
An Approach and Case Study of Cloud Instance
Type Selection for Multi-Tier Web Applications

Christian Davatz, Christian Inzinger, Joel Scheuner, and Philipp Leitner
Department of Informatics, University of Zurich

{firstname.lastname}@uzh.ch

Abstract—A challenging problem for users of Infrastructure-
as-a-Service (IaaS) clouds is selecting cloud providers, regions,
and instance types cost-optimally for a given desired service
level. Issues such as hardware heterogeneity, contention, and
virtual machine (VM) placement can result in considerably
differing performance across supposedly equivalent cloud re-
sources. Existing research on cloud benchmarking helps, but
often the focus is on providing low-level microbenchmarks (e.g.,
CPU or network speed), which are hard to map to concrete
business metrics of enterprise cloud applications, such as request
throughput of a multi-tier Web application. In this paper, we
propose Okta, a general approach for fairly and comprehensively
benchmarking the performance and cost of a multi-tier Web
application hosted in an IaaS cloud. We exemplify our approach
for a case study based on the two-tier AcmeAir application,
which we evaluate for 11 real-life deployment configurations on
Amazon EC2 and Google Compute Engine. Our results show
that for this application, choosing compute-optimized instance
types in the Web layer and small bursting instances for the
database tier leads to the overall most cost-effective deployments.
This result held true for both cloud providers. The least cost-
effective configuration in our study provides only about 67%
of throughput per US dollar spent. Our case study can serve
as a blueprint for future industrial or academic application
benchmarking projects.

I. INTRODUCTION

The commoditization of cloud computing infrastructure
gave rise to a variety of Infrastructure as a Service (IaaS)
providers. While compute resources from different services
(e.g., Amazon EC21 or Google Compute Engine2) appear
comparable on paper, their actual performance can vary sig-
nificantly across providers [1], [2] and resource types [3].
Issues, such as hardware heterogeneity, contention, and vir-
tual machine placement can result in considerably differing
performance across supposedly equivalent resources [4].

Consequently, it is difficult to know a priori which set of
resources from which provider(s) will offer the best cost/per-
formance ratio for any given application. Previous work in
cloud performance engineering either tries to predict appli-
cation performance using simulation (e.g., [5]) or relies on
gathering data using deployment and execution of benchmarks
on cloud resources. The accuracy of simulation approaches can
be low, as it is difficult to account for the intricacies of cloud
infrastructure (e.g., resource sharing) in prediction models [6].
In contrast, data-driven approaches attempt to make cloud re-
sources comparable by executing micro-benchmarks on a large

1https://aws.amazon.com/ec2/
2https://cloud.google.com/compute/

number of instance types from multiple providers that assess
specific aspects of the offered resources [7]. While this allows
for objective comparison of distinct resource properties across
providers, it is hard for practitioners to map their applica-
tions’ characteristics to such micro-benchmark results directly.
To address this problem, reference application benchmark
approaches (e.g., [8], [9]) assess cloud infrastructure using
realistic application deployments to give a complete picture
of infrastructure performance across providers and resource
types for a given workload. Naturally, such benchmark results
are only directly applicable to applications and workloads that
are very similar to the reference applications used to gather
the initial performance measurements.

Hence, to accurately and confidently select the (combination
of) IaaS instance types that offers the optimal cost and
performance for an application, cloud customers are often
required to conduct their own measurements. This includes
using their own application (or a simplified version of it)
and workloads that are realistic for the application. Unfor-
tunately, even though multiple frameworks for defining and
executing cloud benchmarks have been proposed in the past
(e.g., Expertus [10], Cloud-Bench [11] CloudCrawler [12], or
Cloud Workbench [13]), none of them sufficiently enables
the execution of complex benchmarks on realistic multi-tier
applications.

This paper contributes two-fold to the state of research.
Firstly, we propose Okta3, an approach and conceptual frame-
work for fair and repeatable application benchmarking of
IaaS instance types. In this paper, we focus specifically on
transaction-oriented multi-tier Web applications, although we
expect that our approach also generalizes to other appli-
cation models such as Big Data. The framework is based
on previously published best practices for cloud and Web
benchmarking [14], [15]. Core tenets include cloud portability,
scripting and automation, and a clear separation of bench-
marking framework, test driver, and system-under-test (SUT).
Secondly, to validate this approach, we use this framework to
evaluate the deployment costs and performance of AcmeAir,
a two-tier sample OLTP application. We compare the costs
and performance of AcmeAir in six real-life deployment con-
figurations on Amazon EC2 and five deployments on Google
Compute Engine (GCE). We show that for this application,
using compute-optimized instance types for the Web tier and

3An okta is a unit of cloud coverage in meteorology.

small bursting instance types for the database tier leads to the
best performance per US dollar spent. From the 11 configu-
rations in our study, the least cost-effective configuration only
provides about 67% of throughput for the same monetary costs
as the best-performing configuration. We have not observed a
systematic difference between cloud providers, i.e., none of
the providers is clearly cheaper or more expensive. Our case
study makes use of various industry-strength tools for bench-
marking, including Cloud Workbench [13] as benchmarking
framework, Chef [16] for provisioning and automation, and
Apache JMeter [17] as load generator. Hence, we argue that
this case study can serve as a blueprint for future academic
or industrial application benchmarking projects. Further, given
that AcmeAir represents a typical Web application, we envi-
sion that various technical assets from our current study (e.g.,
Chef recipes), which we provide as open source software, can
be reused or adapted for future projects.

II. RELATED WORK

The research community has for a long time relied on open-
source benchmarks for establishing the performance of Web
applications, such as TPC-W [18], [19] and RUBiS [20], [21].
However, with the advent of Web 2.0, interactive content,
mobile clients, and cloud computing, these benchmarks be-
came outdated. Binning et al. [22] started a discussion why
traditional benchmarks are insufficient for analyzing cloud
services. They identify shortcomings of the common TPC-W
benchmark and outline ideas on how to design such a new
cloud benchmark.

Building upon this work, Folkerts et al. [14] provide guide-
lines on the subject of benchmark design and implementation
and list general requirements and challenges for modern cloud
benchmarks. Iosup et al. [23] describe a generic approach
to IaaS and PaaS cloud benchmarking, namely a general
benchmark architecture. While the architecture shows several
participating entities in an abstracted way, it leaves the con-
crete implementation of the benchmark to the user.

