
Distributed scheduling
using DCOPs in
Signal/Collect

Daniel Hegglin
of Oerlikon ZH, Switzerland

Student-ID: 08-721-102
dani.hegglin@gmail.com

Thesis January 17, 2015

Advisor: Mihaela Verman

Prof. Abraham Bernstein, PhD
Institut für Informatik
Universität Zürich
http://www.ifi.uzh.ch/ddis

Acknowledgements

First and foremost, I’d like to thank my advisor Mihaela Verman, Research Assistant
and PhD Candidate at the DDIS group for her excellent support during the course of
this thesis. She was always reachable and helped me with many technical and formal
questions. Without her continous efforts and valuable inputs, this work would not have
been possible.
Special thanks go to Dr. Thomas Scharrenbach for arranging the thesis proposal and
his guidance at the beginning of this work. I’d also like to thank Philip Stutz for his
work on the Signal/Collect framework that made my research possible and his support
in technical questions regarding the usage of the framework.
Finally, I’d like to thank the Dynamic and Distributed Systems Group (DDIS) at the
University of Zurich and Prof. Abraham Bernstein for the opportunity to write my
master thesis in their department.

Zusammenfassung

Distributed Constraint Optimization (DCOP) ermöglicht Problemlösungen in beispiel-
weise Terminplanung, Verkehrsflusskontrolle oder dem Management von Sensor Netzw-
erken. Es ist ein gut erforschtes Feld und es wurden viele verschieden Algorithmen zur
Berechnung vorgestellt. Allerdings wird häufig von einer statischen Problemdefinition
ausgegangen und der Aspekt von in der Realität häufig auftretenden Änderungen an
der Problemstellung findet oft wenig Beachtung. Ausserdem fehlt es an einem soliden
theoretischen Fundament und standardisierten Verfahren um die Performanz von DCOP
Algorithmen hinsichtlich sich ändernder Probleme zu erfassen. Diese Arbeit hatte das
Ziel das Verhalten und die Leistung von verschieden Arten von DCOP Algorithmen in
dynamischen Umgebungen mit einem Fokus auf lokale, iterative Algorithmen und Haup-
taugenmerk auf den MaxSum Algorithmus zu untersuchen. Zum Vergleich wurde eine
komplette und eine lokal, iterative ”message-passing” sowie eine ”best-response” Vari-
ante implementiert. Während der Implementation des MaxSum Algorithmus wurde eine
Variation von der üblichen Graphenstruktur ausprobiert. Zum Test eines realen Prob-
lems wurde Terminplanung ausgewählt und als DCOP formuliert. Es wurde ausserdem
ein Framework entwickelt, welches die dynamische Änderung von Constraints, Variablen
und der Problemdomäne ermöglicht. Die Algorithmen wurden mit Fokus auf Lösungs-
Qualität über Zeit, sowohl in einer statischen wie auch in einer dynamischen Umgebung
getestet. Diese Arbeit schlägt ausserdem eine Lösung zur Speicherung, Weiterverar-
beitung und Überwachung der Resultate der Berechnungen in Echtzeit vor, welche die
Performanz der Algorithmen nicht beeinflusst.

Abstract

Distributed constraint optimization allows to solve problems in domains like scheduling,
traffic flow management or sensor network management. It is a well-researched field and
various algorithms have been proposed. However, the dynamic nature of some of these
problems in the real world have been overlooked by researchers and problems are often
assumed to be static during the course of the computation. The benchmarking of dis-
tributed constraint optimization algorithms (DCOP) with changing problem definitions
currently lacks a solid theoretical foundation and standardized protocols. This thesis
aimed to measure the performance of different types of DCOP algorithms on dynamic
problems with a focus on local-iterative algorithms and especially on the MaxSum algo-
rithm and possibly contribute to the field. A complete, a local-iterative message-passing
and a local-iterative approximate best-response algorithm for distributed constraint opti-
mization have been implemented for comparison. In the implementation of the MaxSum
algorithm, a variation of the usual graph structure has been attempted. As a real-world
use case for benchmarking, the meeting scheduling problem has been mapped as dis-
tributed constraint optimization problem. A framework has been designed that allows
dynamic changes to constraints, variables and the problem domain during run-time. The
algorithms have been benchmarked in a static, as well as in a dynamic environment with
various parameters and with a focus on solution quality over time. This thesis further
proposes a solution to store, further process and monitor the results of the computation
in real-time without affecting the performance of the algorithms.

Table of Contents

1 Introduction 1
1.1 Motivation & Goal . 1
1.2 Structure . 2

2 Background & Related Work 3
2.1 Dynamic Distributed Constraint Optimization 3
2.2 Meeting Scheduling Problem . 4
2.3 Algorithm Design Approaches . 5

2.3.1 Distributed Complete . 6
2.3.2 Local-Iterative - Best Response . 6
2.3.3 Local-Iterative - Message Passing 7

3 Design 9
3.1 Meeting Scheduling Problem . 9

3.1.1 Formal Definition as DCOP . 9
3.1.2 Problem Dataset Generation . 11

3.2 Framework . 12
3.2.1 Signal / Collect . 12
3.2.2 Structure & Functionality . 12
3.2.3 Monitoring Platform . 13

3.3 Mapping of DPOP . 14
3.3.1 Graph Structure . 14
3.3.2 Vertex Functions . 15

3.4 Mapping of MGM . 16
3.4.1 Graph Structure . 16
3.4.2 Vertex Functions . 17

3.5 Mapping of MaxSum . 18
3.5.1 Graph Structure . 18
3.5.2 Vertex Functions . 19

4 Benchmark & Discussion 21
4.1 Results I: Algorithms Performance in Static Environments 21

4.1.1 Solution Quality over Time . 21

x Table of Contents

4.1.2 Time to Convergence . 27
4.2 Results II: Algorithms Performance in Dynamic Environments 30

4.2.1 Dynamic Constraints . 30
4.2.2 Dynamic Variables . 33

5 Limitations & Future Work 37

6 Conclusions 39

A Appendix 15 43
A.1 Results I: Additional Data . 43

x

1

Introduction

1.1 Motivation & Goal

Distributed constraint optimization allows to solve a broad category of problems where
multiple agents are involved and a global utility function needs to be optimized. Prob-
lems range from graph coloring [Modi et al., 2005] to task allocation and scheduling
[Zhang et al., 2002], traffic congestion management [Leeuwen et al., 2002] or to disaster
recovery [Hiroaki et al., 1999]. The distributed variant of constraint optimization has
been extensively adressed by researchers and numerous algorithms with varying design
approaches have been proposed. However, these algorithms were often designed based
on the premise that problems are static in their predefined state and do not change over
the course of the problem solving process. A form of dynamic changes can be achieved
with a step by step procedure, where the problem definition is updated after each step,
but such a protocol does not work in a distributed manner with multiple involved agents
[Petcu and Faltings, 2007]. Many distributed problems have dynamic properties and in
a world with ever-increasing complexity and speed, those become succesively more rele-
vant for real-world applications. Constraints can change, but also the involved variables
as well as the problem domain itself. Imagine for example an optimization software of a
global logistics company where vehicles can get damaged and orders could be changed
to other adresses or even canceled. A recalculation of the complete problem set with a
new static definition seems inefficient. Research in dynamic distributed constraint op-
timization has started to gain momentum. The benchmarking of distributed constraint
optimization algorithms with changing problem definitions currently lacks a solid theo-
retical foundation, but researchers have started to develop benchmarking protocols that
aim to standardize the process [Mailler and Zheng, 2014].

This thesis tries to explore dynamic distributed constraint optimization by implementing
a complete and two local-iterative algorithm approaches and compare their performance
in a static as well as in a dynamic environment. The distributed complete algorithm
acts as a baseline and the main focus lays on the performance of the local-iterative types
of algorithms. These approaches do not guarantee complete solutions but have proven
to be able to provide a good solution quality in a faster way as they calculate utilities
on a local level with a lower communication overhead. They also have been proven to

2 CHAPTER 1. INTRODUCTION

be more scalable because of this lack of organizational overhead [Chapman et al., 2011].
These attributes indicate their potential ability to adapt faster to problem changes and
keep a better stability. The main focus lays on the abilities of the MaxSum algorithm,
which is a local-iterative message-passing algorithm. It is further a goal to show ways
of benchmarking these type of problems from various aspects. The real-world use case
for the thesis will be meeting scheduling and the software will be implemented with
the Signal/Collect framework, a graph processing engine developed at the Dynamic and
Distributed System Group at the Departement of Informatics of the University of Zurich.

