
Department of Informatics

Fabian Weiersmueller

Automated Order
Retrieval Of Ultra Thin

Brain Sections

Bachelor Thesis

Robotics and Perception Group
University of Zurich

Supervision

Thomas Templier
Prof. Dr. Richard Hahnloser
Prof. Dr. Davide Scaramuzza

December 2015

Contents

Abstract iii

Nomenclature v

1 Introduction 1
1.1 General overview . 1
1.2 Image Similarity Principle . 2
1.3 Order Retrieval . 5
1.4 Related Work . 5
1.5 Problems Of Size and Alignment 5

1.5.1 Size . 6
1.5.2 Alignment . 6

1.6 Goals Of This Thesis . 6
1.6.1 NCC or SIFT . 6
1.6.2 Minimal Resolution . 6
1.6.3 The Templier220 Dataset 8
1.6.4 Computational Complexity 8
1.6.5 Tools . 8

2 Methods 9
2.1 Data . 9

2.1.1 The Open Connectome Project 9
2.1.2 Templier220 . 10

2.2 The FIJI Environment . 10
2.3 Transformations . 10
2.4 Image Similarity . 11

2.4.1 SIFT . 11
2.4.2 Normalized Cross Correlation 12
2.4.3 Hierarchical Image Similarity 12

Pipeline Summary . 13
Step One: Downsampling 13
Step Two: Computing MDE 13
Step Three: Aligning . 13
Step Four: Take Subpatches 14
Step Five: Further Alignment 14
Step Six: Compute NCC 14
Alternatives . 15

2.5 Path Optimization . 15

i

2.5.1 Brute Force . 15
2.5.2 Greedy Approach . 16
2.5.3 openOPT . 16
2.5.4 Concorde . 16
2.5.5 Defining An Error Measurement 16

3 Results 18
3.1 SIFT or NCC . 18

3.1.1 Structure of biomedical image data 18
3.1.2 Computational overhead 19
3.1.3 Aligning Images . 19
3.1.4 Conclusion . 19

3.2 Proof of Concept . 20
3.2.1 Runtime . 20
3.2.2 Smallest Possible Patch Size 21
3.2.3 Path Optimization . 22

Greedy Algorithm . 22
openOPT or Concorde . 23

3.3 Testing the Pipeline . 24
3.3.1 Test on Bock11 . 24
3.3.2 SOR of the Templier220 dataset 25

4 Discussion 27
4.1 Conclusion . 27
4.2 Future Work . 28
.1 Concorde Platform Dependancies 29
.2 Fate of openOPT . 29

Abstract

Numerous scientific fields in neuroscience rely on high resolution maps of brain
regions. One hopes to understand the basic principles of memory, learning and
many diseases of the brain. The traditional way to create such brain maps
consists of producing hundreds of consecutive, ultra thin sections of the given
region of interest. The Hahnloser Group at the Institute of Neuroinformatics
is currently developing a new method to collect these ultra thin brain sections
in a fully automated manner. This new method has many advantages over
traditional methods, however, it comes at a cost: we are losing the information
about the sections’ position inside the stack.

The purpose of this thesis is to present the pipeline we developed to retrieve
the sections’ true order. This retrieval is not as straight forward as it seems,
since one has to deal with many associated challenges, such as missing image
alignment and file sizes up to several gigabyte per section image. The pipeline
we developed is able to deal with all those challenges, using various methods of
image processing such as SIFT features, image transformations and normalized
cross correlation. The first big goal is to compute the similarities between all
pairs of sections. Once this list is available, one has to find the best possible
way to stack the sections. This is done by solving a travelling salesman problem
instance.

Additionally to just the presentation of the pipeline, this thesis explains the ob-
servations, experiments and decisions that led to this pipeline and the methods
and algorithms used in it. Finally, the paper documents our successful attempt
of retrieving the order of our own dataset.

iii

Nomenclature

Acronyms and Abbreviations

EM Electron Microscopy

LM Light Microscopy

MDE Mean Displacement Error

NCC Normalized Cross Correlation

SIFT Scale Invariant Feature Transform

SOR Section Order Retrieval

TSP Travelling Salesman Problem

v

Chapter 1

Introduction

1.1 General overview

Connectomics is an emerging discipline of neuroscience that aims to reveal and
decipher the wiring diagrams formed by interconnected brain cells. It carries
the hope of understanding the building units of memory, learning processes,
diseases of the brain and might eventually help the development of treatments
for diseased brains. A main prerequisite is the creation of high resolution maps
of brain regions, and we concentrate on a part of this process in this thesis.

A current approach to produce high resolution imagery of brain tissue con-
sists of producing hundreds of consecutive ultra thin sections of a given region
of interest. This is called serial section microscopy. Typically, these sections
have a thickness between 20 and 50 nm. After collection of the sections on an
appropriate substrate, the sections are scanned using high resolution imaging
methods such as high resolution light microscopy (LM) or electron microscopy
(EM). Further, related neural structures have to be identified on each section,
so that one can track objects over multiple sections. In the end, the sections
can be put back in order, and all structures in the examined block of brain can
be reconstructed, providing finally a wiring diagram of the interconnected brain
cells.

The Hahnloser laboratory is currently developing a method to cut and collect
these brain sections in a fully automated fashion that circumvents many draw-
backs from existing methods. It comes however at the cost that it is not possible
to keep track of the order of the sections during the section collecting process.
The goal of this Bachelor’s Thesis is to retrieve the exact order of the sections
based on information contained in their imagery using methods from computer
sciences and image processing.

Our starting point is the end product of the section collection and imaging
pipeline: high resolution imagery of each of the collected sections without any
information about the order of the sections. As a rough estimate, the image size
of one section is about 35’000 x 35’000 pixels (35′0002 px), that is, about 1 GB
on disk. They can, however, reach up to more than 100′0002 px and sizes up to

1

2 1.2. Image Similarity Principle

more than 30 GB. Each section is made of a mosaic, built up from many smaller
patches that are stitched together to form a complete section. Figure 1.1 shows
such an image and highlights the subpatches.

1.2 Image Similarity Principle

Three options were considered in the laboratory to retrieve the order of the
sections that is lost during the collection process:

• Video tracking of the sections during the entire collection process from the
sectioning of each section until it is placed onto its definitive position on
the substrate

• Incorporation of marks with a laser into the sectioned block of tissue

• Order retrieval based on acquired imagery of the sections

In this thesis we have explored the third item. We want to find the exact position
of a section in a stack of images solely based on its appearance and that of all
other sections.

Our starting point is the following simple observation: close neighbouring sec-
tions look similar while distant sections look dissimilar. Is this observation true
for all sections, so that we can use it to retrieve their order?

For a first assessment of the problem we computed an image similarity measure
between pairs of sections based on normalized cross correlation (NCC), which is
later described in detail in the Methods 2 section. A convenient way to notate
this is in the form of a matrix. We define the similarity matrix M to be the
matrix of all similarity values between pairs of sections or images sa,b, where a
and b are the indices of two sections with 0 ≤ a < m, 0 ≤ b < m and m is the
number of sections.

M =

 sm,0

sm-1,0

...

s1,0

1

sm,1

sm-1,1

...

1

s0,1

· · ·

· · ·

. . .