Since TPC-W [18] and RUBiS [20], a number of new
benchmarks have been proposed, such as TPC-E [24] and
SPECWeb2009 [25]. However, as there were no open source
or free implementations available to the general public, these
benchmarks have only been used by commercial vendors [26].
Hence, and in response to Web 2.0 requirements, Sobel et
al. [27] developed CloudStone, a toolkit consisting of a social
Web 2.0 application, scripts for workload generation, and
guidelines for computing the key metric dollars-per-user-per-
month. Furthermore, results from Amazon EC2 show the
maximum number of users for a particular setup consisting
of a VM type and a software configuration [27]. But without
capturing or emulating client-side JavaScript or AJAX inter-
actions, an important aspect of current Web 2.0 applications
falls short.

To address complex Web 2.0 interaction patterns, Cecchet et
al. [28] propose BenchLab, an open-source benchmark suite
based on multiple modern Web 2.0 applications. BenchLab
provides as SUT several backends, which represent different

domains [26] and are already known from existing benchmarks
(RUBiS [21], TPC-W [18] and CloudStone [27]). Moreover,
BenchLab [26], [28] provides an alternative, novel approach
to the emulation of complex interactions. In contrast to other
benchmarks targeting at Web applications, BenchLab makes
use of real Web browsers in combination with Selenium to cap-
ture and emulate client-side JavaScript or AJAX interactions.
To manage and orchestrate all components of the benchmark,
and to store the results, BenchLab provides a Web-based user
interface. In their studies, Cecchet et al. show the need to use
real Web applications as benchmarks and present a tool that
authentically reproduces user interactions [26], [28].

Smart CloudBench [29], [30] is a framework, which sup-
ports the whole benchmarking process from cloud provider
selection to decommissioning of resources acquired during
the benchmark setup. The Smart CloudBench application can
be used to deploy a Java-based implementation of the TPC-
W [18] benchmark to all cloud providers supported by Apache
jClouds. From the data gathered with the benchmark, the
performance of the tested instance types (i.e. instance sizes)
is inferred for different scenarios.

Dejun et al. [3] study performance stability and performance
homogeneity of VMs provided on Amazon EC2. While perfor-
mance stability behaves as expected, performance homogene-
ity emerges as an issue. The study shows that the performance
from VMs of the same type exhibits very heterogeneous
performance profiles, up to a ratio 4 in response time from
each other. While this is an issue concerning performance
predictability, they believe that exploiting performance vari-
ability could result in an improvement of the overall resource
usage. To simulate CPU-intensive (processing) and I/O in-
tensive workload patterns, they develop three custom micro-
service applications but withhold details about their concrete
implementation [3].

To empirically evaluate our proposed multi-VM benchmark
at scale, we require means to easily define and execute
benchmarks over different cloud providers and in an automated
manner. Previous work has proposed multiple approaches
to achieve this, including Expertus [10], Cloud-Bench [11]
CloudCrawler [12], Smart Cloud-Bench [29], [30], Cloud-
Gauge [31], and BenchLab [26], [28]. Although either of these
systems could have been used, we decided to use the Cloud
Workbench [13] framework that we proposed in previous
work.

III. A FRAMEWORK FOR APPLICATION BENCHMARKING

In this section, we introduce Okta, our approach and con-
ceptual framework for OLTP benchmarking. The primary goal
of Okta is to provide a mechanism for fair and repeatable
benchmarking of custom applications across IaaS instance
types. A conceptual overview of the framework is shown in
Figure 1 and consists of the following components: (i) System
under Test (SuT), (ii) Benchmark Driver and Load Generator,
(iii) Cloud Provider under Test, (iv) Benchmark Manager,
and (v) Provisioner. As Okta is designed to be a black box

2

Benchmark

Manager

Provisioner

Provider

API

Cloud Provider under Test

System under Test
Benchmark

Driver

request

response

results

provision provision

acquire

start-up

Fig. 1. An overview of the conceptual Okta benchmark approach and framework.

benchmarking approach, we do not require access to low-
level server-side execution metrics, but measure performance
solely using QoS metrics available at the client load generator.
In general, the framework design does not mandate specific
implementations for any of the components but can be instanti-
ated using a combination of suitable components, as discussed
in Section IV. In the following, we discuss the components of
Okta in greater detail.

System under Test. Our framework is designed to allow
for benchmarking arbitrary applications. Hence, the SuT is
primarily treated as a black box. The main requirement for
the SuT is that it can be automatically deployed, configured,
and started with a configuration management tool that can act
as the provisioner as described below.

Benchmark Driver. During benchmark execution, the
benchmark driver executes a configurable workload to sim-
ulate realistic application load. Conceptually, the benchmark
driver is a load generator and is treated as a component
that is automatically deployed alongside the SuT. Hence, the
driver must support automated deployment and configuration
so that the framework can inject benchmark workloads and
application endpoints. The benchmark workload should be
designed to represent typical application usage and exercise
the application in a production-like manner. Configurable
end-to-end integration tests can be composed to represent
typical application users that can be independently replicated
to represent arbitrary load on the application.

Cloud Provider under Test. Okta is designed to support
benchmark deployments on cloud infrastructure of providers.
The central requirement is the ability to programmatically
launch resources (i.e., VM instances) by the Benchmark
Manager. One important consideration is the preselection of
candidate providers. It would be infeasible to benchmark
an application on a large number of cloud providers and
all available instance types due to the resulting significant
investment of time and money.

Benchmark Manager. The benchmark manager coordi-
nates deployment, execution, and gathering of results. This

component provides the primary user interface for our frame-
work and serves as its central point of interaction. The user
supplies the deployment manifest for the SuT along with work-
load definitions to the benchmark manager, and can further
specify benchmark execution parameters. These include, but
are not limited to, number and type of different instances
and cloud providers to evaluate. Further, schedules to gather
application benchmark data over longer periods of time to
identify any performance differences caused by varying load
on the provider infrastructure need to be provided.

Provisioner. The provisioner is responsible for deploying
and configuring the components of the SUT and load generator
on infrastructure instantiated by the cloud provider under
test. We rely on state of the art configuration management
tools to perform this task, e.g., Ansible [32], Chef [16], or
Puppet [33]. Okta requires a configuration management tool
that supports multi-host deployments to successfully provision
and configure all necessary components.

