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Zusammenfassung

Wir untersuchen Rangfolgealgorithmen von Graphknoten für die Anwendung in Emp-
fehlungssystemen basierend auf kollaborativem Filtern. In dieser Arbeit evaluieren wir
die Leistung früher vorgeschlagenen Rangfolgealgorithmen mit Experimenten an vier
historischen Datensätzen bestehend aus impliziten Artikelbewertungen. Zusätzlich zu
der Vorhersagekraft bezüglich des zukünftigen Benutzerverhaltens (Richtigkeit) beur-
teilen wir die Qualität der Empfehlungslisten anhand von vier weiteren Leistungskrite-
rien: Unterschiedlichkeit der vorgeschlagenen Artikel, Katalogabdeckung, Personalisie-
rung und Neuigkeit/Überraschungswert. Die Ergebnisse unserer Experimente zeigen,
dass Empfehlungslisten die mit Rangfolgealgorithmen von Graphknoten erstellt wer-
den, von den populärsten Artikeln dominiert werden. Die Empfehlungslisten weisen
schlechtere Werte auf für Richtigkeit, Katalogabdeckung, Personalisierung und Neu-
igkeit/Überraschung als Listen von Empfehlungssystemen, die auf Nächste-Nachbarn-
Klassifizierung oder einem latent factor model basieren.

Mit einem parametrisierten Umrangierungsverfahren das populäre Artikel tiefer ge-
wichtet als unpopuläre Artikel, angewendet auf Rangfolgealgorithmen basierend auf
der Knotenübergangswahrscheinlichkeit in einem random walk (insbesondere P3 und
P5 [Cooper et al., 2014]), erzielten wir höhere Neuigkeit/Überraschungswerte und eine
bessere Katalogabdeckung und Personalisierung. Für eine mässig starke Untergewich-
tung von beliebten Artikeln im Umrangierungsverfahren erhöhte sich die Richtigkeit
oder blieb zumindest konstant. In den meisten Experimenten wurde mit dieser Metho-
de eine Richtigkeit erzielt die vergleichbar ist mit der von Empfehlungssystemen, wel-
che dem heutigen Stand der Technik entsprechen. Das Umrangierungsverfahren redu-
zierte die Dominanz von populären Artikeln in den Empfehlungslisten und ermöglicht
es einen optimalen Ausgleich im Zielkonflikt der verschiedenen Leistungskriterien zu
finden.





Abstract

We study graph vertex ranking algorithms for use in collaborative filtering-based rec-
ommender systems. In this paper we evaluate the performance of previously pre-
sented ranking algorithms in an off-line study with four different positive-only feed-
back datasets. Besides measuring the power to predict future user behavior (accuracy),
we also consider four non-accuracy performance dimensions: intra-list diversity, item
space or catalog coverage, personalization, and novelty/surprisal. We found that most
recommendation lists of vertex ranking algorithms are dominated by high popularity
items and give lower accuracy, coverage, personalization, and novelty/surprisal scores
than lists from nearest-neighbor or latent factor model-based recommenders.

By applying a parametrized popularity-penalizing recommendation list re-ranking
procedure to random walk vertex transition probability-based ranking algorithms (i.e.,
P3 and P5 [Cooper et al., 2014]) we observed a positive impact on coverage, per-
sonalization and novelty/surprisal. For small degrees of popularity penalization the
recommender’s accuracy improved or remained constant and reached in most experi-
ments levels comparable to the state-of-the-art non-graph-based recommenders. The
re-ranking procedure reduces the dominance of high popularity items in the recom-
mendation list and allows to optimize the trade-off between accuracy and non-accuracy
performance dimensions.
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Introduction

Recommender systems are software systems that try to predict a user’s preference for
items and propose the most positively estimated items as suitable for consumption
to the user. The output of real life implementations of recommender systems can be
found in various domains. Typical examples are product recommendations in online
stores or TV show recommendations of a video on demand service (VOD). Other areas
of applications of recommenders comprise social networks, recommending other users
as possible friends, or newspaper website, recommending a personalized and diverse
mixture of breaking news. In all mentioned domains, users have to deal with a huge
collection of items that is not readily comprehensible. With the means of recommender
systems a personalized selection of items can be generated and thereby facilitate the
users’ decision-making process. This work investigates recommender systems based
on graph theory. We describe the extension of a well-established recommender sys-
tem framework with recommendation algorithms that analyze the network of user
and item interactions. By comparison of the graph-based with other state-of-the-art
recommendation approaches we demonstrate its potential and limitations.