· · ·

· · ·

sm,m-1

1

...

s1,m-1

s0,m-1

1

sm-1,m

...

s1,m

s0,m

(1.1)

The matrix has a number of interesting properties. First, notice that the main
diagonal entries refer to the similarity value of a section to itself. Second, it
is useful to normalize the similarity values to lie between 0 and 1. In such a
case, the similarity of a section to itself is by definition 1. Third, note that
M is symmetrical, since the similarity of sections A and B is the same as the
similarity of B and A. Last, we would like to point out that all similarity values
of neighbouring sections lie on the first lower and upper subdiagonal of M.

Chapter 1. Introduction 3

(a)

(b)

Figure 1.1: (a) The image of one section from our own dataset 2.1.2. Highlighted
in different colors are the individual tiles that form the section. Each tile has a
size of 8′5002 px, leading to a section image of around 32′0002 px. The white
structures are blood vessels, the lighter gray ones are cell bodies of neurons.
The space between is filled with various other cell types, cell organelles, as well
as axons. (b) A subpatch of 15002 px. It shows the tip of a blood vessel and
various different cell types and cell organelles at high resolution. Its location on
image (a) is indicated by the small, black square.

4 1.2. Image Similarity Principle

0 20 40 60 80
0

20

40

60

80

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

0.60

Figure 1.2: This figure shows the similarity matrix of 100 sections. The values
were obtained using normalized cross correlation on subpatches of 15002 px size.
The sections came from the Kasthuri et al. dataset 2.1.1. The high values along
the diagonal imply high similarity among neighbouring sections, giving us a
reasonable chance of identifying their order with high accuracy.

We empirically measured the similarity distribution of 1000 sections from which
we already knew the correct order. Of special interest were the similarity values
of neighbouring sections, e.g the values of the first upper diagonal. Figure 1.2
presents the results for a subset of 100 consecutive sections, since all properties
can be seen and explained better on a smaller subset. The similarity values
of most of the section pairs lie between 0.05 and 0.1. Only the values close to
the main diagonal are significantly higher, lying between 0.25 and 0.5. This is
true on average up to a 4-neighbourhood, meaning sections that are at most 4
sections away from each other. This observation is the foundation of the ap-
proach presented in this thesis. It confirms the assumption that consecutive
sections are more similar than non-consecutive ones, and that this can be mea-
sured. The purpose of this thesis is to present different methods that all use
image similarities to accomplish the goal of high accuracy section order retrieval
(SOR).

Chapter 1. Introduction 5

1.3 Order Retrieval

Once a similarity matrix is created, we are faced with the problem of finding
the best possible way to stack the sections. A natural way of thinking about the
problem is in terms of ’distances’. In this interpretation, two similar sections
are ”close” to each other, while dissimilar sections are ”far” away from each
other. The question of ”what is the correct order of those sections ?” therefore
becomes ”what is the shortest way to connect those sections that maximizes the
sum of the similarities of consecutive sections ?”. This is the famous problem
of theoretical computer science called the Travelling Salesman Problem (TSP):
Given a number cities, what is the shortest path to visit all cities exactly once?
In our case, the ”cities” are the sections, and their distances are the similarities
between them. The TSP is a well studied problem that is difficult to solve, and
to only cite one reference, Papadimitriou et al. [20] proved the NP-completeness
of this problem.

For an introduction in the Travelling Salesman Problem, as well as its numerous
solution approaches, we point the reader to the overview of Laporte et al. [18]
and Hornik et al. [14].

There are many methods available to solve the problem, exact and approxima-
tive. We tested a number of solution approaches, and our results are presented
in Section 3.2.3.

1.4 Related Work

Little work has been done so far for the retrieval of the order of consecutive
sections, as all serial section microscopy techniques can preserve the order of
sections during section collection and imaging. The closest contribution comes
from the work of Hanslovsky et al. [13]. In their paper, the authors deal with
the problem of automatically estimating the thickness of sections. Acquiring
ultra thin sections is a challenging task, and the true physical thickness of
a section may deviate greatly from the value set on the sectioning machine.
Hanslovsky et al. used NCC as a measurement of section similarity and devel-
oped a method to simultaneously estimate the thickness of a section as well as
dealing with image artifacts. They were also able to recognize single missing
sections as well as correcting swaps in the sections’ order. These swaps, how-
ever, were only locally in a 4-neighbourhood. Our method is improving this
greatly, being able to fully retrieve the section order over hundreds of sections,
ignoring section thickness variations in the process.

1.5 Problems Of Size and Alignment

In addition to the central problem of missing order information, we face two
problems that are less obvious, but nonetheless crucial for the SOR to succeed.

6 1.6. Goals Of This Thesis

1.5.1 Size

Naturally, we acquire brain imagery in regions encompassing meaningful neu-
ronal circuitries. At the same time, image resolution should also be as high
as possible, so that synapses and other subcellular structures are visible. This
comes at the cost of growing data sizes, up to a point where even a single mosaic
subimage is too big to be processed in one pass. The method presented in this
thesis needs to take this into account, since we can never process the whole
section image in its full size at full resolution. We can, however, reduce one of
those characteristics either by downsampling or by taking subpatches. Both is
done at different stages of the final method we present.

1.5.2 Alignment

Image alignment describes the process of matching corresponding regions on dif-
ferent sections, and placing them exactly above each other. Examples of aligned
and non-aligned images are given in Figure 1.3 to give a better impression.

Alignment is required before one can take any subpatches from any two sections,
since we have to guarantee that the same features are visible on both subpatches.
Additionally, the section images need to be aligned before one can proceed with
other processing steps, such as creating a 3D model of the cellular structures.
Again, the sheer size of the sections makes this a challenging task, as we need
to find a way to align the images without ever seeing the whole section in full
resolution.

1.6 Goals Of This Thesis

Before starting this thesis, we had a lot of questions that we hoped to answer
in the course of this work. We primarily worked with three datasets, Bock11,
Kasthuri11 and Templier220, shown in detail in Section 2.1. Bock and Kasthuri
are pre-aligned section stacks from the openconnectome project [1] that are both
freely available. Templier220 is our own dataset, which is not yet aligned. Our
questions can be grouped the following way:

1.6.1 NCC or SIFT

• Should we use an intensity based similarity measure such as NCC 2.4.2 or
a landmark based such as scale invariant feature transforms (SIFT) 2.4.1?

• What are the strengths and limitations of both methods?

1.6.2 Minimal Resolution

• What is the lowest possible resolution to which we can downsample the
Bock11 and Kasthuri11 datasets and still be able to correctly retrieve their
order?

Chapter 1. Introduction 7

(a) Layer 1, slave, not aligned. (b) Layer 2, master.

(c) Layer 1, slave, aligned to the master. (d) Layer 2, master.

Figure 1.3: This figure shows the effects of image alignment. The images (a) and
(b) show two sections before the alignment, (c) and (d) show the same sections
after the alignment. To match corresponding regions on two images, one has to
change only one of those images. We call the image that is changed ’slave’ and
the one that stays the same ’master’. Therefore, images (b) and (d) are exactly
the same. The blue squares have a real size of 25002 px and are all at the exact
same position on each image, always at pixel coordinates (14′900, 18′940). Note
further that without alignment, two subpatches at the same position on two
images can contain completely different parts of the images. This effect gets
worse the smaller the subpatches get.

8 1.6. Goals Of This Thesis

• Is the resolution of LM data high enough for SOR, or do we need EM
images?

1.6.3 The Templier220 Dataset

• Is the image quality of Templier220 sufficient to guarantee successful SOR?

