüt12]

The notion of DevOps is not purely technical but it includes several aspects also summa-
rized under the acronym CAMS: Culture, Automation, Measurement and Sharing [Joh10]. It
revolves around practicing the right culture that allows automated release management, inte-
grated feedback-loops using measuring tools, and creating an environment where problems and
mistakes are shared and discussed. From a technical perspective it is another step in automating
the process from commit to production, as writing out infrastructure and environment configu-
ration in code allows for simpler scalability of services (spinning up 5 or 50 machines becomes an
easy matter if the process of provisioning machines is completely automated), better encapsula-
tion, faster disaster recovery and new abilities to respond elastically to demand [EHN14]. It also
helps to remove the gap between development environment and production, which is essential
for having a functional deployment pipeline [HF10].

2.1.5 Deployment Pipeline

The process that gets triggered by every commit and turns version controlled software into ex-
ecutable software artifacts is generally called the deployment pipeline [HF10]. Code that gets
committed into version control automatically steps through the pipeline, with the goal of bring-
ing software into the hands of its users. Each task the code has to fulfill is harder and the environ-
ment becomes more and more production-like. How far the code is able to get in the deployment
pipeline therefore determines its production readiness. This can be visualized using a multi-step
process as shown in Figure 2.1.

2.2 Data-Driven Software Release
The deployment pipeline covers building, testing, and releasing software from commit to pro-
duction. As previously mentioned, the testing part of the deployment pipeline can suffer from
cuts to allow faster release cycles [MKA+13]. A consequence of this shift is that software features
often get tested in practice by real users [FFB13] using a range of tools and techniques.

2.2.1 Methods of Live-Testing

To gain an understanding of how the process of live-testing individual features or service versions
works, the following sections discuss and present the most common methods used. Afterwards,
a set of techniques is presented, showing how the given methods can be implemented from a
technical perspective.

10 Chapter 2. Background

Service A

Service B

50%

User 50%

(a) A/B testing

Canary User

Baseline

Canary

User

(b) Canary launches

Figure 2.2: Visualization of A/B testing and canary launches

Partial Rollouts

A set of methods is generally combined under the term partial rollouts as they all are used to ex-
pose new functionality on a fixed or random set of users.

A/B Testing: A/B testing (see Figure 2.2a) is a way to compare two versions of software
with each other, often only differentiated in one tested aspect, to determine the effect of a certain
change [KLSH09]. It is a form of statistical hypothesis testing. Typically, A/B tests only involve a
small subset of users. Given a big enough sample size, this enables to determine what users want
instead of generating elicit requirements in advance [FFB13]. The general use case is to determine
whether users use new features in practice, but it can also be used to identify situations in which
users use new features in unexpected or harmful ways [FFB13].

Canary Launches: Similar to A/B testing, canary launches (see Figure 2.2b) compare two ver-
sions of software with each other. In comparison however, canary launches mostly addresses
the problem of introducing a new version into a stable environment [TSM+15]. The new version
(potentially unstable, called canary) is compared to the existing version (stable, called baseline) in
terms of a set of criteria such as stability, performance, or correctness. The goal of a canary launch
is to make sure that the canary does not perform worse than the baseline with respect to the se-
lected criteria.

Shadow Launches: New features often suffer from performance and reliability issues when
facing production-like load levels. To mitigate such problems, shadow launches (see Figure 2.3a)
allow to deploy features on production but not visible to users. An example is Facebook [FFB13],
which rolled out its new chat service to users without enabling the user interface component
allowing them to stress-test the service with realistic usage behaviors and at scale. Through mon-
itoring, development teams were able to fix the remaining bugs and scalability concerns before
enabling the feature for all users entirely. This kind of deployment is sometimes also referred to
as dark launch.

2.2 Data-Driven Software Release 11

Request
Router

User

Service A

Service B

duplicated
request

original
request

(a) Shadow launches

Database

Request
Router

User

Web
Service

Web
Service

Database

Release 1.0

Release 1.1

switchable

(b) Blue/green deployments

Figure 2.3: Visualization of shadow launches and blue/green deployments

Phased Rollouts

Phased rollouts introduce the possibility to expose more and more users to a new or an alternate
version of a service. This guarantees a smooth transition from for example canary to baseline, as
unexpected issues such as scalability concerns due to increasing workload are discovered during
the process [AM16]. If issues are uncovered, the service can quickly be restored to its previous
version to avoid further trouble for users. The process of restoring previous versions is often
referred to as rollback.

Blue/Green Deployments

The idea of blue/green deployments (see Figure 2.3b) is to deploy two identical versions of your
production environment. While one of the two versions (e.g., blue) is currently productive, the
other version (e.g., green) is just deployed but does not serve any users. This setup allows running
tests of a new version in an environment that is identical to production and releasing a new ver-
sion with a simple change of the routing configuration [HF10]. Difficulties like handling database
migrations have to be handled though and introduce non-trivial challenges. While there exists
advice on how to manage database migration and synchronization issues [Fow10a], there is no
general consent whether one actually should. A guide published by CloudNative even advices
to avoid any synchronization scenarios [San15].

2.2.2 Implementation Techniques
The previously introduced methods of live-testing rely on the ability to dynamically alter the
behavior of applications at runtime. There exist two prominent approaches on how to implement
this from a technical point of view, namely feature toggles and dynamic routing.

Feature Toggles

One method to dynamically enable and disable code segments are feature toggles [Fow10b,Hod16]
(also referred to as switches, flippers or feature flags [Fow10b]). A feature toggle can be as simple
as an if-else branch checking a variable in the applications code (see Listing 2.1 for an exam-
ple). A better implementation uses external configuration providers or files to facilitate dynamic

12 Chapter 2. Background

testing of different features [Hod16]. Feature toggles allow incomplete features to be shipped
into production as the code in question never gets executed given the configuration is set prop-
erly [Fow10b]. There exist various tools that help introducing feature toggles in applications such
as LaunchDarkly4 (a multi-platform Software as a Service solution) or individual language-based
frameworks such as Togglz5 for Java or fflip6 for JavaScript. Each of these frameworks and tools
have in common that they require developers to modify existing application code using the pro-
vided framework.

1 // Get all of a user’s enabled features

2 var Features = fflip.userFeatures(someFreeUser);

3 if(Features.closedBeta) {

4 console.log(’Welcome to the Closed Beta!’);

5 }

6 // Or, just get a single one

7 if (fflip.userHasFeature(someFreeUser, ’closedBeta’)) {

8 console.log(’Welcome to the Closed Beta!’);

9 }

Listing 2.1: Example of feature toggles using fflip

They are a useful and cheap addition at first, but tend to introduce complexity over time.
Some developers consider feature toggles as a prime example of technical debt [Bir11], defined
as a situation in which long-term code quality is traded for short-term gain [BCG+10]. A famous
example of how feature toggles can introduce serious bugs is an example from financial services
firm Knight Capital Group. Due to reusing an old feature toggle, their trading software managed
to generate a 460 million U.S. dollar loss in 45 minutes [Sev14].

Dynamic Routing

Web-based applications are able to leverage a different approach called dynamic routing. Instead
of embedding code into the service, the basic premise of dynamic routing is to use a request-
router which determines what service (and thus which version) should receive a specific request.
A patent describing a similar mechanism to accomplish phased rollouts of version upgrades was
filed in 2009 [LBR09]. In comparison to feature toggles, no modification of existing application
code is necessary. A simple example of dynamic routing are blue/green deployments (see Sec-
tion 2.2.1) which are generally implemented using reverse-proxies7 that offer dynamic routing
functionalities such as NGINX8 or HAProxy9.

The method is also capable of more fine-granular routing. Depending on the protocol used, the
request-routers can use header fields (e.g., in HTTP10) to determine which service should receive
a specific request. An example can be seen in Figure 2.4, depicting a HTTP-based request-router
that distinguishes between two user groups and the corresponding servers that serve the request.

4LaunchDarkly: https://launchdarkly.com/
5Togglz: http://www.togglz.org/
6fflip: https://github.com/FredKSchott/fflip
7A proxy server that serves resources of one or more servers to clients, as if it itself was the origin [Apa13]
8NGINX - High Performance Load Balancer, Web Server & Reverse Proxy: https://www.nginx.com/
9HAProxy -The Reliable, High Performance TCP/HTTP Load Balancer: http://www.haproxy.org/

10Hypertext Transfer Protocol [FGM+99a]

https://launchdarkly.com/
http://www.togglz.org/
https://github.com/FredKSchott/fflip
https://www.nginx.com/
http://www.haproxy.org/

2.3 Microservices Architecture 13

User

HTTP Request
Header: X-USER-GROUP: A

Request
Router

Application Server A

Application Server B

Configuration

X-USER-GROUP: A => Application Server A

X-USER-GROUP: B => Application Server B

Figure 2.4: Example of dynamic request routing using HTTP-headers

Routing based on request properties has previously been used especially to implement dynamic
load balancing of web applications [CCP99, BKK00].

2.3 Microservices Architecture
As the following thesis focuses on web applications built using a microservices architecture ap-
proach, the following section will define the term in the scope of this thesis to guarantee a consis-
tent understanding should the term or its meaning change in the future.

2.3.1 Definition
The term microservices is getting a lot of attention in the software development industry. Al-
though a lot of blogs, companies, and people are talking about microservices there exists no uni-
fied view on what microservices architecture consists of. It is highly discussed, either dismissed
as being yet another buzzword or presented as what Service-Oriented-Architecture should have
been in the first place [McK15]. Fowler and Lewis [FL14] define microservices as follows:

"The microservice architectural style is an approach to developing a single applica-
tion as a suite of small services, each running in its own process and communicating
with lightweight mechanisms, often an HTTP resource API. These services are built
around business capabilities and independently deployable by fully automated de-
ployment machinery. There is a bare minimum of centralized management of these
services, which may be written in different programming languages and use different
data storage technologies." [FL14]

14 Chapter 2. Background

This definition matches Newman’s from his book "Building Microservices", where microser-
vices are described as small and autonomous services that work together [New15]. A microser-
vice should do one thing well and therefore adhere to the Single Responsibility Principle intro-
duced by Robert C. Martin [Mar03].

2.3.2 Advantages of Microservices
The whole notion of splitting applications into multiple services comes from the realization that
monolithic architectures tend to end as what is described as "big ball of mud" [FY00]. Microser-
vices architecture reduces the risk by advocating small and lightweight components, splitting up
code in terms of business boundaries to create explicit services for a given piece of functional-
ity [New15]. The fact that components are now autonomous also means that it is possible to
adapt new technologies into the application stack over time. A single microservice does not
have to share the technology stack with other services as long as the communication protocol
is clearly defined and easily accessible [New15]. Another key advantage is the inherent scalabil-
ity of microservices in comparison to monolithic applications. Services can be scaled on a fine-
granular level instead of running multiple copies of a monolithic application [New15, ND14]. A
common approach is to use load balancers in order to distribute workload to multiple service
instances [New15].

2.3.3 Communication in Microservices
Microservices architecture focuses on creating small, self-contained and decoupled services. These
services use lightweight mechanisms such as HTTP [FL14] for communication. Albeit other pro-
tocols can be used as well, 95% of participants of a survey stated that they use HTTP in combina-
tion with RESTful APIs for inter-service communication [SCL15].

Thönes [Tho15] proposes that complexity is being moved from the inside of monolithic appli-
cations to the networking layer and thus into the infrastructure. This change has been made pos-
sible by programmable infrastructure and the general approach of automation that is mandated
by the DevOps movement [Tho15]. One of the challenges in adapting microservices architecture
lies in getting services to know each other in the first place. This problem is summarized under
the term service discovery. One possible solution to service discovery is the usage of DNS11. Ser-
vices use hostnames as entry point to the IP addresses of services [New15]. DNS is a standard
that is widely used and supported. One of its few disadvantages is that updating DNS entries can
become a troublesome process if caching-mechanism are involved [New15].

2.3.4 Metrics in Microservices
As metrics play an important role in data-driven release processes, their collection and relevant
tools are discussed in the following sections in the context of microservices web applications,

11Domain Name System, a distributed and decentralized naming system for computers

2.3 Microservices Architecture 15

including a short overview of the difficulties that dynamic environments such as cloud providers
introduce.

Collecting Metrics

There exists a range of low-level metrics that can be analyzed to gain an understanding of a
web services performance, such as its throughput, latency, response- or execution-time [Lad12].
High quality web services achieve high throughput, low execution- and response-time and low
latency. These metrics concentrate on the user experience of a web service and can be derived
from low-level metrics such as CPU load, I/O bandwidth or networking throughput. Apart from
the typical metrics that can be measured by monitoring the hard- or software, business metrics
play an important role in helping to make decisions [VM01]. A large amount of tools help to
monitor and visualize business metrics such as NewRelic12 or Ruxit13. Many available tools allow
for systematic collection of key QoS metrics. cAdvisor14 by Google is one example used to collect
resource usage and performance characteristics of running containers. CollectD15 is a daemon
that collects system performance metrics. As certain events can go undetected by the underlying
system, but are still valuable for the applications health and behavior. Utilities like Logster16

parse log files of applications, extract useful information and aggregate that data into user-defined
metrics. Such aggregation behavior that happens in the scope of individual services can also be
found in statsD17, which is a network daemon built upon NodeJS that is able to aggregate statistics
received over UDP or TCP connections.

Cloud Environments

The collection of metrics is a complex endeavor on its own. Many modern web applications
that are built upon microservices-based architecture are deployed to virtualized environments or
the cloud. Developers often use Infrastructure as a Service platforms (e.g., Amazon Web Services18,
Google Cloud Platform19 or Microsoft Azure20) or Platform as a Service platforms (e.g., Heroku21 or
IBM Bluemix22). These platforms introduce new difficulties and challenges such as performance
fluctuations [SLCG14], variable resource consumption caused by physical co-location with other
services [TSM+15, HSVT12], or shared responsibilities between multiple parties concerning the
service quality [HSVT12].

12NewRelic - Application Performance Management & Monitoring: http://newrelic.com/
13Ruxit - All-In-One Application Performance Management: https://ruxit.com
14cAdvisor: https://github.com/google/cadvisor
15collectd - The system statistics collection daemon: http://collectd.org/
16logster: https://github.com/etsy/logster
17statsD: https://github.com/etsy/statsd
18Amazon Web Services: https://aws.amazon.com/
19Google Cloud Platform: https://cloud.google.com/compute/
20Microsoft Azure: https://azure.microsoft.com
21Heroku - Cloud Application Platform: https://www.heroku.com/
22IBM Bluemix: http://www.ibm.com/cloud-computing/bluemix/

http://newrelic.com/
https://ruxit.com
https://github.com/google/cadvisor
http://collectd.org/
https://github.com/etsy/logster
https://github.com/etsy/statsd
https://aws.amazon.com/
https://cloud.google.com/compute/
https://azure.microsoft.com
https://www.heroku.com/
http://www.ibm.com/cloud-computing/bluemix/

16 Chapter 2. Background

2.4 Summary
The release process of software is adapting to the fast-paced iterative development, using con-
cepts such as continuous integration, delivery and deployment. Organizations are recognizing
the need to bring development and operations closer together using the DevOps notion and
thus create a fully automated deployment pipeline. This paves the way for new, data-driven ap-
proaches to release software. Especially in the field of web applications, which is enabled through
cloud computing and highly-flexible approaches such as microservices-based architecture.