Most research efforts in the field of graph-based recommenders focused on the im-
provement of the recommenders’ predictive power (accuracy). However, it has been
widely recognized [e.g. McNee et al., 2006; Ziegler et al., 2005] that users’ satisfaction
with recommendations is not only determined by the recommendations accuracy but
also influenced by the diversity of the recommendations provided to a user. Conse-
quentially, we consider in our study both performance characteristics. A recent paper
showed that the most accurate graph-based recommendations are based on vertex
transition probabilities of random walks of length three [Cooper et al., 2014]. The
results of our experiments support this finding but also reveal that the diversity of
recommendations from this and most other graph-based recommendation algorithms
is low. In Chapter 2 we present different implementation strategies to calculate vertex
transition probabilities and introduce a simple re-ranking procedure to increase recom-
mendation diversity and accuracy applicable to the method proposed by Cooper et al.
[2014]. In the same chapter we point out what we understand as diverse recommenda-
tions by introducing four different non-accuracy recommendation quality dimensions.
The accuracy and diversity performance of graph-based recommenders is discussed in
Chapter 3 based on off-line experiments with four positive-only feedback datasets. The
first section of this chapter gives an overview over the different research directions in
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the field of recommender systems. Subsequently we focus on the recent research efforts
on graph-based recommender engines (Section 1.2) and then describe the motivation
(1.3) for the study and our contributions (1.4).

1.1 Background

The problem of coming up with the most valuable set of recommended items for a
given user has been tackled in multiple ways over the past decades. It can be formally
described as finding the missing entries (zero entries) in the user-item feedback matrix
F of size |U |×|I|, where U is the set of all users and I the set of all items. If user
u rated item i during the training phase Fu,i ∈ R \ {0} and Fu,i = 0 if u has not
rated i. Hereafter we summarize the most important research directions in the field
of recommender systems.

A first distinction of recommender system techniques can be drawn based on the
input data used for the algorithms. Content-based filtering uses item meta data to
analyze the characteristics of items that a user likes and searches for items with similar
characteristics that are not yet known to the user. Collaborative-filtering, on the
contrary, uses the preference feedback of users to search for users similar to a given
user and recommends items that are preferred by the similar users yet unknown to the
current user (collaborative filtering is often implemented item-centric by storing item
similarities inferred from user feedback correlation in an item-item matrix). While
the latter is nowadays the more popular technique that is applied in many real-world
applications, both approaches are subject to ongoing research [Ricci et al., 2011]. More
recently many recommender system implementations try to combine the two different
input data types. Such systems are widely referred as hybrid recommender systems
[Ricci et al., 2011].

Purely content-based approaches suffer from the problems of limited content analysis
and over-specialization [Desrosiers and Karypis, 2011]. Limited content analysis means
that it is often not possible to fully express an item’s quality as well as a user’s
preference profile in terms of attributes. Over-specialization describes the problem
that content-based algorithms tend to recommend items that are very similar to the
items that a user rated positively in the past but fail to recommend items that are
different but still interesting to the user.

Since content-based approaches do not require the feedback of other users to gen-
erate recommendations, items newly introduced into the system are as likely to be
recommended as long-standing items. In collaborative filtering an item can only be
evaluated as useful for a user once it received quality estimations from users considered
as similar to the current user. This problem is the main disadvantage of collaborative
filtering techniques and is known as the cold-start problem. The same problem arises
for new users of the systems with none or only very few rated or liked items. The cold-
start problem is a result of a challenge that most recommender systems face, namely
a sparse user-item-feedback matrix. Simply expressed this describes the fact that the
number of items that can be recommended to a particular user is for most users much
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greater than the number of items for which a feedback from the user is available. Not
only is the feedback matrix sparse but also the distribution of number of ratings among
the items and users is very unbalanced. In most recommender systems a few users
rate many items and most user rate only very few items, likewise a small fraction of
items receive most ratings and a big number of items only a couple. Both dimensions
of the feedback matrix, users and items, hence describe a long-tail distribution in the
number of feedbacks.