The implemented software is made available online under the Apache license version
2.0.12

1.2 Structure

First, an overview will be given about various definitions and aspects of constraint op-
timization in general, as well as the aspects of the distributed and dynamic variations.
Further, an examination will be provided about different approaches of algorithms to
solve constraint optimization problems and their advantages and disadvantages in con-
text of solution quality over time, scalability and adaptability to changes.

Secondly, the meeting scheduling problem definition and the mapping to a distributed
constraint optimization problem, as well as the algorithm mapping to the Signal/Collect
programming model will be detailed in the design chapter. Further, the design consider-
ations on a framework for dynamic changes will be explained and the used solution for
data collection will also be briefly introduced.

Finally, the performed benchmarks will be evaluated and discussed. In a first series,
the algorithms will be tested in static environments to evaluate the implementation. In a
second series, various tests on changing constraints and variables with different rates and
different problem densities will be run to determine the performance of the algorithms
in dynamic environments. To wrap up, further work possibilities and limitations of the
thesis will be pointed out and a conclusion about the achieved contributions and results
will be given.

1https://github.com/danihegglin/DynDCO
2http://www.apache.org/licenses/LICENSE-2.0

2

2

Background & Related Work

In this section, constraint optimization and the distributed, as well as dynamic variants
are briefly explained and brought into context of the related work. Also, the meeting
scheduling problem will be described and different algorithm designs and their advan-
tages and disadvantages are going to be briefly discussed.

2.1 Dynamic Distributed Constraint Optimization

A constraint optimization problem (COP) contains a set of variables V = {V1, V2, ..., Vn}.
These variables are assigned to a value or state sj ∈ Sj , which is contained in a set of
possible values defined by a finite problem domain D = {D1, D2, ..., Dn}. A constraint
C =< Vc, Rc > contains one (unary), two (binary) or multiple (k-ary) variables and their
relationship. The constraint defines a rule for the variables that needs to be fulfilled.
One of those rules could be that none of the variables should take the same value. This
would for example be the case for a meeting scheduling problem where none of the
meetings should take place at the same time.
A utility function for the constraint ck on variable state s in the form of uck(sck) needs
to be formulated that defines a certain cost respectively reward for a given configuration
of the involved states. The global utility function ug would then be the summation of
all utility functions of all constraints.

ug(s) = uc1(sc1)⊕ · · · ⊕ uck(sck)⊕ · · · ⊕ ucl(scl)

Constraints can be attributed with varying levels of importance through weighting.
One can, instead of so-called soft constraints, define hard constraints by multiplying their
utility instead of using addition in the global utility function. By defining the utility of
a violated hard constraint as 0, the global utility would also go to 0 if this hard con-
straint is not satisfied [Chapman et al., 2011, Petcu and Faltings, 2003]. A problem only
containing hard constraints would represent a constraint satisfaction problem (CSP). A
formal definition of such a combined utility function including soft constraints (SC) and
hard constraints (HC) would look like the following formula, where the product of all
hard constraints is multiplied by the sum of all utilities of a state s in the soft constraint
utility functions:

4 CHAPTER 2. BACKGROUND & RELATED WORK

ug(s) =
∏

hck∈HC

uSCg(s)

(∑
sck∈SC

uSCg(s)

)
The definition of a distributed constraint optimization problem (DCOP) extends the

basic constraint optimization by distributing sets of variables to autonomous agents.
These agents all have the goal to maximize the utility of their variables in a pri-
vate utility function and thereby also contribute to a global utility function. Agent’s
whose variables are linked to at least one common constraint are called neighbours
[Chapman et al., 2011, Farinelli et al., 2012, Petcu and Faltings, 2003].

The problem definition in dynamic distribute constraint optimization (DynDCO) is,
as a further extension to DCOPs, moved from a static to a dynamic attribute. Con-
straints can change and therefore change neighbourhoods and the outcome of private
and global utility functions. A change of constraints inherently changes the area of
satisfying solutions if hard constraints have been included in a problem definition.
[Nguyen and Yao, 2012] state that changing the constraints might lead to the discovery
of a better global optima. [Mailler and Zheng, 2014] define a dynamic distributed con-
straint satisfaction problem (DCSP) as a sequence of DCSPs {P0, P1, ..., Pn} where every
DCSP is a static problem definition. Pi is therefore a result of the previous DSCP in the
sequence and also a result of the added and removed constraints: Pi = Pi−1 + cia − cir .
This definition should also hold for DynDCOPs. Utility functions could also be dynam-
ically changed. Modifying this property could especially have an impact on real-world
problems like meeting scheduling, where it could move the global optima from one dis-
connected solution space to another [Nguyen and Yao, 2012]. Furthermore, variables
could be added or removed in a dynamic setting and the problem domain D also could
be changed during the course of the problem solving process.

2.2 Meeting Scheduling Problem

Scheduling is the problem of allocating tasks to a given set of ressources in an optimal
order. The meeting scheduling problem is an exemplary type of this family of problems
and is supposedly well-know to all of us. Participants of a meeting have private schedules
with preferences when a meeting should be held according to their calendar. The chal-
lenge is to identify a time for a meeting that maximizes the preferences of all participants
while being valid in then sense that every person is able to attend [Farinelli et al., 2012].
[Angulo and Godo, 2007] have formally defined a meeting scheduling problem as:

• P = p1, p, ...pn is the set of people where every person has a calendar that holds r
slots, S = s1, s2, s3

• M = m1,m2, ...,m3 is a set of k meetings

• At = at1, at2, ..., atk defines all attendee’s of a meeting

4

2.3. ALGORITHM DESIGN APPROACHES 5

The c parameter has been neglected as it is not relevant to this thesis. From the
definition of a valid solution, one can derive two important criteria to the problem
solving process:

Validity Criterium 1. All participants need to agree on the same time for the meeting.

Validity Criterium 2. Meetings need to be scheduled in a way that there are no
overlaps of meeting times in the schedules of the participants.

There is further an inherent privacy aspect to the problem. Meeting participants
are often not willing to share their schedules with others except to find a time for the
specific meeting. It will later be shown that some of the algorithms can guarantee this
privacy to a certain degree [Farinelli et al., 2012] [Angulo and Godo, 2007]. The meeting
scheduling problem will be mapped as a distributed constraint optimization problem in
the design chapter.

2.3 Algorithm Design Approaches

Figure 2.1: Categorization of DCO algorithms [Chapman et al., 2011]

[Chapman et al., 2011] categorize distributed constraint optimization algorithms into
local-iterative and distributed complete algorithms. They further divide local-iterative
into message-passing algorithms and approximate best-response algorithms (Figure 2.1).
The following subsections are going to explain the differences between the three cate-
gories and introduce the specific algorithms, which have been chosen from these three
different approaches for benchmarking. Advantages, as well as disadvantages will be de-
scribed and which behaviour one can expect of these algorithms under certain parameter
configurations.

5

6 CHAPTER 2. BACKGROUND & RELATED WORK

2.3.1 Distributed Complete

Distributed complete algorithms always discover a configuration of value assignments for
a set of variables that maximizes the global utility function. This completeness guarantee
increases the complexity of computation and leads to exponentially growing message
numbers or calculations when increasing the amount of variables in a problem. Messages
between agents often contain complex structures and constraint problems usually need to
be transformed to an extensive graph structure [Chapman et al., 2011]. These types of
algorithms therefore are not expected to scale well and quickly find qualitative solutions,
but they fit well if one wants to find the maximal utility of a problem.