IV. CASE STUDY

We now substantiate the general approach outlined in Sec-
tion III using a concrete case study. We base our case study on
AcmeAir, a sample two-tier airline ticketing application that is
designed to support public cloud deployments, offer scalable
APIs, and allow for interaction using multiple user interfaces.
AcmeAir thus represents a compelling industry example Web
application4. Further, we use Cloud Workbench [13] (CWB)
as Benchmark Manager, Chef as Provisioner, and Apache
JMeter as Benchmark Driver. We evaluate various realistic
deployment options in two public IaaS services, namely Ama-
zon EC2 and Google Compute Engine. An overview of this
instantiation of Okta is given in Figure 2. Note that our
approach is general in the sense that a different Benchmark
Manager (e.g., Expertus [10]), Provisioner (e.g., Puppet [33]),
or load generator (e.g., Faban [34]) could have also been

4http://ispyker.blogspot.com/2013/05/announcing-acme-air-
performance.html

3

CWB Server

Chef Server

Vagrant

S
ch

ed
u

le
r Provider

API

IaaS Provider

JMeter

Master

SUT

AcmeAir

Webapplication
MongoDB

request

DRIVER

response

Test Plan

results

JMeter Slave

provision provision provision provision

acquire

start-up

C
W

B
 C

li
en

t
Chef Client

Chef Client

JMeter Slave

Chef Client

Chef Client

JMeter Slave

Chef Client Chef Client

Fig. 2. An instantiation of our application benchmarking methodology for the AcmeAir application, using CWB, JMeter, and Chef.

used instead. We maintain an online appendix5 for this paper,
containing all Chef cookbooks for the entire case study, as
well as all resulting raw data.

A. System under Test
Our example SuT AcmeAir is composed of two largely

independent tiers, a Web application, and a database.
Web application. The Web tier is comprised of three dis-

tinct components: the user interface, a REST API, and a data
service integrating the database. A key requirement of the Web
tier is supporting multiple channels for user interaction, hence
AcmeAir provides a GUI dedicated to traditional desktop
browsers as well as a mobile app. The desktop browser GUI is
based on current Web standards (HTML5, CSS3, JavaScript)
and makes use of the Dojo JavaScript framework [35]. The
mobile app is designed as a hybrid app to provide a consis-
tent design across Android and iOS devices and also makes
use of technologies such as Apache Cordova [36] to get
access to mobile-only features (such as location and camera),
allowing the mobile application to fully take advantage of
device specifics. Further, the application provides a REST API
which is based on IBM’s Worklight server technology. The
application uses IBM WebSphere Liberty [37] as application
server for this tier.

Database. The backing database stores bookings, cus-
tomers, sessions, flights, flight segments, and airports. During
deployment, test data is seeded containing 394 flight segments
connecting 31 airports. During the test run, bookings and
sessions are dynamically generated as part of the applica-
tion workload. Technically, two implementation alternatives

5https://sealuzh.github.io/benchmarking online appendix/

are made available, a MongoDB 2.6.4 database or an IBM
WebSphere Extreme Scale 8.6.0.8 backend. We have selected
the MongoDB backend for our case study.

B. Benchmark Manager.

The benchmarking lifecycle is managed by CWB [13],
[38]. Its Web interface allows us to periodically schedule
benchmark executions over the course of multiple weeks using
Cron expressions. CWB uses Vagrant [39] to acquire cloud
resources (e.g., VM instances, disk volumes) based on the
established Vagrant DSL. The subsequent Chef-based VM
provisioning is highly configurable (e.g., dynamic IP address
resolution) and thus suitable to support applications across
multiple VMs. A lightweight CWB Client is automatically
provisioned on one coordinating benchmark VM (e.g., JMeter
Master in Fig. 2) to facilitate communication with the CWB
Server (e.g., submitting results). CWB encourages to define
benchmarks entirely in code, without relying on static assets
such as prepared VM images. Thus, such benchmarks are
easily portable across cloud providers.

C. Provisioner

As Provisioner, we have chosen to use Chef, primarily
because CWB is itself based heavily on this tool and integrates
well with it. Hence, we have built Chef cookbooks for all
relevant components in Figure 2 (i.e., Benchmark Driver, the
AcmeAir Web application, and database). All Chef cookbooks
and other important artifacts are part of our online appendix.

D. Benchmark Driver

To generate representative workloads on the AcmeAir SuT
for our measurements, we use a distributed setup of Apache

4

JMeter. We use a hierarchical topology with a single JMeter
master node, which also serves as the interface of the Bench-
mark Driver to CWB, and a varying number of JMeter slave
nodes. The master node aggregates benchmark outcomes from
the slaves and sends the resulting data back to CWB. Similar
to the SuT itself, this Benchmark Driver setup is provisioned
via Chef, which allows us to regenerate the Benchmark Driver
freshly for each benchmark run. To minimize the impact of
latency on our results, we have chosen to provision the Bench-
mark Driver in the same IaaS cloud as the SuT (i.e., the EC2
benchmarks are generated with a Benchmark Driver in EC2,
and the GCE benchmarks with a driver in GCE). Consequently,
the resulting response times will be substantially faster than
what is experienced by real users accessing the SuT from an
outside network. However, given that the main driver behind
this difference in perceived response time is the speed of the
client’s network link (and, consequently, out of our control),
we have decided to exclude this factor from our study.

Workload Configuration. The request mix we used for the
case study is derived from the workload originally employed
in the AcmeAir example and consists of 9 different request
types. The request mix covers all major features of AcmeAir in
a realistic distribution to simulate real user sessions. During
initial experiments, we have not found our experimental results
to be particularly sensitive towards smaller changes in the used
request mix.

• 1 × Login [POST, 12%]
• ¼× Update Customer:

View Profile Information [GET, 3%]
Update Customer [POST, 3%]

• 5 × Query Flight [GET, 50%]
• 1 × Book flight (if last query result valid) [POST, 7%]
• 1 × List all Bookings [GET, 8%]
• ¼× Cancel all but 2 Bookings [POST, 10%]
• 1 × Logout [GET, 7%]

Total GET ' 68%
Total POST ' 32%
¼= triggered every 4th iteration

Using this request mix, we define a “growing” work-
load [40], where the number of requests from the mix sent
to the SuT per time unit steadily increases until saturation is
reached. We define saturation as the point when on average,
the SuT is unable to process requests faster than new requests
arrive). This maximum number of requests the SuT can sustain
long term using a given configuration is the metric we are
primarily interested in our study.