An advantage of collaborative over content-based filtering is the absence of the need
to discover meaningful user and/or item attributes. Also collaborative filtering is more
likely to produce a more diverse result set thanks to the quality estimation of items
by peers [Desrosiers and Karypis, 2011].

The collaborative filtering paradigm is widely implemented either with a neighbor-
hood or a model-based approach [Koren and Bell, 2011]. Neighborhood-based methods
are also known as memory-based methods and directly use the user-item ratings avail-
able from the training data for prediction. This can be done in two ways known as
user-based or item-based recommendations [Desrosiers and Karypis, 2011]. Graph-
based collaborative filtering is a neighborhood-based method. The training data are
converted to a graph with vertices representing either the items, users or both, and
edges the interaction between users, items or users and items. In order to generate
recommendations the graph can be queried from a start vertex for similar vertices
in its proximity for example by performing a random walk. Model-based methods,
on the other hand, use the user-item ratings from the training set to learn a model
of user item-interactions with factors representing latent characteristics of the users
and items in the system [Desrosiers and Karypis, 2011]. Many popular model-based
methods apply matrix factorization, for instance by singular value decomposition, to
find the missing entries in the user-item feedback matrix.

This section gave a short introduction over the various types of recommender sys-
tem developed in the past. We pointed out the differences between content-based and
collaborative filtering and described some of the challenges and advantages of each
approach. Due to the focus of this work, namely recommendation algorithms query-
ing the user-item feedback graph, we emphasized on the developments in the field
of neighborhood-based collaborative filtering. In the next section we delve into the
literature of graph-based recommender systems.

1.2 Related Work

In this section we summarize how graph theory has been applied to the problem of
recommendation generation in the past. Besides presenting the specific data models
and algorithms of the recent research efforts, we also point out some important findings
that can be used as guidelines for improvements. The names of the recommenders
that we implemented in the framework extension and evaluated by their accuracy
and diversity performance (see Chapter 3) are printed in bold face. We especially
considered algorithms for the evaluation that are implementable by simulating random
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graph walks.
Using a graph-theoretic approach for collaborative filtering in order to predict rat-

ings was proposed for the first time in Aggarwal et al. [1999]. This paper introduces
the concepts of horting and predictability. Horting describes the size of the intersection
of the sets of the rated items of two users relative to their total size. Predictability, on
the other hand, is a stronger property and requires that also the ratings of the items in
the intersection are similar. The graph queried for rating prediction consists of vertices
representing users and directed edges between users representing predictability. Pre-
dicting the rating of a new item i for user u is performed by using the shortest directed
paths from u to other users that have rated i. We do not consider the data model
and graph query algorithm of Aggarwal et al. [1999] in our evaluation of graph-based
recommendation algorithms since we are focusing on positive-only feedback data and
this does not allow the calculation of predictability between two users.

Huang et al. [2004] emphasize on the potential of applying an associative retrieval
framework and related spreading activation algorithms to deal with the problem of
sparse feedback data. Spreading activation algorithms essentially work by first acti-
vating a selected subset of vertices as starting vertices, and then iteratively activating
the vertices that can be reached directly from the vertices that are already active, until
a convergence criterion is met [Desrosiers and Karypis, 2011]. The authors propose
three different types of spreading activation algorithms for a bipartite graph consisting
of user and item vertices with undirected edges between vertices of the two sets that
correspond to the user-item feedback. An empirical evaluation of the algorithm using
data from an an online bookstore revealed comparable performance figures for the
three different algorithms. We consider the algorithm referred in Huang et al. [2004]
as Branch-and-Bound (BnB) in our evaluation. As a conclusion of their work the
authors mentioned that the proposed spreading activation-based approaches alleviate
the cold-start problem for new users. Furthermore, Huang et al. [2004] introduce the
so-called three-hop algorithm as comparison baseline, which simply ranks the items
by the number of paths of length three between the given user and an item. Items
that already received feedback from the user, i.e. are known by the user, are not
recommended. This algorithm is also considered in our evaluation and, in accordance
with the notation used in Cooper et al. [2014] for the same algorithm, we refer to it as
3Path. Besides the direct counting of distinct paths of length three between a user
and an item, we also implemented an item-based 3Path version, called IB-3Path.
IB-3Path precalculates the number of paths of length two between items and uses the
resulting cache to speed up the graph search for the number of paths to items in three
edge distance from a given user.