Figure 2.2: Pseudotree in DPOP [Petcu and Faltings, 2003]

For this thesis, it was decided to implement the Dynamic Programming OPptimiza-
tion algorithm (DPOP) proposed by [Petcu and Faltings, 2003] as a comparison to the
local-iterative approaches. In this algorithm, constraint optimization problems need to
be converted to a pseudotree (Fig. 2.2), which is a modification of a DFS Tree. The
original DCOP graph is transformed in a way that previous neighbours are placed in
the same branches of a binary tree. They are connected trough ordinary tree edges and
additionally, so-called back-edges between unconnected previous neighbours are estab-
lished. The leaf nodes propose UTIL messages containing their utility values for each
value assignment upwards the tree and the root node sends a VALUE message down-
wards, containing the best value to choose as a variable state. Nodes in the middle of the
tree propagate UTIL and VALUE messages. The message structure is fairly complex as
it involves all the utilities of the pseudoparents connected by the back-edges and their
context in the graph, which increases the message size exponentially. The number of
messages on the other hand is linear [Petcu and Faltings, 2003].

2.3.2 Local-Iterative - Best Response

In a local-iterative best-response algorithm, agents only communicate their current state,
e.g. their value assignment and react to these value messages in the best possible
way from their perspective. The agents are only connected to their neighbours with

6

2.3. ALGORITHM DESIGN APPROACHES 7

whom they share constraints and there exists no complex graph structure controlling
the message flow [Chapman et al., 2011]. Through this local property, the types of
algorithms should be inherently scalable as the messages and computations do not in-
crease exponentially. Further, this approach is optimal from a privacy perspective as
the neighbours only share their current preference and no other details of their schedule
[Chapman et al., 2010].

For this thesis, it was decided to implement the Maximum-Gain Messaging algorithm
(MGM). In this algorithm, agents calculate the maximal gain in utility they can achieve
when assigning to another value and send this value as a message. If they have the
highest gain compared to all received gain messages from their neighbours, the local
value is changed. Otherwise the local value stays the same. This algorithm fullfills the
anytime property, i.e it can provide a solution at every timepoint during calculation and
also reaches good solutions quickly [Chapman et al., 2010]. As the decision of an agent
depends on a complete set of message of all of its neighbours, this algorithm will sup-
posedly not perform well in asynchronous running mode. This type of algorithm does
further not always converge and the deliverance of an optimal solution to a problem is
not guaranteed.

2.3.3 Local-Iterative - Message Passing

The difference of message-passing to best-response algorithms lays in the fact that the
agents send and receive messages containing a specific data structure, which contains the
utilities respectively costs that various assignments hold for a local variable. Received
messages are used to calculate the next message, which is sent to the connected neigh-
bours. These types of algorithms are - like best-response algorithms - able to provide an
acceptable solution in a short period of time, but also share the charasteric to sometimes
not converge or not providing an optimal solution [Chapman et al., 2011].

Figure 2.3: Conversion of a general DCOP to a factor graph [Zivan and Peled, 2012]

7

8 CHAPTER 2. BACKGROUND & RELATED WORK

For this thesis, it was decided to implement the MaxSum algorithm introduced by
[Farinelli et al., 2008]. The algorithm has currently gotten a lot of attention from re-
searchers. For this work, the algorithm is especially interesting because of its proposed
abilities in dynamic environments. [Farinelli et al., 2008] wrote in their paper:

[...] we note that if messages are continuously propagated, and the states
of the agents are continuously updated, then the algorithm may be applied
to dynamic problems where the interactions between agents, or the utilities
resulting from these interactions, may change at any time.

In MaxSum, the original DCOP graph is transformed to a factor graph, which is a
form of a bipartite graph and of cyclic nature (Fig. 2.3). After the transformation, an
agent is made up of a variable and a function node, whereas variables are connected
to all corresponding function nodes of their previous neighbours. The function nodes
are vice versa connected to all previous neighbours of its variable node. The messages
sent from variable nodes differ from the function nodes. A message from variable to
function contains for every value d ∈ Dx the sum of utilities regarding this value, which
the node has received from all connected function nodes. It is important to note that
this sum does not include the values provided by the message target. The values are
normalized at this point to avoid an infinite increase of the sum of the utilities. A message
from a function node to a variable node holds for every value d ∈ Dx the summation
of all costs received from all connected variable nodes except the message receiver and
the original cost respectively utility of the constraint represented by the function node
[Zivan and Peled, 2012].

8

3

Design

In this section, the benchmark problem will be defined and mapped as DCOP, the frame-
work design will be explained and the mapping of the algorithms on to the Signal/Collect
framework will be described. Additionally, the design and considerations regarding the
monitoring platform will be presented.

3.1 Meeting Scheduling Problem

3.1.1 Formal Definition as DCOP

The formulation of the meeting scheduling problem follows the basic definition of a
distributed constraint optimization problem. Agents, variables and their relationships,
as well as constraints shall be formulated. The components of a meeting scheduling
problem are participants, their schedule, meetings and a given timeframe. For the sake
of simplicity, it was decided to not take travel time between meetings or other parameters
into consideration. It was also decided to use utilities instead of costs.

Definition 1. Participant - has preferences and meetings he/she need to attend

Definition 2. Meeting - has participants and needs to be held at an agreable time

[Maheswaran and Tambe, 2004] propose three different ways of mapping a meeting
scheduling problem to variables (Figure 3.1). TSAV (Time Slots As Variables), EAV
(Event As Variables) and PEAV (Private Events As Variables). In EAV, every partici-
pant holds a private variable containing the preference value for a specific event. PEAV
is a modification of the EAV paradigm, where agents do not share their local valuations.
It was decided to follow the PEAV principle and model every meeting participation of
an agent as one variable instead of using timeslots as variables. An agent therefore can
hold multiple variables. This paradigm has also been tried by other researchers, which
further established confidence in the decision [Petcu and Faltings, 2003].

Definition 3. Agent - holds one variable per meeting participation

Definition 4. Variable - represents one meeting participation

10 CHAPTER 3. DESIGN

Figure 3.1: Different paradigms of mapping the meeting scheduling problem
[Maheswaran and Tambe, 2004].

A variable takes on a value si ∈ Si in a defined problem domain Di. In the formulation
of the meeting scheduling problem, the domain represents a finite set of timeslots and
the variable assigns to one of these timeslots. This value represents the currently, locally
chosen timeslot for a specific meeting.

Definition 5. Domain - holds a finite set of possible timeslots to schedule a meeting

Definition 6. Value - assignment to a timeslot of the available timeslots in the domain

From the problem definition in chapter 2.2, one can derive soft and hard constraint for
the meeting scheduling problem. Soft constraints can possibly be constructed from the
preferences of the participants and utilized to maximize the utility [Franzin et al., 2002].
Three differently weighted soft constraints have been defined to model preferences of
agents. Preferred timeslots gain the highest utility, followed by free timeslots and blocked
timeslots, which gain no value at all. Further, a timeliness soft constraint was defined
that adds a higher utility to earlier timeslots. All of the soft constraints have unary
relationships, i.e. are local to a specific agent. Additionally, two hard constraints with
k-ary relationships to variable neighbours respectively all variables of an agent need to be
formulated. The first would be an equality constraint on the assigned timeslot value for a
specific meeting between all variables related to this meeting. The second is a difference
constraint of assigned values between all variables of an agent [Farinelli et al., 2012]
[Angulo and Godo, 2007]. A local utility function ul(s) would therefore include the sum
of all soft constraints multiplied by the product of the hard constraints analogous to the

10

3.1. MEETING SCHEDULING PROBLEM 11

global function defined in chapter 2.1.

ul(s) =
∏

hck∈HC

uSCg(s)

(∑
sck∈SC

uSCg(s)

)

The conclusions from this formal definition in regards to the general structure of the
algorithms is to establish one variable for each meeting participation of an agent. The
agent is therefore an abstract definition of a set of meeting participation nodes. All
variables of an agent should share a reference to an integrating agent vector, where
meeting times are registered. This agent vector acts as a difference hard constraint
between the different meeting participations of an agent. Further, all variables attending
a meeting also share a reference to the meeting vector where every agent shares his
current preference. This represents the aforementioned equality hard constraint. It
was further decided to implement the given local utility function in the framework as a
generalized method, as the structure repeats itself in all thre algorithms and because it
is further helpful for comparison to have the exact same utility function implemented.

