
Using (Bio)Metrics to Predict Code Quality Online

Sebastian C. Müller, Thomas Fritz

Department of Informatics, University of Zurich, Switzerland

{smueller, fritz}@ifi.uzh.ch

ABSTRACT
Finding and fixing code quality concerns, such as defects
or poor understandability of code, decreases software devel-
opment and evolution costs. A common industrial practice
to identify code quality concerns early on are code reviews.
While code reviews help to identify problems early on, they
also impose costs on development and only take place after a
code change is already completed. The goal of our research
is to automatically identify code quality concerns while a
developer is making a change to the code. By using biomet-
rics, such as heart rate variability, we aim to determine the
di�culty a developer experiences working on a part of the
code as well as identify and help to fix code quality concerns
before they are even committed to the repository.

In a field study with ten professional developers over a
two-week period we investigated the use of biometrics to
determine code quality concerns. Our results show that bio-
metrics are indeed able to predict quality concerns of parts
of the code while a developer is working on, improving upon
a naive classifier by more than 26% and outperforming clas-
sifiers based on more traditional metrics. In a second study
with five professional developers from a di↵erent country
and company, we found evidence that some of our findings
from our initial study can be replicated. Overall, the results
from the presented studies suggest that biometrics have the
potential to predict code quality concerns online and thus
lower development and evolution costs.

1. INTRODUCTION
A commonly accepted principle in software evolution is

that delaying software quality concerns, such as defects or
poor understandability of the code, increases the cost of fix-
ing them [10,11,41,45]. Ward Cunningham even went as far
as stating that “every minute spent on not-quite-right code
counts as interest on that debt” [20].

Code reviews are one practice that is widely used today
to detect code quality problems early on. Code reviews
are generally performed by peers after a developer com-
pletes the changes for a task and they help to improve code,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16, May 14 - 22, 2016, Austin, TX, USA
c� 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884803

e.g. its readability, and to find defects [6, 12, 31, 62]. At
the same time, code reviews impose costs in terms of time
and e↵ort by peers to perform the review. Several auto-
matic approaches to detect code quality concerns have been
proposed, for instance, to detect defects [51, 52, 76] or code
smells [39, 70]. These approaches generally have two disad-
vantages in common: first, they are predominantly based on
metrics, such as code churn or module size, that can only
be collected after a code change is completed and often re-
quire access to further information, such as the history of
the code; second, they do not take the individual di↵erences
between developers comprehending code into account, such
as the ones that exist between novices and experts [19].

The goal of our work is to use biometric sensing to over-
come these disadvantages and lower the development cost by
identifying code quality concerns online—while a developer
is still working on the code. Previous research, including one
of our earlier studies, has already shown that certain biomet-
ric measures, such as heart rate variability (HRV) or electro-
dermal activity (EDA), can be linked to task di�culty or dif-
ficulty in comprehending small code snippets [29,53,71,72].
The general concepts behind these studies are that biomet-
ric measures can be used to determine cognitive load—the
amount of mental e↵ort required to perform a task—and
that the more di�cult a task, the higher the cognitive load,
and the higher the error rate [5,68]. In our work, we build on
top of these concepts and aim to examine the use of biomet-
rics to determine the places in the code that professional
developers perceive to be di�cult and are therefore more
likely to contain quality concerns (errors). This would allow
us to automatically perform preemptive code reviews help-
ing developers to commit code with less quality concerns.

To investigate the use of biometrics to predict code qual-
ity concerns online, we performed a field study with ten pro-
fessional developers in a Canadian company over a period
of two weeks. We collected a variety of metrics, including
biometrics, such as heart rate variability, as well as more
traditional metrics, such as code complexity and churn. Af-
ter each committed change and periodically throughout the
study, we asked developers to assess the perceived di�culty
of the code elements—methods and classes—they were just
working with. Additionally, we collected quality concerns
identified in peer code reviews of the committed changes.
Amongst other results, our study shows that biometrics out-
perform more traditional metrics and a naive classifier in
predicting a developer’s perceived di�culty of code elements
while working on these elements. Our analysis also shows
that code elements that are perceived more di�cult by de-

http://dx.doi.org/10.1145/2884781.2884803


velopers also end up having more quality concerns found in
peer code reviews, which supports our initial assumption.
In addition, the results show that biometrics helped to au-
tomatically detect 50% of the bugs found in code reviews
and outperformed traditional metrics in predicting all qual-
ity concerns found in code reviews.

To assess our approach’s generalizability, we conducted a
second study with five developers in a Swiss company over a
period of a week. The results of this study provide evidence
that some (but not all) of our findings can be replicated.

In summary, this paper makes the following contributions:
• It presents results of a two-week study with ten devel-

opers investigating the use of biometrics in the field to
determine code quality concerns and developers’ per-
ceived di�culty.

• It provides a comparison between various metrics, show-
ing that biometrics can outperform more traditional
metrics in predicting code quality concerns online.

• It presents results of a one-week replication study with
five developers from a di↵erent company and country.

Overall, the results of our studies suggest that developers’
biometrics have potential to identify di�cult places in the
code and in turn quality concerns and thus might be used
to lower the overall software maintenance cost.

2. RELATED WORK
Work related to our research can roughly be categorized

into three major areas: the manual detection of quality con-
cerns in form of inspections and code reviews, automatic de-
tection based on code, change and interaction metrics, and,
more broadly, the use of biometrics in software development.

Manual Detection. The substantial benefits and cost sav-
ings of manual software inspection have long been known
based on evidence from multiple places [1, 22, 32]. While
these results were mostly based on formal inspections, com-
panies today often employ more lightweight and tool sup-
ported code review processes that require less time and ef-
fort [25]. Several studies have looked into these lighter weight
code reviews, in particular their practices, characteristics
and outcomes, and shown amongst other results, that these
lightweight code reviews still lead to substantial code im-
provements and the detection of defects [6, 12, 62]. Overall
the results from these studies show that manual code inspec-
tion can help to detect many quality concerns soon after code
changes were performed and lead to significant cost savings
in software evolution. At the same time, manual inspections
still require time and e↵ort of peer developers and can only
be done after the code was committed or shared for review.

Automatic Detection. There is a myriad of research in-
vestigating the automatic detection of code quality concerns.
Most of these approaches focus on various software metrics,
such as complexity, size or change metrics and their corre-
lation to software defects [50, 51, 76]. Instead of code and
change metrics, researchers have also looked into organiza-
tional information to predict defects, for instance the num-
ber of developers who touched a file [52, 74]. Others have
focused on the automatic detection of code smells, predom-
inantly by using code metrics in combination with absolute
or relative thresholds or rule sets [2, 44, 46, 49], but also by
mining the change history [55]. Furthermore, there are tools,
such as FindBugs or PMD that can help to identify poten-
tial quality concerns in the code [28, 57]. Most of these ap-

proaches only allow for a post-hoc classification and do not
take into account the individual di↵erences between develop-
ers working on the code. A first step into this direction was
taken by Lee et al. [40] who focused on developers’ individ-
ual interaction patterns and proposed 56 micro interaction
metrics for defect prediction. In a case study, the authors
compared defect prediction learners based on change met-
rics and source code metrics with models based on micro
interaction metrics, and found that developers’ interaction
patterns, such as the ratio between edits and selects, can
significantly improve the defect prediction.

Rather than identifying quality concerns, code metrics
have also been used to assess the di�culty of various code-
related activities, such as program comprehension. For in-
stance, Curtis et al. [21], or Feigenspan et al. [27], inves-
tigated how di↵erent kinds of code metrics correlate with
developers’ performance on maintenance tasks, respectively
program comprehension. Closer to our research, Carter et
al. [15] used interaction logs within the IDE to predict when
a developer is stuck, experiencing a lot of di�culties and
cannot make any progress.