The first researchers who introduced random walks on graphs interpreted as Markov
chains for collaborative filtering were Fouss et al. [2005]. The vertices in the graph
represent, very similar as in the data model of Huang et al. [2004], users and items.
Edges stand for the feedback of a user for a particular item and are undirected and
weighted, e.g., by the number of times the user consumed an item or a number ex-
pressing the rating of the item by the user. Fouss et al. [2005] associate a state of the
Markov chain with each vertex of the graph. The transition probabilities to adjacent
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vertices, respectively to a different state of the Markov chain are proportional to the
weights of the edges connecting the vertices. Hence the transition probabilities depend
only on the current state and not on the past ones (first-order Markov chain). Fouss
et al. [2005] then introduce a set of quantities to rank vertices by their similarity to a
start vertex using the Markov chain. In this work we consider the ranking algorithms
Average Commute Time (CT) and Average first-passage time (OW). Both
ranking algorithms showed good performance and are implementable by simulating
random walks. Average first passage time measures the number of steps a random
walk needs on average to reach a particular item from a given user. Average commute
time extends this concept by defining a random walk as path between start user to
target item and back to start user. Both metrics consider an item as a good recom-
mendation if the average length of the random walk is short. Furthermore, we also
consider the best performing scoring algorithm proposed in Fouss et al. [2005], using
the vertex similarity measure provided from the Moore-Penrose pseudoinverse of
the Laplacian matrix (L+)1 of the graph.

The random walk based graph query approach was adopted by Gori and Pucci [2007]
for a vertex scoring algorithm named ItemRank (IR). In contrast to the data model
used by Fouss et al. [2005] ItemRank runs on a graph consisting only of one type of
vertices representing items. The authors call this data structure a correlation graph
since its weighted and directed edges model the correlation between items based on the
number of users that gave feedback on both items. The basic idea of the ItemRank
algorithm is to spread user preferences through the correlation graph starting from
the items a user likes. By propagation of the initial preferences to adjacent vertices
the algorithm discovers similar items, while attenuation of the preferences on the
other side assures that more distant items are considered as less similar. The two
properties propagation and attenuation are satisfied by the PageRank [Page et al.,
1998] algorithm. Gori and Pucci [2007] use a biased version of PageRank very similar
to the topic-sensitive PageRank of Haveliwala [2002] to rank items for a given user.
ItemRank was evaluated on the MovieLens2 dataset and compared to the algorithms,
among others, proposed by Fouss et al. [2005]. The experiments show that ItemRank
performs better than the benchmark algorithms in terms of prediction accuracy while
the algorithm is less complex with respect to memory usage and computational cost.
The reduced complexity is attributed to the reduced size of the correlation graph
compared to a bipartite graph consisting of user and item vertices as used by Fouss
et al. [2005] and Huang et al. [2004].

Cooper et al. [2014] contribute three new methods referred as P3, P5 and P3
α.

The authors distinguish in their work two approaches to order vertices based on the
vertex transition probabilities when performing short random walks over a undirected
bipartite user-item graph: (i) calculating the exact values of the transition probability
matrix using matrix algebra or (ii) estimating the matrix entries by simulating random

1The Laplacian matrix L of a graph is defined as L = D −A where D denotes the diagonal matrix
of the vertex degrees and A the graphs adjacency matrix.

2The MovieLens dataset was constructed from an online movie recommendation engine and is avail-
able in three different sizes from grouplens.org/ datasets/ movielens/
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walks (see Section 2.1 for a complete introduction of both methods). The probabilities
obtained with approach (ii) converge to the result of (i) with increasing number of
random walks. In the same paper it is shown that the time- and memory-efficiency of
direct simulation of random walks allow application of vertex transition probability-
based methods to large datasets with only limited negative impact on accuracy. This
finding motivates our decision to focus our evaluation on vertex ranking algorithms
that are implementable by the simulation of graph walks. P3 and P5 perform a random
walk of fixed length 3 and 5, respectively, starting from a given user vertex. Due to the
fact that the graph is bipartite all destination vertices represent items. Cooper et al.
[2014] report a better accuracy for the P3 and P3

α algorithm than for the methods
proposed in Fouss et al. [2005] and Gori and Pucci [2007] in a evaluation on the
MovieLens data. P3 and P3

α also outperform the computationally more demanding P5

method. P3
α is a parametrized version of P3 that offers further improvements over P3

in accuracy for empirically determined values of the parameter α. In the remainder
of this work we refer to the α controlled optimization of transition probabilities with
transition probability tuning. How to simulate P3

α with random walks is not clearly
stated in the work.

