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Abstract— Initially proposed as an extension of the concept of matrix decomposition for three and more dimensions, tensor decompo-
sitions have found numerous applications in visualization and visual computing. They constitute a powerful mathematical framework
for compactly representing and manipulating dense data fields, especially in many dimensions. This course will introduce the most
popular decomposition models and showcase emerging tensor methods for compression, interactive visualization, texture synthesis,
denoising, and multidimensional inpainting. Multidimensional visual data types of interest include image and geometry ensembles,
hyperspectral images, volumes and corresponding time-varying data.

Index Terms—Tensor decompositions, high-dimensional data, compact visual data representation, higher-order singular value de-
composition, data reduction, interactive volume visualization, volume compression, multiresolution and multiscale modeling

1 ORGANIZATION

Organizers Rafael Ballester-Ripoll,
Prof. Dr. Renato Pajarola,
University of Zürich, Switzerland

Lecturers Rafael Ballester-Ripoll
Renato Pajarola

Duration Half-day
Level Intermediate
History A more specialized tutorial was held at Euro-

graphics 2013

We will first review the fundamental building blocks of the most
relevant tensor models in an introductory manner. We will emphasize
learned (data-dependent) bases and their importance in data reduction,
as opposed to predefined bases (such as the discrete cosine, Fourier or
wavelet transforms). In the context of learned bases, we will showcase
the advantages of tensor models over other representations such as
vector quantization or dictionary encodings. The typical application
pipeline for most tensor methods consists of a) decomposition (data
reduction); b) manipulation in the resulting tensor-compressed format
(transformation and learning); and c) reconstruction (for final display).
We will present use cases from the literature; specific decomposition
algorithms will be given less weight. When applicable, we will pro-
vide MATLAB or C++ sample code within our presentation slides and
point to supplementary material in order to further emphasize on the
practical aspects of the tutorial.

Throughout the course we will present higher-order tensor mod-
els by highlighting the main differences with their 2D counterparts
(which are often more familiar to the visualization and visual comput-
ing community). We believe that delivering tensor material in such a
comparative way will contribute to the overall clarity of the tutorial.
By the end of the course participants will understand how to manipu-
late high-dimensional spatial and multimodal data using tensor decom-
position (in particular the higher-order singular value decomposition,
HOSVD [dLdMV00]) and will be familiar with recent applications in
the field of visual computing.

To the best of our knowledge, this is the first tutorial with this par-
ticular scope and aims. A related tutorial (Tensor Approximation in
Visualization and Graphics) was held at Eurographics 2013 [PSR13].

• R. Ballester-Ripoll and R. Pajarola are with the Visualization and
MultiMedia Lab, University of Zürich, Switzerland
Email: {rballester,pajarola}@ifi.uzh.ch.

That course, however, focused largely on compression applications for
rendering. Instead, the present course targets a wider scope by incor-
porating elements from visual data recovery, synthesis and multilinear
learning. The past tutorial received a significant attendance, partic-
ularly among those interested in volume visualization and/or linear
algebra applications. Previously, a course on tensor methods Tensors
in Visualization was held at the VisWeek 2010 [KST∗10]. It had a
different scope, since it covered predominantly visualization of ten-
sor fields, and only treated scalar field tensors briefly at the very end.
Our tutorial will be more specific and delve into decompositions of
multidimensional scalar fields in detail.

2 STRUCTURE

This tutorial is structured in three sections: an introduction to the foun-
dations of the framework, followed by examples of practical visualiza-
tion applications in a) cases where the goal is to manage and visualize
large data (data reduction); and b) cases where learning is the main
challenge (synthesizing new data, imputing missing values, visualiz-
ing and gaining understanding of high-dimensional fields).

2.1 Introduction to Tensor Decomposition
Several data set types can be naturally represented as higher-
order tensors (multidimensional arrays): volume data (3D), spatio-
temporal volume and FMRI data (4D), image stacks and video (3D),
BRDF/BTF illumination sample data (5D and more), and collections
thereof.