In contrast to these studies, we are investigating the use
of biometric measurements to identify quality concerns. Us-
ing biometrics would allow for an online detection that takes
into account the individual di↵erences between developers.

Biometrics. In psychology, a broad range of biometric mea-
surements has been investigated and correlated with a per-
son’s cognitive states and processes. These biometrics can be
roughly categorized into skin-, heart- and breathing-related
measurements. Commonly used measurements are electro-
dermal activity (EDA) and skin temperature for the skin-,
heart rate (HR) and heart rate variability (HRV) for the
heart- and the respiratory rate (RR) for breathing-related
measurements. For all these measurements, researchers have
found correlations to mental and cognitive load/e↵ort, as
well as to task di�culty as presented in Table 1.

In the context of software engineering, these biometric
measurements were used to assess developers’ mental load
and perceived di�culty while working on small code snip-
pets. Parnin [56] investigated the potential of electromyo-
graphy (EMG) to measure sub-vocal utterances and found
that this might be used to determine programming task dif-
ficulty. In a similar direction, Nakagawa et al. [53] used Near
Infrared Spectroscopy (NIRS) to measure developers’ cere-
bral blood flow (CBF) while working on code comprehension
tasks with two di�culty levels. Radevski et al. [59] proposed
an approach that uses electro-encephalography (EEG) to as-
sess developers’ productivity in real time. Finally, in a pre-
vious study, we used a combination of biometric sensors and
found that they can be used to predict the di�culty of small
code comprehension tasks [29]. Besides these studies, most
research in software engineering using biometric measure-
ments focused on eye tracking technology (e.g. [7, 19, 63])
or developers’ brain activities (e.g. [34,66]) to gain a better
understanding of program comprehension. In contrast to
all these studies, we focus on the online prediction of code
quality concerns and are one of the first ones to perform a
longitudinal two-week field study with biometrics sensors.

3. PSYCHOLOGICAL BACKGROUND
Our work on the use of biometrics builds on top of es-

tablished psychological research and concepts, including the



Task

Developer

(task format & 
complexity, time 

pressure, …)

(age, personality 
traits, …)

Input Psychological concept Outcome measures

QCs / Errors

Difficulty

EDA RR

HRV …

Biometric measurements

Cognitive Load

Self reports
Peer reports Influences
Measurement Concept

Measures
Legend

Figure 1: Concepts and relationships between input, cogni-
tive load, biometric measurements, and outcome.

cognitive load theory. Figure 1 illustrates some of these re-
lations relevant to our work. Cognitive load (CL) refers to
the required mental e↵ort to perform a task and is composed
of intrinsic (e.g. inherent task di�culty), extrinsic (e.g. the
way the code is written) and germane load (e↵ort for pro-
cessing information) [69]. In general, the more di�cult it is
to perform a task for an individual, the higher the cognitive
load, and in turn, the lower the individual’s performance and
the higher the error rate [5,36,69,73]. Previous studies have
shown that mental e↵ort and cognitive load can be measured
using biometrics (e.g. [71, 75]). Based on the links between
cognitive load, errors and biometrics, we might be able to
use biometric measurements to determine a developer’s per-
ceived di�culty when working with a code element and the
likelihood of an error being created. Also, since biometrics
are linked directly to a developer’s cognitive load and thus
capture individual di↵erences even for the same task, this
approach should be more accurate than proxies that try to
capture cognitive load from artifacts.

4. STUDY METHOD
To investigate the use of biometrics to detect quality con-

cerns online, we analyzed four main research questions:

RQ1 Can we use biometrics to identify places in the code
that are perceived to be more di�cult by developers?

RQ2 Can we use biometrics to identify code quality con-
cerns found through peer code reviews?

RQ3 How do biometrics compare to more traditional met-
rics for detecting quality concerns?

RQ4 How sensitive are these biometrics to the individual?

To address our research questions, we conducted a long-
term empirical field study with ten professional software de-
velopers, working for a medium-sized software development
company in Canada. Over the course of two weeks par-
ticipants worked on their usual tasks in their usual work
environment while wearing biometric sensors. We period-
ically asked participants to rate the di�culty of the code
elements—methods and classes—they were working with on
a 6-point Likert scale and collected quality concerns iden-
tified in peer code reviews. In addition, we gathered more
traditional metrics for comparison purposes1.

1A replication package of this study is available online [60].

4.1 Participants & Sensors
We were able to recruit ten professional software devel-

opers from a medium-sized software development company
in Canada for our study. The ten participants (nine male,
one female) ranged in age from 23 to 45 years and had an
average professional software engineering experience of 10.2
years (±6.2), ranging from 3 to 22 years. All study partici-
pants worked on the same project, but were split over three
di↵erent teams that were in charge of di↵erent components
of the project. All teams followed a similar agile software de-
velopment process and worked on tasks with similar sizes2.
Each participant had access to her biometric data and was
allowed to quit any time without providing a reason.

We used two biometric sensors for this study: an Empatica
E4 wristband [24] to capture skin- and heart-related mea-
surements, and a SenseCore chest strap3 to capture skin-
(except for EDA), heart-, and breathing-related measure-
ments. Participants were asked to wear the chest strap and
optionally also the wristband. We ended up with all ten
participants wearing the SenseCore sensor for the two-week
study period, and six of them (P01, P04, P05, P06, P07 and
P08) also wearing the Empatica wristband in addition.

4.2 Study Procedure
At the beginning of the study, we asked each participant

to install a small, self-written interaction monitor plugin into
their Eclipse IDE that logged each time a developer selected
or edited a method or a class within the IDE in combination
with the current timestamp. At the same time, the plugin
collected a set of code metrics for each code element that was
selected or edited. After that, we introduced participants to
the biometric sensors, gave them the option of either wearing
both or just the SenseCore chest strap, and helped them
to put the sensor(s) on for the first time. Then we told
participants to continue performing their work as usual for
the next two weeks while wearing the biometric sensors. An
overview of the procedure and data collection for the two-
week period is presented in Figure 2.

At the end of each workday, we collected the biometric
data from each participant and charged the batteries of the
sensor(s). Once per day of the study, participants were also
asked to watch a two minutes video of fish swimming in a fish
tank while wearing the biometric sensor(s). The movie was
intended to help participants relax and allow us to record a
baseline during the second minute of the two minutes session
that we used later on to normalize the captured biometric
data. In previous studies [29,48] we saw that a person’s bio-
metric features drop back to a baseline after about a minute
of watching the video.

In addition to the code metrics and interaction logs that
we recorded with our Eclipse plugin, we also collected three
di↵erent types of outcome measures. First, every 90 min-
utes, the Eclipse plugin prompted participants to answer a
small questionnaire within Eclipse that asked them to rate
the perceived di�culty of 20 randomly selected code ele-
ments that they were working with within the last 90 min-
utes. Second, every time a participant committed a set of
code changes to the repository, we asked the participant

2For privacy reasons we are not able to disclose more
specifics on the company and also substituted code element
names throughout the paper.
3SenseCore sensors are no longer available due to the com-
pany’s closure.



Figure 2: Overview of study procedure and collected data.

Table 1: Overview of collected biometrics and their previ-
ously found correlations to psychological aspects.