E. Cloud-Provider-under-Test

Due to the substantial number of cloud providers that are
currently in the market, the scope of our case study did not
allow for a comprehensive comparison of all, or even of all
large, public IaaS providers. Hence, we have chosen to study
Amazon EC2 as a representative “market leader”, and Google
Compute Engine (GCE) as a “visionary” service which is still
backed by a major company (see also Serrano et al. [41]). We
have chosen to evaluate both cloud providers in their European

regions, i.e., eu-central-1 for EC2 and europe-west1

for GCE. We evaluate 11 different hosting combinations, as
outlined in Table I.

Configuration Webapp DB Costs # of Runs
c ∈ C mc |cr|

EC2
A_gp2_1 m4.large t2.small $0.173 37
A_gp2_2 m4.large m3.medium $0.222 27
A_gp4 m4.xlarge t2.small $0.315 23
A_co2_1 c4.large t2.small $0.164 35
A_co2_2 c4.large m3.medium $0.213 26
A_co4 c4.xlarge t2.small $0.297 19
GCE
G_gp1 n1-standard-1 n1-standard-1 $0.110 26
G_gp2 n1-standard-2 n1-standard-1 $0.165 26
G_gp4 n1-standard-4 n1-standard-1 $0.270 24
G_co2 n1-highcpu-2 n1-highcpu-2 $0.168 18
G_co4 n1-highcpu-4 n1-standard-1 $0.223 23

TABLE I
INSTANCE TYPE CONFIGURATIONS

The column Costs indicates the total hourly costs in US
dollars for both instances used in the configuration, but ex-
cluding any additional cost factors, such as disk IO, costs for
elastic IP addresses, or dedicated hosting. Further, the costs
here should be understood as the price of Linux on-demand
instances at the time of writing in November 2016. The last
column, # of Runs, shows how many data points we have
collected for each configuration. The differences in the number
of collected data points stems from (1) transitive errors during
benchmarking in some runs (e.g., network link temporarily
down), (2) pricing differences between configurations (we
avoided collecting statistically unnecessary data for more
expensive configurations), and (3) including valid data from
early experimental benchmark runs.

Fig. 3. Three example configurations. We combine different instance sizes
for both components to identify which tier is most important to end-to-end
performance.

The concrete configurations we have selected are various
instance type combinations that are promising for hosting a
two-tier application such as AcmeAir for small-scale work-
loads, as appropriate e.g., for a Web-based startup company.
As a starting point for defining configurations, we have built
on the knowledge we generated in previous studies [2], [8].
As shown in Figure 3, for EC2, we have explicitly evaluated
various combinations of instance types for both, the Web and
database tier. All configurations are in a similar range of total

5

hourly costs (between $0.110 per hour, or approximately $80
per month, and $0.315 per hour, or around $230 per month).
We have not evaluated more sophisticated setups, such as
scale-out or high-availability setups with multiple instances
in either, or both, tiers, although our experiment could be
extended to include such configurations as well.

V. BENCHMARK RESULTS AND DISCUSSION

After introducing the setup of our benchmarking case study,
we now discuss concrete results for the instance type combi-
nations listed in Table I.

A. Benchmarking Research Questions

Fundamentally, our case study answers three research ques-
tions.

RQ 1: What sustained performance, measured in throughput
of successful requests per second, can we achieve with each
configuration?

Successful requests are defined to return the HTTP status
code 2006. Further, note that we are specifically interested
in what number of successful requests per second can be
sustained indefinitely, and less in whether a configuration can
handle short-term bursts. The main advantage of focussing on
sustainable throughput is that this metric is largely independent
of server-side timeout and queuing configurations. Further,
this metric is (unlike other commonly-used Web application
metrics, such as the response time) neither network sensitive
nor sensitive on the request arrival rate, as long as more
requests are arriving than can be served.

RQ 2: Can we observe statistically significantly different
performance for each configuration?

Given that all configurations have different hourly costs,
it will be interesting to observe whether there are even sta-
tistically significant differences in the sustainable throughput
between all configurations, especially among the ones where
the same instance type is used for the Web application layer
with a differing database instance type (e.g., A_gp2_1 versus
A_gp2_2).

RQ 3: Which configuration is the most cost-effective way
to host AcmeAir for the defined workload?

Following the reasoning of previous studies [2], [27], we
need to not only observe the performance provided by each
configuration, but also put it in contrast to the hourly costs
of the configuration. Doing so will allow us to reason about
which configuration can provide the best “bang for the buck”,
i.e., the largest sustainable request throughput per US dollar
spent.

6https://tools.ietf.org/html/rfc7231#section-6.3.1

B. Used Metrics

To answer these research questions, we monitor and analyze
the following two metrics:

Sustainable throughput. For each configuration c ∈ C, we
use SRPSc (“successful requests per second”) as a metric
of maximum sustainable throughput of the configuration. To
monitor this metric, for each configuration c ∈ C we execute
r ∈ rc benchmark runs using an identical technical setup
(referred to as # of Runs or |rc| in Table I). In each run,
we gradually increase the pressure on the SuT by linearly
increasing the number of requests per second over a time span
t. We monitor how many successful requests per second (i.e.,
requests with a status code of 200) we receive back. This
number flattens out at some point when the system starts to
overload. We keep the run going with constant load for an
additional defined time period ts to ensure that a steady state
has been reached, and then calculate SRPSc,r for the run as
the average of received successful requests per second (Equa-
tion 1, where SRPSi,c,r represents the successful requests per
second for a configuration c ∈ C at experiment second i in
run r).

SRPSc,r =
1

ts

t+ts∑
i=t

SRPSi,c,r (1)

This measurement procedure is illustrated for example runs
of the configurations A_gp2_1, A_gp4, G_gp2, and G_gp4 in
Figure 4. In this example, the total duration of the experiment
run is 5 minutes. After 140 seconds, all configurations have
reached a steady state, so we calculate SRPSc,r as the average
successful requests per second between second 140 and 500.
SRPSc,r for each configuration is indicated with a black bar
in the figure.