Numerous examples in the literature have established the Tucker
model and the closely-related higher-order singular value decomposi-
tion (HOSVD [dLdMV00]) as one of the most successful tensor ap-
proximations in graphics and visualization. Their cornerstone is the
concept of multiway projection (also known as tensor-times-matrix).
We will also review the connections between these models and better-
known tools such as the SVD, the Fourier and cosine transforms,
and wavelets. To finalize this introduction we will provide a short
comparison between HOSVD and the more recent tensor train (TT)
model [Ose11], whose size grows only linearly with the number of
dimensions and is thus better suited for data sets with a higher dimen-
sionality.

2.2 Spatial Data Compression
Tensor decompositions have found use in numerous applications that
handle visual dense spatial data on 3D regular Cartesian grids, such as
X-ray tomography scans and computer simulations. Sometimes, such
data sets are 4-dimensional as they vary with respect to time.

Two main goals in such data-intensive applications are a) to sim-
plify the complex initial input to alleviate computational bottle-
necks, while b) aiming for a fast reconstruction as faithful as pos-



sible. This is the case when memory or time restrictions are an is-
sue, particularly in interactive visualization. Early compression ap-
proaches for visual spatial data were proposed in [WA04, WWS∗05]
and [WXY07, WXC∗08]. Progressive tensor rank reduction has been
shown to reveal features and structural details at different scales also
in volume data [SZP10a, SZP10b]. Further recent efforts in the con-
text of tensor compression include [Tsa09, TS12, BRSP15, BRP15,
Tsa15], [SIGM∗11, SMP13, BRGI∗14] for interactive volume visual-
ization, and [WLHR12] for 3D displays. Multilinear bases resulting
from tensor decomposition can be manipulated to reconstruct individ-
ual interpolated elements [KTW07], blocks [SMP13] or different res-
olution levels [SIGM∗11]. We will also review tensor compression
of bidirectional texture functions [WXC∗08, RK09] and bidirectional
reflectance distribution functions [BÖK11, RSK12], which are very
attractive compression targets due to their intrinsic high dimensional-
ity.

2.3 Tensor Methods for Multilinear Learning
In other settings, the purpose of a rank-reduced tensor is to capture
non-obvious structural information from complex (and often large)
data sets so that a derivation of the data can be newly generated, rather
than just an approximation of the input. This includes denoising, in-
painting/data recovery, 2D and 3D texture synthesis, etc. This forms
the third and last section of our tutorial.

The problem of tensor completion arises often in signal process-
ing and machine learning, and is a useful tool to handle missing
values in visual data (e.g. corrupted regions in images or vol-
umes). Advanced multidimensional completion algorithms include
[OST08, KSV13, CHL14] and [FJ15]. We will not give in-depth math-
ematical details on these algorithms, and will focus on application ex-
amples and visual results instead.

Methods for image [RRB13] and volume [ZXJ∗15] denoising have
been proposed using the HOSVD model: essentially, window patches
are stacked and filtered by low-rank truncation of the HOSVD core.
As for texture synthesis, it has been demonstrated using HOSVD
in [CSS06, CSS08] and [WXC∗08]. A related topic is face transfer
and synthesis [VT02, VT04, VBPP05, VT07]. We will highlight the
important role of tensor basis manipulation in many of the aforemen-
tioned applications: by computing linear combinations of the basis
elements (e.g. factor matrix rows, in the HOSVD case), one can inter-
polate entries from a tensor of arbitrary dimension.

3 SYLLABUS

Part 1 Introduction (30 minutes)

• Motivation: examples of common multidimensional visual
data; limitations of the traditional SVD.