Measurement Previously found correlations

Heart-related
Heart rate vari-
ability

mental e↵ort [71]; task di�culty [72]; mental
load [61,75]; task demand [26]

Heart rate mental e↵ort [71]; mental load [61,75];
task di�culty [3, 18,72]

Breathing-related
Respiratory mental e↵ort [71]; task di�culty [37];
rate task demand [26]
Skin-related
Skin temperature task di�culty [3, 18,54]
Electro-dermal
activity

mental load [61, 75]; task di�culty [18, 54];
stress and cognitive load [65]

to rate the di�culty s/he perceived while working on and
changing each of the classes and methods in the committed
changes. As part of the company’s development process,
each committed code change was also reviewed by one to
three peers. Finally, we collected the outcome of the code
reviews for the code changes committed by our participants.

At the end of the study, each participant completed a
short demographic background questionnaire.

4.3 Metrics and Outcome Measures
We collected four kinds of metrics—biometrics, code met-

rics, interaction metrics, and change metrics—and three dif-
ferent types of outcome measures.

4.3.1 Biometrics
We used the chest strap and the wristband to collect

various biometric measurements that have previously been
linked to task di�culty as well as cognitive and mental ef-
fort. Table 1 provides an overview of the biometrics we cap-
tured for this study and the previously found correlations.
A complete list of all extracted features can be found in the
replication package [60].

To use biometric data for predicting quality concerns of
code elements, we had to apply several data segmentation,
data cleaning and feature extraction steps. The biometric
sensor data is captured as a sequence of data entries with a
timestamp and the person’s biometric values for that point
in time. To map biometric data to code elements, we used
the assumption that a developer is thinking about and af-
fected by the code element s/he just selected or edited (see
Section 8) and therefore segmented the biometric data based
on the user interaction log that we captured with our Eclipse
plugin. Specifically, we used the time interval from the point

in time a developer interacted with a code element C in the
IDE up to the point in time s/he interacted with a di↵er-
ent element or left the IDE to segment the biometric data
and associated the biometric data segment corresponding to
this time interval with the code element C. Since a person’s
heart rate and the phasic part of the EDA signal typically
take about one to two seconds to adapt to changes [9,64,67],
we only considered segments that span at least three seconds
in our analysis, i.e. when the developer spent at least three
seconds on a code element before moving on, and filtered
the biometric data for the first two seconds of the segment
to allow for the change in the biometrics to take place.

Heart-related biometrics. For the heart rate, we extracted
the mean and the variance of the signal, while for the heart
rate variability, we used features that represent the di↵er-
ence in time between two heart beats, such as RMSSD (root
mean square of successive di↵erences) or NN50 (the number
of pairs of successive beat-to-beat intervals that di↵er more
than 50ms). All these features have been linked to mental
e↵ort and load as well as task di�culty [3, 71].

Breathing-related biometrics. Previous research linked a
person’s respiratory rate to task di�culty [26,37]. We there-
fore extracted commonly used features, such as the mean
respiration rate or the log10 variance of the respiration sig-
nal and added them to our feature set.

Skin-related biometrics. For the skin temperature, we ex-
tracted features, such as the mean temperature that research
has linked to task di�culty [3,18]. To extract features from
the EDA signal, we used Butterworth filters [14] to split it
into two parts: the high frequency, fast changing phasic part,
and the low frequency, slowly changing tonic part [64]. In a
next step, we extracted features related to the peaks in the
phasic signal, and features from the tonic part that research
has linked to mental load and task di�culty [54,61,75].

All biometric measurements were normalized using the
baseline measurements that we collected during the second
minute of the two minutes fish tank movie.

4.3.2 Code, Change and Interaction Metrics
We collected several metrics for code elements—methods

and classes—that have previously been associated with dif-
ficult code or defects. Most of these metrics were captured
with our Eclipse plugin.

Code metrics. For each code element, the plugin calculated
code metrics that research has linked to di�culty in program



comprehension and code quality. The collected metrics were
McCabe’s complexity (e.g. [51]), Halstead’s complexity mea-
sures (e.g. [23]), various size metrics (e.g. [17]), and fanout
(e.g. [77]). Since code metrics might alter when a developer
makes changes to a code element, we captured the metrics
every time a developer interacted with a code element.

Change metrics. Every time a developer committed a
change set to the repository in the study period, we ex-
tracted the number of lines added and removed for each
code element. Previous research has shown that these met-
rics can be reliable predictors for defects (e.g. [47,50]). Due
to limited access to the source code repositories in the com-
pany, we were only able to collect these metrics on class, and
not on method level.

Interaction metrics. Previous research has shown that
metrics on interaction data, in particular the ratio between
edit and select events, might be used to improve defect pre-
diction and to determine when a developer experiences dif-
ficulties (e.g. [15, 40]). We therefore collected the number
and ratio of edit and select events for each code element.

4.3.3 Outcome Measures
Over the course of the study, we collected three di↵erent

types of outcome measures.

Perceived di�culty during a change task. Every 90
minutes, participants were prompted with a questionnaire
that asked them to rate the di�culty they perceived while
working on 20 randomly selected code elements from the
previous 90 minutes on a 6-point Likert scale (from 1 =
“very easy” to 6 = “very di�cult”). For the 20 elements
in each questionnaire, we equally balanced the number of
methods and classes and the number of edited and selected
code elements, unless the participant did not interact with
a su�cient number of elements in the previous 90 minutes.

Perceived di�culty at the end of a change task. We
manually monitored code repositories. As soon as we noticed
that a developer committed a change set to the repository,
we asked her/him to rate the di�culty s/he perceived while
performing the necessary changes for each class and method
that was changed. For this rating, we used the same 6-point
Likert scale as for the first outcome measure.

Code quality concerns detected through peer reviews.
Each committed change set was typically reviewed by one
to three peers shortly after the commit time. The reviewers
looked for actual bugs, inadequate documentation or test
cases, and violations of coding styles. We collected the re-
sults of these code reviews for each change set that was com-
mitted by one of the study participants. We marked a code
element as containing a quality concern when at least one
was identified in a code review.

4.4 Data Collection
Across all study participants and the two weeks of the

study, we were able to collect biometric measurements for
a total of 116 developer work days (?=11.6, ±1.8). This
resulted in 12.1 GB worth of biometric data, consisting of
40.6 million data points. For all ten study participants, we
collected skin temperature, HR, HRV and RR data. For six
study participants who volunteered to also wear the Em-
patica wristband sensor, we were able to collect the EDA
as well as a second skin temperature and HR(V) measure-
ment. We decided to take the signal from the SenseCore

Table 2: Number of collected data points for each study
participant during and at the end of a change task.

Subject

Methods Classes

Total

During After During After

P01 92 2 77 77 248
P02 106 2 108 12 228
P03 118 71 40 83 312
P04 101 3 72 73 249
P05 137 29 107 15 288
P06 137 74 159 65 435
P07 33 78 34 39 184
P08 90 72 96 51 309
P09 28 69 49 79 225
P10 140 129 158 86 513
Total 982 529 900 580 2991

Table 3: Number of quality concerns found in code reviews.

Category Method Class Total

Coding style violation 17 52 69
Bug 14 34 48
Missing test 6 11 17
Insu�c. exception handling 5 9 14
Inadequate comments 3 8 11
Other 1 2 3
Total 46 116 162

sensor whenever possible and only rely on the Empatica sig-
nal in case the SenseCore signal could not be recorded, since
our previous experiences with the two sensors indicate that
the SenseCore signal is more accurate.