Fig. 4. Example experiment run for four configurations, including an
illustrations of the calculation of SRPSc,r .

6

Fig. 5. Boxplots of SRPS for each configuration over all runs. The number on the x-axis is the sample size for each configuration.

Performance-cost index. We use the sustainable request
throughput achieved per US dollar spent as a measure of cost-
effectiveness. For simplicity and ease of comparison, we only
focus on costs of computation and use regular on-demand
hourly instance prices for Linux instances in the region we
used. In our AcmeAir case study, the hourly compute costs
mc of a configuration c ∈ C consist of the sum of the hourly
costs of both used instances. We report on this total hourly
price in Table I. It should be noted that using reserved or
sustained usage instances, or instances acquired via the spot
market, could drastically change the outcome, which we have
not formally investigated in this paper.

SRPSc is the arithmetic mean of SRPSc,r for all runs, as
defined in Equation 2.

SRPSc =
1

|rc|
∑
r∈rc

SRPSc,r (2)

We now define the performance-cost index of a config-
uration pcic as in Equation 3. This performance metric is
multiplied by 3600 to account for the fact that instances are
priced by the hour, while SRPSc,r represents throughput per
second. This metric can be understood as successful requests
that can be served per US dollar spent. As this metric evidently
leads to large numbers, we report on the final performance-
cost index as millions of requests per US dollar (i.e., we divide
the final outcome by 106).

pcic =
3600 ∗ SRPSc

106 ∗mc
(3)

C. Results

We now present the main results regarding all three RQs.
RQ 1 – Comparison of Performance. Figure 5 depicts

SRPSc,r for all configurations and runs using boxplot no-
tation. On the x-axis, we have also given the sample size
for each configuration (i.e., |rc|, the number of runs). Given

the different sizes of instances and their associated costs,
we observe strongly varying results for sustainable through-
put without surprise. The lowest-performing configuration in
our test was G_gp1 with an SRPSc of 722.21. The best-
performing configuration was A_co4 with an SRPSc of
2192.07. The remaining configurations vary between those two
extreme values, with most configurations being able to serve
between 1000 and 2000 successful requests on average per
second.

Note that we have observed very low variability of out-
comes between runs for most configurations. Concretely, we
have observed relative standard deviations of less than 2%
(e.g., A_co2_2 and 5% (e.g., G_co4) between runs. This is
substantially more stable than previous studies have reported
for micro-benchmarks [2]. Interestingly, the three overall best-
performing (and expensive) configurations (A_gp4, A_co4,
and G_gp4) are also the ones with the highest relative standard
deviations in the study.

RQ 2 – Statistical Significance. To establish whether the
performance differences we have observed for different con-
figurations are also statistically significant, we have conducted
crosswise Mann-Whitney-U tests for all pairs. Mann-Whitney-
U has been selected as this statistical test is non-parametric and
does not assume normal distribution of samples. We consider
a pair of configurations to provide statistically significantly
different performance if Mann-Whitney-U leads to a p-value
of 0.05 or less. Further, for statistically significantly different
pairs, we also establish the effect size r, with the standard
labels of r ≤ 0.1 representing a small effect, 0.1 < r ≤ 0.5
representing a medium effect, and r > 0.5 a large effect. These
effect sizes have been color-coded in the table, with green
shading representing a large effect, and yellow a medium ef-
fect. The red shading represents that no statistical significance
was established.

The results of these crosswise tests are summarized in

7

A_gp2_1 A_gp2_2 A_gp4 A_co2_1 A_co2_2 A_co4 G_gp1 G_gp2 G_gp4 G_co2

A_gp2_2 p = 0.000378117
r = 0.45

A_gp4 p = 1.04E-10 1.60E-09
r = 0.84 0.85

A_co2_1 p = 4.24E-12 2.70E-09 1.66E-10
r = 0.82 0.76 0.84

A_co2_2 p = 1.97E-11 4.49E-10 2.23E-09 0.001301028
r = 0.85 0.86 0.86 0.41

A_co4 p = 1.25E-09 1.12E-08 2.94E-06 1.81E-09 1.47E-08
r = 0.81 0.84 0.72 0.82 0.85

G_gp1 p = 1.97E-11 4.49E-10 2.23E-09 3.39E-11 6.55E-10 1.47E-08
r = 0.85 0.86 0.86 0.85 0.86 0.85

G_gp2 p = 6.50E-10 4.48E-10 2.23E-09 3.39E-11 6.54E-10 1.47E-08 6.54E-10
r = 0.78 0.86 0.86 0.85 0.86 0.85 0.86

G_gp4 p = 5.84E-11 1.03E-09 0.036057377 9.60E-11 1.46E-09 6.46E-07 1.46E-09 1.46E-09
r = 0.84 0.86 0.31 0.84 0.86 0.76 0.86 0.86

G_co2 p = 3.14E-08 1.93E-08 5.80E-08 3.49E-09 2.49E-08 2.21E-07 2.49E-08 0.496293569 4.31E-08
r = 0.75 0.84 0.85 0.81 0.84 0.85 0.84 0.85

G_co4 p = 1.04E-10 1.60E-09 8.41E-05 1.84E-10 2.52E-09 7.34E-08 2.23E-09 2.23E-09 0.005132678 5.80E-08
r = 0.84 0.85 0.58 0.84 0.85 0.83 0.86 0.86 0.41 0.85

TABLE II
P-VALUES PROVIDED BY MANN-WHITNEY-U TEST RESULTS AND EFFECT SIZES.

Table II. All pairs of configurations lead to statistically sig-
nificantly different performance, with the exception of G_gp2
versus G_co2. These two configurations are indeed technically
quite similar, and are also similarly costed. Further, most
pairs are significantly different with large effect sizes, with
the exceptions of A_gp2_1 versus A_gp2_2, A_co2_1 versus
A_co2_2, A_gp4 versus G_gp4, and G_co2 versus G_co4,
which only differ with a medium effect size. From these, the
pairs A_gp2_1 versus A_gp2_2 and A_co2_1 versus A_co2_2
are particularly interesting, as these are configurations with
identical instances for the Web tier, but different database
instances. From these results, we can conclude that the de-
cision which cloud provider and instance types to use has a
substantial impact on the possible request throughput. Further,
we conclude that the instance choice for the database tier has
a noticeable, albeit lower, impact on the sustained throughput.

