Guided Code Synthesis using Deep Neural Networks

Carol V. Alexandru
Software Evolution and Architecture Lab
University of Zurich, Switzerland
alexandru@ifi.uzh.ch

ABSTRACT

Can we teach computers how to program? Recent advances
in neural network research reveal that certain neural net-
works are able not only to learn the syntax, grammar and
semantics of arbitrary character sequences, but also synthe-
size new samples ‘in the style of’ the original training data.
We explore the adaptation of these techniques to code clas-
sification, comprehension and completion.

CCS Concepts

eSoftware and its engineering — Code generation;

Keywords
Deep Learning, Code Classification, Code Synthesis

1. THE CHALLENGE

Although writing software is a creative process, wherein
parts of an implementation may always require a ‘human
touch’, repetition is commonplace in software development.
Tasks such as reading a CSV file or comparing two dates are
too uncommon for memorization and too unwieldy for tra-
ditional auto-completion or templating, yet developers can
easily find existing solutions online: on question answering
sites such as StackOverflow, in forums and mailing list dis-
cussions, or in existing code on platforms such as GitHub.
Humans can manually navigate these resources to seek help,
but beyond search-based tools and platform-specific system-
atic approaches, e.g., displaying StackOverflow discussions
in an IDE [7], we currently lack effective means to leverage
the bulk knowledge contained in these resources.

Recent neural network research has yielded models that
can learn not only to recognize and classify noisy data, e.g.,
objects in an image or natural language in an audio sig-
nal, but also generate new, synthetic samples that resemble
real-world data [4, 5, 13]. Sutskever et al. [10] demonstrate
that a deep recurrent neural network (RNN) trained on 1GB
of text from Wikipedia is able to synthesize a stream of
text which contains few grammatical errors, comprises se-

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

FSE’16, November 13—18, 2016, Seattle, WA, USA
ACM. 978-1-4503-4218-6/16/11...
http://dx.doi.org/10.1145/2950290.2983951

1068

mantically coherent sentences and paragraphs and correctly
models long-running relationships (like opening and closing
braces). The model views data at the character level and
has no explicit knowledge of grammar or vocabulary, both
of which it learns purely by example. The same model can be
trained on source code with similar success: learning solely
from raw text, it internalizes the grammar and typical struc-
ture of a programming language, gaining the ability to gen-
erate new samples indistinguishable from ‘real’ code at first
glance.

Unfortunately, this simple model is of limited practical
use, as the programs it produces are more or less random at
a higher semantic level. We hypothesize that by improving
the initial data extraction, augmenting the model with con-
textual information and post-processing the synthetic code,
this promising approach can be made useful. As a practical
manifestation, we propose the idea of Guided Code Synthe-
sis, an interactive process by which the developer guides a
machine-trained model to produce the desired source code
without manually accessing resources outside of the IDE.
Hence, we formulate our primary research question:

RQ* How can character-level deep neural networks aid the
synthesis of source code for practical applications?

2. PROPOSED RESEARCH

In traditional code completion, code fragments are either
given one at a time, e.g., providing potential method names
after writing a dot, or as templates, e.g., providing a skele-
ton for loop to be filled in by the developer. We envision
an approach where the developer can view, cycle through,
and modify large chunks of likely completions depending not
only on preceding code but also on other contextual informa-
tion such as keywords from comments, tags, and manually
provided search terms. If powered by a rich model and im-
plemented in a responsive, easy-to-use fashion, this approach
would allow the developer to ‘home in’ on the right solution
without having to resort to browsing online artifacts, as the
model can provide multiple likely, customized completions.

To train such a model, several questions need to be ad-
dressed:

RQ1 How can we identify, classify and parse relevant code
examples from noisy web resources (e.g., StackOver-
flow) to build a canonicalized training set?

RQ2 What is a suitable neural network architecture to
learn from both source code and contextual data to
generate code samples of high quality and relevancy?

RQ3 How should the developer interact with the model
while developing in an IDE?



Noisy code classification and parsing.