Chapter 3

Related Work

This chapter describes previous research, prototypes, and tools in the field of release manage-
ment. The first section focuses on work in the area of release and deployment practices in general,
whereas the second section concentrates on a selection of research prototypes and industry tools
that are relevant to this thesis.

3.1 Releasing Software
Rahman et al. [RHWP15] have synthesized continuous deployment practices used in software de-
velopment. However, the paper uses its own definition of continuous deployment that describes
a software engineering process, where new software is automatically tested and "frequently de-
ployed to production environments". This contrasts the more narrow definition established in the
background section of this thesis, where continuous deployment releases every built artifact from
a certain branch. Their study found that all adoptees "use the practices of automated deployment,
automated testing, and repositories". Olsson et al. [OAB12] have conducted a multiple-case study
to explore the transition from agile development towards continuous deployment. The paper
uses a strong metaphor, speaking of the "stairway to heaven" by describing the typical evolution
path for companies starting at traditional developing, going agile and finally using research and
development as an experiment system where "deployment of software is seen more as a starting
point for further tuning". However, no company that took part in the research study was classi-
fied in this last stage. The given reasons state that companies miss "the capability to effectively
use the collected data to test new ideas with customers" [OAB12].

To actually learn and understand how continuous deployment may benefit a software process,
one way is to learn about specific case studies of companies implementing it [RHWP15]. One
example is the case study by Neely et al. [NS13], which focuses on how Rally Software transitioned
from an eight-week release schedule to a continuous delivery model. The paper notes that the
transition is not painless, not only from an engineering point of view. Also the business side
of their company had to adapt to the new deployment technique, as a "consolidated enablement
push every eight weeks was no longer an option", forcing to communicate information about new
features differently than before. They acknowledged the change in process by communicating in
smaller chunks, replacing extensive meetings to review new features with blog posts and emails.
This finding is shared by Claps et al. [CSA15], stating that feature discovery was a challenge

18 Chapter 3. Related Work

introduced by adapting to continuous deployment.

Faster releases come at a certain price though. A study of Mantyla et al. [MKA+13] analyzed
the results of execution runs and manual system-level test cases of Mozilla Firefox from 2006 to
2012, and concluded that to be able to release more often, the company had to cut down its testing
suite. This was done to speed up their build time and allowed the team to “to cut the fat and
focus on those test areas which are prone to failure". Selected areas were tested deeper in scope,
whereas non-critical parts have been excluded from their automated setup. A similar conclusion
was drown by Neely et al. [NS13], stating that long-running tests (one particular test suite took
over 9 hours) limit fast releases. This due to the fact, that the software can only be released as
fast as the test suite completes. A study conducted by Olsson et al. [OAB12] has shown that many
developers that have hardware-oriented businesses also suffer from a lack of tooling support and
have difficulties to adapt their processes to the fast-paced software development.

3.2 Dynamic Release Management

Rahman et al. [RHWP15] found that 16 of 19 adoptees of continuous deployment use monitor-
ing systems to collect deployment related metrics. Further, most of the adoptees (17 out of 19)
use gradual rollouts, and more than half (12 out of 19) practice dogfooding. This shows that
gradual rollouts are relatively common in the industry. Big companies like Facebook have built
specialized toolsets to enable them the automated delivery of complex release and deployment
strategies [TKV+15]. They argue that frequent software upgrades in Internet services are not only
possible today, but rather a necessity to survive against competition [TKV+15]. A similar argu-
mentation can be found by Neely et al. [NS13], stating that eight week release cycles are too long.
Schermann et al. [SCL15] conducted a quantitative, web-based survey that targeted developers
and companies alike that identify themselves with building service-based products. They found
that monitoring QoS attributes is quite common, although the majority of developers did not
collect any business and custom metrics but focused on health and performance related runtime
monitoring.

There exists a range of tools and products used in production that are used to monitor web
applications. Tools like Splunk1 or Nagios2 allow the collection and analysis of data. However, the
automatic integration of this data into the release process is lacking, and the task to automatically
undeploy faulty releases is left to the operations or development team [AM16].

3.3 Existing Tools

There exist a number of tools and approaches that are similar in usecase or concept to the pro-
posed model of this thesis. In the following sections, a subset of suitable tools are presented that
either follow similar approaches to this thesis or aim at solving the same challenges.

1Splunk - Operational Intelligence: http://www.splunk.com/
2Nagios - The Industry Standard in IT Infrastructure Monitoring: https://www.nagios.org/

http://www.splunk.com/
https://www.nagios.org/

3.3 Existing Tools 19

3.3.1 Research Prototypes

Rondo

Gunalp et al. [GEL15] presented "a tool suite for continuous deployment in dynamic environ-
ments". The motivation of the proposed solution lies therein, that systems become increasingly
flexible and cloud-applications have access to dynamically allocated computing resources. Rondo
aims at tackling four key requirements of a deployment process, namely "Reproducibility, Fault-
tolerance, Continuous Adaptation and Customizability". The tool consists of a deployment de-
scription DSL implemented as an embedded-DSL using a fluent Java API and a second imple-
mentation using the Groovy scripting language. The DSL was used to define the final state of the
deployment platform. A component called deployment manager was used to analyze and plan
the transition from one deployment state to another, as well as execute and monitor its transition.
The tool has been validated in the context of two different service platforms and by measuring
its performance overhead concerning memory and deployment execution time. Their tool suite
follows a different approach than this thesis though. Rondo handles deployable services as re-
sources that are transitioned from a derived state to a expected final state during deployment.
The tool has to be deeply integrated into the given application, as its deployment agent takes care
of service modification and provisioning. Bifrost on the other hand, neglects this part in favor of
a more generalizable approach that works with any web service given it speaks HTTP.

CanaryAdvisor

Tarvo et al. [TSM+15] propose a tool targeted towards a specific use case called CanaryAdvi-
sor. The tool is capable of monitoring newly deployed versions using open source tools such as
logstash3 and collectd. Tarvo et al. apply statistical methods to their data analysis part to compute
the correct decision whether the newly provided version (called canary) performs significantly
worse than the already deployed version (called baseline). They encountered that fully auto-
mated decision making during canary testing is nontrivial, primarily due to the high variance in
raw metrics. Bifrost aims to alleviate this issue by allowing users to choose their own metrics in
the decision process, that may already be preprocessed, or are higher-level in general. Another
challenge tackled included to define failure of releases, as this notion might vary from application
to application or even from one version to another. The tool does not handle traffic-routing or
deployment altogether, but aims solely at the data collection part of the problem.

GateKeeper

Tang et al. [TKV+15] describe GateKeeper as part of a broader research paper, focusing on Holis-
tic Configuration Management at Facebook. Facebook uses a group of internally developed tools
to handle their deployment and release setup, where one of the building blocks is GateKeeper.
Embedded as a HHVM4 extension, GateKeeper manages their feature toggles. A feature toggle
can depend on so-called restraints, which are statically implemented in PHP5 or C++6. These re-

3Logstash - collect, enrich & transport data: https://www.elastic.co/products/logstash
4HipHop Virtual Machine - VM that executes PHP and Hack using a JIT-Compiler: http://hhvm.com/
5PHP: Hypertext Preprocessor: http://php.net/
6C++ Programming Language: https://isocpp.org/

https://www.elastic.co/products/logstash
http://hhvm.com/
http://php.net/
https://isocpp.org/

20 Chapter 3. Related Work

straints are specific to their application-setup and able to check various conditions of users. This
allows GateKeeper to conduct complex A/B tests or phased rollouts. To prevent configuration
errors, the gating logic is limited to the available restraints. If restraints are heavy to compute,
GateKeeper utilizes a key-value store called Laser to retrieve either pre-computed results or out-
comes of scheduled jobs.

3.3.2 Industry Tools

Vamp

Vamp7 is conceptually similar to Bifrost. The tool is described as the "very awesome microservices
platform", consisting of "a platform-agnostic microservices DSL, powerful A/B testing, canary
launches, autoscaling and an integrated metrics & event engine". Vamp follows similar principles
as Bifrost, by using a YAML-based DSL to define deployments and services. The tool has ad-
vanced capabilities for custom traffic routing and filtering based on headers, but does not allow
users to dynamically change deployments based on real-time metrics or events. The latter are
primarily used for monitoring purposes.

Scientist!

Scientist!8 is a ruby-based library, whose intended usage is to "carefully refactor critical paths"
[jba14]. It is basically a library that provides feature toggling combined with the possibility to
automatically set up experiments, controlling which users should receive which version. At the
same time, metrics can be collected that are able to be reused for further analysis or published
directly. No DSL is used, as the library is embedded in the source code of the targeted ruby
project.

ION-Roller

ION-Roller9 is a service consisting of an API, web app and CLI tool that orchestrates Amazon’s
Elastic Beanstalk10 to provide safe immutable deployment, health-checks, traffic redirection and
more. Its basic use case is to guarantee a smooth traffic redirection between service versions (e.g.,
using a blue/green deployment) and thus facilitate an update process without service disrup-
tions, especially if having multiple instances of the same service version.

7Vamp - the very awesome microservices platform: http://vamp.io/
8github/scientist: https://github.com/github/scientist
9gilt/ionroller: https://github.com/gilt/ionroller

10PaaS-Solution of Amazon: https://aws.amazon.com/de/elasticbeanstalk/

http://vamp.io/
https://github.com/github/scientist
https://github.com/gilt/ionroller
https://aws.amazon.com/de/elasticbeanstalk/

Chapter 4

Data-Driven Release Strategies
using Bifrost

This chapter focuses on constructing a generic model for data-driven release strategies and how
a tool based on this model can be built. First, the problem is analyzed in light of the background
information given in Chapter 2. Second, an approach is introduced and explained how this thesis
aims to tackle the problems of data-driven release strategies. It is shown how the chosen approach
solves the problems in question and the developed prototype is presented.

4.1 Problem Analysis
Existing tools and research prototypes focus either on single usage scenarios [TKV+15, GEL15,
TSM+15] or provide only basic support for data-driven release methods [Mag14]. In reality, de-
velopers are more interested in combining and chaining different methods with each other. Each
method of live-testing can be regarded as merely another step in the deployment pipeline until
a specific release is seen as truly production-ready. While there exists a plethora of tools that
support the process of generating software artifacts and deploying these on infrastructure (ei-
ther on bare-metal machines or virtualized cloud environments), no toolkit exists that supports
data-driven release methods end-to-end and allows for deep customization.

4.1.1 Usage Scenario
A sample usage scenario has been constructed to showcase what a release process incorporating
data-driven release methods might look like. This usage scenario is also being reused in Chapter
5 to evaluate the built system.

"You are the developer of a system that sells goods and you have developed a web
application following the microservices architecture approach. One of your services,
called Products, provides a REST-API that enables other services to query informa-
tion. As part of an ongoing process to increase the sales performance, you have been
tasked to test out 2 new mechanisms in the application. These have been implemented
in different code branches of Products, called Products A and Products B. Both of these

22 Chapter 4. Data-Driven Release Strategies using Bifrost

services have run through your deployment pipeline, passed all necessary tests and
are ready to be deployed. The question remains which of the services offers improve-
ments in real usage. The following release scenario is envisioned to roll out the new
services, making sure that they perform as wished and fulfill the desired requirements:

• Canary Launch: Both services are deployed and served only to a predefined sub-
set of customers, known to be interested in trying out new product experiences.
They are monitored for runtime exceptions to detect troublesome behavior.

• Shadow Launch: Both services should receive the real load of all users, without
interfering with daily business. Therefore, both are shadow launched to receive
a realistic load pattern over an extended amount of time.

• A/B Test: Both services have proven themselves fit for production. However, it
is not yet sure which of the new mechanisms performs better. You deliver the
services to a small set of regular users, half of them testing Product A whereas the
other half receives Product B. The existing service is still used to serve the majority
of your customers. The sales performance is monitored throughout the process.

• Phased Rollout: You roll out the winner of the previous A/B test to all your
users, albeit step by step to make sure the transition goes smoothly and without
unnoticed side effects."

This usage scenario has subsequently been used to deduce a suitable approach to what the
toolkit should include and narrow down its scope.

4.2 A general model for releasing software
In order to create a general model for releasing software, a set of characteristics has to be identified
that are specific to data-driven release methods. These are analyzed and subsequently worked
into a formalized representation of a general model of data-driven software releases.

4.2.1 Characteristics
The described methods of live-testing in Section 2.2.1 serve as a basis to determine key character-
istics the developed model should fulfill. Four main characteristics have been identified that will
be discussed in detail in the following sections.

Ordered Execution. Live-testing methods rely on the ability to dynamically change their be-
havior during the process. Examples of such behavior can be identified in A/B testing, canary
launches or phased rollouts. These methods rely on multiple steps that modify the state of the
application over time. Therefore, a release can consist of multiple states that are separated of each
other. An example of such a behavior can be seen during canary launches, where candidates are
deployed into the application and monitored. Depending on the outcome of the monitoring, the

4.2 A general model for releasing software 23

application either gets modified and a service replaced or updated, or the previous state is re-
stored.

Parallel Execution. The ability to change the behavior of multiple services at the same time is
key to implement certain live-testing methods. Canary launches or shadow launches rely on con-
tinuous monitoring during the testing phase in order to trigger rollback strategies or automatic
failover if they behave unexpectedly or to base the decision process on data collected during the
testing period. Additionally, continuous monitoring may be used during phased rollouts of ser-
vices to determine whether a service changes its behavior and quality when facing more load.

Timed Execution. Live-testing methods may require the collection, analysis or processing of
data in regular intervals. Methods such as phased rollouts depend on timed increments to gradu-
ally introduce new services. Canary launches monitor candidates over extended periods of time
in order to gain a representative set of usage data [AM16]. Depending on the usage scenario these
methods may stretch over a couple of minutes, hours or even days.

Data-Driven. Certain methods of live-testing require additional information to proceed. Ca-
nary launches and A/B tests usually rely on manual intervention or extensive monitoring [AM16]
to decide about their outcome. Considering that existing tools in the application landscape are
tasked with analyzing log-data and deciding about the fitness of a particular service version, the
model should allow the inclusion of external data into the decision process.

These four characteristics serve as a foundation to model a general representation of a release
process. They represent a set of simple yet distinctive properties that are found in most of the
described live-testing methods and are key to successfully create a general model.