RQ 3 – Performance per US dollar spent. In isolation,
the performance values observed in Figure 5 mean little, as
they ignore the costs of each configuration. Hence, we now
compare the configurations based on their performance-cost
index pcic. The resulting ranking is displayed in Table III,
sorted from best to worst pcic. These results show that
there are indeed substantial differences in cost-effectiveness
when comparing configurations, which further supports the
need for benchmarking to foster effective instance type se-
lection. The most cost-effective configuration for AcmeAir is
A_co2_1, i.e., combining a c4.large instance for the Web
tier with a t2.small database instance in the EC2 cloud.
The configuration with the worst performance-cost index in
our study was A_gp2_2, i.e., a m4.large for the Web tier
and m3.medium for the database, again in the EC2 cloud.
This worst-performing configuration provides only about 67%
of the performance per US dollar spent in comparison to the
best configuration.

Notably, our results indicate that configurations that use
CPU-optimized instance types for the Web layer outperform
general-purpose configurations. Further, we see that opting for

Configuration Avg. Throughput Costs Mio. Requests Rank
per $

c ∈ C SRPSc mc pcic

A_co2_1 1417.09 $0.164 31.107 1
G_co4 1791.98 $0.223 28.929 2
A_co4 2192.07 $0.297 26.571 3
A_gp2_1 1247.37 $0.173 25.957 4
G_gp4 1888.37 $0.270 25.178 5
A_co2_2 1472.01 $0.213 24.879 6
G_gp2 1102.49 $0.165 24.054 7
G_gp1 722.21 $0.110 23.636 8
G_co2 1095.28 $0.168 23.470 9
A_gp4 1939.74 $0.315 22.168 10
A_gp2_2 1302.83 $0.222 21.127 11

TABLE III
COMPARISON OF COST PERFORMANCE INDICES

a larger database instance is not cost-effective. The G_co2

configuration, which uses GCE’s entry-level CPU-optimized
instance types for both tiers is substantially less cost-effective
than similar configurations that use a general-purpose instance
type for the database. Finally, the best-performing configura-
tion is A_co2_1, which is the second-cheapest configuration
overall. However, the second-best configuration G_co4 is
among the more expensive configurations in the setup. Hence,
we feel that neither price nor performance is in isolation a
good indicator of cost-effectiveness.

D. Discussion

We now discuss the main lessons learned from our study.
The importance of benchmarking. Our results show that

there are indeed substantial differences, both in the perfor-
mance and in the cost-effectiveness of different configurations.
This further supports the need for benchmarking to foster
effective instance type selection. In our study, the least cost-
effective configuration for AcmeAir provides only about 67%
of the performance per US dollar spent in comparison to
the best configuration. However, when comparing not the

8

most extreme configurations, but ones that are more in the
middle of the ranking, the difference becomes much more
negligible. For instance, the difference between A_co2_2 on
rank 6 and G_gp2 on rank 7 is only about 3.5%. Hence,
even though substantial savings can be achieved in some
cases, there are still some configurations that are functionally
identical regarding performance per US dollar spent. In these
cases, secondary selection criteria, such as a preference for one
provider over another, can be used without significant costs.

No clear cheaper cloud provider. Another interesting
observation is that there is no obvious ordering of cloud
providers in our results. That is, neither EC2 nor GCE are
per se cheaper than the other provider. Contrarily, comparable
offerings from both services (e.g., A_co4 and G_co4) typically
provide similar performance per US dollar spent. This is in
stark contrast to the often-repeated common knowledge in
the cloud market that GCE is using a particularly aggressive
pricing strategy to attack EC2’s dominant market position7.

No easy rules of thumb for instance type selection. In our
study, configurations that use CPU-optimized instance types
for the Web layer outperform general-purpose configurations.
Further, we have seen that in our case study choosing the
cheapest, specifically bursting, database instance type is cost-
effective. This result is in line with a previous study of bursting
cloud instances [42], where we have already argued that these
instance types are particularly well-suited for database applica-
tions. However, both of these results are due to specifics of our
case study and used workload rather than general rules that can
be followed blindly for all application models. Users should
conduct their own experiments specific for their applications
and workloads, for instance using the Okta approach and a
benchmarking tooling such as CWB.

E. Threats to Validity

As with every empirical research, there are some limitations
and threats to the validity of our case study, which we discuss
in the following.

Construct validity. Designing a cloud benchmarking study
requires deciding on a large number of parameters, starting
from which providers and instance type combinations to
evaluate, which request mixes and workload patterns to use,
all the way down to deciding how to technically configure
the SuT (e.g., setting maximum queue lengths of the Web
server). To mitigate this threat, we have carefully constructed
our experiments based on existing guidelines [7], [43], [44]
as well as based on our own previous experience [2], [8],
[42]. Another challenge inherent to cloud benchmarking is
that the performance of cloud providers changes over time,
typically without external notice. Hence a reader should utilize
our case study as an illustration of a general method of
cloud benchmarking, and not as a numerical ground truth that
can be trusted to accurately represent future cloud provider
performance or costs for all applications.

7http://www.fool.com/investing/general/2014/10/08/google-incs-price-
war-is-creating-a-headache-for-a.aspx

Internal validity. The major threat to the internal validity
of our results is that we have executed all benchmarks in a
relatively short time period of approximately one month in
spring 2016. This means that our results could have been
influenced by intermittent quality-of-service problems of the
providers during this time. However, we are not aware of any
publicized issues of either selected provider in this time span,
so we judge this threat to be low.

External validity. We have selected AcmeAir as a repre-
sentative two-tier Web application. It is an open question to
what extent our results generalize to other application models
(e.g., single-VM applications, scientific computing, or latency-
sensitive applications). Further, a reader should take care to not
generalize our results to cloud providers, regions, or instance
types that have not been evaluated in the study.

Reproducibility. Accurately reproducing cloud benchmark-
ing studies tends to be hard, as it is hard for study authors to
report on all of the many parameters and experiment design
choices that may influence their results in the scope of a
scientific paper. We mitigate this problem by open sourcing
the tool we use to execute benchmarks, and by providing all
benchmark code and configurations in an online appendix.