In addition to the biometric data, we collected perceived
di�culty ratings for 1511 methods and 1480 classes. From
the 1511 di�culty ratings for methods, 982 were collected
while developers were working on a change task, while the
rest were collected at commit time. Similarly, 900 classes
were rated while working on a change task and 580 at com-
mit time. On average, study participants spent 12.0 minutes
on a particular class and 6.8 minutes on a particular method,
between two consecutive di�culty ratings that occurred ev-
ery 90 minutes. Table 2 provides an overview of the di�culty
ratings we collected for each participant in the study. For
all code elements that were changed and committed by one
of our participants, we were also able to collect the results
of the peer code reviews of these elements. In total, we col-
lected 162 quality concerns, 46 on method level and 116 on
class level. We ended up with 95 (16.4%) classes in which
a quality concern was found and 485 (83.6%) without any
quality concern. Similarly, our dataset consists of 44 (8.3%)
methods with a quality concern and 485 (91.7%) methods
without any quality concern. Table 3 provides an overview
of the categories of quality concerns found during code re-
views. Finally, we also collected answers to the demographic
questionnaires at the end of the study.

4.5 Data Mapping
Figure 3 illustrates some of the ratings and biometric data

that we collected for participant P02 on class ClassX.java
over the course of his/her work on a change task. During
the depicted time period, P02 was interacting with ClassX
seven times. At three points in time during the depicted pe-
riod, the developer was prompted by our plugin to rate the
perceived di�culty while working with this class. For the
three ratings, the perceived di�culty changed from three
to one to five. While the developer was working on this



Figure 3: Exemplary perceived di�culty rating and biometric data (heart rate, skin temperature and respiration rate) over
seven time periods during which participant P02 worked on the class ClassX.java.

class, we also captured the biometric measurements as de-
scribed earlier on. A subset of these metrics is also depicted
in Figure 3. For each rating by the developer on perceived
di�culty during work, we associated the biometric measure-
ments collected between the current and the previous rating.
For the example shown in Figure 3, we only considered the
biometrics captured in interval 1� for ‘Rating 1’, the inter-
vals 2� - 4� for ‘Rating 2’ and intervals 5� - 7� for ‘Rating 3’.
In this example, there is a visible di↵erence with the mean
heart rate being rather low between ‘Rating 1’ and ‘Rating
2’ for which interval the class was perceived easy (1), and
the mean heart rate between ‘Rating 2’ and ‘Rating 3’ when
the class was perceived more di�cult (5). For a developer’s
rating of perceived di�culty at the time of a commit, we as-
sociated all biometric measurements collected between the
current and the previous commit.

For each code metric we captured for a code element and
a given time frame—either between two ratings or between
two commits—we calculated and collected the metric every
time a developer interacted with the element and then cal-
culated the mean over all interaction instances within the
considered time frame.

5. ANALYSIS AND RESULTS
In the following, we address our research questions by pre-

senting the analysis and results of the gathered data.

5.1 Perceived Difficulty and Quality of Code
Figure 4 depicts the distribution of collected di�culty rat-

ings. Overall, only very few code elements (3.0%) that de-
velopers worked with were perceived as di�cult or very di�-
cult, while most (69.3%) were perceived as very easy or easy.
To investigate whether and how the perceived di�culty of a
code element changes over time, we analyzed a developer’s

Figure 4: Distribution of developers’ di�culty ratings of
code elements.

di�culty ratings that we collected for the same code ele-
ment during or at the end of a change task. While we did
not collect multiple ratings for each code element during a
change task due to the random selection process, we had
42 (±31.7) cases per developer in which we did. In 51.2%
of these cases, the perceived di�culty changed between two
consecutive ratings, with 43% of these cases in which the per-
ceived di�culty increased. In most of these cases in which
the perceived di�culty changed over the time a developer
worked on a change task, code metrics did not change. For
instance, the number of lines metric only changed in less
than half, and McCabe’s cyclomatic complexity only in less
than a third of the cases. These results indicate that the per-
ceived di�culty of a code element changes frequently over
the course of a change task, and that these changes might
often not be reflected in code metrics.

Table 4 provides an overview of the number of code ele-
ments that participants rated at commit time and the num-
ber of quality concerns that were found in these elements



Table 4: Quality concerns (QC) found in code elements dur-
ing code reviews, grouped by perceived di�culty.

Perceived di�culty
1 2 3 4 5 6

Methods
# reviewed 245 176 90 15 3 0
# with QC 14 17 9 2 2 0
Classes
# reviewed 174 189 145 47 22 3
# with QC 22 25 29 13 6 0

in the code reviews. As an example, from the 245 methods
that were rated as being very easy, 14 (5.7%) were found
to contain a quality concern during code review. The re-
sults show that the more di�cult a code element is

perceived, the higher the likelihood of it containing

a quality concern, confirming our initial hypothesis. So
while, for example, only 5.7% of the methods perceived as
easy had quality concerns, 66.7% (2 out of 3) methods of the
di�cult elements that were rated as 5 had quality concerns.

5.2 Prediction of Code Difficulty and Quality
To answer our research questions, we performed a machine

learning experiment. We chose machine learning, since it has
been shown to be a good approach for finding links between
low-level biometric data and high-level phenomena, such as
perceived di�culty and quality concerns [8].

5.2.1 Machine Learning Approach
We conducted three kinds of predictions on two granu-

larity levels—method and class level—each. In particular,
we examined whether we can use machine learning to, first,
predict a developer’s perceived di�culty of a code element
while working on a change task (RQ1), second, predict a
developer’s perceived di�culty of a code element after com-
pleting, i.e. committing, the work on a change task (RQ1),
and finally, predict whether a code element contains a qual-
ity concern found in a code review (RQ2). Since we col-
lected less than four data points for participant P01, P02
and P04 for perceived di�culties of methods after a commit
and machine learners need a bigger sample size for reason-
able results, we excluded these three participants from this
specific prediction analysis.

For the machine learning classifications, we usedWeka [33],
a Java-based machine learning framework. For the classifier,
we opted for a Random Forest learner [13] under the as-
sumption that the non-parametric characteristics of decision
trees [43] would fit our collected data, which often exhibited
a non-parametric distribution, and because Random Forest
learners can deal well with small sample sizes [58]. Stud-
ies have shown that for bug prediction based on code and
change metrics, the learner should not have a big influence
on the performance [30,42].

We performed a leave-one-out evaluation for each partic-
ipant separately. This means for each participant and pre-
diction, we trained our classifiers in turn with all data points
we captured, except one, and then used the remaining one
as test set. We made sure that no identical code elements
were in both, the training and the test set. For comparing
biometrics with more traditional metrics, we performed each
of the six (3 x 2) predictions for five di↵erent classifiers: a
classifier based on biometric data, one based on code met-
rics, one on change metrics, one on interaction metrics, and
one that combines all metrics.

5.2.2 Machine Learning Results
We split our results based on the outcome measure.

Perceived Di�culty (RQ1, RQ3, RQ4). Figure 5 sum-
marizes the results of our machine learning experiments for
predicting perceived di�culty. In particular, it presents Co-
hen’s kappa [16] values for predicting a developer’s perceived
di�culty of code elements during (Figure 5a) and after fin-
ishing (Figure 5b) a change task. Cohen’s kappa measures
the agreement between the prediction and the ground truth,
taking into account the agreements that might occur by
chance. According to Landis and Koch [38], kappa values
from 0 to 0.2 can be considered as slight, from 0.21 to 0.4
as fair, from 0.41 to 0.6 as moderate, from 0.61 to 0.8 as
substantial, and from 0.81 to 1 as almost perfect agreement.
For comparison reasons, we also added the value for a naive
predictor that always predicts the most dominant class but
never any other one. To be of practical value, our biometric
classifier should be able to outperform this naive predictor.