3.1.2 Problem Dataset Generation

During the course of the thesis, it was necessary to find a dataset for the benchmarking.
The Frodo21 framework or for example the data collection from AAMAS 2004 2 do
provide a couple of datasets for meeting scheduling. But because it was considered that
in the benchmarks one would need to be able to produce problems with different densities
and scale to high numbers of participants, as well as change constraints dynamically it
was decided to generate meeting participations and agent schedules randomly. It was also
chosen to limit the number of meeting participations per agent to keep the benchmarks
more realistic analogously to [Chun et al., 2003].

• The blocked timeslots in a schedule are based on the percentage given trough the
density parameter

• Preferences for meetings are chosen randomly from free timeslots in the schedule

• The number of meeting participations is chosen randomly from 1-5

• The meeting participations are chosen at random

1http://frodo2.sourceforge.net
2http://teamcore.usc.edu/dcop/

11

12 CHAPTER 3. DESIGN

3.2 Framework

3.2.1 Signal / Collect

The foundation of the implementations in this thesis is the Signal/Collect framework3

[Stutz et al., 2010], which is built on top of Akka4 and written in Scala5. It is a
graph processing engine with a programming paradigm comparable to Map/Reduce
[Dean and Ghemawat, 2008]. The main components are vertices and edges, as well as
a graph structure where those components are added. A vertex has a state and sends
signals along its edges to connected vertices, which can contain any datatype. The signal
usually is the state of the vertex or calculated in context of it. Vertices gather the signals
of connected nodes and run the defined collect function on the received information. The
state of a vertex is usually adjusted according to the results of these calculations and the
next signal that is sent will include this state. This model allows to reduce complex algo-
rithms to a few lines of code and is applicable for many problems. The framework further
has the capability of running graph processings asynchronously or with synchronous sig-
nal steps and it is possible to distribute the system on multiple machines. Reasons for
choosing this framework are the excellent structural fit for distributed constraint opti-
mization problems, synchronous and asynchronous run modes and the possiblity to add
and remove vertices during run-time as it allows for dynamically changing variable sets.

3.2.2 Structure & Functionality

A specific framework for benchmarking static and dynamic problems has been imple-
mented. It was considered that the basic structure of the framework should help with the
control of the benchmark runs and add the general ability to change a problem during
runtime. This functionality was designed as problem agnostic and abstracted. The main
hierarchy in the framework is the vertex stack. A BasicVertex has been implement con-
taining a basic convergence function and control parameters related to the number of
signal steps. Further, a MeetingSchedulingVertex has been implemented. This vertex
implements all generalizable functions of the three benchmark algorithms described in
chapter 3.1. A main component is the handling of the agent vector and the meeting
vectors, a convergence function for meeting scheduling, the local utility function and
data storage functions. To generalize dynamic change functions, a DynamicVertex has
been created, which implements methods for changing constraints and the value domain
of the vertex. The specific vertex implementations of the three chosen DCOP algorithms
extend the DynamicVertex.

The initial design consideration to introduce change to the constraints of the agents

3http://uzh.github.io/signal-collect
4http://akka.io
5http://www.scala-lang.org

12

3.2. FRAMEWORK 13

has been to create a special vertex as part of the graph in Signal/Collect as the frame-
work supports multiple types of vertices and messages in one graph execution. However,
the vertex needed to be paused in the case of interval changes for a certain time and
this caused errors during execution. Akka distributes multiple actors to the same thread
and through pausing the DynamicVertex, other vertices were blocked. It therefore was
decided to run the change controller in a separate thread alongside the graph execu-
tion. The main ability of the controller is to change constraints at a given interval and
percentage of all constraints in the problem. This allows testing of the stability of the
algorithms. It is further possible to run a single change after a given interval. In the
case of the meeting scheduling problem implementation this is only related to soft con-
straints as hard constraints can be handled by adding or removing variables with the
variable change function. This function similarily can be run at a certain interval or at
one timepoint. One can add parameters to create a new neighbourhood or use existing
relationships and add new variables or remove existing vertices. Instead of being de-
fined by percentage, this change is given by number. As a third function, the controller
does change the domain in the whole problem for all agents. In the use case of meeting
scheduling, this increases or reduces the available timeslots.

The parameters and run modes of the framework have been designed with the bench-
marks of this thesis in mind. It is possible to pass general run parameters for algo-
rithm type, for Signal/Collect run mode (synchronous/asynchronous) and one can spec-
ify to the software to run in normal mode or in one of the dynamic change variations
(changeConstraints, changeVariable, changeDomain) with specific parameters. It
is further possible to add meeting scheduling the specific parameters. For this thesis,
the parameters for problem density (blocked timeslots percentage), timeslots, number
of meetings and number of meeting participants were defined. For testing purposes, it
is possible to start the framework via SingleTest or MultiTest. SingleTest runs one
setting once and MultiTest allows to specifiy a range and scale of agents and meetings
that should be tested.

3.2.3 Monitoring Platform

The storage and monitoring of the utilities, quality levels, conflicts and run statistics
of the calculations is usually done by writing the results to a log file. It was decided
to use an alternative method during the course of this thesis. Mainly because it was
a desirable function to automatically post-process the results of the bechmarks on a
detached machine and because real-time visibility was considered to be useful during the
implementation of the algorithms. Sending the results with non-blocking asynchronous
HTTP requests6 to a restful API on a dedicated server was considered to be a viable
option and worth trying out. The Play Framework7 has been chosen for implementation
because it is highly scalable and able to handle thousands of simultanous connections,

6http://dispatch.databinder.net
7https://www.playframework.com

13

14 CHAPTER 3. DESIGN

is lightweight as well as non-blocking and allows to process results on-the-fly with code
written in Java or Scala. It was also chosen because the Akka framework, which is also
the foundation of Signal/Collect is tightly integrated and the actors concept is an integral
part of the platform. For every benchmarking run, an actor is created that handles all
the relevant incoming messages. It is therefore possible to run multiple benchmarks in
parallel. The framework further allows to visualize the global utility of the graph in
real-time via websockets (Figure 3.2.

Figure 3.2: The real-time view of the monitoring platform

3.3 Mapping of DPOP

The following sections describes the mapping of the graph structure of the DPOP al-
gorithm and the behaviour of its nodes described in chapter 2.3.1 to the Signal/Collect
framework in regards to the meeting scheduling problem. The implementation is based
on [Petcu and Faltings, 2003].

3.3.1 Graph Structure

Figure 3.3: An example DPOP pseudotree

Following the definition of [Petcu and Faltings, 2003] and the descriptions in chapter
2.3.1, the graph has been arranged as a pseudotree. As mentioned in chapter 3.1.1,

14

3.3. MAPPING OF DPOP 15

every agent is represented through meeting participation nodes as a general rule for
the algorithm implementation. To create a pseudotree, one needs to transform an ex-
isting graph. Therefore, a graph has been constructed where all meeting participation
vertices, which share the same meeting are connected through edges. The chosen imple-
mentations of Signal/Collect components for the graph are the DataGraphVertex and
the StateForwarderEdge classes. After the inital graph is created it is transformed to
a pseudotree, which is a root tree with binary parent-child relationships that contains
the same vertices as the original graph. An important attribute is that previously con-
nected vertices are put into the same branch [Petcu and Faltings, 2003]. As one can see
in Figure 3.3, the original participants have been put into the tree according to this rule.
The visible participant of meeting three is inserted into the tree at a lower level than
the vertices of meeting one and two, but does also hold this property. The original edge
connections remain as so-called back-edges (dashed line) and the new connections are
also implemented as Signal/Collect edges (solid line). This tree arrangement leads to
cycles. The vertices of the same agent share an agent vector, which is not visualized in
Figure 3.3.

3.3.2 Vertex Functions

In DPOP, a node does receive util messages from its children and value messages from the
parent vertex in the graph. These messages have been implemented as a DPOPMessage

signal object that either is a util or a value message. The collect function of a vertex does
decide from whom the message has been received and stores them in their respective
vector. The following util propagation and value propagation phases and the calcula-
tions of their respective handler functions are defined by the position of the vertex in
the tree.