VI. CONCLUSION

In this paper, we have introduced Okta, an approach and
conceptual framework for conducting benchmarking experi-
ments of multi-instance IaaS applications. The goal of Okta is
to foster application benchmarking that is fair, easy to repeat,
and easy to port to different cloud providers or instance type
configurations. Consequently, we have focused on a clear
conceptual separation between SuT, Cloud Provider under
Test, provisioning framework, benchmark driver, and bench-
mark manager. We have illustrated the Okta approach in a
concrete case study, where we have evaluated AcmeAir, a two-
tier sample application, in 11 instance type combinations in
Amazon EC2 and Google’s GCE. We used a combination of
CWB, Apache JMeter, and Chef to instantiate Okta.

Our case study results showed that cloud benchmarking
is indeed crucial to identify cost-effective combinations of
IaaS instance types, as the least cost-effective configuration
in our study provides only about 67% of throughput per US
dollar spent of the best-performing configuration. Further, we
have seen that using compute-optimized instance types for the
Web tier and small bursting instances for the database tier
is the most cost-effective way to run our case study for the
envisioned workload. Finally, we have not observed a clear
ordering of cloud providers. Instead, we have seen comparable
costs for comparable performance for both providers.

Our work enables relevant follow-up studies. Most im-
portantly, the results presented in this paper only reflect
costs of computation, and exclude factors such as disk or
network IO, or the costs of additional services (e.g., static
IP addresses). Similarly, more research should be conducted
on using Okta for application models other than multi-tier
Web applications. For instance, we consider it an interesting
research question whether our approach can also be applied to

9

low-latency applications (e.g., game servers), or data-intensive
applications [45].

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the Swiss National Science Foundation (SNF) under
project MINCA (Models to Increase the Cost Awareness of
Cloud Developers).

REFERENCES

[1] B. Farley, A. Juels, V. Varadarajan, T. Ristenpart, K. D. Bowers,
and M. M. Swift, “More for your Money: Exploiting Performance
Heterogeneity in Public Clouds,” in Proc. Symp. on Cloud Computing.
ACM, 2012, pp. 20:1–20:14.

[2] P. Leitner and J. Cito, “Patterns in the Chaos – a Study of Performance
Variation and Predictability in Public IaaS Clouds,” ACM Trans. Internet
Technol., vol. 16, no. 3, pp. 15:1–15:23, 2016.

[3] J. Dejun, G. Pierre, and C.-H. Chi, “EC2 Performance Analysis for
Resource Provisioning of Service-Oriented Applications,” in Proc. IC-
SOC/ServiceWave 2009 Workshops. Springer, 2010, pp. 197–207.

[4] L. Gillam, B. Li, J. O’Loughlin, and A. P. S. Tomar, “Fair Benchmarking
for Cloud Computing Systems,” Journal of Cloud Computing: Advances,
Systems and Applications, vol. 2, no. 1, p. 1, 2013.

[5] A. Li, X. Zong, S. Kandula, X. Yang, and M. Zhang, “Cloudprophet: To-
wards Application Performance Prediction in Cloud,” ACM SIGCOMM
Computer Communication Review, vol. 41, no. 4, pp. 426–427, 2011.

[6] M. Gonçalves, M. Cunha, N. C. Mendonça, and A. Sampaio, “Perfor-
mance Inference: a Novel Approach for Planning the Capacity of IaaS
Cloud Applications,” in Proc. 8th Int. Conf. on Cloud Computing. IEEE,
2015, pp. 813–820.

[7] Z. Li, H. Zhang, L. O’Brien, R. Cai, and S. Flint, “On Evaluating
Commercial Cloud Services: a Systematic Review,” Journal of Systems
and Software, vol. 86, no. 9, pp. 2371–2393, 2013.

[8] A. H. Borhani, P. Leitner, B.-S. Lee, X. Li, and T. Hung, “WPress:
Benchmarking Infrastructure-as-a-Service Cloud Computing Systems for
On-line Transaction Processing Applications,” in Proc. Int. Enterprise
Distributed Object Computing Conference, 2014, pp. 101–109.

[9] M. Cunha, N. Mendonça, and A. Sampaio, “Cloud Crawler: a Declara-
tive Performance Evaluation Environment for Infrastructure-as-a-Service
Clouds,” Concurrency and Computation: Practice and Experience, 2016.

[10] D. Jayasinghe, G. Swint, S. Malkowski, J. Li, Q. Wang, J. Park, and
C. Pu, “Expertus: a Generator Approach to Automate Performance
Testing in IaaS Clouds,” in Proc. Int. Conf. on Cloud Computing. IEEE,
2012, pp. 115–122.

[11] I. Silva-Lepe, R. Subramanian, I. Rouvellou, T. Mikalsen, J. Diament,
and A. Iyengar, “SOALive Service Catalog: a Simplified Approach
to Describing, Discovering and Composing Situational Enterprise Ser-
vices,” in Proc. Int. Conf. on Service-Oriented Computing. Springer,
2008, pp. 422–437.

[12] M. Cunha, N. C. Mendonça, and A. Sampaio, “A declarative envi-
ronment for automatic performance evaluation in iaas clouds.” IEEE
CLOUD, vol. 2013, pp. 285–292, 2013.

[13] J. Scheuner, P. Leitner, J. Cito, and H. Gall, “Cloud WorkBench -
Infrastructure-as-Code Based Cloud Benchmarking,” in Proc. Int. Conf.
on Cloud Computing Tech. and Science. IEEE, 2014, pp. 246–253.

[14] E. Folkerts, A. Alexandrov, K. Sachs, A. Iosup, V. Markl, and C. Tosun,
“Benchmarking in the Cloud: What it Should, Can, and Cannot Be,” in
Proc. TPC Technology Conference. Springer, 2012, pp. 173–188.

[15] E. Li, L. O’Brien, R. Cai, and H. J. Zhang, “Towards a Taxonomy of
Performance Evaluation of Commercial Cloud Services,” in IEEE 5th
International Conference on Cloud Computing. Honolulu, USA: IEEE
Computer Society, jun 2012, pp. 344–351.