For three out of the four cases (see Figure 5) the biomet-
ric classifier outperforms the classifiers that are based on
interaction metrics and on code metrics, as well as it out-
performs the naive classifier on average by more than 26%.
Only a classifier that combines all metrics, including bio-
metrics, achieves better results in these cases, and only for
the case of predicting the di�culty of classes after a change
task is the biometric classifier worse than a naive one pre-
dicting only a dominant class. These results demonstrate
the potential that biometrics have in particular for predict-
ing the perceived di�culty of a code element online, while
the developer is still working on the change task.

For a more detailed analysis of the results, we chose one
case and depicted the confusion matrix for the perceived dif-
ficulty prediction on method level in Table 5. The matrix
shows that in most cases, the predicted di�culty value (1
to 6) is only slightly o↵ of the real value. Finally, Table 6
presents the percentage of correct predictions of the biomet-
ric classifier for each participant. These results illustrate the
individual di↵erences in the accuracy of predictions. For in-
stance, some participants, such as P10, have a high accuracy
for all predictions, while others, such as P07, have a high ac-
curacy for some but not all predictions.

Quality Concerns (RQ2 & RQ3). When predicting
whether a code element contains a quality concern (QC) or
not (no QC), a biometric classifier performs best over all and
even outperforms a classifier that combines all metrics. The
top part of Table 7 presents the results in terms of precision
and recall. We chose precision and recall instead of F-score
to highlight the tradeo↵ between the two. The biometric
classifier is able to correctly identify 17 out of 44 (38.6%)
code elements with a quality concerns on method level and
38 out of 95 (40%) on class level. At the same time, the pre-
cision is not very high with 13.0%, respectively 22.0%, and
further research is needed to examine this in more detail.

Table 8 provides more details on the percentage of cor-
rect classifications for each quality concern category. The
data reveals that, with the exception of the “Other” cate-
gory, the level of correctness is in a similar range for each
category. Particularly interesting is the “Bug” category that
shows that our biometric classifier is able to identify half of
all bugs found in code reviews.

Within vs. Across Participant (RQ4). To investigate
how sensitive the biometrics are to an individual, we per-



(a) During change task (b) After change task (at commit)

Figure 5: Cohen’s Kappa for predicting perceived di�culty for class and method level.

Table 5: Confusion matrix for perceived di�culty prediction on method level during the work on a change task. Each cell
contains values from each predictor in the order of: all / biometrics / code metrics / interaction metrics / change metrics.

Actual
Prediction

1 2 3 4 5 6
1 328/310/284/267/- 59/63/88/87/- 15/27/23/44/- 5/8/9/7/- 0/0/4/3/- 1/0/0/0/-
2 91/83/95/92/- 149/158/127/113/- 43/36/52/64/- 1/7/7/10/- 0/0/3/5/- 0/0/0/0/-
3 49/54/55/56/- 67/58/64/67/- 67/70/57/67/- 8/10/14/6/- 5/4/6/0/- 0/0/0/0/-
4 15/13/21/11/- 13/16/17/19/- 19/19/16/20/- 13/13/7/12/- 3/2/2/1/- 0/0/0/0/-
5 7/4/13/13/- 3/5/3/6/- 7/4/9/6/- 1/2/3/3/-/ 11/13/0/1/- 0/1/1/0/-
6 0/1/1/0/- 0/0/0/1/- 1/0/1/1/- 0/0/0/0/- 0/1/0/0/- 1/0/0/0/-

Table 6: Percentage of correct predictions per participant
using biometrics.

Sub.

Di�culty (During) Di�culty (After) Quality Concerns

Method Class Method Class Method Class
P01 64.1% 71.4% 64.9% 57.1%
P02 59.4% 53.7% 25.0% 83.3%
P03 55.1% 40.0% 53.5% 30.1% 97.2% 84.3%
P04 50.5% 52.8% 41.1% 43.8%
P05 43.1% 39.3% 37.9% 6.7% 96.6% 66.7%
P06 57.7% 49.1% 62.2% 30.8% 60.8% 58.5%
P07 33.3% 20.6% 61.5% 56.4% 66.7% 51.3%
P08 60.0% 37.5% 51.2% 39.2% 88.9% 70.6%
P09 53.6% 44.9% 68.1% 34.2% 53.6% 70.9%
P10 77.1% 81.0% 88.4% 86.1% 65.9% 77.9%
All 57.4% 53.3% 65.7% 46.9% 72.8% 66.0%

formed a second machine learning experiment, in which we
trained the classifiers not on each participant individually,
but on data from all participants. We again used a leave-
one-out approach to train the machine learning classifiers in
turn for each participant, except one, and then used the re-
maining one as test set. We made sure that no code element
was in both, the test and training set.

The results for predicting perceived di�culty either dur-
ing or after a change task are very low. Cohen’s kappa values
were very close to or well below 0, showing that the predic-
tive power of the classifiers is not any better than chance.
For predicting quality concerns with a biometric classifier
across participants, the results, however, are better and in
some cases even outperform the prediction based on indi-
vidual classifiers as presented in the bottom half of Table 7.
The recall values on quality concern predictions on method
level are significantly higher than the ones achieved by a
within participant classification. However, this comes with
a cost and the precision is generally lower and the recall for
the code elements that do not contain a quality concern also
decreased significantly. We hypothesize that the classifiers
trained with data across individuals tend to predict more of-
ten that a code element contains a quality concern, since this

Table 7: Results for quality concern (QC) prediction within
& across participants in % (P: precision, R: recall, ud.: un-
defined). Bold values accent the best result in each category.

Metric

Method Class

QC no QC QC no QC
P R P R P R P R

W
it
h
in

All 11.5 27.3 92.3 80.8 17.6 23.2 84.0 78.8
Biometric 13.0 38.6 93.1 76.2 22.0 40.0 86.0 72.2
Code 7.9 20.5 91.4 78.0 16.9 29.5 83.8 71.5
Interaction 0.0 0.0 91.1 94.6 19.8 16.8 84.2 86.6

Change 17.3 18.9 83.8 82.3

A
c
ro

ss

All 9.7 63.6 93.1 45.2 17.5 30.5 84.1 71.8
Biometric 8.3 56.8 91.3 41.8 15.4 22.1 83.3 76.3
Code 8.1 50.0 91.2 47.9 20.0 20.0 84.3 84.3
Interaction 0.0 0.0 91.4 98.1 16.7 3.2 83.6 96.9
Change ud. 0.0 83.6 100.0

Table 8: Percentage of correct quality concern predictions
by category using a biometric classifier.

Quality Concern Category

% Correct

Method Class

Coding style 23.5 38.5
Bug 50.0 47.1
Missing tests 50.0 45.5
Insu�cient exception handling 20.0 55.6
Inadequate comments 33.3 62.5
Other 100.0 0.0

case is represented in the training set more often, compared
to the training set for each participant individually.

6. REPLICATION STUDY
Since there are many factors that might influence the

study findings, such as the development process or the source
code to name just a few, we performed a second smaller
and shorter study. For this study, we collected similar but
less data from five professional developers of a medium-sized
software development company in Switzerland4.
4For privacy reasons we are not able to disclose more specific
information about the company.



Table 9: Number of collected data points per participant of
the second study during and at the end of a change task.

Subject

Methods Classes

Total

during after during after

P11 132 - 165 101 398
P12 30 - 50 28 108
P13 23 - 60 60 143
P14 46 - 37 16 99
P15 7 - 16 9 32
Total 238 - 328 214 780

Study Method & Participants. For this second study,
we were able to recruit five professional software developers,
working at a medium-sized software development company
in Switzerland. The five study participants worked in four
di↵erent teams and each team worked on a di↵erent product.
The study participants were all male, ranged in age from 25
to 30 years (?=28.0, ±2.3) and had an average professional
software development experience of 5.8 years (±2.5).