4.2.2 Formal Definition
To begin with, a Release is modeled as follows:

Release : {{c1, . . . , cn}, (s1, . . . , sn)}

A release consists of a set of service configurations {c1, . . . , cn}. Service configuration means
that each identified service of the application needs its own configuration ci that exposes the
necessary information to the release process. This information is used to further configure the
services through actions, if necessary. The second part is a tuple of strategies (s1, . . . , sn), thus
describing the characteristic of ordered execution. The order of the tuple elements determines
the order of execution, whereas the default strategy following any si is defined as si+1. Each
strategy itself is defined as a set:

Strategy : {ParallelA, SuccessA, FailureA}

A strategy’s elements ParallelA, SuccessA and FailureA are defined as follows:

ParallelA : {a1, . . . , an | ai ∈ Action}
SuccessA : {x | x ∈ Action}
FailureA : {x | x ∈ Action}

24 Chapter 4. Data-Driven Release Strategies using Bifrost

A strategy consists of a set of actions, ParallelA. These are scheduled to be executed at the
same time, thus match the characteristic of parallel execution. Two additional actions SuccessA
and FailureA are used to model behavior upon either successful or failing outcome. Actions
themselves, are defined as a tuple:

Action : A = {Θ,∆,Ω}

Actions consist of a state-modifying function Θ, a timer ∆ and supplied data Ω. Θ is the
function that is able to modify the state of a service configured as ci:

Θ : f(ci)→ c′i

This allows actions to modify the state of service configurations. The evaluation of an action
is defined as a function that returns a boolean value as result:

fa(ai) = result | result ∈ {True, False}

The timer ∆ controls the execution of an action by allowing it to be executed multiple times
(and thus also multiple state manipulations) using an interval between executions. This intro-
duces the characteristic of timed execution into the model. An action that is executed multiple
times only returns true, if a certain threshold supplied to the timer ∆ is reached:

f∆(ai) = {fa(ai)1...fa(ai)n} =

{
True |fa(ai) ∈ True| ≥ ∆Threshold

False |fa(ai) ∈ True| < ∆Threshold

The supplied data Ω is able to influence the result of an action as its value can change over
time, allowing for a data-driven outcome of an action. The result of a strategy is then represented
by a tuple of boolean values, resulting from the individual evaluation of the strategy’s actions.
To determine the final outcome of a strategy the results are chained together using the boolean
AND-operator:

fs({a1, .., an})→ fa(a1) ∧ ... ∧ fa(an)→ result | result ∈ {True, False}

Strategies are thus guaranteed to only succeed if all their corresponding actions were success-
ful. Following the evaluation of a strategy, either the SuccessA-action or the FailureA-action are
executed. This mechanism introduces a flexible way to achieve goals such as:

• Skipping or explicitly specifying the next strategy by manipulating the strategy tuple (s1, . . . , sn)

• Reacting to erroneous behavior e.g., by initiating automatic rollbacks

• Modifying the state of service configurations depending on strategy outcome

4.3 Bifrost Toolkit Prototype 25

4.3 Bifrost Toolkit Prototype

Using the problem analysis and the developed Bifrost release model, a prototype has been imple-
mented to showcase the model’s potential and discover possible improvements.

4.3.1 Requirements

Based on the previously introduced model, a high-level approach has been developed that is able
to implement the specified model. As there are many potential ways of how the release model can
be implemented, a set of requirements has been defined that have to be fulfilled by the developed
prototype to narrow down the scope of this specific implementation.

• Automatable: To make it possible for developers to integrate the Bifrost Toolkit into their
release process, the tool should be able to be fully automated by a CI-Environment, thus
featuring file-based release strategies that can be version controlled and scheduled without
human interaction.

• Scalability: The chosen approach should scale well, considering that applications experi-
ence changing load patterns and might be deployed in cloud environments featuring auto-
matic horizontal scaling.

• Microservices: As an increasing amount of web applications follow the trend of using a
microservices-based architecture, the chosen approach should be compatible with said ar-
chitectural style. This means that highly decoupled web applications using HTTP as com-
munication protocol should be fully supported.

• Extendability: Existing applications often feature monitoring solutions that are already
deeply embedded in the software stack. The toolkit should respect existing work and al-
low developers to leverage existing data or easily extend the toolkit to do so.

• Non-Intrusive: It should be easy to integrate the toolkit into existing applications, without
altering or rewriting the software that already exists.

The developed prototype focuses on the implementation of the Bifrost release model in the
scope of microservices. As microservices push the decoupling of functionality through indepen-
dent web services, dynamic routing (referring to Section 2.2.2) has been chosen as the technical
approach to implement the functionality. The release model should be easy to understand by de-
velopers and allow them to formulate flexible and customizable release strategies on their own.
Therefore, a domain specific language has been developed on the basis of the formalized release
model. The main advantages of this approach are that it allows for a transparent, and better
understandable representation of dynamic deployments [Fow08], making it easier to formulate
non-trivial scenarios. At the same time, it is another step towards a fully automated process in
comparison to GUI-controlled tools.

26 Chapter 4. Data-Driven Release Strategies using Bifrost

Service A

application

Database

monitoring

User

Bifrost
Engine

strategies

Bifrost Proxy

Service B

Bifrost ProxyBifrost Proxy

Reverse
Proxy

co
n

fi
gu

re
s

Metrics
Provider

service metrics

Bifrost UI

Bifrost CLI

Developer

Figure 4.1: Architecture diagram of the Bifrost Toolkit, embedded in a sample application

4.3.2 Approach
The prototype consists of four main components, which together form the Bifrost Toolkit depicted
in Figure 4.1.

• Bifrost Engine:This component has the main responsibility to orchestrate and properly con-
figure the deployed proxies in the system, using the rules specified in the DSL that get inter-
preted by the Bifrost Engine component. It is also responsible to query metrics providers or
external services (e.g., NewRelic1) in order to use the supplied data when making decisions
about the release process.

• Bifrost Proxy: The proxy implements the dynamic routing functionality to facilitate dif-
ferent release methods and to properly route HTTP-requests to the targeted service. Each
service receives its own proxy, which prevents traffic bottlenecks and keeps the services
decoupled.

• Bifrost CLI: Being a tool rather than a component, the Bifrost CLI is a command-line inter-
face that is used to schedule new releases, by supplying instances of the DSL to the engine.

• Bifrost UI: The web interface allows for a graphical representation of the current application
state, making it easier to follow complex release behaviors.

1NewRelic: http://newrelic.com/

http://newrelic.com/

4.3 Bifrost Toolkit Prototype 27

The architecture of the planned system is demonstrated in Figure 4.1, embedded in a sample
application consisting of three seperate services and a metrics provider that is monitoring the
services. The requirements specified in Section 4.3.1 have been adressed as follows:

• Automatable: The system can easily be combined and accessed through integration services
(e.g., Jenkins CI2) and used in scripted deployment setups, as the command-line interface
provides the possibility to automatically launch releases without user interaction. Release
processes are encoded in external files, which can be version-controlled and bundled with
the service.

• Scalability: The proxy works in combination with load balancers, reverse proxies or re-
quest gateways. The deployment process is decoupled from Bifrost, giving developers the
freedom to deploy the application in any fashion and at any scale.

• Microservices: Each instance of the proxy is simply another service added to the applica-
tion. This principle also applies to the Bifrost Engine. The Bifrost Toolkit is therefore easy
to embed into an existing application that follows the microservices architecture approach.
It is necessary that the Bifrost Engine is able to access the proxies over HTTP to properly
configure their routing mechanism.

• Extendability: The engine features a flexible DSL interpreter that can easily be extended by
introducing new types of actions. Section 4.5.2 provides further details of this implementa-
tion.

• Non-Intrusive: The approach of dynamic request routing (as introduced in Section 2.2.2)
was chosen to realize the live-testing methods. No code has to be added to existing services.
The Bifrost Toolkit can run alongside existing applications with ease, supporting any web-
based service including databases and external services accessed through HTTP.

4.3.3 Technologies
All tools have been developed as web applications using JavaScript as the main programming
language. Node.js3 has been utilized as the server-side runtime, in combination with Babel4 which
is a backwards-compatible JavaScript transpiler that allows the usage of the latest ECMAScript
features in unsupported environments.

Node.js was chosen due to its lightweight and efficient architecture that favors event-driven
applications, which Bifrost heavily uses due to the asynchronous nature of its release process. In
addition, JavaScript makes use of the npm package manager5 which constitutes the largest pack-
age management system currently in use6, thus providing a wide range of third-party libraries
and API integrations that make it possible to easily extend the Bifrost Toolkit in the future and
integrate external services.

2Jenkins CI: https://jenkins-ci.org/
3A JavaScript runtime built on Chrome’s V8 JavaScript engine: https://nodejs.org/en/
4BabelJS: https://babeljs.io/
5npm - what is npm? https://docs.npmjs.com/getting-started/what-is-npm
6Modulecounts: http://www.modulecounts.com/

https://jenkins-ci.org/
https://nodejs.org/en/
https://babeljs.io/
https://docs.npmjs.com/getting-started/what-is-npm
http://www.modulecounts.com/

28 Chapter 4. Data-Driven Release Strategies using Bifrost

The communication between the components is handled through RESTful HTTP-APIs that
make use of ExpressJS7, a "fast, unopiniated and minimalist web framework" [Exp16]. Where
real-time communication was necessary, e.g., updating the CLI or UI with real-time information,
WebSockets8 using Socket.IO9 were utilized to implement the features.

4.4 Bifrost DSL
A domain specific language is used to implement the previously introduced model. This enables
a more transparent process [Fow08] and allows for easier automation. This section describes the
process of deriving the DSL from the formalized model and its practical implementation.

4.4.1 Converting the Release Model into a DSL
The developed Bifrost release model has been converted into a DSL, using an EBNF [Wir96] syn-
tax model as an intermediate step. This was done to avoid costly changes of the prototype and
make sure the language implements the concepts of the Bifrost release model. The EBNF represen-
tation has been validated by constructing the various methods of live-testing and combinations
thereof to verify its completeness. The presented EBNF in Listing 4.1 represents the final version
of the iterative process. Not all elements displayed are completely described, in order to give a
better overview. Details about the actions and their specific properties can be found in Section
4.4.4. In order to clarify the used notation and symbols, the following list gives an exempt of the
EBNF syntax:

1. ′x′ denotes a terminal symbol

2. x denotes a non-terminal symbol

3. x∗ denotes one or more occurrences

4. x? denotes zero or exactly one occurrence

The EBNF syntax model has then been used as a blueprint for the Bifrost DSL. The DSL was
built as an internal DSL on top of YAML10, a data serialization language designed to be readable
by humans [BKEI05]. YAML was chosen as it is not bound to a programming language but pro-
vides enough expressiveness to model the necessary properties. It also allows the approach and
DSL to be reused for further research or prototype development. Additionally, its readability is
a plus for people that are not accustomed to programming languages or only know a selection
thereof.

7ExpressJS: http://expressjs.com/
8The WebSocket Protocol, RFC 6455: https://tools.ietf.org/html/rfc6455
9SocketIO: http://socket.io/

10Recursive acronym for "YAML Ain’t Markup Language"

http://expressjs.com/
https://tools.ietf.org/html/rfc6455
http://socket.io/

4.4 Bifrost DSL 29

1 release ::= ’name’ deployment strategy*
2 deployment ::= orchestrator service*
3
4 orchestrator ::= (Proxy | Docker)

5
6 service ::= ’name’ ’host’ ’port’

7 strategy ::= ’name’ action* next?

8
9 action ::= (route | metric | bool | request)* executionWrapper onTrue onFalse

10
11 route ::= ’from’ ’to’ filter*
12 metric ::= provider* validator

13 bool ::= (AND | OR)

14 AND ::= action*
15 OR ::= action*
16 request ::= ’url’ ’status’

17
18 executionWrapper ::= (timedExecution | defaultExecution)

19 timedExecution ::= ’intervalLimit’? ’intervalTime’? ’threshold’?

20
21 onTrue ::= action

22 onFalse ::= action

Listing 4.1: EBNF representation of the Bifrost DSL

4.4.2 Deployment
The deployment section of the YAML DSL (an example can be seen in Listing 4.2) allows the
Bifrost Engine to modify or leverage the existing deployment situation properly. It is divided into
an orchestration and a services part. The orchestration object is used to configure an orchestrator
of choice. The orchestrator’s responsibilities are to make sure that the engine either knows which
proxy belongs to which service, or to supply information about existing infrastructure.

1 ---

2 deployment:

3 orchestrator:

4 proxy:

5 mapping:

6 frontend: frontend_proxy

7 products: products_proxy

8 auth: auth_proxy

9
10 services:

11 - name: frontend_a

12 host: frontend

13 port: 80

14
15 - name: frontend_b

16 host: frontend

17 port: 80

Listing 4.2: Example of a deployment specification in Bifrost

30 Chapter 4. Data-Driven Release Strategies using Bifrost

The second part of the deployment section is used to declare the affected services. Services
have to be specified by providing a name, host name and a port upon which the service is listening
on. Each service that actions would like to refer to has to be specified, including different versions
of the same service if operating under another host name.

4.4.3 Strategies

The strategies section of the YAML DSL is used to define the sequential order of individual parts
of the release. As introduced in Section 4.2.1, one of the key characteristics is the combination of
ordered and parallel execution of steps during releases. A strategy is executed in order of its speci-
fication per default. Each strategy consists of a name, a set of actions and an optional link to the
strategy that should be executed next. This property can be overridden at runtime by its actions as
seen in Listing 4.3. This allows multi-staged releases and live-testing setups, which were identi-
fied as a key requirement in Section 4.2.1 to allow for data-driven decisions during releases. There
exists no limit how many strategies a release can consist of. It is important to consider though that
introducing looping behaviors in release processes can have severe consequences if the release is
unable to terminate. The prototype implementation allows such constructs to give engineers the
freedom they need in order to construct releases that cycle through some of the strategies at mul-
tiple times. The Bifrost release model, upon which this behavior is based, also allows introducing
formal ways of checking releases for loops or simulating a release process. This could be used in
the future to warn developers about possible implications of their specified release processes.

1 ---

2 strategies:

3 - name: ab_test

4 actions:

5 ...

6 onTrue: phased_rollout_a

7 onFalse: phased_rollout_b

8
9 - name: phased_rollout_a

10 actions: ...

11 next: finish

12
13 - name: phased_rollout_b

14 actions: ...

15 next: finish

Listing 4.3: Example of multiple strategies that make use of the next property

4.4.4 Actions

The primary part of the release specification in Bifrost are its actions. Each strategy can contain
an arbitrary number of actions that are executed in parallel (in comparison to strategies). This
adheres to the characteristic of parallel execution as introduced in Section 4.2.1 and formalized in

4.4 Bifrost DSL 31

Section 4.2.2. The prototype described in this thesis implements a set of generic actions that are
able to model all specified methods of live-testing as presented previously (see Section 2.2.1).

Route

The Route-Action (see Listing 4.4) allows the configuration of Bifrost Proxies in the context of the
current release. Each action requires to specify an outgoing service (from) as well as a receiving
service (to). In order to persist routing behaviors after finishing the action, a persistence parame-
ter is available to specify long-term changes in routing. Otherwise, all changes are automatically
reverted after the action has been completed. Actual route configuration works using so-called fil-
ters. Two filters have been written, namely a header- and a traffic-filter which are further described
in Section 4.6.

1 ---

2 route:

3 from: A

4 to: B

5 filters:

6 - traffic:

7 percentage: 50

Listing 4.4: Route action that redirects 50% of the traffic from service A to service B

Request

The Request-Action (see Listing 4.5) allows calling arbitrary services within reach of the Bifrost
Engine. Developers can specify an expected HTTP-Statuscode and the action returns True when
the received status code matches the expected one or False if not. The action can be used for
health- or availability checks, e.g., to prevent the execution of multi-staged strategies given that
the service failed in the meantime.