• How should a pipeline look that is able to perform SOR on the Templier220
dataset?

• What methods should be used?

1.6.4 Computational Complexity

• How much time do we need to solve 1000 sections if they are already
aligned?

• Can we do SOR of 1000 sections on a standard desktop PC, or do we need
high end machines? Do we even need a cluster?

• How long does it take to solve SOR for non-aligned images?

• How long does it take to find the optimal path among all sections?

1.6.5 Tools

• What tools should we use to work with image data? Is there one tool that
fulfils all our needs?

• What tools are available to find the optimal path among all sections?

• Do we need to implement a graph optimization algorithm ourselves?

• Are all those tools freely available?

Chapter 2

Methods

This chapter should present to the reader all methods we either used in our final
pipeline, or that were tested but ultimately dropped. Furthermore, it documents
the environment used to run all code and the origin of the image data used.

2.1 Data

An important aspect of this thesis is the data we are working with. Since our
own data was unordered, we were dependent on already aligned sections on
which we could test our methods and hypotheses.

2.1.1 The Open Connectome Project

One major source of data was the Open Connectome Project [1]. The website
contains section data from various animal species and in various degrees of
resolution. Additionally, the data can be downloaded using a Python API,
which makes working with it convenient.

(a) Bock11. (b) Kasthuri11. (c) Templier220.

Figure 2.1: Shown are examples of all 3 datasets we used. All subpatches shown
here have the same size of 40002 px.

9

10 2.2. The FIJI Environment

The benefit of using this data is that the images are already perfectly aligned
and the order of all sections is known. From all sets available, we used the ones
from Kasthuri et al. [15] and from Bock et al. [4]. For both, Figure 2.1 gives
an example of how the data look. The section images from Bock et al. have a
maximum size of 40′000 x 50′000 px. However, a lot of sections do not show
the maximal size and some sections are missing all together. We were able to
find 50 consecutive sections that were without major errors and exhibiting the
full size to test the effects of downsampling on image similarities. The images
from Kasthuri compensated what Bock was missing: The data are clean and
complete over all 1850 sections. However, the sections only have a size of around
50002 px.

2.1.2 Templier220

Apart from the data from Open Connectome, we gathered section images with
the new method developed in the lab. A subpatch can be seen in Figure 2.1.
The whole images have dimensions of around 32′0002px. They were therefore
too big to be processed in one run. Instead, each section image was kept in
a trakEM 2.2 project as a composition of separate tiles. The single tiles were
stitched together using affine transformations.

2.2 The FIJI Environment

In this thesis, we had an enormous amount of image tasks to solve. This includes
image loading, alignment, geometric transformations of images, edge enhance-
ments, the computation of feature points or NCC. This is only possible with a
sophisticated environment that is specialised on such tasks and that lets its user
solve them quickly. For this thesis, we used the imageJ [26] distribution FIJI [25].
ImageJ is an open source image processing program for multidimensional image
data. Its primary focus lies on scientific image data. The distribution FIJI offers
an advanced API for different high level languages, as well as many user written
plugins. The plugin we used the most was trakEM [5] along with the excellent
libraries for image similarity and transformations [24, 27, 23, 22]. Together,
these software packages allowed for convenient image handling, stacking, and
alignment, and made the development of this thesis possible in the first place.

2.3 Transformations

Image transformations are a set of rules to transform one image into another.
There are different types of transformations, depending on the properties that
are changed and the ones that are kept intact. Euclidean transformations are a
combination of translations and rotations, angles and distances between points
are preserved. The affine transformations additionally include scaling and shear
mapping. We expect the reader to already know the basics and since we will
not go above those in this thesis, we omit further explanations. An in-depths
introduction of all relevant concepts can be found in Gonzalez [10].

Chapter 2. Methods 11

We use image transformations for different purposes during our pipeline. First,
the stitching of the mosaic tiles is realized using affine transformations for each
tile. Second, we use euclidean transformations for the image alignment. Third,
as part of the mean displacement error measurement, which is explained in
Section 2.4.1.

2.4 Image Similarity

As already discussed, we were repeatedly confronted with the task of defining
image similarities. Furthermore, different stages in our pipeline required dif-
ferent methods to define such similarities. The following sections present the
different methods used in our pipeline.

2.4.1 SIFT

Scale Invariant Feature Transform (SIFT) is a method to detect and match local
features in images. It was first described by Lowe, D. in 1999 [19]. The algorithm
has since proved itself to be one of the best feature detection algorithms, used for
many different tasks such as object recognition, image stitching, video tracking
or face recognition.

We used SIFT features to assign a dissimilarity value for any pair of section
images. Given two section images A and B, we calculate the mean displacement
error of SIFT features (MDE) as follows:

(I) Calculate SIFT feature points for A and B. We call those sets of feature
points FA and FB .

(II) Based on the feature points, calculate a rigid transformation TrA,B to
transform FA into FB .

(III) If a model is found: filter the sets A and B to identify corresponding points
and remove outliers using RANSAC [8]. This leads to the modified feature
sets F ′A and F ′B that contain only corresponding points. If no model is
found, we assume the images A and B to be dissimilar, and set MDE to
a fixed, high value to reflect this assumption.

(IV) Apply TrA,B to F ′A and calculate for each point the euclidean distance
to its corresponding point in F ′B . Call the set of all distances dA,B

(V) Take the arithmetic mean over all distances dA,B . Call this value MDE.

In our code, we used the FIJI implementation of SIFT, which was written by
Saalfeld et al. and is freely available on GitHub [24]. We used SIFT mostly on
downsampled images. The reasons for this are explained in Chapter 3.1.

We needed to redefine the parameters for different downsampling factors, dif-
ferent patch sizes as well as different datasets. As a general rule of thumb, one
needs several hundred feature points on both images before trying to find a
transformation, and there should remain around 50 feature points in the final
sets F ′A and F ′B after removing outlieres with RANSAC. If there are less features
preserved, the estimated transformation gets less accurate. In the worst case,
one might even miss a possible transformation.

12 2.4. Image Similarity

Notice that MDE is a dissimilarity measurement: two sections are said to be
similar if the MDE is small, and dissimilar if the value is large. Similarity and
dissimilarity can be converted into each other by using a monotonous decreasing
function. For our experiments, we used the function f = 1

x .

The idea behind the usage of MDE is that the point sets of two consecutive
images should be similar, and we should therefore be able to transform the two
sets into each other. On the other hand, if the sections are too dissimilar, we
expect the SIFT points to be distributed dissimilarly as well. As a result, no
model should be found, or RANSAC should be unable to find any corresponding
points.

2.4.2 Normalized Cross Correlation

Normalized Cross Correlation (NCC) is a well known algorithm in computer
science that is used for image similarity estimations for many years. We will
not explain it here, but rather point the interested reader to Gonzalez [9], which
explains NCC in a detailed manner.

NCC is a direct and convenient way to measure image similarity. We used it on
high resolution images up to a size of 20002 px. As with SIFT, we used the FIJI
implementation of NCC. It was developed by Schindelin et al. and is available
on GitHub [27].