Researchers at Google analyzed the user-video graph of YouTube [Baluja et al.,
2008] to provide personalized video recommendations and summarized three rules for
a good recommendation, i.e., the user u will have a high preference on the item i if:
(i) u and i have a short path between them; (ii) u and i have several paths between
them and these paths are not very long; (iii) u and i have paths that avoid high-
degree vertices. While the validity of the first two rules are obvious the third can
be explained by the fact that it is quite likely to find a short path through one or
multiple high degree vertices between any two vertices in the graph. Hence even
though such a path is short, it does not mean that e.g. two items are similar. Baluja
et al. [2008] grasp recommendation generation as a label propagation task in a graph
and present a new group of algorithms, termed Adsorption, that computes for each
vertex a label distribution. Adsorption can be implemented as a random walk. An
interesting extension to the classical random walk model is the introduction of an
abandonment probability that causes the walk to stop without contributing to the
final label distribution. This parameter can for instance be used to prevent random
walks through high degree vertices. We decided against considering the Adsorption
algorithms in our evaluation since its random walk implementation is highly inefficient
according to the authors.

Other research efforts in the field of graph-based recommendations try to improve
recommendation quality by incorporating meta data or contextual information in the
data model [Bogers, 2010; Jamali and Ester, 2009; Lee et al., 2012; Xiang et al., 2010].
Xiang et al. [2010], for example, show how the temporal context of user feedbacks can
increase prediction accuracy. The authors distinguish between short- and long-term
preferences of users by assigning timestamped user feedbacks to sessions which are then
mapped into a weighted user-item feedback graph as links between items and session
vertices. The vertex ranking is obtained from this graph by summing the weights of
all paths of length three from the user vertex to the item vertex and the weights of all
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paths starting from the current session vertex to the item vertex.
In the recommender system research community it has been increasingly noted that

it is not sufficient to have accuracy as the sole criteria to measure recommendation
quality [Adomavicius and Kwon, 2011]. Other aspects that influence the satisfaction
of a user with a set of recommendations are for instance diversity, novelty, serendipity,
confidence, or trust [Adomavicius and Kwon, 2011; Herlocker et al., 2004; McNee
et al., 2006; Shani and Gunawardana, 2011]. This change in paradigm led Adomavicius
and Kwon [2011] in their development of a graph-based recommender that maximizes
aggregated diversity, which is very similar to what we call item-space coverage, based
on maximum flow or maximum bipartite matching computations.

Zhou et al. [2010] study the performance of vertex ranking algorithms for bipartite
user-item networks in two different non-accuracy dimensions: Personalization and
Surprisal/Novelty (see Section 2.3 and Subsection 3.1.3). The authors report a si-
multaneous improve in accuracy and non-accuracy performance for a parametrized
algorithm that combines the item rankings of an accurate vertex ranking algorithm
with a ranking algorithm that is less accurate but gives better personalization and sur-
prisal scores. The former is a random walk vertex transition probability-based ranking
algorithm very similar to P3 [Cooper et al., 2014] that favors highly connected items.
The latter represents a discrete analogy of a heat diffusion process and favors vertices
with few items.

In this section we described recent research efforts and pointed out important find-
ings in the field of graph-based recommender algorithms. We focused on the descrip-
tion of algorithms that are based on the collaborative filtering paradigm but also
mentioned some papers that present hybrid graph-based recommenders. We conclude
the section by referencing graph-based methods that improve non-accuracy recom-
mendation quality.

1.3 Motivation

In this section we first explain our interest in the application of vertex ranking al-
gorithms for recommendation generation. We then point out the importance of non-
accuracy performance to assess the quality of a recommender system.

Traditional neighborhood-based collaborative filtering techniques, mentioned in Sec-
tion 1.1, suffer from the flaw of limited coverage according to Desrosiers and Karypis
[2011]. Limited coverage refers to the problem that two users are only considered
neighbors and can therefore be used to infer recommendations, if they have rated
common items. This requirement is needlessly restrictive, as users without commonly
rated items may still have similar preferences. Data sparsity aggravates the problem of
limited coverage. Desrosiers and Karypis [2011] mention graph-based recommenders
as one method to overcome limited coverage, thanks to the underlying data model
that makes transitive relationship information accessible to queries.