1 ---

2 request:

3 url: "http://www.google.ch"

4 status: 200

5 intervalTime: 5

6 intervalLimit: 10

Listing 4.5: Request action that checks http://www.google.ch once in 5 seconds for 10 times

32 Chapter 4. Data-Driven Release Strategies using Bifrost

Pause

The Pause-Action (see Listing 4.6) allows engineers to deliberately pause the execution of releases
between strategies. This can be used either for testing purposes, or if certain decisions on how to
proceed are not able to be automated. User input is necessary to continue the execution, either
using the Bifrost CLI or the Bifrost UI. The action also allows for manual selection of the next
strategy.

1 ---

2 pause:

Listing 4.6: Pause action that stops the release after finishing the running strategy

Metric

The Metric-Action (see Listing 4.7) allows metrics to be pulled in from MetricProviders. The proto-
type implementation currently supports Prometheus11, and allows querying the provider using
its own query language. Results from providers can either be processed using simple validators
that allow for comparison of scalar values12, or by outsourcing the processing for more complex
algorithms by specifying an URL. Results collected from the metric provided are then relayed to
a HTTP-Service that will determine the output of the metric-action.

1 ---

2 metric:

3 providers:

4 - prometheus:

5 name: aCPU

6 query: avg_over_time(container_cpu_system_seconds_total{name=’A’}[60s])

7 - prometheus:

8 name: bCPU

9 query: avg_over_time(container_cpu_system_seconds_total{name=’B’}[60s])

10
11 validator: aCPU>=bCPU

12 delay: 60

Listing 4.7: Metric action that compares CPU-Load using Prometheus as provider

Boolean AND/OR

To allow for more interesting interactions between individual actions, it is possible to combine
actions using boolean logic. Two actions of type AND (see Listing 4.8) and OR (which works
identically) allow chaining multiple actions together and test whether they all, or at least one
of them succeeded. This allows developers to model more complex decision trees e.g., using
Metric or Request actions. As any other actions, AND- and OR-actions can also be used to modify

11An open-source service monitoring system: http://prometheus.io/
12See "Expression language data types": http://prometheus.io/docs/querying/basics/

http://prometheus.io/

4.5 Bifrost Engine 33

the following strategy which allows developers to introduce branching paths into their release
strategy.

1 ---

2 AND:

3 actions:

4 - request:

5 url: "http://serviceA"

6 status: 200

7 - request:

8 url: "http://serviceB"

9 status: 200

10 onTrue: ab_test

11 onFalse: rollback

Listing 4.8: AND action that tests the reachability of two services

4.5 Bifrost Engine
The Bifrost Engine is the core part of the Toolkit. Its responsibilities are the orchestration of the
Bifrost Proxy and the proper execution of supplied releases. The engine consists of multiple com-
ponents, each responsible for a specific part of the release execution. The following sections will
show how the engine parses the DSL using a custom interpreter and how the previously described
actions have been implemented.

4.5.1 Overview
The project is structured into the following five components:

• Engine: Schedules and manages ongoing and waiting releases.

• Interpreter: Creates an instance of a Release based on the supplied YAML DSL.

• Deployment: Provides connectors to the proxies such that the engine can properly con-
figure them and modify the appropriate routes. Is also able to automatically deploy and
undeploy proxies in certain deployment setups.

• Model: Contains the actual application logic specific to the executed actions and therefore
implements most of the functionality of the Bifrost release model.

• API: Provides a REST-API and a socket endpoint to schedule releases and receive data about
its current state, used by the CLI and UI.

In the following sections, three of these components are presented in detail to highlight some
of the more interesting implementation specific features that were used.

34 Chapter 4. Data-Driven Release Strategies using Bifrost

4.5.2 Interpreter
Before actually executing a release, the YAML-DSL needs to get interpreted and translated into
the internal model representation of the Bifrost Engine. The Interpreter parses and creates a Release
object out of the provided YAML. This makes it possible to check the DSL for missing parameters,
filter out invalid structure and prevent basic mistakes that could lead to a corrupted release flow.
Every parsed object is checked by a validator to determine whether all necessary parameters are
supplied and may cancel the parsing process if necessary.

The different parts of the DSL are internally represented as classes that implement their corre-
sponding functionality. After transforming the input (YAML DSL) into JSON13, the JSON data has
to be converted into a full object-graph.This is done using a parser that recursively traverses the
input JSON and creates JavaScript class instances14. This abstraction makes it possible to easily
extend the DSL in the future, as objects are inflated dynamically using a mapper that links JSON
keys to class instances. The interpreter could be modified to prevent breaking changes that a new
DSL version introduces.

4.5.3 Deployment
Two implementations have been provided:

Proxy-Orchestrator

A generic orchestrator that works with a wide range of setups. It takes a list of key-value pairs
mapping host names of services to host names of corresponding Bifrost Proxy instances. This
orchestrator allows the tool to work in different deployment setups, either in the cloud or when
using bare-metal deployments.

Docker-Orchestrator

A Docker focused orchestrator that allows the engine to automatically deploy instances of Bifrost
Proxies if needed and also undeploy them from the application when the release has finished.
As Docker-Networks use host names to communicate internally15, Bifrost is able to inject itself
into the application by spoofing existing services and therefore receiving their traffic. The im-
plementation was focused on Docker <1.9.1 and is subject to change depending on the future
development16.

4.5.4 Model
According to the previously presented Bifrost release model in Section 4.2.2, every release consists
of strategies that are executed in series and actions that are run in parallel during a strategy. The

13Java Script Object Notation
14JavaScript Classes: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/

Classes
15Networking: https://docs.docker.com/engine/userguide/containers/networkingcontainers/
16Docker 1.9.1 Changelog: https://github.com/docker/docker/blob/master/CHANGELOG.md#191-2015-

11-21

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://docs.docker.com/engine/userguide/containers/networkingcontainers/
https://github.com/docker/docker/blob/master/CHANGELOG.md#191-2015-11-21
https://github.com/docker/docker/blob/master/CHANGELOG.md#191-2015-11-21

4.5 Bifrost Engine 35

model has been used as specified in the implementation of the prototype. An essential part of
the functionality that the Bifrost Toolkit provides is encoded in its actions. Every release strategy
consists of 1ton actions that can run in parallel, e.g., monitoring metrics, modifying the traffic flow,
performing tests and altering the release behavior accordingly. The following section explains
how the required functionality from the release model has been implemented in the code.

Actions

Each action extends an abstract Action class that provides its methods to overwrite, which can be
seen in Listing 4.9. Actions are required to at least implement the evaluate-method, which contains
the actual business logic a specific action should execute. As an example, the Route action has been
chosen. Each route action contains a set of filters that can modify the routing behavior of a service.
During the evaluate-method of this action, the proxies are reconfigured using the filters. Actions
have the additional possibility to hook into a pre- and post evaluation method that is executed
either before the action starts or right after it finishes. Both methods are able to influence the result
of an action. In the described Route action, the post-hook is used to remove the filters from the
configured proxies if the persistence-flag is not set in order to rollback the proxies configuration to
its original state.

ExecutionWrapper

The timed execution behavior of certain actions that allow for multiple runs of the same action has
been generalized using a so-called ExecutionWrapper. This behavior follows the Decorator-Pattern
[Gam95] allowing to change the behavior of an action depending on its given ExecutionWrapper.
Two wrappers have already been implemented. The DefaultExecution simply executes the action
once, returning the corresponding outcome of the method. The TimedExecution allows developers
to specify a delay, an interval, a number of intervals and a threshold. These four properties can
be used to model situations where actions are run multiple times but do not have to succeed
in all cases in order to mark a successful case. An example of this functionality are extended
monitoring periods that wait for thresholds of certain metrics to be surpassed. For example, a
developer would like to monitor the amount of exceptions a service produces. It is known that
the current implementation of the service produces less than one exception per hour on average.
A new implementation is tested, and the developer specifies to monitor the service for a day
using an interval of 60 minutes and checking whether more than one exception occurred during
that time frame. The threshold then determines, how many checks are necessary to succeed in
order to evaluate the action to be true.

36 Chapter 4. Data-Driven Release Strategies using Bifrost

1 export default class Action {

2
3 constructor() {

4 this.executionWrapper = new DefaultExecution();

5 ...

6 }

7
8 /**
9 * Executes the action considering its executionWrapper.

10 * @param {Strategy} strategy

11 * @param {Release} release

12 * @returns {Boolean}

13 */

14 async execute(strategy, release) {

15 this._startedAt = new Date();

16 var result = await this.executionWrapper.execute(this, strategy, release);

17
18 ...

19
20 return result;

21 }

22
23 /**
24 * Hook that gets executed before the action is actually executed.

25 * @param {Strategy} strategy

26 * @param {Release} release

27 * @returns {boolean}

28 */

29 async preEvaluate(strategy, release) {

30 ...

31 }

32
33 /**
34 * Hook that holds the actual implementation of what the action does.

35 * @param {Strategy} strategy

36 * @param {Release} release

37 * @returns {boolean}

38 */

39 async evaluate(strategy, release) {

40 ...

41 }

42
43 /**
44 * Hook that gets executed after the action is completely executed (all runs if there

are multiple)

45 * @param {Strategy} strategy

46 * @param {Release} release

47 * @returns {boolean}

48 */

49 async postEvaluate(strategy, release) {

50 ...

51 }

52
53 ...

54
55 }

Listing 4.9: Action-class implementation in Bifrost Engine

4.6 Bifrost Proxy 37

4.6 Bifrost Proxy
The Bifrost Proxy is a standalone Node.js based HTTP-Proxy, which can be configured to route re-
quests to arbitrary HTTP-Hosts depending on configured filters. Each proxy has a default service
that requests will be routed to. Depending on the configuration, requests can be routed to arbi-
trary services that are reachable from the proxy. The proxy functionality has been implemented
using the node-http-proxy17 and supports HTTP as well as secure connections with HTTPS.

4.6.1 Configuration
The default service gets specified either by using environment-variables (HOSTNAME and PORT)
or by using starting parameters. As soon as the proxy has been started, a REST API on port 9090
is available that allows the configuration, e.g., through an instance of the Bifrost Engine or using
custom configuration mechanisms.

4.6.2 Sticky Sessions
Depending on the implementation of the proxied service, it is important that requests from the
same users are always routed to the same service instance. This behavior is generally called
sticky sessions and one of the basic problems that are solved by load balancers, especially in
cloud deployments [Tof12]. Bifrost addresses this problem as well, guaranteeing that during A/B
tests users get assigned to a particular service version and will not experience different services
handling their requests. The proxy accomplishes this by setting a Cookie on the client using the
Set-Cookie Header18 in its response. The cookie contains an RFC-compliant UUID19 that is used
to identify the client in subsequent requests. If the proxy has been configured to apply certain
filters, the usage of the filters are determined uniquely per session and stored by the proxy.

4.6.3 Filters
Actual route configuration works using so-called filters. Two filters have been written, namely a
header- and a traffic-filter. As the name implies, the header-filter is used to modify routing behavior
based on inspecting request headers. As the proxy currently only supports HTTP, the headers
mentioned refer to the header fields specified in RFC 2616 section 14 [FGM+99b]. Apart from
standardized fields, every custom-named header field can be used for filtering as well. The traffic-
filter can be used to reroute traffic in its entirety. Developers are able to define how much of the
traffic should be rerouted, as well as whether the proxy should use sticky sessions to permanently
reroute users.

17A full-featured http proxy for Node.js: https://github.com/nodejitsu/node-http-proxy
18HTTP State Management Mechanism: https://tools.ietf.org/html/rfc6265
19A Universally Unique IDentifier (UUID) URN Namespace: http://www.ietf.org/rfc/rfc4122.txt

https://github.com/nodejitsu/node-http-proxy
https://tools.ietf.org/html/rfc6265
http://www.ietf.org/rfc/rfc4122.txt

38 Chapter 4. Data-Driven Release Strategies using Bifrost

4.7 Bifrost CLI

As most of the work of DevOps engineers happens in shell-based systems, one part of the Bifrost
Toolkit is a CLI20 that allows developers to schedule and execute strategies remotely or as part of
release scripts in CI-Systems such as Jenkins. The CLI tool has been built using commander.js21,
a solution that makes it easier to build command-line interfaces for Node.js.

Figure 4.2: The Bifrost CLI provides real-time status information while a release is running

4.7.1 Overview

The Bifrost CLI is an easy way to use the deployment and live-testing capabilities of Bifrost. Using
bifrost run, the CLI checks whether a local bifrost.yml file can be found in the folder. Custom
filenames are supported as well. The CLI has been tested on Windows and UNIX-based systems
alike. While a release is deployed, the CLI outputs real-time status information about the ongoing
release (as seen in Figure 4.2). It can also be used to reset the state of individual proxies using
bifrost reset, in order to restore the original routing should the release process fail.

20Command-Line-Interface
21commands.js: https://github.com/tj/commander.js

https://github.com/tj/commander.js

4.8 Bifrost UI 39

4.8 Bifrost UI
To give developers easy access to information about the current state of the Bifrost Toolkit, a web
application has been developed that visualizes the current state of releases in a graphical user
interface.

Figure 4.3: Ongoing release in Bifrost UI, updating its progress in real-time

4.8.1 Overview
Bifrost UI consists of a backend providing a REST-API and a JavaScript frontend written using the
AngularJS22 framework. The backend-component of the UI automatically connects to the Bifrost
Engine, receiving real-time updates about the current release state using WebSockets. These up-
dates are relayed to the AngularJS frontend, which dynamically redraws its interface in order to
reflect the current release state. Developers thus have the possibility to check upon individual re-
leases and their progress. Each release can be studied in detail. This includes individual actions,
their results and their hierarchical structure (e.g., through boolean actions) including their results
and time of execution. This allows developers to easily follow up on a multi-staged release that
has a longer time window. Additionally, the UI polls the known proxies for their current rout-
ing setup to visualize the traffic flow throughout the application. This makes it easy to detect
persistent filters on proxies.

22AngularJS - Superheroic JavaScript MVW Framework: https://angularjs.org/

https://angularjs.org/

Chapter 5

Evaluation

The evaluation of the Bifrost Toolkit is divided into two parts. The first part compares the devel-
oped prototype to similar tools from research and industry, whereas the second part focuses on a
quantitative performance evaluation to determine the overhead of the tool when used in practice.

5.1 Qualitative Evaluation

To compare the Bifrost Toolkit and approach to other research and industry tools, a set of dimen-
sions has been determined that are analyzed subsequently. First, the tools are presented and com-
pared concerning their functionality. Second, a set of dimensions are identified and explained. A
comparison matrix is developed and the differences between tools are analyzed in detail. Lastly,
a conclusion sums up the qualitative evaluation.