2.4.3 Hierarchical Image Similarity

Both methods presented so far, MDE of SIFT features as well as NCC are unable
to compute an accurate enough similarity measurement for big images such as
the section images from our Templier220 dataset. The images are too big to
just compute NCC on them, and need to be downsampled to such an extent to
compute SIFT features that too much information is lost to accurately compute
similarities. This section presents the final workflow we developed in this thesis
to overcome those problems. It is designed to be able to create the similarity
matrix for the Templier220 dataset and other large-scale, non-aligned datasets.
If the section images are already aligned, or if they are small enough to be
processed as a whole, only a subsection of those steps needs to be done.

Chapter 2. Methods 13

Pipeline Summary

We can summarize our pipeline in the following manner:

(I) Downsample images
(II) Compute MDE on each pair of downsampled images

(III) Use the found transformations to align possible neighbours
at high resolution

(IV) Take high resolution subpatches of all possible neighbours
(V) If needed, align high resolution subpatches further

(VI) Compute similarities of high resolution subpatches with NCC
(VII) Solve the TSP on the obtained similarity matrix

We will now explain each step in detail, except for the last one, which gets
covered in the separate Section 2.5.

Step One: Downsampling

As already discussed, the starting point of this thesis are large images, built
up from smaller subimages. The basic idea is to downsample the images and
first create a rough estimate of possible neighbouring candidates, and then to
examine those candidates closer to find the true consecutive sections among
them. To distinguish the original images and the downsampled ones, we will
from now on call them high resolution images and low resolution images.

Step Two: Computing MDE

Once the images are downsampled, we compute the MDE 2.4.1 for all pairs of
low resolution images. This leaves us, for each section, with a list of candidates
for neighbouring sections, as well as euclidean transformations for all those
candidates.

At this point, we have to decide whether we want to compute a similarity or
a dissimilarity matrix. We opt for the former and therefore set all values of
image pairs for which we could not find a transformation to a fixed value close
to zero. Notice that we should avoid setting the similarity to exactly zero since
we might want to transform it to a dissimilarity value at one point using the
function f = 1

x , as explained in Section 2.4.1.

Step Three: Aligning

To closer examine possible neighbours, we have to go back to the high resolu-
tion images, taking subpatches and compare them. This is harder than it first
seems, since we are still dealing with non-aligned images, as already explained in
Section 1.5.2. We can, however, use the transformations we calculated for MDE
and apply it to the high resolution images. Since these transformations were
calculated based on SIFT features points, which themselves were based only on
downsampled versions of the section images, we do not expect the alignment

14 2.4. Image Similarity

to be perfect. However, this first alignment is good enough to take subpatches
that roughly show the same image contents.

Step Four: Take Subpatches

After aligning all possible neighbours, we are able to take high resolution sub-
patches. One important thing to note is the way the alignment and the followed
collection of subpatches should be done. Consider a given section image A. Sup-
pose further that, using MDE, we found three possible neighbours to A which we
call B, C and D. Additionally, we found the euclidean transformations TrA,B ,
TrA,C and TrA,D. We have to make sure to always transform B, C and D to A,
but not A to the other images. This way, we avoid taking unnecessarily many
subpatches since we only need one patch from A. At the end, we are left with
just four subpatches instead of six. We called this the Master-Slave system.
When applied to the whole image stack, it means that one section image should
never be transformed, but always be used as master. On the other hand, one
section image will always be a slave, so different high resolution subpatches will
be taken for this section every time it is a neighbouring candidate. All other
section images are somewhere between those two extremes.

Step Five: Further Alignment

As already mentioned in step 2.4.3, we cannot expect the alignment to be per-
fect, since we used highly downsampled images as source. It therefore might be
needed to further align the high resolution subpatches we took in the previous
step. Whether this is indeed needed is hard to predict and depends on the
exact NCC implementation one uses as well as the amount the original image
had to be downsampled to be processed. The subpatches should probably be
small enough to use traditional alignment methods. If they are still too big, a
repetition of the previous steps of downsampling the subpatches, MDE calcula-
tion, applying the transformations and finally taking subsubpatches should be
enough.

Step Six: Compute NCC

Once the high resolution subpatches are aligned enough, we can now finally
compare them to get an accurate estimation of section similarities. This is
done using NCC for reasons explained in Chapter 3.1. This leaves us with high
accuracy similarity values for each pair of possible neighbours.

At this point we have computed the whole similarity matrix. We either set the
similarity values between two images to a value close to zero if no transformation
was found in step 2.4.3, or we use the NCC similarity. We can now proceed with
SOR using graph optimization algorithms.

Chapter 2. Methods 15

Alternatives

As described, we need image comparisons and similarity calculations at two
points during our pipeline: to get a rough overview over possible neighbours,
and then again to get a final similarity matrix from high resolution subpatches.

It seems tempting to avoid the second part and just try to find an accu-
rate enough similarity matrix in one step, just using the downsampled images.
Maybe one can choose the downsampling factor, the SIFT parameters, and the
parameters of how to choose corresponding feature points on the two images in
such a fashion that a perfect order retrieval is possible. However, we were not
able to find such a combination of parameters, and all results we got were so
far away from the right solution that we abandoned this idea.

2.5 Path Optimization

Once the similarity matrix is computed, we can solve for the optimal path
that maximizes similarity between consecutive sections. As already introduced
in Section 1.3, the similarities between section images can be interpreted as
distances between sections. This allows us to state the problem of SOR as a
graph optimization problem, in which finding the correct order of all sections is
equivalent to finding the shortest path in a weighted graph.

One point to note is the difference between open and closed TSP. In the classical
TSP, the salesman has to return to the city in which his tour started. This is
called the closed TSP. Returning to the initial city is not needed for our sections:
the last section of our stack has nothing to do with the first section, and therefore
should not be similar to it or be connected with it in any way. This is called open
TSP, the salesman does not return to its starting point. It is easy to transform
any closed TSP into an open one by introducing a dummy point which has a
distance of zero to any other node. The dummy point can be visited at any
point of the tour, and does not increase the tour length. Solving the closed TSP
on the now N+1 points, one being a dummy point, also gives the solution to the
open TSP on N points. One can just remove the dummy point from the final
tour once the optimal tour over all N + 1 points is calculated. It is therefore
sufficient to just consider closed TSP in the following sections.

2.5.1 Brute Force

The naive idea is to just try all possible paths. Unfortunately, the salesman
can, in each step, choose from all the cities that he did not already visit, leading
to (N − 1)! possible paths for N cities. As explained earlier 1.1, our similarity
values are symmetrical. Therefore, it does not matter whether a path is taken

forwards or backwards. This leads to the total number of (N−1)!
2 possible paths.

But even with this restriction, the number of possible solutions explodes for
even small N : For only 15 sections, we would have to compute 43′589′145′600
different paths. This method is therefore not an option for several thousands of
sections.

16 2.5. Path Optimization

2.5.2 Greedy Approach

The idea behind this algorithm is simple: randomly choose a starting point
from all sections. Then always go to the nearest section that was not visited yet
until all sections were visited. The approach is computationally fast and easy
to implement, but as shown by Gutin et al. [12], it can also lead to the worst
possible path. Which outcome one gets is completely dependant on the structure
of the data one runs the algorithm on, as well as which starting point was
selected at the beginning. For our results with the method, see Chapter 3.2.3.

2.5.3 openOPT

OpenOPT is an open source solver for various optimization problems, among
which is also a TSP solver. It was developed by Dmitrey Kroshko in Python
and is available on the openOPT website [16]. Since the rest of our code was
written in Python as well, openOPT was an interesting possible choice to keep
the number of different required software packages small.