Recommender systems based on walks over a graph are also attributed with high
flexibility in terms of incorporating contextual information (e.g. location, time or
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season) or user (e.g. age, gender or occupation) or item (e.g. tags, genre, year)
meta data [Lee et al., 2012]. Extending the data model with the item meta data
genre of movies can be for instance achieved by linking movie vertices of a given
genre to a dedicated vertex representing that genre. With these newly introduced
connectivities a graph walk can follow additional paths and thereby generate a different
set of recommendations compared to pure graph-based collaborative filtering.

A recommender system that generates recommendations based on graph walks over
a user-item-feedback graph does not require an computationally expansive training
phase: the required training time increases linear with the number of feedbacks, which
is advantageous when compared to many state of the art recommenders. Also incorpo-
rating new users, items, or ratings in the data model is computationally efficient since
it consists simply of expanding the graph with additional graph elements. While the
training of a graph-based recommender might be comparably cheap, the generation
of recommendations requires the execution of computationally costly graph queries.
This means that graph-based recommender systems require the majority of the totally
required processing power during recommendation and not model generation time.

Ahn et al. [2013] show how graph-based recommendations can be visualized by using
the well known and easily comprehensible graphical representation of graphs consisting
of points for vertices connected by lines representing edges. By means of an intuitive
graphical depiction, a set of generated recommendations can be explained and justified
to an audience that is not familiar with the applied recommender algorithm. This can
be advantageous when it comes to implementing and maintaining a recommender
system in a production environment. Furthermore, it is thinkable that the possibility
to intuitively depict graph-based recommendation makes it feasible to engage the user
of a recommender system in the process of recommendation generation.

Already several years ago, leading recommender system researchers emphasized that
focusing on prediction accuracy as the only criteria to assess the quality of a recom-
mender is insufficient [McNee et al., 2006]: they summarize that the narrow focus
on accuracy has been misguided and detrimental to the field. In the same paper the
authors mention the research efforts presented in Ziegler et al. [2005] as a possible
approach to overcome this shortcoming. Ziegler et al. [2005] introduced a recom-
mendation list re-ranking procedure that improves the lists diversity measured by the
variety of item attributes occurring in the list. The re-ranking procedure reduced the
accuracy of the recommendation lists. However, the user satisfaction increased for
slightly diversified lists and dropped again below the score of the undiversified list for
strongly diversified lists. From this result we can conclude that a recommender system
that maximizes user satisfaction has to find the optimal trade-off between accuracy
and diversity.

Another non-accuracy performance criteria that is considered as a desired property
of a recommender system is the capability to include items of low popularity, often
referred as long-tail items, in the recommendation lists and thereby suggesting items
users would not readily discover by themselves [Adomavicius and Kwon, 2012; Her-
locker et al., 2004; Shani et al., 2008; Zhou et al., 2010]. Zhang et al. [2012] report
an increase in user satisfaction for recommendation lists that include more items of
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low popularity. Moreover Adomavicius and Kwon [2012] point out that from an item
provider’s point of view it can also be beneficial to increase the diversity of the ag-
gregated recommendation lists, which is not necessarily high if the diversity of single
recommendation lists is high (see also Section 2.2). Despite the widely recognized
importance of non-accuracy metrics to assess a recommender systems performance,
most studies of graph-based recommenders consider accuracy only.

1.4 Contributions

The main contributions of this work are (i) the analysis of the performance charac-
teristics of graph-based recommenders with a multidimensional approach (see Section
2.3) and (ii) a vertex re-ranking procedure to increase the number of long-tail items
in a recommendation list (see Section 2.2). We assess the performance of graph-based
recommenders with a set of accuracy, non-accuracy and relevance-aware non-accuracy
metrics (see Subsection 3.1.3). The pursued evaluation includes also neighborhood and
latent factor model-based recommenders and thereby sheds light on the accuracy and
non-accuracy performance potential of vertex ranking algorithm compared to state-of-
the-art recommendation approaches. Using the findings of our evaluation we develop
a popularity-dependent parametrized re-ranking procedure that can improve accuracy
and non-accuracy performance of vertex transition probability-based vertex ranking
algorithms. In our experiments we found a significantly (Wilcoxon p<0.0001, see Ap-
pendix A.3) better accuracy and low-popularity item recommendation performance
for all datasets with the re-ranking procedure applied to P3 [Cooper et al., 2014] than
for P3

α, a parametrized version of P3 that maximizes accuracy. The parameter of the
proposed re-ranking procedure can be used to find a good trade-off between accuracy
and non-accuracy performance.