We followed the study method from our first study to
collect metrics and outcome measures. All five participants
used the SenseCore chest strap sensor for approximately one
week. Over all participants, we collected data for a total of
25 work days (?=5.0, ±1.6), including 2.8 GB of biomet-
ric data that consists of 11.6 million data points. Table 9
provides an overview of all data points collected during the
second study. On average a study participant spend 3.4
minutes per method and 6.8 minutes per class between two
consecutive di�culty ratings that occurred every 90 min-
utes.

Di↵erences & Limitations. The teams in our main study
and in the replication study followed a similar development
process and developers worked on tasks with similar size. In
contrast to the first study, the replication study only lasted
one week due to time constraints of the participants. We
also only had limited access to the code repositories and
thus we were not able to collect perceived di�culty ratings
on method level at the end of a change task and we were
not able to collect any change metrics. Due to the lack of a
code review process in the company, we were also not able to
collect any data on quality concerns found in peer reviews.
While these di↵erences do not allow us to perform the same
analysis, it still allows us to replicate some of the analysis
in a vastly di↵erent setting. Especially in light of the e↵ort
and di�culty to find professional software developers that
provide us access to their repositories and that are willing
to wear biometric sensors for an extended period of time, we
believe this is a reasonable step for an initial replication.

Machine Learning Predictions & Results. For the data
collected during the second study, we extracted the same fea-
tures from the data and performed the same leave-one-out
within participant predictions as we did for the first study.
Table 10 summaries the results of the predictions. In the
second study, the biometric classifier outperforms classifiers
based on interaction or code metrics in the ‘after commit’
case, i.e. after the code changes for a task were finished, with
an improvement of more than 37%. In the other two cases
for predicting di�culty during a change task, the classifier
based on code metrics performs better, but the biometrics
classifier is still significantly better than the naive classifier.
Similar to the results of the first study, the classifier that
incorporates all the di↵erent metrics is the best classifier.

Table 10: Cohen’s kappa for perceived di�culty prediction
for the second study.

Metric

Method Class

(during) (during) (after)

Interaction 0.17 0.11 0.19
Code 0.25 0.22 0.27
Biometrics 0.20 0.16 0.37
All 0.29 0.22 0.38

Naive 0.06 0.14 0.07

In summary, the results of the second study provide initial
evidence that we can replicate some of our findings from our
main study, but not all. There are many potential reasons
for the di↵erences in findings, one of which is that we only
collected about half the time of biometric data per code el-
ement and rating. Further studies are needed to investigate
these aspects in more detail.

7. DISCUSSION
In this section we discuss the results of our study as well

as their implications on practice and further research.

Predicting Code Quality Online. Our study is the first
longer-term study in a real-world software development con-
text with biometric sensors that provides evidence on the
feasibility of using these sensors in the field. The results
show that it is possible to predict quality concerns and per-
ceived di�culty of code elements with higher accuracy than
traditional metrics in most cases, even despite the noise in
professional work environments. Biometrics, di↵erent to tra-
ditional metrics, allow for online—while the developer is still
working on the code—measures, and thus, for example, to
prevent bugs from ever being committed by focusing devel-
opers’ attention on these parts, without requiring access to
repositories. Biometrics also factor in developers’ individ-
ual di↵erences that are not captured by traditional metrics,
and thus should provide more accurate results, in particular
when they can be trained on each individual.

Our results also show that code elements that are per-
ceived more di�cult are also more likely to contain quality
concerns. This adds to existing evidence that the di�culty a
developer experiences when working on a code element can
have a strong influence on the quality concerns the developer
creates or adds when changing the code element for the task
at hand. Consistently, our results suggest that it is possible
to use biometrics not only for predicting perceived di�culty,
but also quality concerns identified in peer code reviews.

While the precision for identifying quality concerns in our
study could be higher, the fast technology advances leading
to more accurate and less noise-sensitive sensors should soon
lead to an increase in precision and the value of biometrics
in this context. Also, we performed the data analysis for
this study retrospectively, but the sensors we used already
support real-time data transmission. Since the predictions
only require short time windows of a few biometric features,
almost instantaneous feedback should soon be possible.

While our smaller scale replication study provides evi-
dence that some of our initial findings can be replicated in
other settings, it did not confirm all of our findings. Even
though, the biometric classifier still always outperformed the
naive classifier, in two out of the three predictions, the bio-
metric classifier was outperformed by a classifier based on
code metrics. There are many potential reasons for this, e.g.
the development phase, the source code structure, the devel-



opers’ personalities, or even just the fact that the two studies
were performed on di↵erent continents. Especially given the
sensitivity of biometric sensors, further, longer term studies
are planned to investigate these aspects in more detail.

Tool Support. Our results open up new opportunities for
providing tool support. Since we are able to predict early
on—while developers are still writing code—whether a code
element contains a quality concern, we might be able to help
developers and prevent them from ever submitting code with
quality concerns to the repository. This could be done by
highlighting the a↵ected code element(s) to the developer
before s/he commits them and suggesting to spend addi-
tional time reviewing. Similarly, one can use this informa-
tion to suggest which parts of the code might benefit most
from a peer code review and prioritize them. Biometric data
could also be used to detect when a developer is experienc-
ing di�culties within the code and to provide interactive
and immediate feedback ranging from a recommendation to
talk to a co-worker to taking a break and continuing later
on.

While the study results show that it is possible to detect
when a developer experiences di�culties and determine the
corresponding code elements to be able to provide the dis-
cussed tool support, more research is needed to assess how to
best present this information to developers, especially with-
out creating frustration. Also, to provide this kind of tool
support the biometric data needs to be collected continu-
ously and transferred in real-time which poses challenges
due to sensor invasiveness and more as discussed below.

Challenges. Biometric sensors that have the capability to
collect the fine-grained data needed for the kind of study
presented here are still under development and pose several
challenges due to their usability, invasiveness and the data
sensitivity. For our study, we always made sure to have one
researcher on site to support participants and we chose sen-
sors that could be worn for several weeks without being too
invasive. With the recent advances in sensor technology, the
physical invasiveness will decrease even further in the near
future. At the same time, more privacy and ethical con-
cerns have to be addressed and investigated, especially since
these sensors can be used to collect huge amounts of very
sensitive, health-related data. For all these reasons, recruit-
ing study participants who are willing to wear such sensors
for weeks and agree to collect a lot of personal data was
also very tedious and time consuming, but in the near fu-
ture, people might almost automatically collect similar data
when wearing watches, such as the Apple Watch [4].

8. THREATS TO VALIDITY
There are several threats to the validity of our study.

External Validity. The generalizability of our findings is
limited in many ways, such as the limited number of partic-
ipants and companies in our study, the focus on Java code
and the use of the Eclipse IDE, or the limited number of
code elements developers work with and perceive as di�cult
or very di�cult. We tried to mitigate this risk by replicating
our initial study and also by collecting data from professional
developers in the field, working in di↵erent teams and even
companies, over a longer period of time and on industrial
project code. However, due the broad spectrum of software
development di↵ering in aspects, such as the development
process, the change task size, the programming languages,

the team size, and the development phase the team is in to
name just a few, further studies are needed to investigate
their implications on the use of biometrics.