2.5.4 Concorde

Concorde is a highly tuned software package to solve TSP. Developed around
the year 2000, it is written in ANSI C and available as source code as well
as pre-compiled on the Concorde website [3]. Despite its age, it is one of the
best solvers available [14]. Different TSP instances can be fed to the Concorde
solver via a special data format, called TSPLIB [21]. This file can easily be
created once the similarity matrix is computed, since it is just a container for
the distance values.

2.5.5 Defining An Error Measurement

When testing the methods of image similarity, followed by the solution of the
problem by a TSP solver, we were confronted with the problem of quantitatively
measuring the quality of the found order. We can identify the following outcomes
for our attempt to retrieve the order of the sections:

• The retrieval is perfect.

• There are single swaps either in-place or over bigger distances. The ma-
jority is ordered correctly.

• The sections are unordered. The retrieval failed.

Below are some examples of such errors. The numbers in the brackets represent
the true positions of the sections inside the stack.

Chapter 2. Methods 17

(I) [0, 1, 2, 3, 4, 5, 6] The retrieval is perfect.
(II) [0, 1, 3, 2, 4, 5, 6] There is a single in-place swap of sections 2 and

3.
(III) [0, 1, 5, 4, 3, 2, 6] There is a single swap of sections 2 and 5. It is

important to note that the reversal of the order
is not an actual error. The sections 3 and 4 are
ordered correctly since both their neighbours are
correct.

(IV) [0, 3, 5, 4, 2, 1, 6] The sections are unordered. SOR failed.

An error measurement should address some key points. First, if the order re-
trieval is perfect, the error should be zero. Second, the error should be higher for
example (III) than for example (II) for multiple reasons. First of all, sections 1,2,
and 3 might actually look similar, and it really might be a close decision where
to put which. This should not be the case for sections further apart. Therefore,
we should punish such errors harder than simple in-place swaps. Second, for
the later use of our section stack data in research, errors of type (III) are more
severe than the ones from example (II). The SOR in example (IV) is completely
worthless and should not occur under any circumstances. If it does, the error
should be higher than for any remotely correct solution.

As a first step towards an error measurement, let us define the distance d be-
tween two sections i and k as the distance they are away from each other in the
true, ordered stack:

di,k := |pi − pk| − 1 (2.1)

pi and pk being the position indices of sections i and k in the true image stack.
Now we can define the retrieval error E of an retrieved image stack as the sum
of all distances between all N consecutive sections:

E :=

N−1∑
i=0

di,i+1 (2.2)

where i is the new position of a section in the retrieved image stack. For the
four examples given above, this leads to errors of 0, 2, 6 and 8, respectively,
which matches nicely all the requirements we formulated.

Chapter 3

Results

From the many questions we had at the beginning of this thesis 1.6, we were
able to answer most in a satisfactory manner, and we want to present those
answers in the following chapter.

3.1 SIFT or NCC

In principle, it is possible to create the similarity matrix with either NCC or
MDE of SIFT features. We found for both methods key advantages, but also
disadvantages. They are summarized in the following points.

3.1.1 Structure of biomedical image data

The data we are dealing with contains a lot of background noise in the form
of subcellular neural structures. The big challenge however is that we need
exactly those fine changes in the background to correctly retrieve the order of
all sections, since big, global structures such as blood vessels change too slowly
from one section to the next. SIFT was not developed for this purpose, but
rather to be robust against noise and to recognise global structures. The fact
that the images first get blurred before features are computed is another hint
that SIFT is not intended to characterize fine details on images. This leads
to SIFT having problems giving a fine enough similarity measurement for close
sections, as shown in Figure 3.1. It shows two similarity distributions from two
similarity matrices, both derived from the Kasthuri dataset. For one, MDE was
used, for the other NCC. There is a clear gap between the values of the first
subdiagonal and the ones from the second when using NCC, indicating that
the two cases can be distinguished clearly. This gap is not present when using
MDE, indicating that the method lacks capability to distinguish between close
sections. In the end, this suggests to not use MDE for the final creation of the
similarity matrix, but to rather rely on NCC.

18

Chapter 3. Results 19

(a) Distribution of MDE using SIFT. (b) Distribution of NCC.

Figure 3.1: These are the similarity distributions of two full similarity matrices
of 1000 sections with a size of 20002 px. (a) was created using SIFT features
to compute MDE, for (b), NCC was used. One sees the difficulty of MDE to
detect the exact differences between close sections. This is done a lot better
by NCC, shown by the clear distinction between the values of the first upper
diagonal and the ones from the second.

3.1.2 Computational overhead

NCC is a simple and well defined method that can be used with a few lines of
code. MDE, on the other hand, requires to compute SIFT features first, which
themselves have a high number of parameters that need to be fine tuned de-
pending on the data one is working on. Further, the right type of transformation
has to be determined, and RANSAC needs to find enough inliers to produce a
meaningful mean value afterwards. All those parameters are unknown a priori
and depend on the exact data one works with, and wrongly assigned values
often lead to diffuse errors whose origin is hard to localize. This does not mean
that MDE is a bad measurement value, but its parameter tuning should not be
neglected. This suggests that one uses NCC whenever possible.

3.1.3 Aligning Images

The biggest drawback of NCC is that it requires images that are already aligned.
If this is not the case, we need to use MDE. Even more, MDE serves double duty
in that it not only identifies possible neighbours based on global appearance,
but also automatically delivers a transformation to align those candidates.

3.1.4 Conclusion

To summarize Sections 3.1.1, 3.1.2 and 3.1.3, we can say that we should use
NCC whenever possible. However, as soon as we are confronted with non-
aligned images, we need to use MDE, since it is our only tool to handle alignment
when we are simultaneously confronted with missing information about an image
stack’s true ordering.

20 3.2. Proof of Concept

0 5000 10000 15000 20000
Patch Side Lenght [px]

103

104

105

106

107

108

109

Ti
m
e
 [
s]

Figure 3.2: Shown is the time needed to compute a full similarity matrix of
1000 sections, depending on the size of the images. For patch sizes up to 40002

px, the Kasthuri dataset was used. Above that size, Bock11 was used. The
runtime presented in this plot for patch sizes bigger than 20002 px was obtained
by extrapolating the time needed to compute NCC on only a few images.

3.2 Proof of Concept

A first step that needed to be done is to show that a fully automated SOR is
doable at all. For this, we used pre-aligned image stacks from the Kasthuri and
Bock11 datasets 2.1.1. Since we knew the order of those stacks, it was easy to
test the basic parameters, as well as finding a good graph optimization method.
As explained in Section 3.1, we exclusively used NCC for those experiments.

3.2.1 Runtime

The computationally most expensive step is the creation of the similarity matrix.
For a full similarity matrix, one has to compare each section to each other,

leading to total of N∗(N−1)
2 comparisons, where N is the total number of sections.