We focus in our work on positive-only feedback data (sometimes also referred as
implicit feedback): for any non-zero entry in the binary user-item feedback matrix F
we assume that the corresponding user u likes the corresponding item i, i.e. Fu,i =
1. Rating values, even if available from a dataset, are neglected. This limitation
of our work is justified by the fact that in many domains where recommendation
generation is desirable, no explicit ratings are available but positive-only feedbacks
can be inferred from the service usage statistics. For positive-only feedback data the
recommendation generation task translates into ranking the items for a given user
according to descending user preference.

We study graph-based recommenders because these algorithms allow to overcome
the problem of limited coverage and have interesting computational properties. Fur-
thermore, this approach facilitates creating hybrid recommender systems by combining
meta and feedback data in a uniform data model. Our interest in non-accuracy per-
formance characteristics of recommenders is well-grounded by several research efforts
in this direction that emphasize the importance of diversity, novelty, or aggregated
diversity for a successful recommender. However, non-accuracy performance of graph-
based recommenders have not yet been systematically studied. With the present work
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we intend to fill this gap in the research on recommender systems.
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2

Diverse Graph-based Recommendations

So far, we stated the motivation for our interest in studying vertex ranking algorithms
for the use in collaborative filtering recommender systems and presented previously
undertaken research efforts in this field. In this work we focus in particular on ver-
tex ranking algorithms based on vertex transition probabilities after repeated short
random graph walks as proposed in Cooper et al. [2014]. In the first section of this
chapter we show different approaches to calculate vertex transition probabilities. Sub-
sequently (Section 2.2), we introduce a recommendation re-ranking procedure that we
call popularity normalization to include long-tail items in a recommendation set. After
describing our conception of important recommendation diversity dimensions (Section
2.3), we conclude the chapter with a description of the software setup that we used
for the analysis of vertex ranking algorithms (Section 2.4).

2.1 Recommendations based on Vertex Transition Proba-

bilities

The vertex ranking algorithms considered in Cooper et al. [2014] are based on random
walks over the undirected bipartite graph constructed from the users’ feedback on items
(user-item-feedback graph). The vertices V of the user-item-feedback graph G = (V,E)
represent the union of the two entity sets users U and items I (V = U∪I). The graph’s
edge set is E ⊆ U×I and for each edge e ∈ E holds e = {u, i}, where u ∈ U and i ∈ I.
This means that the graph contains only edges between a user and an item vertex
and hence the graph is bipartite. An edge exists in the graph between u and i if the
corresponding entry in the user-item feedback matrix F is non-zero (Fu,i 6= 0). Hence
each user is connected to all items that the user rated and an item is connected to all
users who rated the item. All edges in the graph are unweighted and no parallel edges
exist. However, edge weights or parallel edges, for instance based on rating values or
the number of interactions, could be used for a more accurate representation of the
users preference profile. As in Cooper et al. [2014] we do not consider this extension
in the presented work.

The vertex ranking algorithm Ps, as well as the more general parametrized method
Ps
α, proposed in Cooper et al. [2014] are based on the distribution of random walks
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after s steps, which is the s-th power of the transition probabilities matrix P . The
recommendation lists of these methods are obtained by ordering the items according
to descending transition probabilities of the corresponding vertices. If we want to
obtain a vertex ranking useful as item recommendation list for u we are interested
in the random walk distribution after an odd number of steps greater than one, i.e.
s ∈ {3, 5, . . . }. We investigated three approaches to obtain P s: direct calculation with
matrix algebra, simulation of random walks, and probability tree traversals.