To train our model on code from mixed-content sources
such as StackOverflow, we need the ability to (i) isolate
snippets from other content, (ii) classify snippets by their
language and possibly their usage context, and (iii) parse
snippets, even if they are noisy or incomplete. Regrettably,
code tags are used liberally on StackOverflow and tags are
generally unreliable. For example, a code block in a post
tagged with ‘Java’ may contain a segment of a pom.xml or
simply a stack trace. And while a content type is easily de-
termined given a complete file, classifying a short snippet is
hard without using complex heuristics. Furthermore, actual
code snippets are predominantly incomplete programs and
may contain noise such as ellipses or pseudocode placehold-
ers. Traditional grammar-based parser are generally unable
to parse isolated snippets, especially if they contain noise.
RNN have successfully been used for text classification [14]
and RNN sequence-to-sequence translation [11] should al-
low us to parse even noisy character sequences into par-
tial abstract syntax trees (ASTs). The snippet—type and
snippet—AST pairs needed for training can be obtained by
parsing complete sources from GitHub using regular parsers
and then extracting snippets and their corresponding AST
segments afterwards. To make the parser more robust, syn-
thetic noise can be added to the snippets used in training.

Neural network architectures for code synthesis.

Using a mixture of experts architecture of bi-directional
RNNs [5] is a plausible candidate for our model. Contex-
tual information (such as keywords provided by the user or
gathered from comments and the IDE itself) could be used
to give a strong bias towards selecting an expert. How-
ever, determining the right model is subject to research and
experimentation. It has been shown that model averaging
generally improves predictions [6, 12], so in the end we may
combine different architectures at the output stage.

IDE integration.

In order to evaluate our approach in a practical setting, we
intend to integrate it into an IDE. The plugin will utilize a
pre-trained model, but it may learn from local code as well,
possibly with a higher bias. To generate samples, the model
will be given a number of previous characters at the cur-
rent cursor position and contextual information as required.
We envision that the generated code fragments will vary in
length depending on the confidence of the model, and that
it should be possible to cycle through multiple candidate
completions. Furthermore, it may be useful to post-process
the completions to check for sanity and to replace important
elements, e.g., variable names, on the fly.

The ultimate goal is a code completion system that in-
ternalizes the vast knowledge of internet resources such as
StackOverflow. It should be able to continuously offer likely
multi-token predictions while the developer is writing code,
thus reducing context switches and increasing productivity.

3. EVALUATION

The performance of the snippet classifier and parser can
be expressed in basic statistical terms. The abilities of our
neural network architecture for producing source code and
the suitability of the IDE integration can be measured on
two levels: (i) by comparing the model’s ability to predict

1069

the next n characters compared to other approaches like [3,
1], as done by White et al. [12], and (ii) by performing a
three-way user study comparing the time needed by devel-
opers to solve certain programming tasks using our tool,
using other auto-completion tools, and using web resources
only.

4. EXPECTED CONTRIBUTIONS

Our research makes the following contributions:

e A tool for isolating and classifying snippets by their
language and possibly their usage context.

e A sequence-to-sequence learner for parsing noisy snip-
pets into partial ASTs.

e A neural network architecture learning from code and
context to predict code fragments.

e An IDE plugin utilizing our model to provide multi-
token auto-completion capabilities.

S. RELATED WORK

White et al. found that recurrent neural networks signif-
icantly outperform n-grams for doing code suggestions [12].
They reiterate that given the amount of unstructured data
available to software engineering researchers, state-of-the-
art approaches such as recurrent neural networks can, even
in simple configurations, outperform existing solutions for
common software engineering problems.

Raychev et al. extract method calls from large codebases
to do a limited form of auto-completion for API usage, where
gaps in existing source code are filled with appropriate to-
kens [9]. They use a combination of n-grams, which exceed
at capturing short-term relationships, and an RNN, which is
better at taking into account long-term relationships. They
also made JSNice, a JavaScript deobfuscator which uses con-
ditional random fields to give joint predictions of program
properties [8]. It can rename obfuscated variables, annotate
their types, and determine the return types of functions.
The tool piqued interest among developers, hitting 30’000
downloads one week after its initial release.