For 1000 sections we have to compute 500′000 similarity values. It was therefore
crucial to know how long it takes to compute the matrix. As can be seen in
the Figure 3.2, the computational time needed to compute NCC soon increases
over acceptable levels with increasing patch sizes. Patches of the size of 2002

and 5002 px can be processed in a a few hours without trying to optimize the
algorithm used in Fiji. 10002 px need a bit more than a day to finish. A practical
limit was reached with NCC on 20002 px subpatches, as the computation took 5
days to finish on a Windows 7 machine, using a Intel Core i7 CPU with 8 Cores
at 3.07 GHz each and 18GB RAM. The time needed for 20002 px subpatches
was reduced to less than one day by using a high end machine with 48 cores and

Chapter 3. Results 21

500 1000 2000 4000 3x500 3x1000
Patch Side Lenght [px]

10-1

100

101

102

103

104

105

106
E
rr
o
r

Figure 3.3: This figure shows the dependency of patch size to retrieval accuracy.
Concerning the results for averaged patches, we placed the subpatches on a
diagonal over a bigger patch from the Kasthuri or Bock11 dataset. We did,
however, not notice any significant differences when we placed the subpatches
differently, e.g. in the corners of the bigger patch. Finally, we would like to
point out that we increased the error value for a perfect SOR to be 1 instead of
0 to be able to use a logarithmic scale in this plot.

256GB of RAM. But even with this computational power, patch sizes above this
limit proved to be impracticable to solve. As a result, we do not recommend
using patch sizes bigger than 20002 px, unless significantly bigger computational
capacities are freely available. This leads to a de facto upper boundary for patch
sizes of 20002 px.

3.2.2 Smallest Possible Patch Size

As shown and explained in Section 3.2.1, the maximum patch size that can rea-
sonably be processed is around 20002 px. First of all, we still need to show that
SOR works in the first place. Additionally, we are missing a lower boundary:
how small can a patch be so that we can still retrieve the full section stack cor-
rectly ? The intuition is straight forward: the smaller the patch gets, the more
likely it is that two non-consecutive patches randomly look similar, violating
thereby our fundamental assumption that only consecutive sections are similar.
The results of our tests can be seen in Figure 3.3. Please not that the last step,
the graph optimization, will be explained in Section 3.2.3.

22 3.2. Proof of Concept

Figure 3.3 shows that a perfect SOR over 1000 sections is indeed possible and
constitutes the proof of concept validating our approach. Additionally, it shows
that we need to do either one of two things to successfully retrieve the section
order:

• Use a patch size of 40002 px or bigger

• Average the results of multiple patches

Since the use of patches bigger than 20002 px is strongly discouraged because of
too big computational costs, only the second point remains. One of the smaller
advantages of NCC is that it can easily be done on multiple subpatches. The
similarity results of all subpatches can then be averaged to get a much better
result than if only one big patch was used. This way, one can go down to 3∗5002

px, which represents the lower boundary for patch sizes.

3.2.3 Path Optimization

Finally, we had to determine what strategy to use to solve TSP. As already dis-
cussed in Section 2.5, we have the possibility to either use brute force, a greedy
algorithm that always visits the next nearest section, or to use a sophisticated
TSP solver like openOPT or Concorde.

Brute force got immediately dropped since the number of possibilities grows
over-exponentially, and it would be a waste of time and resources. This leaves
us with the other three possibilities, which we all tested.

Greedy Algorithm

We started with our own implementation of a greedy algorithm. The idea is
simple: randomly choose a starting point from all sections. Then always go
to the nearest section that was not visited yet until all sections were visited.
Figure 3.4 shows the solution when using this method on the 1000 section NCC
similarity matrix from the Kasthuri dataset with patch sizes of 20002 px.

As can be seen from the graph, the retrieval was not good enough. The reason
for this gets apparent when we examine the plot closer. The greedy algorithm
did a good job at the beginning, where it more or less got the order of all
sections correctly. However, once in a while, one or a few sections were missed.
And here is where the problem lies: those sections need to be visited at the end
of the tour, where they cause big errors. Because of that, the last 50 section
positions returned from the algorithm are basically worthless, as they are just
a collection of all sections that got missed during the tour. This is exactly the
reason why TSP is such a hard problem: decisions made during the tour do not
have negative effects until the end. Even more: It could be necessary to make
locally non-optimal decisions whose positive effects are only visible at the end
of the tour.

Chapter 3. Results 23

0 200 400 600 800 1000
Real Order

0

200

400

600

800

1000
R
e
tr
ie
v
e
d
 O
rd
e
r

Figure 3.4: Test of the greedy approach to solve TSP on a set of 1000 sections
from the Kasthuri dataset. Plotted is the order found by a greedy algorithm
vs. the true order of the sections. If the order retrieval was perfect, the graph
would show a straight line. We can see one of the biggest disadvantages in using
this approach: missed sections have to be visited at the end of the tour, leading
to big errors at the end.

This result was obtained using clean data, big patches, and the best possible
alignment. Since we are not able to correctly retrieve the order of such a simi-
larity matrix, chances are low we ever manage to do it on a harder dataset. For
this reason, we discarded this approach and concentrated on sophisticated TSP
solving implementations.

openOPT or Concorde

In our search for a dedicated TSP solver we found and tested two open source
implementations: openOPT and Concorde. Both were already described in
Sections 2.5.3 and 2.5.4. Unfortunately, both implementations proved to be
difficult to use. We will not go into the details at this point, since they are not
relevant, but refer the interested reader to the Appendix .1 and .2, where we
explain the practical difficulties we had with Concorde and especially openOPT.

There was one major criterion, however, that seperated openOPT and Concorde
from each other: speed. Concorde has outperformed openOPT by an order
of magnitudes. Solving a set of 1000 sections took openOPT several hours.
Concorde, on the other hand, often solved the same problem instance in fewer
than 30 seconds, often even as few as 5 seconds. All other requirements Concorde
had, e.g only being able to solve the problem when presented as TSPLIB-file,
got nearly irrelevant in the face of such a performance difference. This was the
most important point that led to our decision to use Concorde as our TSP solver
of choice.

24 3.3. Testing the Pipeline

0 10 20 30 40 50
0

10

20

30

40

50

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

0.60

Figure 3.5: This is the similarity matrix of a 50 sections dataset from Bock11.
Each section had a size of 20′0002px, which allowed us to test our pipeline from
start to end on a known dataset. The recreation using Concorde was perfect,
however, we observe an unwanted high number of pre-set similarity values, which
is especially bad near the main diagonal.

Finally, it is important to note that our data has a special structure, that makes
solving a TSP instance of it a lot easier than a randomly distributed set of 1000
cities. Our sections only have a few close neighbours, all other sections are far
away. Our data therefore has, when imagined on a 2d plain, the structure of
a line. To find the shortest path in such a situation is a lot easier than in a
general case, which might be the reason Concorde was able to solve our problem
instances so fast. We did not, however, test Concorde on other, more general
TSP instances.

3.3 Testing the Pipeline

After showing that SOR in principle works, the next step is to retrieve the order
of the Templier220 dataset using the pipeline we described in Section 2.4.3.

3.3.1 Test on Bock11

As a first experiment to test the pipeline, we took 50 sections from the Bock11
dataset, each section having a size of 20′0002 px. That way, we were able to test
the whole pipeline including the downsampling on a known dataset. Since the
data was already aligned, we expected the found transformations to not change

Chapter 3. Results 25

the images in any way, e.g. the transformations should be similar to the identity
matrix. If they were not, the subpatches would actually become non-aligned.