1 Algorithm: Util Message Handler (Xk, UTILXk
(Xi))

2 store UTILXk
(Xi);

3 if UTIL messages from all children arrived then
4 if Parent(Xi) == null (that means Xi is the root) then
5 v∗i ← ChooseOptimal(null) ;
6 send VALUE(Xi, v

∗
i) to all C(Xi) (sends value to all children);

7 else
8 UTILxi(P (Xi))← ComputeUtils(P (Xi), PP (Xi)) (utilities from the

parent and pseudoparents);
9 sendMessage(P (xi), UTILxi(P (Xi));

10 end

11 end
12 return;

Algorithm 1: DPOP Util Message Handler [Petcu and Faltings, 2003]

A leaf node always does compute its utilities in the util propagation phase, as it does

15

16 CHAPTER 3. DESIGN

not have any children nodes and receives no util messages. In the case of the meeting
scheduling problem, utilities for every timeslot are being calculated. If the vertex is the
root of the tree it does only receive util messages. Those include the combined utilities
of all nodes along the path to the top. The vertex then chooses the optimal timeslot
value for every meeting. If the node is situated somewhere in the middle, it does receive
both types of messages. Such a vertex computes the combined utilities from the received
utility messages and its own utilities during the util propagation phase (Algorithm 1).

1 Algorithm: Value Message Handler V ALUEXi

P (xi)

2 add all Xk ← v∗k ∈ V ALUEXi

P (xi)
to agentView;

3 Xi ← v∗i = ChooseOptimal(agentView);

4 Send V ALUEXl
Xi

to all Xl ∈ C(Xi) ;

Algorithm 2: DPOP Value Handler [Petcu and Faltings, 2003]

In the value propagation phase, all received values are combined by the vertices and
an optimal value for the vertex specific meeting is chosen locally (Algorithm 2). In
the implementation, the util propagation phase and the value propagation phase are
calculated successively and the resulting utilities and values are stored in a DPOPMessage.
The message is then sent to all connected vertices.

3.4 Mapping of MGM

The following section describes the mapping of the graph structure of the Maximum-
Gain Messaging algorithm and the functions of the nodes described in chapter 2.3.2
to the Signal/Collect Framework in regards to the meeting scheduling problem. The
implementation is based on the pseudocode from [Chapman et al., 2010].

3.4.1 Graph Structure

Figure 3.4: An example MGM graph

16

3.4. MAPPING OF MGM 17

Mapping the meeting scheduling problem to the structure of the MGM algorithm was
quite straightforward. The participant vertices of one meeting are all connected to
each other through a Signal / Collect edge comparable to the initial graph setup in the
DPOP implementation. The vertices have been implemented with the DataGraphVertex
as base class and the edges are of the class StateForwarderEdge. As one can see in
Figure 3.4, the vertices of the same agent are created with a reference to the same agent
vector (dashed line) and therefore to each other. This connection is virtual and not
implemented as Signal/Collect edge (solid line) in the graph.

3.4.2 Vertex Functions

In MGM there are also two types of messages. A gain message and a value message.
Similar to the implementation of DPOP, a MGMMessage has been implemented, which
can be both and is interpreted by the collect function as the respective type. Initially, a
local best-gain value is generated by comparing the utility increase from the first, ran-
dom meeting timeslot preference to the timeslot with the highest utility and therefore
highest gain when changing to this value. This best-gain value is sent to the neighbours
of the node. If a vertex has received gain messages, it does compare them to the last
local best-gain value and determines if one or multiple message contain a higher gain
value. If the local gain is still the highest, the vertex converges to the value on which
the last best-gain has been calculated. A message with the local state, i.e. the meeting
preference is sent to the other vertices. If the vertex does not have the highest gain, it
does continue the process by sending its local gain value again.

1 Algorithm: Maximum-Gain Messaging

2 currentReward = ui(si = currentState, s−i);
3 for j = 1 : J do
4 stateGain(j) = ui(si = j, s−i)− currentReward ;
5 end
6 bestGainState = argmaxj(StateGain) ;
7 bestGainValue = stateGain(bestStateGain);
8 sendBestGainMessage(allNeighbours, bestGainValue);
9 neighbourGainValues = getNeighbourGainValues(allNeighbours);

10 if bestGainV alue > max(neighbourGain) then
11 newState = bestGainState;
12 sendStateMessage(allNeighbours, newState);

13 end
Algorithm 3: MGM Pseudocode [Chapman et al., 2010]

17

18 CHAPTER 3. DESIGN

3.5 Mapping of MaxSum

The following sections describe the mapping of the graph structure of MaxSum and the
behaviour of its nodes described in chapter 2.3.3 to the Signal/Collect framework in
regards to the meeting scheduling problem. The implementation is based on pseudocode
by [Zivan and Peled, 2012] and [Farinelli et al., 2008].

3.5.1 Graph Structure

Figure 3.5: An example MaxSum graph

A MaxSum graph is a tranformation of a common DCOP graph to a factor graph, where
each variable has an additional function node attached. This function node represents a
constraint and is connected to the previous neighbours. The variable node is connected
to the function node of its previous neighbours. Mapping the MaxSum algorithm to
Signal/Collect and the meeting schedule problem has initally been a challenge as it
was the starting point for the implementations. All the factor graphs in the MaxSum
related papers where described as binary constraints between two nodes. An early
consideration was to have multiple factor nodes per variable for each relationship to
other meeting participants, where the variable represents the complete schedule of an
agent. This approach does not work in regards to the definition of a factor graph and
further does not fit the message-passing scheme of MaxSum. It was concluded that a
factor graph is derived from a bipartite graph and it should therefore be possible to
have k-ary connections from a function node to multiple variable nodes. In the finally
implement structure every meeting participation is modelled as Signal/Collect vertex
and is connected to a function node through an edge. Every other participant variable
of a specific meeting is linked to this function node as well. Through this, all messages
are passed to every participant function node and evaluated on the constraints of the
agent.

18

3.5. MAPPING OF MAXSUM 19

3.5.2 Vertex Functions

In MaxSum, every neighbour of a node receives a customized message. In both vertex
types in the graph, the recipient-specific message is created based on the received util-
ities from all its neighbours except the utilities of the recipient in question (Algorithm
4). In the meeting scheduling problem, these utilities are a vector of all timeslots and
the utility of a specific timeslot. In the variable vertex xn, the combined utilities are
additionaly normalized with a normalization function anm to prevent the utility values
from increasing towards infinity. The message creation function Qn→m(xn) for every
neighbour of the variable node therefore can be defined like this [Farinelli et al., 2008]:

Qn→m(xn) = anm +
∑

m′∈M(n)\m

Rm′→n(xn)

Whereas n stands for the value vertex and m for the function vertex. For every value
d ∈ Dx, the combined utility is calculated as (adjusted for utilities instead of costs anal-
ogous to [Zivan and Peled, 2012]):∑

f ′∈Fx,f ′ 6=f

utility(f ′.d)− a

Where Fx is the set of neighbours of a variable vertex. f ′.d is the utility value received
from a neighbouring function node and a is the normalization value . In the implementa-
tion, it was decided to normalize the utilities by adjusting them to a value between 0 and
1 based on the maximal possible utility of a timeslot instead of substracting at a certain
scale as only the differences between the utilities matter [Zivan and Peled, 2012]. Oth-
erwise, these functions have been implemented as defined in the literature. The message
creation function of a function vertex fm additionally uses the defined constraints of the
agent to the utilities and therefore adds the important information to find the optimal
solution for all neighbours. It then chooses the assignment with the maximal utility for
a value d ∈ Dx and adds this utility to the timeslot vector. In a formal definition, the
function is decribed like this [Farinelli et al., 2008]:

Rm→n(xn) = maxxm\n

(
Um(xm) +

∑
n′∈N(m)\n

Qn′→m(xn′

)
Whereas Um is the local utility function based on the soft and hard constraints of an

agent. Variable vertices and a function vertices both send a message with essentially
the same data structure implemented as MaxSumMessage. The message contains a hash,
which stores the specific message for every node that is connected to this vertex. This
message contains the timeslot vector with the utilities for every possible meeting time.
The receiver node only takes the message that was specifically created for it from every
MaxSumMessage object and calculates the aforementioned functions. The implementa-
tion of the collect function of the vertex has been created in a way that it processes
all available signals on each step in synchronous mode and reacts immediately to every

19

20 CHAPTER 3. DESIGN

signal in asynchronous mode.