• Connections to frequency transforms and wavelets

• Spatial data manipulation in the tensor-compressed do-
main (spatial selectivity; tensor rank reduction; convolu-
tion)

Part 2 Tensor Compression of Large Data (60 minutes)

• Motivation: bandwidth as the bottleneck of the visualiza-
tion pipeline

• Tensor compression performance (accuracy, compression
rates, reconstruction speed)

• Applications: large scale volume compression; paral-
lel reconstruction; out-of-core solutions; compression of
BRDFs and BTFs

Part 3 Tensor Methods for Multilinear Learning (60 minutes)

• Handling missing values: low-rank completion and in-
painting

• Multidimensional learning applications: synthesis, denois-
ing and recognition

4 INSTRUCTORS’ BACKGROUND

The tutorial is given by two researchers on TA methods in visualiza-
tion and computer graphics (one young and one experienced). Our
intensive research activities on large scale multiresolution data rep-
resentation, data reduction and interactive visualization, in particu-
lar volume rendering, has led us to the field of tensor approxima-
tion methods which are the central topic of this tutorial. Experiences
from our own research on tensor approximations used in volume vi-
sualization [SZP10b, SZP10a, SIGM∗11, SMP13, BRGI∗14, PSR13,
FMPS13, BRGI∗14, BRSP15, BRP15] as well as in-depth reviews
of other work on compact visual data representation have triggered
the proposal of this tutorial. Our current and future areas of special-
ization in tensor approximation methods is in the general context of
novel multiresolution, hierarchical and out-of-core tensor decompo-
sition models for large scale volume data representation, multi-scale
feature extraction and interactive visualization.

In the following, the lecturers’ backgrounds and specializations are
summarized.
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Rafael Ballester-Ripoll is a doctoral candidate at the University
of Zürich (UZH), Switzerland, since 2012. Previously, he obtained
Diplomas in Mathematics and Computer Science from the Tech-
nical University of Catalonia-BarcelonaTech, both in 2012. His
research interests include volume visualization, multidimensional
data processing and tensor-based compression, and real-time inter-
active visualization. At the UZH, he currently develops and applies
tensor-approximation algorithms for volume visualization and high-
dimensional spatial data analysis [BRSP15, BRP15] and is maintain-
ing vmmlib, a C++ library for tensor manipulation and decomposi-
tion [vmm]. He is a member of IEEE.
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Renato Pajarola received his Dipl. Inf-Ing ETH and Dr. sc. techn.
degrees in computer science from the Swiss Federal Institute of Tech-
nology (ETH) Zürich in 1994 and 1998 respectively. Subsequently he
was a post-doctoral researcher and lecturer in the Graphics, Visualiza-
tion & Usability (GVU) Center at Georgia Tech. In 1999 he joined
the the University of California Irvine (UCI) as an Assistant Professor
where he founded the Computer Graphics Lab. Since 2005 he has been
leading the Visualization and MultiMedia Lab (VMML) at the Univer-
sity of Zürich (UZH) as Professor in the Department of Informatics.
He is a member of ACM, ACM SIGGRAPH, IEEE and Eurographics.

Dr. Pajarola’s research interests include real-time 3D graphics, mul-
tiresolution modeling, point based graphics, interactive large-scale sci-
entific visualization, remote and parallel rendering, volume visualiza-
tion and compression. He has published a wide range of internation-
ally peer-reviewed research articles in top journals and conferences.
He regularly serves on program committees, such as for example the
IEEE Visualization Conference (2004-06,09-11), Eurographics (2010-
11, 2013), Pacific Graphics (2002-03,07-08), IEEE Pacific Visualiza-
tion (2008-10) or EuroVis (2001,2006-10, 2013). He chaired the 2010
EG Symposium on Parallel Graphics and Visualization and was pa-
pers co-chair in 2011, as well as papers co-chair of the 2007 and
2008 IEEE/EG Symposium on Point-Based Computer Graphics. He
received a Eurographics Best Paper Award in 2005, an IADIS Best
Paper Award in 2007 and a SPIE Best Paper Award in 2013.



Dr. Pajarola has previously participated in four quite successful and
well received tutorials, at IEEE Visualization and ACM SIGGRAPH
Asia on out-of-core, interactive massive model and parallel rendering
methods [CESL∗03, DGM∗08, YMK∗09], and at Eurographics on ten-
sor approximation in visualization and graphics [PSR13].
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