The result was again promising. The recreation was successful and was done
without any error. Also, as predicted, the transformations were solely used to
identify possible neighbouring sections, but the images were not changed in the
aligning step. Figure 3.5 shows the similarity matrix obtained in this process.
One thing to note about this similarity matrix is that most entries are fixed,
low values. Remember that, if we do not find a transformation for a given
pair of section images, the similarity value of this pair is set to a low value,
indicating that we are sure that they are not neighbours. The high number of
such values in our similarity matrix comes from the fact that we are trying to
find transformations twice, the first time for the downsampled images, and a
second time when we refine the alignment of the high resolution patches. The
number of sections for which we do not find any transformation adds up, leaving
us with only a small list of sections that we actually need to consider when trying
to retrieve the order.

At first, this seems like a good property, since it creates the impression of an
accurate and precise method. But in fact, quite the opposite is the case: it
creates the dangerous possibility of not having a single possible neighbouring
candidate for a given section. This would lead to severe errors, since we do
no longer have the possibility of ”compensating” such errors by single in-place
swaps of sections. In other words, such a similarity matrix either returns the
perfect result, or results that are absolutely wrong. Additionally, for reasons
already explained in Section 3.1, we do not want to use SIFT to measure the
exact similarity of neighbouring sections, but rather use NCC.

3.3.2 SOR of the Templier220 dataset

Using the same methods as for the Bock11 dataset, we can finally apply our
pipeline to our own dataset. The resulting similarity matrices can be seen in
Figure 3.6. The results were again positive and promising. When we arranged
the sections the way our pipeline suggested, the majority of the 220 sections
seemed to fit perfectly. There were, however, around 10 swaps, which correspond
to the error types 2.5.5 (II) and (III). Additionally, we can again observe the
unwanted phenomenon of too many fixed low values, even close to the main
diagonal. This is not something we want to see, as we want to use NCC as our
method to decide the exact similarity of close sections.

Nonetheless this similarity matrix is a good hint that the recreation was mostly
successful, apart from our subjective impression. The structures of both the
Templier220 and the Bock11 similarity matrices are nearly identical, suggesting
that the underlying SOR was at least nearly as successful as it was on the
Bock11 dataset.

26 3.3. Testing the Pipeline

0 50 100 150 200
0

50

100

150

200 0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

(a)

100 110 120 130 140 150
100

110

120

130

140

150

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

0.60

(b)

Figure 3.6: Figure (a) shows the complete similarity matrix for the Templier220
dataset, Figure (b) shows a subset of all similarity values to closer examine the
properties near the main diagonal. As it was already observed in the similarity
matrix of the Bock11 dataset 3.5, we have a high number of pre-set, low simi-
larity values close to the main diagonal, which is not optimal. Apart from that,
the data is exactly how we want it to be.

Chapter 4

Discussion

During the last chapters we presented our pipeline, while highlighting the de-
cisions and observations that led to its final form. The last part of this thesis
summarizes our results and names problems that are still unsolved.

4.1 Conclusion

The goal of this thesis was to introduce and examine the tools needed to retrieve
the order of section images. This was successful, as we could show how to reliably
retrieve the order of up to 1000 sections without any error. Further, we hoped to
be able to create a pipeline to also retrieve the order of big, non-aligned section
stacks that we created ourselves in the Hahnloser Laboratory. The observations
in 3.3 with our pipeline strongly suggest that our final pipeline leads to a good
retrieval result. Furthermore, our personal inspection of the suggested result
led us to the same conclusion. We therefore conclude that the second goal of
this thesis, the section order retrieval of the Templier220 dataset, was successful
as well.

There were, however, also signs of problems that need to be addressed in the
future. First of all, we already noticed that our pipeline led to too few possible
neighbouring candidates, increasing thereby the risk of not finding any neigh-
bour at all. We think that this can be solved by relaxing the SIFT parameters,
as well as the parameters used by RANSAC to find inlier among the SIFT fea-
ture points. This should result in more found transformations. The downside,
of course, is an increased computational cost. We think, however, that this will
increase the SOR performance and is therefore worth this price.

Finally, we need to point out that we assume that our images are free from
artefacts. Those artefacts however, are present on the images and can arise from
both the section collecting process as well as the imaging process afterwards. It
is therefore important to make the method robust against those errors in the
future.

27

28 4.2. Future Work

4.2 Future Work

The first thing that needs to be done from now on is a further validation of our
impression that the SOR of the Templier220 dataset was indeed a success.

Once this is done, we can answer the few questions 1.6 that still remain unan-
swered. In particular, these were the questions about the minimal resolution,
or, the other way around, how much one can downsample the images, so that
MDE still produces correct results.

Finally, we need to address the limitations that were already explained in Sec-
tion 4.1. First of all, this means relaxing the SIFT parameters to find slightly
more neighbouring candidates. Second, this means making the method more
robust against the different types of image errors.

Chapter 4. Discussion 29

.1 Concorde Platform Dependancies

Although Concorde is one of the best TSP solvers available, it’s code was not
updated in many years. As a result, the last operating systems Concorde is
guaranteed to run on is Windows XP and Red Hat Linux 8.0, which was released
in 2002.

We encountered problems running the pre-compiled Concorde executables on
newer Windows platforms, as the software finished instantly and returned no
results at all. The attempt to compile Concorde from source failed as well.
As a work around, we ran Concorde on a Linux MINT Virtual Machine, using
VirtualBox as emulator software. We transferred each TSPLIB-file onto the
VM, solved it there, and transferred the solution back onto the host machine.
This is of course as cumbersome as it gets, but after writing a script that did
all this automatically, we at least had a running solution that was efficient
enough to work with. There exists a second workaround in the form of the
Neos Concorde Server [11, 6, 7] which is available online [2].

.2 Fate of openOPT

At the beginning of this thesis in the summer of 2015, the website of openOPT [16]
was available without limitations. We tested the software, and finally decided
against its usage. Apart from the lacking speed, which was already described
in Section 3.2.3 and which was our main reason to drop it, it became more and
more apparent that openOPT itself relied heavily on external code and libraries.
For this reason, a direct usage of it as embedded part in our own code was hard
to do, which initially was our motivation to look into a Python implementation.
Additionally, in the summer of 2015, openOPT was only sparsely documented
and some utility was still under development.

During the finalisation of this thesis in the winter of 2015, the openOPT website
stopped being accessible. We have no knowledge about the reasons for this, but
wanted to point out that the code itself is still available on the Python Pack-
age Index [17]. However, large parts of the documentation are not accessible
any longer.

30 .2. Fate of openOPT

Bibliography

[1] Open connectome project. http://www.openconnectomeproject.org/.
Accessed: 2015-11-28.

[2] Neos concorde server. http://www.neos-server.org/neos/solvers/co:
concorde/TSP.html, 2015. Accessed: 2015-12-28.

[3] David Applegate, Robert E. Bixby, Vasek Chvátal, and William J. Cook.
Concorde. http://www.math.uwaterloo.ca/tsp/concorde.html. Ac-
cessed: 2015-12-20.

[4] Davi D Bock, Wei-Chung Allen Lee, Aaron M Kerlin, Mark L Ander-
mann, Greg Hood, Arthur W Wetzel, Sergey Yurgenson, Edward R Soucy,
Hyon Suk Kim, and R Clay Reid. Network anatomy and in vivo physiology
of visual cortical neurons. Nature, 471(7337):177–182, 2011.

[5] Albert Cardona, Stephan Saalfeld, Johannes Schindelin, Ignacio Arganda-
Carreras, Stephan Preibisch, Mark Longair, Pavel Tomancak, Volker
Hartenstein, and Rodney J Douglas. Trakem2 software for neural circuit
reconstruction. PloS one, 7(6):e38011, 2012.