5.1.1 Tools

A set of tools has been selected for comparison to Bifrost. The selection of tools in the research
section represent the current state of the art. Additionally, a number of industry tools have been
added to additionally compare Bifrost to systems that are used in production. A more detailed
description of the selected tools for comparison can be found in the Section 3.3. To begin with, the
tools have been compared in regards of their features to give an overview of the capabilities and
usage scenarios. Each method of live-testing presented in Section 2.2.1 has been included as well
as an additional dimension that covers the possibility to combine different methods with each
other. In comparison to the later (see Section 5.1.2) introduced dimension of complex releases, com-
bination means that the tool offers mixed versions of the defined live-testing methods that do not
clearly belong to either category or allow the combination of multiple methods into a new one.
An example of such a behavior would be a method called "Canary Release" that automatically
tests a candidate and deploys it upon success. Complex releases however would allow to generi-
cally specify this in a two-step process consisting of a canary launch first and a rollout afterwards.
The table 5.1 summarizes the findings of this comparison.

42 Chapter 5. Evaluation

A/B Te
sti

ng

Can
ar

y Lau
nch

es

Sh
ad

ow
Lau

nch
es

Phas
ed

Rollo
uts

Blu
e/

Gree
n Dep

loym
en

ts

Com
bin

ati
on

GateKeeper Yes Yes Yes Partial No Yes

CanaryAdvisor No Yes No No No Yes

Vamp Yes Yes No No Yes No

Scientist! Partial Partial Yes Partial No Partial

ION-Roller No Partial No Yes Yes No

Bifrost Yes Yes Yes Yes Yes Yes

Table 5.1: Feature-comparison of analyzed tools

GateKeeper

GateKeeper [TKV+15] allows a multitude of different release methods. However, part of its func-
tionality is provided by external services that are not specified in detail in the research paper. It is
safe to say however, that its architecture also allows for a combination of live-testing methods.

CanaryAdvisor

CanaryAdvisor [TSM+15] focuses only on canary launches and does not provide support for
other methods of live-testing. When used in combination with IBM’s Active Deploy [Sni16], it
also allows to initiate automatic rollbacks upon failure of canary launches.

Vamp

Vamp [Mag14] provides support for A/B testing services, albeit without included monitoring.
Due to their chosen approach of dynamic routing, canary launches and blue/green deployments
are also possible. However, no support for shadow launches or any type of phased rollouts exists.
The combination of methods is not supported, as any service can only have one active configura-
tion at any given time.

Scientist!

Scientist! [jba14] follows an approach that is similar to feature toggles and therefore provides
support for a range of methods. In comparison to feature toggles, Scientist! is used to compare
two code fragments and their effects with each other. It executes the old and new behavior and

5.1 Qualitative Evaluation 43

1 require "scientist"

2
3 class MyWidget

4 def allows?(user)

5 experiment = Scientist::Default.new "widget-permissions"

6 experiment.use { model.check_user?(user).valid? } # old way

7 experiment.try { user.can?(:read, model) } # new way

8
9 experiment.run

10 end
11 end

Listing 5.1: Example of how to use Scientist! [jba14]

monitors the outcome for comparison purposes. A basic example taken from their documentation
can be seen in Listing 5.1 to clarify its usage. The way Scientist! works considerably limits the
number of usage scenarios, as state modifying actions that are not idempotent cannot easily be
tested.

ION-Roller

ION-Roller focuses on deployment using Docker images. It allows blue/green deployments and
phased rollouts. Canary launches are possible with manual monitoring, as it features rollback
capabilities upon manual intervention.

Most of the compared tools allow multiple usage scenarios, but rarely offer the possibility
to combine multiple methods freely with each other. This is the main distinction from the devel-
oped Bifrost Toolkit, that gives developers the flexibility to mix and match methods of live-testing
according to their needs and their envisioned release process.

5.1.2 Dimensions
The evaluation includes 8 dimensions as listed below. Each dimension can be either classified
as fulfilled (yes), partially fulfilled (if not enough information was available or the feature set
restricted) or not fulfilled (no).

• Platform Agnostic: Determines whether the tool can be used independent of the type of
deployment, underlying platform or programming language of the service. Is considered
fulfilled if the tool supports certain kind of applications e.g., web-based services on all sup-
ported platforms of such applications, partially fulfilled if constraints it relies on system-
components such as custom runtimes.

• Code-Neutral: Describes the ability to work without modifying the application’s source
code, thus supporting both existing applications and applications created form scratch. Is

44 Chapter 5. Evaluation

considered fulfilled if the tool does not require the inclusion of tool-specific source code into
the application. Partially fulfilled, if the inclusion of the tool happens automatically upon
compilation or building the artifact.

• Performance-Neutral: Covers whether the tool introduces measurable runtime performance
overhead into the application or not.

• Traceability: This dimension covers how transparent the release process is to developers.
This includes whether the tools allow version-controlled configuration and the observability
of its current state.

• Automated Data-Driven Decisions: Includes whether the tool is able to use monitoring
data, either by collecting it itself or by utilizing third-party tools to decide upon further
steps. Is considered fulfilled if the tool utilizes data, either by collecting it itself or through
third-party extensions, to influence its run-time behavior without further user interaction.

• Multi-Service Support: The dimension is considered fulfilled if the tool can modify mul-
tiple services at once and therefore also be used in environments where dependencies be-
tween services have to be considered in release strategies.

• Complex Releases: Describes the ability to orchestrate multi-staged releases, consisting of
more than one live-testing method (as introduced in Section 2.2.1) . Additionally, the tool
must allow choosing further live-testing methods based on previous outcomes.

• Open-Source: If the tool’s source code is openly available under an OSI1-approved license,
e.g., Apache, GPL or MIT.

5.1.3 Analysis and Discussion

Platform-Agnostic

Most tools are platform-agnostic, choosing an approach that can work with various different types
of applications. GateKeeper uses features toggles [TKV+15] and therefore requires libraries or
integration-efforts if used on a new platform. Additionally, it is unclear whether certain parts
embedded in the HVVM are mandatory or not. CanaryAdvisor does use third-party tools to col-
lect monitoring data and not directly the services it observes, and therefore works on all types
of applications. Vamp requires to use containers, either with Docker2 or Mesosphere Marathon3.
ION-Roller works with containers as well, and is tailored to Amazon’s PaaS4 offering. Scien-
tist! only works for Ruby (albeit a similar library also exists for PHP5) and is therefore the most
restrictive.

1Open Source Initiative: https://opensource.org/licenses
2Docker: http://docker.com/
3Mesosphere Marathon: https://github.com/mesosphere/marathon
4Platform-as-a-Service
5Scientist!: https://scientist.readme.io/

https://opensource.org/licenses
http://docker.com/
https://github.com/mesosphere/marathon
https://scientist.readme.io/

5.1 Qualitative Evaluation 45

Plat
fo

rm
-A

gnosti
c

Code-N
eu

tra
l

Per
fo

rm
an

ce
-N

eu
tra

lit
y

Tr
ac

ea
bili

ty

Auto
m

ate
d Data

-D
riv

en
Dec

isi
ons

Com
plex

Rele
as

es

Open
-So

urce

GateKeeper Partial No Yes Yes Yes Yes No

CanaryAdvisor Yes Yes Yes No Partial No No

Vamp Partial Yes No Yes No No Yes

Scientist! No No Partial No No No Yes

ION-Roller Partial Yes Yes Yes No No Yes

Bifrost Yes Yes No Yes Yes Yes Yes

Table 5.2: Comparison of live-testing tools

Code-Neutral

Whether the tool needs code modifications to run depends mainly on the chosen approach and
scope of the tool. GateKeeper needs specific code to be embedded in the targeted application and
is therefore clearly intrusive, as it mandates the modification of a service that would like to use
its functionality. CanaryAdvisor does only monitor, but it relies on specific log aggregators to
be embedded in the application. This is similar to Bifrost, however, that also needs third-party
providers to aggregate data for its decision-process. Vamp does not require any modifications as
it works on service-level, as does ION-Roller. Scientist! has to be embedded into the project’s
code.

Performance-Neutrality

In terms of the performance impact, the chosen approach basically mandates whether the tool im-
pacts performance or not. The paper describing GateKeeper does not directly talk about performance-
implications. However, long-running metric-tasks are stated to be asynchronously processed in
order to keep applications responsive. CanaryAdvisor does only monitor and has therefore no di-
rect impact on the application’s performance. Vamp follows a very similar architecture to Bifrost
and proxies requests. Therefore, a small hit to performance is to be expected, although no num-
bers are named. Scientist! adds a performance overhead depending on its usage: If experiments
should only be served to a subset of users, this distinction is made every time on every method
that gets feature toggled. ION-Roller does not proxy the services directly and can therefore be
considered as performance neutral.

46 Chapter 5. Evaluation

Traceability

Many of the analyzed tools use DSLs to make their configuration approachable and easy for
developers to understand. GateKeeper has a restraint-system, which is represented as an internal
DSL based on PHP. However, users configure the restraints using a web platform. The UI creates
DSL-code that is committed to a version control system to allow proper code reviews, and thus
also a transparent history of release-changes. CanaryAdvisor does not use a DSL or any other
method at all and seems to rely upon manual configuration. Vamp and Bifrost both use a YAML-
based DSL to represent release and service configuration. Scientist! gets embedded directly into
the source code. In comparison to GateKeeper, however, there exists no restraint system that
is decoupled from the application’s code. ION-Roller uses external configuration files encoded
in JSON, which is very similar to the YAML-based DSL approach of Vamp and Bifrost. It also
features a command line tool to modify the configuration and allows developers to easily observe
the current state of releases.

Automated Data-Driven Decisions

GateKeeper allows for automating the complete process when used in combination with other
tools mentioned in the research paper [TKV+15]. IBM’s CanaryAdvisor gives recommendations
as to whether a new candidate is fit or not by monitoring it and watching for statistically signifi-
cant changes in behavior (e.g., errors in log files), but does not deploy the service itself. Vamp does
not allow for any dynamic behavior, instead its traffic routing has to be configured and contains
no means of change over time except for manual adjustment. The same holds true for Scientist!
which features monitoring capabilities out of the box, but no way to automatically deploy the
new feature. Developers have rather to modify the source code again to remove the feature tog-
gle in order to permanently deploy a certain application behavior. ION-Roller does not take any
data into consideration but only allows for phased rollouts. However, in combination with other
services (e.g., the Bifrost Toolkit itself) such behavior may be possible.

Complex Releases

Apart from GateKeeper and Bifrost, no other tool provides means to create multi-staged and
complex releases. Part of the reason is that tools either focus on a specific area of the release
process (e.g., CanaryAdvisor), or simply do not offer the functionality (Vamp) and chose a static
representation of a release.

Open-Source

GateKeeper is part of a broader tool set developed by Facebook and thus closed-sourced. Ca-
naryAdvisor was developed as a research project by IBM, but is closed-source and integrated
into their PaaS offer called BlueMix, where it is currently available under the same name [Sni16].
Vamp is open-source and licensed under Apache 2.0. Scientist! and ION-Roller are open-source
as well, both licensed under the MIT License.

5.1 Qualitative Evaluation 47

5.1.4 Summary
The Bifrost Toolkit shows its strength with comparable tools due to the general approach to re-
lease methods, allowing developers to use it for different scenarios. The Bifrost release model
upon which the prototype is based allows developers to specify non-trivial ways of releasing
their software, including a combination of two or more methods. Existing software in research as
well as industry lack this kind of flexiblity.

Due to its chosen technique of implementing live-testing methods (i.e., dynamic request-routing)
it stays platform-agnostic and code-neutral, allowing its inclusion in existing software without
hassle. Vamp follows a very similar approach, with the difference being that it concentrates more
on deployment than on releasing software. This focus makes it very difficult to introduce re-
lease methods that modify the setup over time, as deployment software is generally interested in
creating a stable setup.

The Bifrost Toolkit itself supports a wide range of possible deployment solutions, from con-
tainers to bare-metal machines. This gives developers more flexibility and reduces vendor lock-in
tremendously, as it is not coupled with specific IaaS6 providers. However, the same approach that
gives the prototype its flexibility also introduces performance penalties as the dynamic request-
routing adds additional services into the application’s landscape. These concerns are addressed
in the performance evaluation in Section 5.2.

6Infrastructure as a Service

48 Chapter 5. Evaluation

5.2 Quantitative Evaluation
The Bifrost Toolkit provides developers with a flexible and general approach to introduce live-
testing methods into their software releases. However, the feasibility of this approach is influ-
enced by how much the Bifrost Toolkit negatively impacts application performance. As the Bifrost
Proxy is a mandatory component to provide routing and filtering capabilities, its impact on ap-
plication performance has been evaluated using a number of performance tests.

5.2.1 Method
To properly test the setup, a sample application simulating a generic microservices application
was necessary. Unfortunately, only very few sample applications exist that are able to be deployed
in a non-monolithic way, such as Acme Air7. In contrast to their claim, the microservices version
of the tool only separates the authentication service from the rest of the application, which is
still deployed monolithically. A fixed version exists in form of NetflixOSS Acme Air8 that was
extended by leveraging Netflix OSS9 tools. In comparison to the NodeJS version of the Acme Air
Sample, it uses WebSphere10 and does not provide a containerized deployment setup that would
allow for an easy integration of the Bifrost Toolkit at this stage. Another sample application also
serves as a testbed to demonstrate Netflix OSS tools but only consists of 3 services11. To remedy
these issues, a NodeJS based sample application was developed to run performance tests against.

Bifrost Microservices Sample Application

The application simulates a generic e-commerce website selling goods. It consists of different ser-
vices that handle authentication, data storage and querying, search functionality and the delivery
of the frontend. It was kept simple in order to provide a testbed for the performance evaluation
and demonstration of the capabilities of the Bifrost Toolkit. An overview of the architecture is
provided in Figure 5.1. The application consists of 7 services in total, whereas 4 were developed
for this application (marked in bold):

• Frontend: HTML/JavaScript frontend using AngularJS.

• Products: HTTP-based REST-API that allows querying products, detail information and
placing buy orders.

• Search: HTTP-based REST-API that allows to search for products using text-queries.

• Auth: HTTP-based REST-API that authenticates and authorizes users based on their pro-
vided e-mail and password and validates tokens.

• MongoDB: Document-based database for storage of users and products.

7Acme Air Node.js: https://github.com/acmeair/acmeair-nodejs
8NetflixOSS Acme Air: https://github.com/aspyker/acmeair-netflix
9Netflix OpenSource: https://netflix.github.io/

10IBM WebSphere Application Server: http://www.ibm.com/software/websphere
11Netflix OSS RSS Recipes: https://github.com/Netflix/recipes-rss

https://github.com/acmeair/acmeair-nodejs
https://github.com/aspyker/acmeair-netflix
https://netflix.github.io/
http://www.ibm.com/software/websphere
https://github.com/Netflix/recipes-rss

5.2 Quantitative Evaluation 49

Auth

application

Bifrost UI

MongoDB

monitoring

User

Bifrost
Engine

Bifrost CLI
strategies

nginx
Developer

Prometheus

Frontend

scrapes

configures

Search

Bifrost Proxy

Products A

Products B

Products

queries

Bifrost
Proxy

configures

Figure 5.1: Bifrost microservices sample application as used in the performance evaluation

• Prometheus: Collects container and low-level performance metrics as well as business met-
rics from services that expose them.

• nginx: A reverse-proxy used as a central entry-point to the application for real users. It is
used to proxy incoming requests to either the frontend service or to the products service.