Corley et al. use document vectors (DVs), another spe-
cialized instance of deep neural networks that aims to
strengthen the relationship between a token and its context,
for the purpose of feature location [2]. In a comparison, the
DVs outperform classical LDA based approaches and as an
added advantage, DVs can be trained much more quickly.

6. PROGRESS AND OUTLOOK

We applied the approach by Sutskever et al., training an
RNN on 10MB of Java source code to generate synthetic
samples. Even though the dataset is tiny, the generated
samples convincingly resemble real Java code. This sup-
ports our strategy of training multiple expert models, since
each one needs fairly little training data. We also collected
7GB worth of code from 825 GitHub projects, used cloc! to
detect the content type for every file, extracted 3000 snip-
pets randomly for each of 24 programming languages and
trained an RNN to detect the correct type with 91% ac-
curacy. Moving on, we will build the training set for the
neural parser and start experimenting with different neural
network architectures for context-sensitive code completion.

"https://github.com/AlDanial/cloc



https://github.com/AlDanial/cloc

7.
1]

REFERENCES

M. Bruch, M. Monperrus, and M. Mezini. Learning
from examples to improve code completion systems. In
Proceedings of the the 7th Joint Meeting of the
European Software Engineering Conference and the
ACM SIGSOFT Symposium on The Foundations of
Software Engineering, ESEC/FSE ’09, pages 213-222,
New York, NY, USA, 2009. ACM.

C. S. Corley, K. Damevski, and N. A. Kraft. Exploring
the use of deep learning for feature location. In
Software Maintenance and Evolution (ICSME), 2015
IEEFE International Conference on, pages 556—560,
Sept 2015.

C. Franks, Z. Tu, P. Devanbu, and V. Hellendoorn.
Cacheca: A cache language model based code
suggestion tool. In 2015 IEEE/ACM 87th IEEE
International Conference on Software Engineering,
volume 2, pages 705-708, May 2015.

L. A. Gatys, A. S. Ecker, and M. Bethge. Texture
synthesis and the controlled generation of natural
stimuli using convolutional neural networks. CoRR,
abs/1505.07376, 2015.

A. Graves, N. Jaitly, and A. r. Mohamed. Hybrid
speech recognition with deep bidirectional Istm. In
Automatic Speech Recognition and Understanding
(ASRU), 2018 IEEE Workshop on, pages 273-278,
Dec 2013.

H. K. H. Lee. Model selection for neural network
classification. Journal of Classification, 18:227-243,
2001.

L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto,
and M. Lanza. Mining stackoverflow to turn the ide
into a self-confident programming prompter. In
Proceedings of the 11th Working Conference on
Mining Software Repositories, MSR, 2014, pages

1070

(10]

(11]

(12]

(13]

(14]

102-111, New York, NY, USA, 2014. ACM.

V. Raychev, M. Vechev, and A. Krause. Predicting
program properties from “big code”. In Proceedings of
the 42Nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
POPL ’15, pages 111-124, New York, NY, USA, 2015.
ACM.

V. Raychev, M. Vechev, and E. Yahav. Code
completion with statistical language models. In
Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, PLDI '14, pages 419-428, New York,
NY, USA, 2014. ACM.

I. Sutskever, J. Martens, and G. Hinton. Generating
text with recurrent neural networks. In Proceedings of
the 28th International Conference on Machine
Learning (ICML-11), ICML ’11, pages 1017-1024,
New York, NY, USA, June 2011. ACM.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to
sequence learning with neural networks. CoRR,
abs/1409.3215, 2014.

M. White, C. Vendome, M. Linares-Vasquez, and

D. Poshyvanyk. Toward deep learning software
repositories. In Proceedings of the 12th Working
Conference on Mining Software Repositories, MSR
'15, pages 334-345, Piscataway, NJ, USA, 2015. IEEE
Press.

H. Zen, A. Senior, and M. Schuster. Statistical
parametric speech synthesis using deep neural
networks. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pages 7962-7966, 2013.

X. Zhang, J. Zhao, and Y. LeCun. Character-level
convolutional networks for text classification. CoRR,
abs/1509.01626, 2015.



	The Challenge
	Proposed Research
	Evaluation
	Expected Contributions
	Related Work
	Progress and Outlook
	 References -1mm 