Internal Validity. In one part of this study, we used bio-
metrics to predict the quality and di�culty of code elements.
A threat to the study is that the data captured with bio-
metric sensors might be a↵ected by other aspects than the
perceived di�culty, such as the study participants’ person-
ality traits or their general stress level. To mitigate this risk,
we used the fish tank videos to capture a baseline each day
and normalize the data with it.

Construct Validity. Using the interaction log as an ap-
proximation of the code elements a developer might cur-
rently be thinking about and using this to segment the bio-
metric data also poses a threat to the validity of our study.
However, given the current technologies, this was the best
approximation that was also feasible. Eye-tracking devices
might provide even more accurate and richer data on which
code elements a developer is looking at and thinking about
as another study has shown [35], but eye-tracking devices are
currently too expensive or invasive to be used in a long-term
field study of this size. Another threat to validity is the use
of developers’ self-reports, since they might not always ac-
curately represent their experienced di�culty. Finally, our
comparison to traditional metrics is limited due to the lack
of access to the necessary data and repositories, and future
studies are needed to also examine other metrics linked to
code quality, such as code churn between multiple versions.

9. CONCLUSION
There is a broad range of tools and research that focuses

on the identification of code quality concerns. Yet most of
these approaches only allow for a post-hoc assessment and
do not take individual di↵erences of developers into account,
such as di↵erent expertise or experience. In this paper, we
presented a first two-week field study on the use of biometric
sensors to identify code quality concerns while a developer
is working on the code. The results of our study are promis-
ing, suggesting that developers’ biometrics can indeed be
used to determine the perceived di�culty of code elements
and furthermore to identify places in the code that end up
with code quality concerns, such as bugs. A second smaller
replication study we conducted also confirmed some of our
findings on the automatic determination of di�cult parts
in the code. These results open up new opportunities to
support developers when they are experiencing di�culties
in the code and to fix quality concerns as early as possible,
even right when they are being created. With the recent ad-
vances in biometric sensing technologies, and their decrease
in invasiveness, we might soon be able to collect biometric
data on each developer just like we are now already able to
collect interaction data. However, this also opens up a dis-
cussion on privacy concerns and more research is needed to
investigate a feasible solution.

Acknowledgments
The authors would like to thank the study participants. This
work was funded in part by ABB and the SNF project “Es-
sentials (People-centric Essentials for Software Evolution)”
(project no. 200020 153129).



10. REFERENCES
[1] A. F. Ackerman, P. J. Fowler, and R. G. Ebenau.

Software inspections and the industrial production of
software. In Proc. of Symp. on Softw. Validation, 1984.

[2] E. H. Alikacem and H. Sahraoui. Generic metric
extraction framework. In Proc. of IWSM/MetriKon,
2006.

[3] L. Anthony, P. Carrington, P. Chu, C. Kidd, J. Lai,
and A. Sears. Gesture dynamics: Features sensitive to
task di�culty and correlated with physiological
sensors. Stress, 1418(360), 2011.

[4] http://www.apple.com/watch/.
[5] P. Ayres. Systematic mathematical errors and

cognitive load. In Contemporary Educational
Psychology, 2001.

[6] A. Bacchelli and C. Bird. Expectations, outcomes, and
challenges of modern code review. In Proc. of ICSE,
2013.

[7] R. Bednarik and M. Tukiainen. An eye-tracking
methodology for characterizing program
comprehension processes. In Proc. of ETRA, 2006.

[8] R. Bednarik, H. Vrzakova, and M. Hradis. What do
you want to do next: a novel approach for intent
prediction in gaze-based interaction. In Proc. of
ETRA, 2012.

[9] G. G. Berntson, J. T. J. Bigger, D. L. Eckberg,
P. Grossman, P. G. Kaufmann, M. Malik, H. N.
Nagaraja, S. W. Porges, J. P. Saul, P. H. Stone, and
M. W. van der Molen. Heart rate variability: origins,
methods, and interpretive caveats. Psychophysiology,
34(6):623–648, 1997.

[10] B. W. Boehm. Software engineering economics.
Prentice-Hall, 1981.

[11] B. W. Boehm, J. R. Brown, and M. Lipow.
Quantitative evaluation of software quality. In Proc. of
ICSE, 1976.

[12] A. Bosu, M. Greiler, and C. Bird. Characteristics of
useful code reviews: An empirical study at microsoft.
In Proc. of MSR, 2015.

[13] L. Breiman. Random forests. Machine Learning,
45(1):5–32, 2001.

[14] S. Butterworth. On the theory of filter amplifiers.
Wireless Engineer, 7:536–541, 1930.

[15] J. Carter and P. Dewan. Are you having di�culty? In
Proc. of CSCW, 2010.

[16] J. Cohen. A coe�cient of agreement for nominal
scales. Education and Psychological Measurement,
20:37–46, 1960.

[17] A. M. Connor. Mining software metrics for the jazz
repository. Journal of Systems and Software,
1(5):194–204, 2011.

[18] D. J. Cornforth, A. Koenig, R. Riener, K. August,
A. H. Khandoker, C. Karmakar, M. Palaniswami, and
H. F. Jelinek. The role of serious games in robot
exoskeleton-assisted rehabilitation of stroke patients.
In Serious Games Analytics: Methodologies for
Performance Measurement, Assessment, and
Improvement. Springer International Publisher, 2015.

[19] M. Crosby and J. Stelovsky. How do we read
algorithms? a case study. Computer, 23(1), 1990.

[20] W. Cunningham. The wycash portfolio management
system. OOPS Messenger, 4(2):29–30, 1993.

[21] B. Curtis, S. Sheppard, P. Milliman, M. Borst, and
T. Love. Measuring the psychological complexity of
software maintenance tasks with the Halstead and
McCabe metrics. Trans. on Software Engineering,
SE-5(2):96–104, 1979.

[22] R. G. Ebenau and S. H. Strauss. Software Inspection
Process. McGraw-Hill, Inc., 1994.

[23] K. O. Elish and M. O. Elish. Predicting defect-prone
software modules using support vector machines.
Journal of Systems and Software, 81(5):649–660, 2008.

[24] http://www.empatica.com.
[25] http://techcrunch.com/2011/08/07/

oh-what-noble-scribe-hath-penned-these-words/.
[26] S. H. Fairclough, L. Venables, and A. Tattersall. The

influence of task demand and learning on the
psychophysiological response. International Journal of
Psychophysiology, 56, 2005.

[27] J. Feigenspan, S. Apel, J. Liebig, and C. Kastner.
Exploring software measures to assess program
comprehension. In Proc. of ESEM, 2011.

[28] http://findbugs.sourceforge.net/.
[29] T. Fritz, A. Begel, S. C. Müller, S. Yigit-Elliot, and

M. Züger. Using psycho-physiological measures to
assess task di�culty in software development. In Proc.
of ICSE, 2014.

[30] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall.
Method-level bug prediction. In Proc. of ESEM, 2012.

[31] http://www.niallkennedy.com/blog/2006/11/
google-mondrian.html.

[32] R. Grady and T. Slack. Key lessons in achieving
widespread inspection use. Software, 11(4):46–57,
1994.

[33] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software: An update. SIGKDD Explorations
Newsletter, 11(1):10–18, 2009.

[34] Y. Ikutani and H. Uwano. Brain activity measurement
during program comprehension with NIRS. In Proc. of
SNPD, 2014.

[35] K. Kevic, B. M. Walters, T. R. Sha↵er, B. Sharif,
D. C. Shepherd, and T. Fritz. Tracing software
developers’ eyes and interactions for change tasks. In
Proc. of ESEC/FSE, 2015.