1 Algorithm: Max-sum (node n)

2 Nn ← all of n’s neighboring nodes;
3 while no termination condition is met do
4 collect messages from Nn;
5 foreach n′ ∈ Nn do
6 if n is a variable-node then
7 produce message mn′ using messages from Nn \ {n′};
8 end
9 if n is a function-node then

10 produce message mn′ using constraint and messages from Nn \ {n′};
11 end
12 send mn′ to n′;

13 end

14 end
Algorithm 4: Standard MaxSum Pseudocode [Zivan and Peled, 2012]

20

4

Benchmark & Discussion

In this chapter the three algorithms are benchmarked with different parameters and
scenarios. The first series of tests is conducted in a static environment for a basic
understanding of the algorithm performance and the second series is held in various
dynamic settings to explore the dynamic capabilities of the algorithms. The testing
environment was the minion cluster of the departement of Informatics at the University
of Zurich. The cluster consists of 16 machines and each machine has 128 GB RAM and
two E5-2680 v2 at 2.80GHz processors. Every processor has 10 cores and the interlink
between the machines is a 40Gbps Infiniband setup. The cluster has different partition
speeds (slow, fast, superfast). All tests were conducted on superfast partitions.

4.1 Results I: Algorithms Performance in Static Environments

4.1.1 Solution Quality over Time

The main focus of the work has been on the performance of the algorithms in terms of
solution quality over time. In this section, the three algorithms are going to be compared
on their behaviour and the influence of the parameters density, number of agents and
run mode (synchronous/asynchronous) in terms of this attribute.

22 CHAPTER 4. BENCHMARK & DISCUSSION

Figure 4.1: Utility over Time Comparison (Density 0.25, Synchronous, Agents 20, Meet-
ings 10)

Figure 4.2: Utility over Time Comparison (Density 0.25, Synchronous, Agents 40, Meet-
ings 10)

One can see in the figures 4.1 and 4.2 that the algorithms do show the expected per-
formance at the start of the benchmark. MGM and MaxSum both increase quite fast
at the beginning of the run, whereas MGM increases slightly faster. Because the algo-
rithms do not always converge, the mean utility in the end is lower compared to DPOP.
The MaxSum Algorithm shows the stronger performance in regards of convergence and

22

4.1. RESULTS I: ALGORITHMS PERFORMANCE IN STATIC ENVIRONMENTS23

quality of solution than MGM. In figure 4.2 one can see the sometimes erratic behaviour
of the MGM algorithm. This could well be a problem with the implementation instead
of the algorithm itself. The DPOP algorithm shows a steady increase with a slow start
as it was expected. By increasing the number of agents, the time to reach a certain level
of quality increases for all three algorithms. A further measurement for quality has been
created as a combination of the percentage of accordance on a meeting time and the
percentage of overlaps in an agents schedule. The figures can be found in the appendix
(Figure A.1, Figure A.2) as they are quite similar to the utility benchmarks.

Figure 4.3: Utility over Density MaxSum (Synchronous, Agents 20, Meetings 10)

Figure 4.4: Utility over Density MGM (Synchronous, Agents 20, Meetings 10)

23

24 CHAPTER 4. BENCHMARK & DISCUSSION

Figure 4.5: Utility over Density DPOP (Synchronous, Agents 20, Meetings 10)

Density has been defined as the number of blocked timeslots in the schedules of the
meeting participants. One would expect this density parameter to have a linear effect
and decrease the median utility as higher as the value is defined. The figures 4.3, 4.4
and 4.5 present a rather different image. The value with the most impact has been 0.5,
0.25 and 0.75 do have quite a similar effect. This is especially the case with the DPOP
algorithm. It is suspected that this is a specific property of the meeting scheduling
problem as the density parameter on one hand opens up many timeslots by having a
low number of blocked timeslots and on the other hand favors a few not blocked slots
on high percentages of density.

Figure 4.6: Utility over Time - Agent Scalability - MaxSum (Density 0.25, Synchronous,
Meetings 10)

24

4.1. RESULTS I: ALGORITHMS PERFORMANCE IN STATIC ENVIRONMENTS25

Figure 4.7: Utility over Time - Agent Scalability - MGM (Density 0.25, Synchronous,
Meetings 10)

Figure 4.8: Utility over Time - Agent Scalability - DPOP (Density 0.25, Synchronous,
Meetings 10)

By testing the scalability of the algorithms on the number of agents with a fixed
density and a fixed amount of meetings, it could be discovered that MaxSum scales
fairly well and steadily (Figure 4.6). MGM on the other hand again shows inconsistent
behaviour, whereas the best performance can been seen with 20 agents (Figure 4.7). For
DPOP one can see that the time to reach a certain quality increases drastically with
added agents. This property has been expected due to the complexity increase in the
messages with an increase of the graph size (Figure 4.8).

25

26 CHAPTER 4. BENCHMARK & DISCUSSION

Figure 4.9: Synchronous vs. Asynchronous - MaxSum (Density 0.25, Agents 20, Meet-
ings 10)

Figure 4.10: Synchronous vs. Asynchronous - MaxSum (Density 0.25, Agents 40, Meet-
ings 10)

An interesting property of MaxSum has been discovered by comparing the synchronous
and asynchronous run mode. It seems that with low numbers of agents the performance
of the synchronous mode is better at the start of a run, but the asynchronous variation
is faster with increased amounts of agents (Figures 4.9, 4.10). The MaxSum algorithm
shows some interesting scalability properties in asynchronous mode, which can also be
seen in Figure 4.13. MGM seems to converge faster in asynchronous mode on a low
number of agents (Figure 4.11). DPOP does not seem to profit from the asynchronous

26

4.1. RESULTS I: ALGORITHMS PERFORMANCE IN STATIC ENVIRONMENTS27

mode and rather slows down (Figure 4.12).

Figure 4.11: Synchronous vs. Asynchronous - MGM (Density 0.25, Agents 20, Meetings
10)

Figure 4.12: Synchronous vs. Asynchronous - DPOP (Density 0.25, Agents 20, Meetings
10)

4.1.2 Time to Convergence

In this section, the time to convergence is going to be analyzed. The focus lays on
the scalability properties of the algorithms in different densities and run modes (syn-
chronous/asynchronous) in regards to agents. The amount of meetings has, because of

27

28 CHAPTER 4. BENCHMARK & DISCUSSION

the participation limitation, a limited influence on the performance of the algorithms
when meeting numbers are increased and was therefore not further tested.

Figure 4.13: Convergence Time - Agent Scalability - MaxSum (Density 0.25, Meetings
10)

Figure 4.14: Convergence Time - Agent Scalability - MGM (Density 0.25, Meetings 10)

28

4.1. RESULTS I: ALGORITHMS PERFORMANCE IN STATIC ENVIRONMENTS29

Figure 4.15: Convergence Time - Agent Scalability - DPOP (Density 0.25, Meetings 10)

The MaxSum algorithm presents an obscure behaviour by actually converging faster
in asynchronous mode with an increased number of agents. When run in synchronous
mode, the algorithm shows slower convergence times with added agents (Figure 4.13).
The MGM algorithm stays very stable on a low level of convergence time over the whole
scale, both in synchronous and asynchronous mode (Figure 4.14). DPOP, also seems to
profit from the asynchronous mode as it does scale better than in the synchronous runs
(Figure 4.15).

Figure 4.16: Utility over Time - Agents 10, Meetings 10

29

30 CHAPTER 4. BENCHMARK & DISCUSSION

Figure 4.17: Utility over Time - Agents 30, Meetings 10

A test with 10 Agents shows the expected effect of a problem density increase (Figure
4.16). The benchmark with 30 agents again presents the case that MaxSum and MGM
run comparably fast on 0.25 and 0.75, but have an increased convergence time on density
value 0.5 (Figure 4.16). DPOP does not scale the same way and its convergence time
increases significantly on density 0.75. As both local-iterative algorithms show a similar
behaviour, this observation seems to be related to the local-iterative nature of MaxSum
and MGM.