[6] Joseph Czyzyk, Michael P Mesnier, and Jorge J Moré. The neos server.
Computing in Science & Engineering, (3):68–75, 1998.

[7] Elizabeth D Dolan. Neos server 4.0 administrative guide. arXiv preprint
cs/0107034, 2001.

[8] Martin A Fischler and Robert C Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analysis and auto-
mated cartography. Communications of the ACM, 24(6):381–395, 1981.

[9] Rafael C. Gonzalez and Richard E. Woods. 12.2.1 matching. In Digital
Image Processing, chapter 12.2 Recognition Based on Decision-Theoretic
Methods, pages 866 – 903. Prentice Hall, 3 edition, 2007.

[10] Rafael C. Gonzalez and Richard E. Woods. 2.6.5 spatial operations. In
Digital Image Processing, chapter 2.6 - An Introduction to the Mathemat-
ical Tools Used in Digital Image Processing, pages 72 – 98. Prentice Hall,
3 edition, 2007.

[11] William Gropp and Jorge Moré. Optimization environments and the neos
server. Approximation theory and optimization, pages 167–182, 1997.

31

http://www.openconnectomeproject.org/
http://www.neos-server.org/neos/solvers/co:concorde/TSP.html
http://www.neos-server.org/neos/solvers/co:concorde/TSP.html
http://www.math.uwaterloo.ca/tsp/concorde.html

32 Bibliography

[12] Gregory Gutin, Anders Yeo, and Alexey Zverovich. Traveling salesman
should not be greedy: domination analysis of greedy-type heuristics for the
tsp. Discrete Applied Mathematics, 117(1):81–86, 2002.

[13] Philipp Hanslovsky, John A. Bogovic, and Stephan Saalfeld. Post-
acquisition image based compensation for thickness variation in microscopy
section series. CoRR, abs/1411.6970, 2014.

[14] Kurt Hornik and Bettina Gruen. Tsp-infrastructure for the traveling sales-
person problem. Journal of Statistical Software, 23(2):1–21, 2007.

[15] Narayanan Kasthuri, Kenneth Jeffrey Hayworth, Daniel Raimund Berger,
Richard Lee Schalek, José Angel Conchello, Seymour Knowles-Barley,
Dongil Lee, Amelio Vázquez-Reina, Verena Kaynig, Thouis Raymond
Jones, et al. Saturated reconstruction of a volume of neocortex. Cell,
162(3):648–661, 2015.

[16] Dmitrey Kroshko. openopt. http://openopt.org. Accessed: 2015-08-20.

[17] Dmitrey Kroshko. Python package index. https://pypi.python.org/

pypi/openopt. Accessed: 2015-12-20.

[18] Gilbert Laporte. The traveling salesman problem: An overview of exact
and approximate algorithms. European Journal of Operational Research,
59(2):231–247, 1992.

[19] David G Lowe. Object recognition from local scale-invariant features. In
Computer vision, 1999. The proceedings of the seventh IEEE international
conference on, volume 2, pages 1150–1157. Ieee, 1999.

[20] C.H. Papadimitriou and D.S. Johnson. Computational complexity. In E.L.
Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, editors, The
Traveling Salesman Problem: A Guided Tour of Combinatorial Optimiza-
tion, chapter 3: Computational complexity, pages 37 – 87. John Wiley &
Sons, Chichester, UK, 1985.

[21] Gerhard Reinelt. Tsplib - a travelling salesman problem library. ORSA
journal on computing, 3(4):376–384, 1991.

[22] Stephan Saalfeld, Albert Cardona, Volker Hartenstein, and Pavel
Tomančák. As-rigid-as-possible mosaicking and serial section registration
of large sstem datasets. Bioinformatics, 26(12):i57–i63, 2010.

[23] Stephan Saalfeld, Richard Fetter, Albert Cardona, and Pavel Tomancak.
Elastic volume reconstruction from series of ultra-thin microscopy sections.
Nature Methods, 9(7):717–720, 2012.

[24] Stephan Saalfeld, Johannes Schindelin, and Stephan Preibisch. mpicbg.
https://github.com/axtimwalde/mpicbg/, 2015. Accessed: 2015-12-28.

[25] Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Verena
Kaynig, Mark Longair, Tobias Pietzsch, Stephan Preibisch, Curtis Rueden,
Stephan Saalfeld, Benjamin Schmid, et al. Fiji: an open-source platform
for biological-image analysis. Nature methods, 9(7):676–682, 2012.

http://openopt.org
https://pypi.python.org/pypi/openopt
https://pypi.python.org/pypi/openopt
https://github.com/axtimwalde/mpicbg/

[26] Johannes Schindelin, Curtis T Rueden, Mark C Hiner, and Kevin W Eli-
ceiri. The imagej ecosystem: An open platform for biomedical image anal-
ysis. Molecular reproduction and development, 82(7-8):518–529, 2015.

[27] Johannes Schindelin, Stephan Saalfeld, Stephan Preibisch, and Curtis Rue-
den. Imglib1. https://github.com/fiji/legacy-imglib1, 2015. Ac-
cessed: 2015-12-28.

https://github.com/fiji/legacy-imglib1

Title of work:

Automated Order Retrieval Of Ultra Thin Brain

Sections

Thesis type and date:

Bachelor Thesis, December 2015

Supervision:

Thomas Templier
Prof. Dr. Richard Hahnloser
Prof. Dr. Davide Scaramuzza

Student:

Name: Fabian Weiersmueller
E-mail: fabian.weiersmueller@uzh.ch
Legi-Nr.: 11-717-071

Statement regarding plagiarism:

By signing this statement, I affirm that I have read the information notice
on plagiarism, independently produced this paper, and adhered to the general
practice of source citation in this subject-area.

Information notice on plagiarism:

http://www.lehre.uzh.ch/plagiate/20110314_LK_Plagiarism.pdf

Zurich, 29. 12. 2015:

http://www.lehre.uzh.ch/plagiate/20110314_LK_Plagiarism.pdf

	Abstract
	Nomenclature
	Introduction
	General overview
	Image Similarity Principle
	Order Retrieval
	Related Work
	Problems Of Size and Alignment
	Size
	Alignment

	Goals Of This Thesis
	NCC or SIFT
	Minimal Resolution
	The Templier220 Dataset
	Computational Complexity
	Tools

	Methods
	Data
	The Open Connectome Project
	Templier220

	The FIJI Environment
	Transformations
	Image Similarity
	SIFT
	Normalized Cross Correlation
	Hierarchical Image Similarity
	Pipeline Summary
	Step One: Downsampling
	Step Two: Computing MDE
	Step Three: Aligning
	Step Four: Take Subpatches
	Step Five: Further Alignment
	Step Six: Compute NCC
	Alternatives

	Path Optimization
	Brute Force
	Greedy Approach
	openOPT
	Concorde
	Defining An Error Measurement

	Results
	SIFT or NCC
	Structure of biomedical image data
	Computational overhead
	Aligning Images
	Conclusion

	Proof of Concept
	Runtime
	Smallest Possible Patch Size
	Path Optimization
	Greedy Algorithm
	openOPT or Concorde

	Testing the Pipeline
	Test on Bock11
	SOR of the Templier220 dataset

	Discussion
	Conclusion
	Future Work
	Concorde Platform Dependancies
	Fate of openOPT