[36] A. J. Ko and B. A. Myers. A framework and
methodology for studying the causes of software errors
in programming systems. Journal of Visual Languages
& Computing, 16(1):41–84, 2005.

[37] N. A. Kuznetsov, K. D. Shockley, M. J. Richardson,
and M. A. Riley. E↵ect of precision aiming on
respiration and postural-respiratory synergy.
Neuroscience letters, 502(1):13–17, 2011.

[38] J. R. Landis and G. G. Koch. The measurement of
observer agreement for categorical data. Biometrics,
33(1):159–174, 1977.

[39] M. Lanza and R. Marinescu. Object-oriented Metrics
in Practice: Using Software Metrics to Characterize,
Evaluate, and Improve the Design of Object-Oriented
Systems. Springer, 2006.

[40] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In. Micro
interaction metrics for defect prediction. In Proc. of
ESEC/FSE, 2011.

http://www.apple.com/watch/
http://www.empatica.com
http://techcrunch.com/2011/08/07/oh-what-noble-scribe-hath-penned-these-words/
http://techcrunch.com/2011/08/07/oh-what-noble-scribe-hath-penned-these-words/
http://findbugs.sourceforge.net/
http://www.niallkennedy.com/blog/2006/11/google-mondrian.html
http://www.niallkennedy.com/blog/2006/11/google-mondrian.html


[41] M. M. Lehman. On understanding laws, evolution,
and conservation in the large-program life cycle.
Journal of Systems and Software, 1:213–221, 1980.

[42] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.
Benchmarking classification models for software defect
prediction: A proposed framework and novel findings.
Trans. on Software Engineering, 34(4):485–496, 2008.

[43] O. Maimon and L. Rokach, editors. Data Mining and
Knowledge Discovery Handbook. Springer, 2006.

[44] R. Marinescu. Detection strategies: Metrics-based
rules for detecting design flaws. In Proc. of ICSM,
2004.

[45] S. McConnell. Code complete. Pearson, 2004.
[46] N. Moha, Y. Guéhéneuc, L. Duchien, and A. Le Meur.

Decor: A method for the specification and detection of
code and design smells. Trans. on Software
Engineering, 36(1), 2010.

[47] R. Moser, W. Pedrycz, and G. Succi. Analysis of the
reliability of a subset of change metrics for defect
prediction. In Proc. of ESEM, 2008.

[48] S. C. Müller and T. Fritz. Stuck and frustrated or in
flow and happy: Sensing developers’ emotions and
progress. In Proc. of ICSE, 2015.

[49] M. Munro. Product metrics for automatic
identification of ”bad smell” design problems in java
source-code. In Proc. of METRICS, 2005.

[50] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. In Proc. of
ICSE, 2005.

[51] N. Nagappan, T. Ball, and A. Zeller. Mining metrics
to predict component failures. In Proc. of ICSE, 2006.

[52] N. Nagappan, B. Murphy, and V. Basili. The influence
of organizational structure on software quality: An
empirical case study. In Proc. of ICSE, 2008.

[53] T. Nakagawa, Y. Kamei, H. Uwano, A. Monden,
K. Matsumoto, and D. M. German. Quantifying
programmers’ mental workload during program
comprehension based on cerebral blood flow
measurement: A controlled experiment. In Companion
Proc. of ICSE, 2014.

[54] D. Novak, J. Ziherl, A. Olens̆ek, M. Milavec,
J. Podobnik, M. Mihelj, and M. Munih.
Psychophysiological response to robotic rehabilitation
tasks in stroke. Trans. on Neural Systems and
Rehabilitation Engineering, 18(4), 2010.

[55] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto,
A. De Lucia, and D. Poshyvanyk. Detecting bad
smells in source code using change history
information. In Proc. of ASE, 2013.

[56] C. Parnin. Subvocalization - toward hearing the inner
thoughts of developers. In Proc. of ICPC, 2011.

[57] https://pmd.github.io/.
[58] Y. Qi. Random forest for bioinformatics. In Ensemble

Machine Learning. Springer, 2012.
[59] S. Radevski, H. Hata, and K. Matsumoto. Real-time

monitoring of neural state in assessing and improving
software developers’ productivity. Proc. of CHASE,
2015.

[60] http://www.ifi.uzh.ch/seal/people/mueller/
PredictCodeQualityWithBiometrics.

[61] P. Richter, T. Wagner, R. Heger, and G. Weise.
Psychophysiological analysis of mental load during
driving on rural roads - a quasi-experimental field
study. Ergonomics, 41(5), 1998.

[62] P. C. Rigby, D. M. German, and M.-A. Storey. Open
source software peer review practices: A case study of
the apache server. In Proc. of ICSE, 2008.

[63] P. Rodeghero, C. McMillan, P. W. McBurney,
N. Bosch, and S. D’Mello. Improving automated
source code summarization via an eye-tracking study
of programmers. In Proc. of ICSE, 2014.

[64] S. Schmidth and H. Walach. Electrodermal activity
(EDA) - state-of-the-art measurements and techniques
for parapsychological purposes. Journal of
Parapsychology, 64(2), 2000.

[65] C. Setz, B. Arnrich, J. Schumm, R. L. Marca,
G. Tröster, and U. Ehlert. Discriminating stress from
cognitive load using a wearable eda device. Trans. on
Information Technology in Biomedicine, 14(2), 2010.

[66] J. Siegmund, C. Kästner, S. Apel, C. Parnin,
A. Bethmann, T. Leich, G. Saake, and A. Brechmann.
Understanding understanding source code with
functional magnetic resonance imaging. In Proc. of
ICSE, 2014.

[67] L. A. Sroufe and E. Waters. Heart rate as a
convergent measure in clinical and developmental
research. Merrill-Palmer Quarterly of Behavior and
Development, 23(1):3–27, 1977.

[68] J. Sweller. Cognitive load during problem solving:
E↵ects on learning. Cognitive Science, 12(2):257–285,
1988.

[69] J. Sweller, P. Ayres, and S. Kalyuga. Cognitive Load
Theory. Springer, 2011.

[70] E. van Emden and L. Moonen. Java quality assurance
by detecting code smells. In Proc. of WCRE, 2002.

[71] J. Veltman and A. W. Gaillard. Physiological
workload reactions to increasing levels of task
di�culty. Ergonomics, 41(5):656–669, 1998.

[72] G. F. Walter and S. W. Porges. Heart rate and
respiratory responses as a function of task di�culty:
The use of discriminant analysis in the selection of
psychologically sensitive physiological responses.
Psychophysiology, 13(6), 1976.

[73] R. A. Weast and N. G. Neiman. The e↵ect of cognitive
load and meaning on selective attention. In Annual
Meeting of the Cognitive Science Society, 2010.

[74] E. J. Weyuker, T. J. Ostrand, and R. M. Bell. Do too
many cooks spoil the broth? using the number of
developers to enhance defect prediction models.
Empirical Software Engineering, 13(5):539–559, 2008.

[75] G. F. Wilson. An analysis of mental workload in pilots
during flight using multiple psychphysiological
measures. International Journal of Aviation
Psychology, 12(1), 2002.

[76] H. Zhang, X. Zhang, and M. Gu. Predicting defective
software components from code complexity measures.
In Proc. of PRDC, 2007.

[77] T. Zimmermann, R. Premraj, and A. Zeller.
Predicting defects for eclipse. In Proc. of PROMISE,
2007.

https://pmd.github.io/
http://www.ifi.uzh.ch/seal/people/mueller/PredictCodeQualityWithBiometrics
http://www.ifi.uzh.ch/seal/people/mueller/PredictCodeQualityWithBiometrics