[16] Chef Software Inc., “Chef,” https://www.chef.io/chef/, 2008 – 2016.
[17] Apache Software Foundation, “Apache JMeter,” http:

//jmeter.apache.org, 1999 – 2016.
[18] W. D. Smith, “TPC-W: Benchmarking an E-Commerce Solution,” http:

//www.tpc.org/tpcw/tpcw ex.asp, 2000.
[19] ObjectWeb Consortium, “ObjectWeb Implementation of the TPC-W

Benchmark,” http://jmob.objectWeb.org/tpcw.html, 2005.
[20] C. Amza, A. Chanda, A. L. Cox, S. Elnikety, R. Gil, K. Rajamani,

W. Zwaenepoel, E. Cecchet, and J. Marguerite, “Specification and Im-
plementation of Dynamic Web Site Benchmarks,” in Proc. Int. Workshop
on Workload Characterization. IEEE, 2002, pp. 3–13.

[21] OW2 Consortium, “Rubis: Rice university bidding system,” http://
rubis.ow2.org/, 2009.

[22] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing, “How is the
Weather Tomorrow?: Towards a Benchmark for the Cloud,” in Proc.
Int. Workshop on Testing Database Systems. ACM, 2009, p. 9.

[23] A. Iosup, M. Capotă, T. Hegeman, Y. Guo, W. L. Ngai, A. L. Varbanescu,
and M. Verstraaten, “Towards Benchmarking IaaS and PaaS Clouds
for Graph Analytics,” in Proc. Workshop on Big Data Benchmarks.
Springer, 2014, pp. 109–131.

[24] TPC, “TPC-E a new On-Line Transaction Processing (OLTP) Workload
Developed by the TPC,” http://www.tpc.org/tpce/, 2015.

[25] Standard Performance Evaluation Corporation, “SPEC specweb2009,”
https://www.spec.org/web2009/, 2009.

[26] E. Cecchet, V. Udayabhanu, T. Wood, and P. Shenoy, “BenchLab: an
Open Testbed for Realistic Benchmarking of Web Applications,” in Proc.
Int. Conf. on Web application development. USENIX, 2011.

[27] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong,
A. Klepchukov, S. Patil, A. Fox, and D. Patterson, “Cloudstone: Multi-
Platform, Multi-Language Benchmark and Measurement Tools for Web
2.0,” in Proc. of CCA, vol. 8, 2008.

[28] E. Cecchet, V. Udayabhanu, T. Wood, P. Shenoy, F. Mottet, V. Quema,
and G. Pierre, “Benchlab: Benchmarking with real web applications and
web browsers.” Eurosys, 2011.

[29] M. B. Chhetri, S. Chichin, Q. B. Vo, and R. Kowalczyk, “Smart
CloudBench - Automated Performance Benchmarking of the Cloud,”
in Proc. Int. Conf. Cloud Computing. IEEE, 2013, pp. 414–421.

[30] Q. B. Vo and R. Kowalczyk, “Smart Cloudbench - Test Drive the Cloud
Before you Buy,” Service Research and Innovation, p. 59, 2014.

[31] M. A. El-Refaey and M. A. Rizkaa, “CloudGauge: A Dynamic Cloud
and Virtualization Benchmarking Suite,” in Int. Workshop on Enabling
Tech.: Infrastructures for Collaborative Enterprises. IEEE, 2010, pp.
66–75.

[32] Red Hat Inc., “Ansible,” https://www.ansible.com, 2016.
[33] Puppet, “Puppet devops solutions,” https://puppet.com, 2016.
[34] “Faban,” http://faban.org, 2016.
[35] The Dojo Foundation, “Dojo toolkit,” https://dojotoolkit.org, 2016.
[36] Apache Software Foundation, “Apache cordova,” https:

//cordova.apache.org, 2012 – 2016.
[37] IBM DeveloperWorks, “IBM WebSphere Liberty,” https:

//developer.ibm.com/wasdev/websphere-liberty/, 2016.
[38] J. Scheuner, J. Cito, P. Leitner, and H. Gall, “Cloud workbench:

Benchmarking iaas providers based on infrastructure-as-code,” in
Proceedings of the 24th International Conference on World Wide
Web, ser. WWW ’15 Companion. New York, NY, USA: ACM,
2015, pp. 239–242. [Online]. Available: http://doi.acm.org/10.1145/
2740908.2742833

[39] HashiCorp, “Vagrant,” https://www.vagrantup.com, 2016.
[40] M. Mao and M. Humphrey, “Auto-scaling to Minimize Cost and Meet

Application Deadlines in Cloud Workflows,” in Proc. Int. Conf. for High
Performance Computing, Networking, Storage and Analysis. ACM,
2011, p. 49.

[41] N. Serrano, G. Gallardo, and J. Hernantes, “Infrastructure as a Service
and Cloud Technologies,” IEEE Software, vol. 32, no. 2, pp. 30–36, Mar
2015.

[42] P. Leitner and J. Scheuner, “Bursting with Possibilities–An Empirical
Study of Credit-Based Bursting Cloud Instance Types,” in Proc. Int.
Conf. on Utility and Cloud Computing. IEEE, 2015, pp. 227–236.

[43] Z. Li, L. O’Brien, H. Zhang, and R. Cai, “On a Catalogue of Metrics
for Evaluating Commercial Cloud Services,” in Proceedings of the 2012
ACM/IEEE 13th International Conference on Grid Computing. IEEE
Computer Society, 2012, pp. 164–173.

[44] P. J. Fleming and J. J. Wallace, “How Not to Lie with Statistics:
The Correct Way to Summarize Benchmark Results,” Commun.
ACM, vol. 29, no. 3, pp. 218–221, Mar. 1986. [Online]. Available:
http://doi.acm.org/10.1145/5666.5673

[45] G. Casale, D. Ardagna, M. Artac, F. Barbier, E. D. Nitto,
A. Henry, G. Iuhasz, C. Joubert, J. Merseguer, V. I. Munteanu,
J. F. Pérez, D. Petcu, M. Rossi, C. Sheridan, I. Spais, and
D. Vladušič, “DICE: Quality-driven Development of Data-intensive
Cloud Applications,” in Proceedings of the Seventh International
Workshop on Modeling in Software Engineering, ser. MiSE ’15.
Piscataway, NJ, USA: IEEE Press, 2015, pp. 78–83. [Online].
Available: http://dl.acm.org/citation.cfm?id=2820489.2820507

10