JMeter Test Suite

To conduct performance or load tests, a test suite was created to enable automated and repeatable
testing. The test suite was made using Apache JMeter12 and simulates standard user behavior. As
JMeter is not browser-based, only HTTP-endpoints can be tested. No site rendering or JavaScript
execution is performed. The performance tests are not influenced by this, as the proxied services
are merely used as dependencies by the frontend. The test suite targets the Products service and
consists of 4 different requests that touch different parts of the system.

• Buy: POST-Request to the Products-service, intends to buy a product. Write-operation on
database. No response body. Authorized by Auth-service.

• Details: GET-Request to the Products-service, returns information about a single product.
Read-operation on Database. Small response body. Authorized by Auth-service.

• Products: GET-Request to the Products-service, returns a list of all products. Read-operation
on database. Large response body. Authorized by Auth-service.

12JMeter - An open-source load-testing tool written in Java: http://jmeter.apache.org/

http://jmeter.apache.org/

50 Chapter 5. Evaluation

• Search: GET-Request to the Products-service, which in turn asks the Search-service. Read-
operation on database. Small response body. Authorized by Auth-service.

There exists no general recommendation in research on how much load makes for a good
test. Parse13 states that 30 requests per second for their service translate roughly to 250’000 daily
active users if spread even throughout the day [Par16]. Other sources assume that 70 requests
per second average to 25’000 unique visitors per hour [Ser14] which corresponds to 300’000 daily
active users. This thesis uses 50 requests per second unless stated differently to simulate a realistic
load scenario that can be supported sufficiently by the used hardware.

General Setup

All tests were performed on a Intel Core i5-3570K CPU with 16GB of RAM, in a virtual machine
running on VirtualBox 514 that was allocated 4GB of RAM and 4 Cores. The virtual machine uses
boot2docker15 as operating system, a Linux distribution that brings native container support with
a minimal footprint.

13An open source cloud backend from Facebook: https://www.parse.com
14VirtualBox: http://www.virtualbox.org
15boot2docker: https://github.com/boot2docker/boot2docker

https://www.parse.com
http://www.virtualbox.org
https://github.com/boot2docker/boot2docker

5.2 Quantitative Evaluation 51

5.2.2 Request Performance
This part of the quantitative evaluation focuses on the performance impact of the proxy upon
individual requests when no filters are applied, with various request methods and response sizes.

Test Setup

To determine the idle overhead of the proxy, a load-test using approximately 50 requests per
second was conducted without running any release strategies. In order to eliminate influences on
the overhead by the machine’s performance limitations, the load was chosen deliberately on the
lower side. The test had a runtime of 60 seconds and was conducted n = 5 times per request and
proxy inclusion.

13.6 ms
11.5 ms 11.6 ms

9.9 ms

32.2 ms

29.8 ms
31.7 ms

26.1 ms

0

10

20

30

Buy /POST Details /GET Products /GET Search /GET

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[m
s]

Deployed Version proxied unproxied

Response Time per Request

Figure 5.2: Average response time per tested endpoint

Results

Figure 5.2 shows the average response time per request with and without proxy. The proxied
deployments showed consistent performance throughout all tested requests. A single proxy in-
stance adds 1.71 to 5.63ms to the average response time, depending on the type of request. The
Search request got slower by +5.63ms, which can be easily explained by the fact that the request
passes two proxies. A request to search for products is handled by the products service, but gets

52 Chapter 5. Evaluation

internally relayed to the search service which is proxied itself (as visible in the architecture di-
agram in Figure 5.1). The search service was deliberately proxied as well, to explore whether
multiple proxies in the system create unintended side effects. As a consequence of the chosen
approach, if strategies and route modifications should encompass multiple services (e.g., letting
a hypothetical service Products C only query Search C) the Bifrost Proxy needs to be deployed in
front of all involved services to properly re-route the traffic. In comparison to the Buy (+2.5ms)
or Products request (+2.45ms), the Details request only got slower by 1.71ms on average. This gap
can be explained due to the fact that the request and response sizes are different. Whereas the
POST-request has a request body that the proxy has to relay, the Products GET-request has a larger
response payload.

Request Type Mean +/- SD Min Max Median

Buy /POST Proxied 13.64 +2.5 16.82 5 252 8

Unproxied 11.14 16.11 4 201 6

Details /GET Proxied 11.58 +1.71 16.33 5 269 7

Unproxied 9.9 16.33 4 215 6

Products /GET Proxied 32.25 +2.45 20.82 14 281 27

Unproxied 29.80 21.45 12 339 24

Search /GET Proxied 31.69 +5.63 25.23 10 340 25

Unproxied 26.06 23.89 7 267 19

Table 5.3: Results of request performance test in milliseconds

The average response time, measured over all types of requests, without using a proxy was
19.32ms, whereas the response time using the Bifrost Proxy was 22.28ms. All request types are
significantly slower than their unproxied counterparts (p < 0.05), albeit only by a small mar-
gin. The hit on performance introduced by the Bifrost Proxy during idle is generally very small
and predictable. Whether proxied or unproxied, the standard deviation remained similar which
means that the proxy had no impact on the overall response time distribution, which can also be
observed in Figure 5.3 and from Table 5.3. The following conclusions can be made:

• The Bifrost Proxy does add a measurable, albeit small performance overhead to the appli-
cation.

• One proxy instance adds approximately 2.4ms of delay.

• The size of request and response can influence the delay of a Bifrost Proxy instance.

• When deploying multiple proxies into the application landscape, a linear decrease in per-
formance is to be expected.

5.2 Quantitative Evaluation 53

0

1000

2000

3000

0 20 40 60
Average Response Time [ms]

N
um

be
r

of
 O

cc
ur

en
ce

s

Deployed Version proxied unproxied

Response Time Distribution

Figure 5.3: Histogram of response times, depicting both proxied and non-proxied

5.2.3 Filter Performance
To determine the performance implications of various live-testing methods, 4 filter configurations
have been applied to the proxy and been tested with increasing load.

Test Setup

The test suite was set to scale from 0 to 120 parallel threads over a timespan of 120 second. The
average number of requests scaled from 0 requests per second to 150 requests per second. In addi-
tion to the 4 filter configurations two baseline measurements have been collected. The following
runs have been conducted, each for n = 5 times:

• Baseline: Only the sample application is deployed.

• Proxied: Bifrost plus the sample application are deployed. No filters are configured.

• Random A/B Testing: Traffic filter with 50:50 split.

• Fixed A/B Testing: Traffic filter with 50:50 split, sticky sessions16.

• Canary Launch: Header filter that applies for 5% of users

• Shadow Launch: 100% traffic filter that duplicates traffic to another service
16The proxy assigns sessions to individual users to allow for fixed filter allocation. See Section 4.6

54 Chapter 5. Evaluation

Results

100

200

300

400

0 20 40 60 80 100 120
Active Threads

R
es

po
ns

e
T

im
e

[m
s]

Baseline

Proxied

Canary Launch

Fixed A/B Test

Random A/B Test

Shadow Launch

Response Time over Increasing Load

Figure 5.4: Achieved response time while scaling from 0 to 120 threads

The results show that the proxy, including its various filter configurations, scales mostly linear
with increasing load. A number of observations are obtained from the test:

• Random A/B testing is clearly faster than fixed A/B testing. This indicates that sticky-
sessions add a performance overhead which are negated in the case of random A/B testing
as the load is split between two backend services and thus effectively load-balanced.

• Canary launches (and thus header-filtering) show similar performance development as run-
ning the proxy without any filter.

• Shadow launches perform well until a certain threshold of active threads is reached, where
the configuration increased the response time noticeably. This hints at the proxied service
being performance-limiting, rather than the proxy itself.

The filter performance test indicates that the limiting factor is not the proxy itself but rather
the services being proxied. Another observation is the fact that shadow launching services can
have severe consequences in applications if the increased load is not handled, and should be used
with caution. Load-testing new services in production also strains services they depend upon,
e.g., databases.

5.2 Quantitative Evaluation 55

Active Threads 0-20 20-40 40-60 60-80 80-100 100-120

Baseline 38.08 41.54 77.70 137.67 224.23 238.39

Proxied 43.70 49.75 91.55 165.77 234.10 245.76

Canary Launch 45.44 50.07 93.80 150.01 236.31 249.39

Fixed A/B Test 44.54 52.02 100.07 167.18 241.83 244.21

Random A/B Test 44.07 41.05 63.74 106.80 127.40 181.47

Shadow Launch 52.28 68.55 145.33 245.77 348.84 376.06

Table 5.4: Average response time in milliseconds grouped by active threads

5.2.4 Release Performance
Lastly, the Bifrost Toolkit was put to the test to evaluate its performance impact on running appli-
cations during ongoing release strategies that include various live-testing methods.

Test Setup

To show the performance development over a complete release cycle, two new service versions
get deployed over a timespan of 380 seconds. The release consists of multiple phases:

1. Canary Launch: Tests Product A and Product B Service while monitoring for errors. 5%
of the traffic gets redirected to A and B respectively, and an aggregated error count from
Prometheus is monitored. Lasts for 60 seconds.

2. Shadow Launch: Product A and Product B receive 100% of all original traffic to the Product-
service, while their CPU load is being monitored. Should they experience abnormal CPU
load (>80%) an automatic rollback is initiated. Lasts for 60 seconds.

3. A/B Test: Routes 50% to Product A and 50% to Product B. Monitors their sales performance
over 60 seconds. Uses sticky-sessions. Reverts the traffic distribution to the original Product
service after completion.

4. Phased Rollout: Rolls out the winner from the previous A/B test from 5% Traffic to 100%,
increasing traffic 5% every 10 seconds over 200 seconds.

During the time of the release, normal traffic was simulated using the JMeter test suite and its
results were collected. The load consisted of 30 parallel threads. On average about 50 requests
per second were directed against the system. The following runs have been conducted:

• Baseline: Run without Bifrost deployed.

• Proxied: Run with Bifrost deployed, but without executing a release.

• Running: Run with Bifrost deployed, executing the aforementioned release.

The data gathered from n = 5 runs was combined and aggregated using a moving average,
which averages collected data-points from 1 second.

56 Chapter 5. Evaluation

Figure 5.5: Average response time during the release test in milliseconds

Results

The plot in Figure 5.5 shows the development of the average response time during the release. The
different release strategies have been marked in the plot for better distinctiveness. Additionally,
Table 5.5 shows the average response time for specific release phases. There are a number of
observations that will be discussed in the following:

• Canary Launch: The performance of canary launching is consistently similar to running the
proxy itself. The average response time is 0.26ms faster during the canary launch, which
can be attributed to normal performance variation. The measured delay of 0.91ms between
the baseline and the proxied run is consistent with earlier results (see Section 5.2.2).

• Shadow Launch: The performance of shadow launching is similar as well. The average
response time is 0.53ms faster during the shadow launch, which again can be attributed to
normal performance variation.

• A/B Testing: All runs show an increase in response time right after switching to the A/B
testing phase. The A/B testing adds 17.01ms to the average response time in comparison to
the baseline version. This seems contradictory to the results obtained in Section 5.2.3, where
fixed A/B testing did not noticeably influence the performance. However, in comparison
to the filter performance test the traffic was redirected to two services, each receiving 50%
traffic whereas in the filter performance setup, only 50% was redirected to an alternative
service. Another possible explanation for this behavior is the sudden introduction of a new

5.2 Quantitative Evaluation 57

filtering mechanism to an existing set of Bifrost sessions, where the proxy has to quickly
assign users to their matching session, whereas the filter performance test slowly added
more users.

• Partial Rollout: During the last phase while partially rolling out the new service, no per-
formance difference is visible. This observation is in line with previous results from the
filter performance test in Section 5.2.3, where randomized A/B tests (which use the same
mechanism) did not negatively influence the applications performance.

Type Canary Launch Shadow Launch A/B Testing Partial Rollout

Baseline 20.28 18.67 20.74 20.28

Proxied 21.72 (+1.44) 21.34 (+0.6) 22.79 (+2.51) 23.05 (+2.77)

Running 21.19 (+0.91) 21.06 (+0.32) 37.29 (+17.01) 21.76 (+1.48)

Table 5.5: Average response time during a phase in milliseconds and delta to the baseline

The results show that certain release strategies can negatively influence application perfor-
mance. When fixed A/B tests apply sticky sessions, the performance drop is noticeably. The
functionality assigns users to an alternative service for the current and all future requests. This
behavior is the most complex case the proxy can handle from a technical perspective, which ex-
plains the introduced latency. However, a generally acceptable response time for user interfaces
is <100ms [Nie94], a value which was never exceeded during the release process.

Chapter 6

Final Remarks

This chapter summarizes the contribution, presents a final conclusion and shows how future work
could advance the work presented in this thesis.

6.1 Conclusion
This thesis focused on software releases and how data-driven strategies can be automated in
order to allow their integration into the deployment pipeline of continuously developed appli-
cations. Chapter 2 introduces important concepts for continuous software development such as
continuous integration, delivery and deployment. Furthermore, a set of wide-spread live-testing
methods is presented and a short overview of modern web applications using the microservices
architecture approach is given. The collected background information serves as a basis to design
a generic model for data-driven releases, as stated in the first research question:

RQ1: How can we formalize a (generic) model for data-driven release and deploy-
ment strategies?

Chapter 4 starts with a problem analysis and derives a usage scenario, depicting a non-trivial
data-driven release process. Combining this scenario with the methods of live-testing introduced
in Section 2.2.1, a set of four characteristics is derived that are key to the methods presented. These
are formalized in a generic model that describes the process of data-driven software releases.
The characteristics are incorporated as follows: ordered execution through strategies, parallel
execution and data-drivenness through actions. The constructed model also incorporates a sense
of state by allowing actions to rearrange the strategies in order to repeat phases of a release if
necessary. In order to validate the derived model and learn how to further improve it, a prototype
called Bifrost was built (described in Chapter 4) and evaluated (in Chapter 5) to answer the second
research question:

RQ2: How can we build a tool that supports and automates data-driven release
strategies for microservices-based architectures in a non-intrusive way?

The prototype focuses on a specific set of applications, namely web services built using a
microservices architecture. The model has been transformed into a YAML-based domain spe-
cific language that fully implements its characteristics. The prototype features a command-line

60 Chapter 6. Final Remarks

interface, making it it possible to fully automate a complex release procedure during a regular de-
ployment process. It is non-intrusive in the way that the chosen technical approach of dynamic-
request routing is able to provide various application versions without source code modifica-
tion [LBR09]. In order to allow for data-driven releases, the prototype features the inclusion of
metrics through third-party aggregators and providers.

In the aforementioned evaluation, the Bifrost Toolkit is qualitatively compared with existing
tools from industry and research. It is shown that the chosen approach and the flexible model
provide a wider range of functionality and flexibility to developers in comparison to contempo-
rary tools. Furthermore, the Bifrost Toolkit is applicable to a wide range of possible deployment
solutions ranging from bare-metal machines to virtualized cloud-environments.

In a second part, a quantitative performance evaluation focuses on the approach chosen by
the prototype to implement the model. Although the Bifrost Toolkit gains advantages such as
platform-neutrality, performance concerns exist that decide whether the approach is truly non-
intrusive. The results show that the Bifrost Toolkit, albeit being a prototype, performs very well.
However, it does add a measurable delay to the tested sample application. While the introduced
performance hit is marginal, it also varies depending on the chosen live-testing method. Espe-
cially methods that rely on sticky-sessions suffer from a greater performance hit that needs fur-
ther investigation and fine-tuning. In addition, the performance of the proxy shows a variation
between different kinds of requests, most likely depending on their request and response size.
Further data is necessary however, to completely explain the behavior.