4.2 Results II: Algorithms Performance in Dynamic Environ-

ments

In this section, the benchmarks on dynamic abilities of the algorithms will be shown.
Some parameters needed to be fixed during the benchmarks, as otherwise there would
have been too many results to process in time. The test case has been 30 agents and 10
meetings.

4.2.1 Dynamic Constraints

One value for stability has been chosen to be change rate over average utility comparable
to [Mailler and Zheng, 2014]. Instead of using the conflicts value, it was decided to use
the utility value. The rate is defined as dP/dt, whereas dP is the amount of change to
constraints and dt is the difference in time. One can see in Figure 4.18 that the average
utility increases with a rising rate value. However, this figure has been expected to show
a decreasing average utility value. This could well be an error in the experiment setup
and it was considered to test only for the change rate as the dependent variable and
compare different intervals as separate lines in the plot.

30

4.2. RESULTS II: ALGORITHMS PERFORMANCE IN DYNAMIC
ENVIRONMENTS 31

Figure 4.18: Avg. Utility over Rate [Change/Time] - MaxSum

Figure 4.19: Avg. Utility over Rate - MaxSum - Synchronous

31

32 CHAPTER 4. BENCHMARK & DISCUSSION

Figure 4.20: Avg. Utility over Rate - MaxSum - Asynchronous

With this adjusted benchmark, it could be shown that MaxSum has the ability to
handle various amounts of change percentages and time intervals of those changes in a
fairly stable manner and the average utility in this plot shows the expected decreasing
behaviour (Figures 4.19, 4.20). The synchronous mode does increase the performance
significantly on change rate 0.5. MGM also performs in a stable manner in the tested
synchronous mode (Figure 4.21) and shows very high average utility values on density
0.25 and interval 500ms (Figure 4.22). DPOP does not seem to be able to handle short
intervals of change well as seen on value 500ms, but the algorithm shows stability on
1000ms and 1500ms change rates (Figure 4.23).

Figure 4.21: Avg. Utility over Rate - MGM - Synchronous

32

4.2. RESULTS II: ALGORITHMS PERFORMANCE IN DYNAMIC
ENVIRONMENTS 33

Figure 4.22: Avg. Utility over Rate - MGM - Asynchronous

Figure 4.23: Avg. Utility over Rate - DPOP - Synchronous

4.2.2 Dynamic Variables

In this chapter, a comparison has been undertaken for all three algorithm approaches
between adding and removing one variable at a given interval and the effect it has on
the average utility. This was merely tested to see the stability of the algorithms as the
effects of adding and removing variables are rather different. By adding variables, the
complexity is increased and by removing, the complexity is decreased.

33

34 CHAPTER 4. BENCHMARK & DISCUSSION

Figure 4.24: Avg. Utility over Rate - MGM - Synchronous

Figure 4.25: Avg. Utility over Rate - DPOP - Synchronous

The MGM algorithm (Figure 4.24) shows a rather stable performance. However, at
an interval of 1000ms, the removal seems to trigger a high utility value. This could
probably be attributed to the unreliable behaviour of the algorithm. These results
therefore should be taken with a grain of salt. DPOP (Figure 4.25) does interestingly
have a higher average utility values when removing agents. The algorithm further seems
to have a week spot at 1500ms change intervals and seems less stable than MGM.

34

4.2. RESULTS II: ALGORITHMS PERFORMANCE IN DYNAMIC
ENVIRONMENTS 35

Figure 4.26: Avg. Utility over Rate - MaxSum - Synchronous

Figure 4.27: Avg. Utility over Rate - MaxSum - Asynchronous

MaxSum does present a quite stable performance over all intervals in synchronous
mode in the addition as well as in the removal setting (Figure 4.26). The same stability
can be seen in the asynchronous mode with the slight exception of the 500ms interval,
which seems to increase the algorithm performance (Figure 4.27).

35

5

Limitations & Future Work

Limitations inherent in this thesis are the number and types of algorithms and ap-
proaches, as well as the focus on the specific problem of meeting scheduling. To generalize
the results of this thesis on the performance of the algorithms in respect to solution qual-
ity over time and in a dynamic constraint environments, one would need to benchmark
different problems with other constraint settings and compare additional algorithms on
the framework. Future work could include the benchmarking of other problems than
meeting scheduling with the given algorithm implementations and structure. Especially,
the MaxSum algorithm seems promising for problems that require a quick solution to
a problem like network traffic routing or high-frequency sensor networks. The meeting
scheduling problem could also be further explored by increasing the amount of max-
imum meeting participations of an agent. The amount of participations was limited
during the course of this thesis to not further expand the number of possible cases for
benchmarking, but it could be interesting to see how this affects the overall performance
of the algorithms as the complexity to find a converging solution increases with more
participants in a meeting.

Certain aspects of dynamic problem changes have not been investigated in the bench-
marking chapter of this thesis. The first aspect would be changing of domain spaces
during run-time. It would be a possibility to study the effects of increases and decreases
at given intervals and percentages. Decreasing domain value sets supposedly render a
complete solution impossible by for example in meeting scheduling reducing the times-
lots to a minimum. Increasing the domain space as the only dynamic property would
be expected to have a low impact as the number of meetings does not increase and
therefore no need for more timeslots would emerge. It would therefore be interesting to
see how the combination of multiple change types affects the problem solution process
as a second aspect. A dynamic environment like this could for example be a possibility
for a real-time scheduling system, which continously integrates new information into an
overall problem. One could investigate the effects of dynamically adding variables and
constraints at the same time and simultanously increasing the domain space. In this
case, the stability properties of the algorithms would be of great importance too and
could also be tested and further studied.

6

Conclusions

In this thesis, the meeting scheduling has been mapped to a distributed constraint op-
timization problem. The formal definition has been derived from the literature and a
local utility function has been formulated. A general description was given on complete
distributive, local-iterative best-response and local-iterative message passing algorithms
in the research area of distributed constraint optimization based on the categorizations
of [Chapman et al., 2011]. Further, the specific algorithms MaxSum, Maximum-Gain-
Messaging (MGM) and Distributed Pseudotree Optimization Procedure (DPOP) have
been described in terms of their graph structure and communication behaviour and ad-
vantages as well as disadvantages have been pointed out. The algorithms have been
mapped to the programming paradigm of the Signal/Collect framework on top of an
implemented framework for benchmarking and dynamic changes based on these descrip-
tions and specified to the meeting scheduling problem. Solutions had to be found to
map soft constraints as well as hard constraints into the graph structure and vertices
for all three algorithms in a manner that the performance values could be compared.
Additionally, a monitoring and storage solution has been proposed that allows for im-
mediate processing of values from the graph and real-time monitoring of the performance.

In the mapping of MaxSum, an approach for the graph structure has been taken that
varies from the commonly described factor graphs in the papers. During the mapping
process, problems arose when only one factor node was present in the graph because of
the inherent message structure defined by the algorithm formulation. Instead of binary
connections to a factor node from variable nodes, it was chosen to allow multiple re-
spectively k-ary connections. This choice was based on the fact that factor graphs are
derived from bipartite graphs, which allow such connection setups.

The framework has proven to be a good starting point to benchmark dynamically chang-
ing problems during runtime and could be further extended for future research. The
monitoring platform has proven to be very helpful in the process of implementation as
well as during the evaluation. The benchmarking has delivered some interesting data
on the performance of the algorithms. The comparison between the three approaches in
terms of Time to Solution has shown the abilities of the local-iterative implementations
to deliver a certain level of quality quicker than the complete variation, but also reach
a lower median utility respectively do not converge every time. Surprisingly, the MGM

40 CHAPTER 6. CONCLUSIONS

algorithm did fairly well in asynchronous mode even if the implementation does not wait
for a complete set of neighbour messages. The reason could be the limited amount of
participants per meeting and the low amount of delay in the system. The MaxSum
algorithm has shown an interesting property of scaling very well and even improving
the convergence rate over the amount of agents in asynchronous mode, whereas it did
not scale well in synchronous mode. The algorithm also has shown to be rather stable
in dynamic environments with changing constraints and variables in comparison to the
other approaches. The influence of problem density has shown to be comparable along
the local-iterative algorithms. To benchmark the dynamic properties in terms of sta-
bility, a fairly new proposal by [Mailler and Zheng, 2014] has been adjusted to utilities
instead of conflicts and tested. It did however not show the expected values. Another
benchmark method has been attempted that only included the change rate, which did
present expected results.

40

References

[Angulo and Godo, 2007] Angulo, C. and Godo, L. (2007). Distributed meeting schedul-
ing. Artificial Intelligence Research and . . . , pages 125–136.

[Chapman et al., 2010] Chapman, A. C., Rogers, A., and Jennings, N. R. (2010). Bench-
marking hybrid algorithms for distributed constraint optimisation games. Autonomous
Agents and Multi-Agent Systems, 22(3):385–414.

[Chapman et al., 2011] Chapman, A. C., Rogers, A., Jennings, N. R., and Leslie, D. S.
(2011). A unifying framework for iterative approximate best-response algorithms for
distributed constraint optimization problems, volume 26.

[Chun et al., 2003] Chun, A., Wai, H., and Wong, R. Y. (2003). Optimizing agent-
based meeting scheduling through preference estimation. Engineering Applications of
Artificial Intelligence, 16(7-8):727–743.

[Dean and Ghemawat, 2008] Dean, J. and Ghemawat, S. (2008). MapReduce : Simpli-
fied Data Processing on Large Clusters. Communications of the ACM, 51(1):107.

[Farinelli et al., 2008] Farinelli, A., Rogers, A., Petcu, A., and Jennings, N. R. (2008).
Decentralised Coordination of Low-Power Embedded Devices Using the Max-Sum
Algorithm. (Aamas):12–16.

[Farinelli et al., 2012] Farinelli, A., Vinyals, M., Rogers, A., and Jennings, N. R. (2012).
Chapter 12 Distributed Constraint Handling and Optimization. pages 1–43.

[Franzin et al., 2002] Franzin, M., Freuder, E., Rossi, F., and Wallace, R. (2002). Multi-
agent meeting scheduling with preferences: efficiency, privacy loss, and solution qual-
ity. . . . on Preference in AI and CP.

[Hiroaki et al., 1999] Hiroaki, K., Tadokoro, S., Noda, I., Matsubara, H., Takahashi,
T., Shinjou, A., and Shimada, S. (1999). RoboCup Rescue : Search and Rescue in
Large-scale Disasters as a Domain for Autonomous Agents Research and Robotics
Can Make. pages 739–743.

[Leeuwen et al., 2002] Leeuwen, P. V., Hesselink, H., and Rohling, J. (2002). Scheduling
Aircraft Using Constraint Satisfaction. 76.

42 References

[Maheswaran and Tambe, 2004] Maheswaran, R. and Tambe, M. (2004). Taking DCOP
to the real world: Efficient complete solutions for distributed multi-event scheduling.
Proceedings of the

[Mailler and Zheng, 2014] Mailler, R. and Zheng, H. (2014). A new analysis method
for dynamic distributed constraint satisfaction. Proceedings of the 2014 international
conference . . . , pages 901–908.

[Modi et al., 2005] Modi, P., Shen, W., Tambe, M., and Yokoo, M. (2005). Adopt:
asynchronous distributed constraint optimization with quality guarantees. Artificial
Intelligence, 161(1-2):149–180.

[Nguyen and Yao, 2012] Nguyen, T. T. and Yao, X. (2012). Optimization - The Chal-
lenges. 16(6):769–786.

[Petcu and Faltings, 2003] Petcu, A. and Faltings, B. (2003). A Scalable Method for
Multiagent Constraint Optimization.

[Petcu and Faltings, 2007] Petcu, A. and Faltings, B. (2007). Optimal solution sta-
bility in dynamic, distributed constraint optimization. Proceedings of the 2007
IEEE/WIC/ACM

[Stutz et al., 2010] Stutz, P., Bernstein, A., and Cohen, W. (2010). Signal/collect: graph
algorithms for the (semantic) web. The Semantic Web-ISWC 2010.

[Zhang et al., 2002] Zhang, W., Xing, Z., and Louis, S. (2002). Distributed Breakout vs
. Distributed Stochastic : A Comparative Evaluation on Scan Scheduling. Proceedings
of the AAMAS-02 workshop on Distributed Constraint Reasoning, pages 192–201.

[Zivan and Peled, 2012] Zivan, R. and Peled, H. (2012). Max/min-sum distributed con-
straint optimization through value propagation on an alternating dag. Proceedings of
the 11th International Conference on . . . , (June):4–8.

42

A

Appendix 15

A.1 Results I: Additional Data

Figure A.1: Quality over Time Comparison (Density 0.25, Synchronous, Agents 20,
Meetings 10)

44 APPENDIX A. APPENDIX 15

Figure A.2: Quality over Time Comparison (Density 0.25, Synchronous, Agents 40,
Meetings 10)

44

List of Figures

2.1 Categorization of DCO algorithms [Chapman et al., 2011] 5
2.2 Pseudotree in DPOP [Petcu and Faltings, 2003] 6
2.3 Conversion of a general DCOP to a factor graph [Zivan and Peled, 2012] . 7

3.1 Different paradigms of mapping the meeting scheduling problem [Maheswaran and Tambe, 2004]. 10
3.2 The real-time view of the monitoring platform 14
3.3 An example DPOP pseudotree . 14
3.4 An example MGM graph . 16
3.5 An example MaxSum graph . 18

4.1 Utility over Time Comparison (Density 0.25, Synchronous, Agents 20,
Meetings 10) . 22

4.2 Utility over Time Comparison (Density 0.25, Synchronous, Agents 40,
Meetings 10) . 22

4.3 Utility over Density MaxSum (Synchronous, Agents 20, Meetings 10) . . . 23
4.4 Utility over Density MGM (Synchronous, Agents 20, Meetings 10) 23
4.5 Utility over Density DPOP (Synchronous, Agents 20, Meetings 10) 24
4.6 Utility over Time - Agent Scalability - MaxSum (Density 0.25, Syn-

chronous, Meetings 10) . 24
4.7 Utility over Time - Agent Scalability - MGM (Density 0.25, Synchronous,

Meetings 10) . 25
4.8 Utility over Time - Agent Scalability - DPOP (Density 0.25, Synchronous,

Meetings 10) . 25
4.9 Synchronous vs. Asynchronous - MaxSum (Density 0.25, Agents 20, Meet-

ings 10) . 26
4.10 Synchronous vs. Asynchronous - MaxSum (Density 0.25, Agents 40, Meet-

ings 10) . 26
4.11 Synchronous vs. Asynchronous - MGM (Density 0.25, Agents 20, Meet-

ings 10) . 27
4.12 Synchronous vs. Asynchronous - DPOP (Density 0.25, Agents 20, Meet-

ings 10) . 27
4.13 Convergence Time - Agent Scalability - MaxSum (Density 0.25, Meetings

10) . 28

46 List of Figures

4.14 Convergence Time - Agent Scalability - MGM (Density 0.25, Meetings 10) 28
4.15 Convergence Time - Agent Scalability - DPOP (Density 0.25, Meetings 10) 29
4.16 Utility over Time - Agents 10, Meetings 10 29
4.17 Utility over Time - Agents 30, Meetings 10 30
4.18 Avg. Utility over Rate [Change/Time] - MaxSum 31
4.19 Avg. Utility over Rate - MaxSum - Synchronous 31
4.20 Avg. Utility over Rate - MaxSum - Asynchronous 32
4.21 Avg. Utility over Rate - MGM - Synchronous 32
4.22 Avg. Utility over Rate - MGM - Asynchronous 33
4.23 Avg. Utility over Rate - DPOP - Synchronous 33
4.24 Avg. Utility over Rate - MGM - Synchronous 34
4.25 Avg. Utility over Rate - DPOP - Synchronous 34
4.26 Avg. Utility over Rate - MaxSum - Synchronous 35
4.27 Avg. Utility over Rate - MaxSum - Asynchronous 35

A.1 Quality over Time Comparison (Density 0.25, Synchronous, Agents 20,
Meetings 10) . 43

A.2 Quality over Time Comparison (Density 0.25, Synchronous, Agents 40,
Meetings 10) . 44

46

List of Tables