6.1.1 Threats to Validity
The following section discusses threats to validity, especially concerning the results of the perfor-
mance evaluation.

External Validity

A few of the tools involved in the performance evaluation are not deemed production ready,
such as Docker-Compose1 where its developers state that it "may be used for smaller production
deployments, but is probably not yet suitable for larger deployments". A similar concern is in-
troduced by using the boot2docker2 linux distribution, which could influence the performance
negatively as it is probably not optimized on performance as various other Linux server distribu-
tions.

Internal Validity

The performance evaluation was conducted on a desktop computer. Even if the machine used
is relatively powerful, it is possible that its performance influenced the results of certain mea-
surements. However, the general conclusions are still valid as hitting the performance limit of
the machine will degrade the performance not only of the Bifrost services but also of the sample

1Docker-Compose in production: https://docs.docker.com/compose/production/
2boot2docker: http://boot2docker.io/

https://docs.docker.com/compose/production/
http://boot2docker.io/

6.2 Future Work 61

application. Another possible threat are performance fluctuations, which are addressed by run-
ning the tests a multitude of times and combining the results to filter out abnormal behavior. The
JMeter test suite was constructed to simulate a real user’s behavior by including waiting times
between requests. Due to the restricted nature of the sample application, a real application could
behave differently depending on its architecture and setup.

6.2 Future Work

In the following section possible additions and improvements to the model and developed pro-
totype are discussed.

6.2.1 Formal Verification

The formalized release model allows for interesting approaches to verify that no deadlocks or
loops occur during the execution of a release process. Such a formal verification is possible and
could prevent errors introduced by developers while specifying release strategies.

6.2.2 Extend Bifrost Toolkit

The presented prototype has a limited set of features that could be extended and advanced in
the future. While Prometheus serves as a first implementation of a metrics provider, developers
that do not use it are forced to either feed their metrics into Prometheus or implement their own
provider. While extending the system itself is one solution, a flexible plugin system would be of
bigger use for the future. This would allow developers to integrate either third-party services or
their own metric services with ease and without modification of the Bifrost Engine. The YAML-
DSL and the written interpreter would allow for the inclusion of such a system with reasonable
effort.

6.2.3 Integration in Deployment Pipeline

The evaluation conducted in this thesis focused on the tool in general, comparing it to numer-
ous other prototypes and existing work. Additionally, one of the primary concerns regarding
performance implications was addressed. An interesting and yet to be explored direction would
be to test and evaluate what the toolkit is still missing in order to be properly integrated into a
fully automatic work flow of a deployment pipeline. Work towards this goal has already been
done by providing a CLI and APIs to control the Bifrost Engine. It is possible though, that a more
fine-granular interface is necessary in order to for example allow for production-safe deployment.
Also, certain challenges need to be addressed such as how developers can distinguish between
versions that should simply be deployed directly (e.g., a small bugfix release) vs. versions that
should undergo a sophisticated data-driven release process.

62 Chapter 6. Final Remarks

6.2.4 Feature Toggles
Whereas the developed prototype uses dynamic request routing, another technique to realize
data-driven releases are feature toggles as introduced in Section 2.2.2. The Bifrost Toolkit could
potentially be expanded upon adding mechanisms of existing feature toggle libraries, or imple-
menting the functionality by its own. While certain advantages would be lost, the combination of
having feature toggles and dynamic request routing at disposal would allow for a fine-granular
choice of methods based on the use case.

Bibliography

[Abr08] P. Abrahamsson. Agile Processes in Software Engineering and EXtreme Programming:
9Th International Conference, XP 2008, Limerick, Ireland, June 10-14, 2008 : Proceedings.
Lecture notes in business information processing. Springer, 2008.

[Aga11] Puneet Agarwal. Continuous scrum: Agile management of saas products. In Pro-
ceedings of the 4th India Software Engineering Conference, ISEC ’11, pages 51–60, New
York, NY, USA, 2011. ACM.

[AM16] Bram Adams and Shane McIntosh. Modern release engineering in a nutshell - why
researchers should care. In Proc. of the 23rd Intl Conf. on Software Analysis, Evolution,
and Reengineering (SANER), page To appear, 2016.

[Apa13] Apache. mod_proxy - apache http server. http://httpd.apache.org/docs/2.
0/mod/mod_proxy.html#forwardreverse, 2013. (Accessed on 03/23/2016).

[BA04] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace Change (2Nd
Edition). Addison-Wesley Professional, 2004.

[BBvB+01] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Suther-
land, and Dave Thomas. Manifesto for agile software development, 2001.

[BCG+10] Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim, Philippe
Kruchten, Erin Lim, Alan MacCormack, Robert Nord, Ipek Ozkaya, Raghvinder
Sangwan, Carolyn Seaman, Kevin Sullivan, and Nico Zazworka. Managing tech-
nical debt in software-reliant systems. In Proceedings of the FSE/SDP Workshop on
Future of Software Engineering Research, FoSER ’10, pages 47–52, New York, NY, USA,
2010. ACM.

[Bec00] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley Profes-
sional, 2000.

[Bir11] Jim Bird. Feature toggles are one of the worst kinds of technical debt - dzone de-
vops. https://dzone.com/articles/feature-toggles-are-one-worst,
08 2011. (Accessed on 03/07/2016).

http://httpd.apache.org/docs/2.0/mod/mod_proxy.html#forwardreverse
http://httpd.apache.org/docs/2.0/mod/mod_proxy.html#forwardreverse
https://dzone.com/articles/feature-toggles-are-one-worst

64 BIBLIOGRAPHY

[BKEI05] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. Yaml ain’t markup language (yaml)
version 1.1. yaml. org, Tech. Rep, 2005.

[BKK00] H. Bryhni, E. Klovning, and O. Kure. A comparison of load balancing techniques for
scalable web servers. IEEE Network, 14(4):58–64, Jul 2000.

[Boo91] G. Booch. Object Oriented Design: With Applications. The Benjamin/Cummings Series
in Ada and Software Engineering. Benjamin/Cummings Pub., 1991.

[BYV+09] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. Cloud computing and emerging it platforms: Vision, hype, and reality
for delivering computing as the 5th utility. Future Generation Computer Systems,
25(6):599–616, 2009.

[CCP99] Valeria Cardellini, Michele Colajanni, and S Yu Philip. Dynamic load balancing on
web-server systems. IEEE Internet computing, 3(3):28, 1999.

[Che15] Lianping Chen. Continuous delivery: Huge benefits, but challenges too. Software,
IEEE, 32(2):50–54, Mar 2015.

[CSA15] Gerry Gerard Claps, Richard Berntsson Svensson, and Aybüke Aurum. On the jour-
ney to continuous deployment: Technical and social challenges along the way. Infor-
mation and Software technology, 57:21–31, 2015.

[Cun09] Ward Cunningham. Integration hell. http://c2.com/cgi/wiki?

IntegrationHell, 2009. (Accessed on 02/25/2016).

[Dea07] Alan Dearle. Software deployment, past, present and future. 2007 Future of Software
Engineering, pages 269–284, 2007.

[Dev09] DevOpDays. Ghent 2009 program. http://www.devopsdays.org/events/

2009-ghent/program/, 2009. (Accessed on 02/23/2016).

[DMG07] Paul M Duvall, Steve Matyas, and Andrew Glover. Continuous Integration: Patterns
and Anti-Patterns. Pearson Education, 2007.

[EHN14] Frossie Economou, Joshua C Hoblitt, and Pat Norris. Your data is your dogfood:
Devops in the astronomical observatory. arXiv preprint arXiv:1407.6463, 2014.

[Exp16] Express. Express - node.js web application framework. http://expressjs.com/,
04 2016. (Accessed on 04/01/2016).

[FF05] M. Fowler and M. Foemmel. Continuous integration,
http://www.martinfowler.com/articles/continuousintegration.html, 2005.

[FFB13] Dror G Feitelson, Eitan Frachtenberg, and Kent L Beck. Development and deploy-
ment at facebook. IEEE Internet Computing, (4):8–17, 2013.

[FGM+99a] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
Rfc 2616, hypertext transfer protocol – http/1.1, 1999.

http://c2.com/cgi/wiki?IntegrationHell
http://c2.com/cgi/wiki?IntegrationHell
http://www.devopsdays.org/events/2009-ghent/program/
http://www.devopsdays.org/events/2009-ghent/program/
http://expressjs.com/

BIBLIOGRAPHY 65

[FGM+99b] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
Rfc 2616, hypertext transfer protocol – http/1.1, 1999.

[FL14] Fowler and Lewis. Microservices - a definition of this new architectural term. http:
//martinfowler.com/articles/microservices.html, 03 2014. (Accessed
on 03/14/2016).

[Fow08] Martin Fowler. Dslqanda. http://martinfowler.com/bliki/DslQandA.

html, 09 2008. (Accessed on 03/10/2016).

[Fow10a] Martin Fowler. Bluegreendeployment. http://martinfowler.com/bliki/

BlueGreenDeployment.html, 03 2010. (Accessed on 03/02/2016).

[Fow10b] Martin Fowler. Featuretoggle. http://martinfowler.com/bliki/

FeatureToggle.html, 10 2010. (Accessed on 03/01/2016).

[FS14] Brian Fitzgerald and Klaas-Jan Stol. Continuous software engineering and beyond:
Trends and challenges. In Proceedings of the 1st International Workshop on Rapid Contin-
uous Software Engineering, RCoSE 2014, pages 1–9, New York, NY, USA, 2014. ACM.

[FY00] Brian Foote and Joseph Yoder. Big ball of mud. pattern languages of program design
4. HarrisonN, FooteB, RohnertH (eds.). Addison-Wesley: Reading, MA, 2000.

[Gam95] Erich Gamma. Design Patterns: Elements of reusable Object-Oriented Software. Pearson
Education India, 1995.

[GEL15] O. Gunalp, C. Escoffier, and P. Lalanda. Rondo: A tool suite for continuous deploy-
ment in dynamic environments. In Services Computing (SCC), 2015 IEEE International
Conference on, pages 720–727, June 2015.

[HF10] J. Humble and D. Farley. Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation (Adobe Reader). Addison-Wesley Signature Series
(Fowler). Pearson Education, 2010.

[Hod16] Pete Hodgson. Feature toggles - a toggling tale. http://martinfowler.com/

articles/feature-toggles.html, 02 2016. (Accessed on 03/01/2016).

[HSVT12] T. Hobfeld, R. Schatz, M. Varela, and C. Timmerer. Challenges of qoe management
for cloud applications. IEEE Communications Magazine, 50(4):28–36, April 2012.

[Hüt12] Michael Hüttermann. DevOps for Developers. Apress, 2012.

[jba14] jbarnette. github/scientist: A ruby library for carefully refactoring critical paths.
https://github.com/github/scientist, 11 2014. (Accessed on 03/17/2016).

[Joh10] Willis John. What devops means to me | chef blog. https://www.chef.

io/blog/2010/07/16/what-devops-means-to-me/, 07 2010. (Accessed on
03/23/2016).

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/bliki/DslQandA.html
http://martinfowler.com/bliki/DslQandA.html
http://martinfowler.com/bliki/BlueGreenDeployment.html
http://martinfowler.com/bliki/BlueGreenDeployment.html
http://martinfowler.com/bliki/FeatureToggle.html
http://martinfowler.com/bliki/FeatureToggle.html
http://martinfowler.com/articles/feature-toggles.html
http://martinfowler.com/articles/feature-toggles.html
https://github.com/github/scientist
https://www.chef.io/blog/2010/07/16/what-devops-means-to-me/
https://www.chef.io/blog/2010/07/16/what-devops-means-to-me/

66 BIBLIOGRAPHY

[KLSH09] Ron Kohavi, Roger Longbotham, Dan Sommerfield, and Randal M. Henne. Con-
trolled experiments on the web: Survey and practical guide. Data Min. Knowl. Dis-
cov., 18(1):140–181, February 2009.

[Lad12] Mohamad Ibrahim Ladan. Web services metrics: A survey and a classification. Jour-
nal of Communication and Computer, 9(7):824–829, 2012.

[LBR09] D. Lipscomb, C.T. Blum, and T.R. Rice. Phased rollout of version upgrades in web-
based business information systems, July 7 2009. US Patent 7,558,843.

[Mag14] Magnetic.io. Vamp :: The very awesome microservices platform. http:

//vamp.io/documentation/using-vamp/blueprints/, 2014. (Visited on
10/20/2015).

[Mar03] Robert Cecil Martin. Agile Software Development - Principles, Patterns, and Practices.
Prentice Hall PTR, 2003.

[Mar07] M. Marschall. Transforming a six month release cycle to continuous flow. In Agile
Conference (AGILE), 2007, pages 395–400, Aug 2007.

[McK15] Joe McKendrick. Are microservices for real, or just the latest buzzword?
| zdnet. http://www.zdnet.com/article/a-few-words-about-

microservices/, 02 2015. (Accessed on 03/14/2016).

[MKA+13] Mika V Mantyla, Foutse Khomh, Bram Adams, Emelie Engstrom, and Kim Petersen.
On rapid releases and software testing. In Software Maintenance (ICSM), 2013 29th
IEEE International Conference on, pages 20–29. IEEE, 2013.

[ND14] Sneps-sneppe Manfred Namiot Dmitry. On micro-services architecture. International
Journal of Open Information Technologies, 2, 2014.

[New15] Sam Newman. Building Microservices. " O’Reilly Media, Inc.", 2015.

[Nie94] Jakob Nielsen. Usability engineering. Elsevier, 1994.

[NS13] S. Neely and S. Stolt. Continuous delivery? easy! just change everything (well,
maybe it is not that easy). In Agile Conference (AGILE), 2013, pages 121–128, Aug
2013.

[OAB12] Helena Holmström Olsson, Hiva Alahyari, and Jan Bosch. Climbing the" stairway
to heaven"–a mulitiple-case study exploring barriers in the transition from agile de-
velopment towards continuous deployment of software. In Software Engineering and
Advanced Applications (SEAA), 2012 38th EUROMICRO Conference on, pages 392–399.
IEEE, 2012.

[Par16] Parse. Parse | faq. https://parse.com/faq, 2016. (Accessed on 03/25/2016).

[Pul13] Ville Pulkkinen. Continuous deployment of software. Cloud-Based Software Engineer-
ing, pages 46–52, 2013.

http://vamp.io/documentation/using-vamp/blueprints/
http://vamp.io/documentation/using-vamp/blueprints/
http://www.zdnet.com/article/a-few-words-about-microservices/
http://www.zdnet.com/article/a-few-words-about-microservices/
https://parse.com/faq

BIBLIOGRAPHY 67

[RHWP15] A.A.U. Rahman, E. Helms, L. Williams, and C. Parnin. Synthesizing continuous
deployment practices used in software development. In Agile Conference (AGILE),
2015, pages 1–10, Aug 2015.

[Rig14] RightScale. Continuous integration and delivery in the cloud: How rightscale
does it. http://www.rightscale.com/blog/cloud-management-best-

practices/continuous-integration-and-delivery-cloud-how-

rightscale-does-it, 10 2014. (Accessed on 03/21/2016).

[San15] Peter Sankauskas. The dos and don’ts of blue/green deployment - cloudna-
tive. http://cloudnative.io/blog/2015/02/the-dos-and-donts-of-

bluegreen-deployment/, 04 2015. (Accessed on 03/02/2016).

[SB14] Daniel Staahl and Jan Bosch. Modeling continuous integration practice differences
in industry software development. Journal of Systems and Software, 87:48 – 59, 2014.

[SCL15] Gerald Schermann, Jürgen Cito, and Philipp Leitner. All the services large and micro:
Revisiting industrial practice in services computing. PeerJ PrePrints, 3:e1588, 8 2015.

[Ser14] Serverfault. web server - how many requests should my webserver be able to han-
dle? - server fault. http://serverfault.com/questions/8149/how-many-
requests-should-my-webserver-be-able-to-handle, 03 2014. (Accessed
on 03/25/2016).

[Sev14] Doug Seven. Knightmare: A devops cautionary tale - doug seven. http:

//dougseven.com/2014/04/17/knightmare-a-devops-cautionary-

tale/, 04 2014. (Accessed on 03/01/2016).

[SLCG14] J. Scheuner, P. Leitner, J. Cito, and H. Gall. Cloud work bench – infrastructure-as-code
based cloud benchmarking. In Cloud Computing Technology and Science (CloudCom),
2014 IEEE 6th International Conference on, pages 246–253, Dec 2014.

[Sni16] Ed Snible. Active deploy & canary advisor. https://www-304.ibm.com/

events/tools/interconnect/2016ems/REST/presentations/PDF/

InterConnect2016_7283.pdf, 02 2016. (Accessed on 03/25/2016).

[Tho15] J. Thoenes. Microservices. IEEE Software, 32(1):116–116, Jan 2015.

[TKV+15] Chunqiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Akshay Chander, Zhe
Wen, Aravind Narayanan, Patrick Dowell, and Robert Karl. Holistic configuration
management at facebook. In Proceedings of the 25th Symposium on Operating Systems
Principles, SOSP ’15, pages 328–343, New York, NY, USA, 2015. ACM.

[Tof12] Giovanni Toffetti. Web engineering for cloud computing. In Current Trends in Web
Engineering, pages 5–19. Springer, 2012.

[TSM+15] Alexander Tarvo, Peter F. Sweeney, Nick Mitchell, V.T. Rajan, Matthew Arnold, and
Ioana Baldini. Canaryadvisor: A statistical-based tool for canary testing (demo). In
Proceedings of the 2015 International Symposium on Software Testing and Analysis, ISSTA
2015, pages 418–422, New York, NY, USA, 2015. ACM.

http://www.rightscale.com/blog/cloud-management-best-practices/continuous-integration-and-delivery-cloud-how-rightscale-does-it
http://www.rightscale.com/blog/cloud-management-best-practices/continuous-integration-and-delivery-cloud-how-rightscale-does-it
http://www.rightscale.com/blog/cloud-management-best-practices/continuous-integration-and-delivery-cloud-how-rightscale-does-it
http://cloudnative.io/blog/2015/02/the-dos-and-donts-of-bluegreen-deployment/
http://cloudnative.io/blog/2015/02/the-dos-and-donts-of-bluegreen-deployment/
http://serverfault.com/questions/8149/how-many-requests-should-my-webserver-be-able-to-handle
http://serverfault.com/questions/8149/how-many-requests-should-my-webserver-be-able-to-handle
http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
https://www-304.ibm.com/events/tools/interconnect/2016ems/REST/presentations/PDF/InterConnect2016_7283.pdf
https://www-304.ibm.com/events/tools/interconnect/2016ems/REST/presentations/PDF/InterConnect2016_7283.pdf
https://www-304.ibm.com/events/tools/interconnect/2016ems/REST/presentations/PDF/InterConnect2016_7283.pdf

68 BIBLIOGRAPHY

[VM01] Aad Van Moorsel. Metrics for the internet age: Quality of experience and quality
of business. In Fifth International Workshop on Performability Modeling of Computer and
Communication Systems, Arbeitsberichte des Instituts für Informatik, Universität Erlangen-
Nürnberg, Germany, volume 34, pages 26–31. Citeseer, 2001.

[Wir96] Niklaus Wirth. Extended backus-naur form (ebnf). ISO/IEC, 14977:2996, 1996.

Glossary

API Application Programming Interface

DNS Domain Name System

DSL Domain Specific Language

EBNF Extended Backus–Naur Form

CD Continuous Delivery, Continuous Deployment

CI Continuous Integration

CLI Command Line Interface

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

HHVM HipHop Virtual Machine

IaaS Infrastructure as a Service

JS JavaScript

JSON JavaScript Object Notation

PaaS Platform as a Service

QoS Quality of Service

REST Representational State Transfer

SaaS Software as a Service

UI User Interface

URL Uniform Resource Locator

VCS Version Control System

Appendix

Bifrost Sample Release
Strategy

--- name: Webshop Redesign A/B Test deployment: ref: mapping services: - ref: frontend - ref: products - ref: products_a - ref: products_b - ref: auth strategies: - name: Health Check actions: - request: url: "http://products/" status: 404 intervalTime: 5 intervalLimit: 12 threshold: 12 - name: Canary Launch actions: - AND: actions: - route: from: products to: products_a intervalTime: 60 filters: - traffic: percentage: 5 - metric: providers: - prometheus: name: products_a_error query: request_errors{instance="products_a:80"} intervalTime: 5 intervalLimit: 12 threshold: 12 validator: "<5" - route: from: products to: products_b intervalTime: 60 filters: - traffic: percentage: 5 - metric: providers: - prometheus: name: products_b_error query: request_errors{instance="products_b:80"} intervalTime: 5 intervalLimit: 12 threshold: 12

 validator: "<5" onTrue: Load Test onFalse: rollback - name: Load Test actions: - route: from: products to: products_a filters: - traffic: percentage: 100 shadow: true intervalTime: 60 - route: from: products to: products_b filters: - traffic: percentage: 100 shadow: true intervalTime: 60 - metric: providers: - prometheus: name: b_cpu_load query: avg_over_time(container_cpu_system_seconds_total{name="bifrostcomposesample_products_b_1"}[60s]) delay: 60 validator: <80 onTrue: ab_test onFalse: rollback - metric: providers: - prometheus: name: a_cpu_load query: avg_over_time(container_cpu_system_seconds_total{name="bifrostcomposesample_products_a_1"}[60s]) delay: 60 validator: <80 onTrue: A/B Test onFalse: rollback - name: A/B Test actions: - route: from: products to: products_a filters: - traffic: sticky: true percentage: 50

 intervalTime: 60 - route: from: products to: products_b filters: - traffic: sticky: true percentage: 50 intervalTime: 60 - metric: providers: - prometheus: name: a_sold query: avg_over_time(products_sold{instance="products_a:80"}[60s]) - prometheus: name: b_sold query: avg_over_time(products_sold{instance="products_b:80"}[60s]) delay: 60 validator: "a_sold>=b_sold" onTrue: Phased Rollout A onFalse: Phased Rollout B - name: Phased Rollout A actions: - route: from: products to: products_a filters: - traffic: percentage: 5 intervalTime: 10 intervalLimit: 20 threshold: 20 onTrue: finish - name: Phased Rollout B actions: - route: from: products to: products_b filters: - traffic: percentage: 5 intervalTime: 10 intervalLimit: 20 threshold: 20 onTrue: finish

Performance Evaluation Filter
Configurations

filterHeader.yml---name: Webshop Redesign A/B Testdeployment: ref: mapping
 services: - ref: frontend - ref: products - ref: products_a - ref: products_b - ref: auth
strategies: - name: filterHeader actions: - route: from: products to: products_a persistance: true filters: - header: field: X-User-Group value: canary

Seite 1

78 Chapter . Performance Evaluation Filter Configurations

Canary Launch

filterShadow.yml---name: Webshop Redesign A/B Testdeployment: ref: mapping
 services: - ref: frontend - ref: products - ref: products_a - ref: products_b - ref: auth
strategies: - name: filterShadow actions: - route: from: products to: products_a persistance: true filters: - traffic: percentage: 100 shadow: true

Seite 1

79

Shadow Launch

filterSticky.yml---name: Webshop Redesign A/B Testdeployment: ref: mapping
 services: - ref: frontend - ref: products - ref: products_a - ref: products_b - ref: auth
strategies: - name: filterSticky actions: - route: from: products to: products_a persistance: true filters: - traffic: sticky: true percentage: 50

Seite 1

80 Chapter . Performance Evaluation Filter Configurations

Fixed A/B Test

filterTraffic.yml---name: Webshop Redesign A/B Testdeployment: ref: mapping
 services: - ref: frontend - ref: products - ref: products_a - ref: products_b - ref: auth
strategies: - name: filterTraffic actions: - route: from: products to: products_a persistance: true filters: - traffic: percentage: 50

Seite 1

81

Random A/B Test

Bifrost Engine Installation
Guide

Bifrost Engine
The Bifrost Engine is the central component of the Bifrost Toolkit, that consists of the Bifrost Proxy

Setup for Development

Requirements

NodeJS > 4.2.*●

Gulp●

Setup

After cloning the project, make sure you have installed gulp in your global npm (npm install -g
gulp).

npm install to install all dependencies.1.
gulp to transpile the sources.2.
npm start to run the engine.3.

The engine will listen on localhost:9090

Gulp

There are a number of various gulp tasks that are able to help you during development:

gulp clean: Removes the /dist folder and all transpiled files●

gulp babel: Transpiles the code to backwards compatible ECMAScript2015-compliant JavaScript●

gulp test: Runs the mocha test suite.●

gulp serve: Starts the Bifrost Engine using nodemon, automatically restarting the process upon●

code changes. Perfect for development!

Bifrost Toolkit Integration Guide

Integrating the Bifrost Toolkit
This guide will help you to setup the Bifrost Toolkit in your own application to leverage its
data-driven release capabilities.

1. Deploying the Engine

There are currently two choices to deploy the Bifrost Engine.

Docker

If you are using Docker, you may deploy the Bifrost Engine as follows. First, either build the docker
image locally or simply use the prebuilt image using:

docker run -e NODE_ENV=production -e PROMETHEUS=[URL] -d --name bifrost-engine -t
dschoeni/bifrost-engine

Replace the Prometheus-URL with the correct full URL (for example http://prometheus:9090) or
the Engine will be unable to properly access get Prometheus API.

Make sure that you either --link (deprecated) existing containers you would like to use during a
release process (such as instances of Bifrost Proxy or Prometheus) or deploy them into the same
Docker-Network using --net (preferably).

Node.js

You can choose on how to deploy Bifrost Engine by yourself. The Engine can be deployed manually,
using:

npm start

Make sure that your NODE_ENV environment variable is set to production, as this greatly influences
the performance.

2. Proxying Services

In order to use the routing capabilities during releases, each service has to be proxied by an
instance of Bifrost Proxy. To run a proxy for a service, simply use:

docker run -e NODE_ENV=production -e PORT=[PORT] -e HOST=[HOSTNAME] -d -t
dschoeni/bifrost-proxy

Please make sure to replace PORT and HOSTNAME with the apporiate values of the service you would
like to deploy the proxy for.

Make sure that you either --link (deprecated) the proxied service container or deploy them into
the same Docker-Network using --net (preferably).

3. Release!

If all your containers are properly running, there is only one thing left: Install the Bifrost CLI to easily
schedule releases.

Bifrost Microservices Sample
Application Guide

Bifrost Microservices Sample Application
This application has been built to demonstrate the release and live-testing capabilities of the Bifrost
Toolkit.

Launching the Application

Requirements

Docker >= 1.9.1●

Docker-Compose >= 1.9.1●

On Windows, add the following entries into your hosts-file:

localhost auth.bifrost.com
localhost products.bifrost.com
localhost frontend.bifrost.com

If you're using docker-machine, replace localhost with the correspondant machine IP (default:
192.168.99.100).

Application-Only

To launch the version without Bifrost deployed, simply use:

docker-compose up -d

You should now be able to open http://frontend.bifrost.com/ in a browser.

Application using the Bifrost Toolkit

To launch the version using the Bifrost Toolkit, simply use:

docker-compose -f docker-compose-bifrost.yml up -d

You should now be able to open http://frontend.bifrost.com/ in a browser.

Generating Demo-Data

You can generate some users and data. Note that the name of the containers depends on the
folder you have cloned the project into.

docker exec -ti bifrostmicroservicessampleapplication_auth_1 node seed.js
docker exec -ti bifrostmicroservicessampleapplication_products_1 node seed.js

You should now be able to open http://frontend.bifrost.com/ in a browser and login using
demouser@demo.ch and password test.

Testing Bifrost

A sample release is provided in /strategies/bifrost.yml. To test this release and rollout a
"modified" service, you can use the Bifrost CLI:

Switch Services

To showcase the routing capabilities of Bifrost, one can switch the traffic to different frontend
services as follows:

bifrost --engine [ENGINE-IP]:8181 strategies/switch_frontend_redesigned.yml

Simulating a Full Release

This should launch a sample strategy using Bifrost.

bifrost --engine [ENGINE-IP]:8181 strategies/bifrost.yml

	Introduction
	Contribution and Research Questions
	Thesis Outline

	Background
	Building and Releasing Software
	Continuous Integration
	Continuous Delivery
	Continuous Deployment
	DevOps
	Deployment Pipeline

	Data-Driven Software Release
	Methods of Live-Testing
	Implementation Techniques

	Microservices Architecture
	Definition
	Advantages of Microservices
	Communication in Microservices
	Metrics in Microservices

	Summary

	Related Work
	Releasing Software
	Dynamic Release Management
	Existing Tools
	Research Prototypes
	Industry Tools

	Data-Driven Release Strategies using Bifrost
	Problem Analysis
	Usage Scenario

	A general model for releasing software
	Characteristics
	Formal Definition

	Bifrost Toolkit Prototype
	Requirements
	Approach
	Technologies

	Bifrost DSL
	Converting the Release Model into a DSL
	Deployment
	Strategies
	Actions

	Bifrost Engine
	Overview
	Interpreter
	Deployment
	Model

	Bifrost Proxy
	Configuration
	Sticky Sessions
	Filters

	Bifrost CLI
	Overview

	Bifrost UI
	Overview

	Evaluation
	Qualitative Evaluation
	Tools
	Dimensions
	Analysis and Discussion
	Summary

	Quantitative Evaluation
	Method
	Request Performance
	Filter Performance
	Release Performance

	Final Remarks
	Conclusion
	Threats to Validity

	Future Work
	Formal Verification
	Extend Bifrost Toolkit
	Integration in Deployment Pipeline
	Feature Toggles

	Glossary
	Bifrost Sample Release Strategy
	Performance Evaluation Filter Configurations
	Bifrost Engine Installation Guide
	Bifrost Toolkit Integration Guide
	Bifrost Microservices Sample Application Guide