The adjacency of the vertices of the user-item feedback graph G can be represented
in a square matrix of size |V | called adjacency matrix A. Since all edges in G are
unweighted and undirected the entry ai,j in A is equal aj,j (A is symmetric) and 1
for two connected vertices i and j and 0 otherwise. Furthermore we define the degree
matrix D of a graph. D is a diagonal square matrix of size |V | with diagonal elements

di,i =
∑|V |

j=1 ai,j . Since D is a diagonal matrix and we assume that all diagonal entries

are non-zero (i.e., no unconnected vertices) its inverse D−1 is given by (d−1i,i ), and

hence cheap to compute. Using the inverse degree matrix D−1 and A we obtain the
transition probability matrix P with a simple matrix multiplication

P = D−1A (2.1)

We can generalize P to Pα by raising each entry of P to the power of parameter α
(α ∈ R), thus P = Pα=1. The ranking determining matrix P sα is obtained from the
s-th power of Pα. Note that the entries of the transition probability matrix after s
steps with α = 0 is equal to the normalized number of paths of length s, hence the
algorithm P3

α=0 is equivalent to 3Path. We refer to results obtained with matrix algebra
calculation with the postfix (M) (e.g., ’P3

α (M)’ denotes the P3
α method calculated by

matrix algebra operations).
Beside direct calculation of P s with matrix algebra, we also estimated the transition

probability distribution for a given user u by simulating random walks (see Algorithm
1). Cooper et al. [2014] showed that the distribution obtained with a simulation
of random walks converges to the distribution from matrix algebra calculation for
an increasing number of simulated walks. At the start of the simulation algorithm
the current vertex vc is the vertex of the start user. Next vc is assigned s-times a
randomly selected neighboring vertex of vc. Subsequently the value mapped to vc,
the terminal vertex of the walk, in an associative array is increased by one (with
0 as the default value of the associative array). This procedure is repeated until
the ordering of the vertices according to the values in the associative array remains
stable. After normalizing by the number of simulated random walks, the values in
the associative array returned from Algorithm 1 approximate the entries in P s for u.
In our experiments we used a simple heuristic as convergence criterion: the vertex
ranking was assumed as stable if the ordering of the top n items did not change for r
iterations. If this criterion was not reached after 2′000′000 restarts the simulation was
aborted and we used the resulting vertex ranking for recommendation generation. We
set n = 20 and r = 50′000, except for the MovieLens-S dataset (see Section 3.1 for
dataset description) where n = 5 and r = 20′000. Note that Algorithm 1 estimates
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PROBABILITIES

random walk distributions according to P s. Simulating the underlying random walk
distribution of the parametrized method P3

α is not possible with Algorithm 1. We refer
to results based on simulations of random walks with the postfix (S).

Algorithm 1 Estimating vertex transition probabilities by simulating random walks
with restarts.
Require: vu is the vertex representing user u and s the length of a single random

walk

1: function EstimateP(vu, s)
2: m ← an associative array with default value 0
3: while !Converged(m) do
4: vc ← vu
5: for 1 to s do
6: vc ← GetRandomNeighbor(vc)
7: end for
8: m[vc] ← m[vc] + 1
9: end while

10: return Normalize(m)
11: end function

The third approach, denoted by the postfix (T), calculates the random walk distri-
bution based on the idea of traversing a probability tree starting from user u’s vertex
(vu) up to depth s (see Algorithm 2). Unlike to the simulation approach, probability
tree traversal allows to calculate entries of P 3

α for any value of α and not only for
α = 1. The transition probabilities for u are obtained by following all paths of length
s starting from vu. In the first step the total transition probability of 1 is divided
by the number of neighbors of vu. This step is repeated for each neighbor using the
fraction of the probability until s edges were traversed. At length s of the walk the
remaining probability fraction is raised to the power of α and added to the value (ini-
tially 0) stored in an associative array for the current vertex. The associative array
returned by Algorithm 2 contains the transition probabilities from vu to any vertex
after a random walk of length s. This approach for random walk distribution calcu-
lation has the advantage over the simulation with random walks that it gives exact
results and allows transition probability tuning with α. Compared to the calculation
of P s with matrix algebra this approach avoids matrix manipulations that become
quickly infeasible with increasing dataset size since the matrices do not fit into com-
puter memory. Calculating the random walk distribution by traversing a probability
tree can also be implemented in the graph element centric computation model of the
Signal/Collect framework [Stutz et al., 2010]. In Appendix A.4 we show the necessary
implementations using Signal/Collect to calculate the transition probabilities of an
example graph. The proposed implementation uses the synchronous execution mode
of Signal/Collect, which is closely related to the Bulk Synchronous Parallel (BSP)
computing model and Pregel [Malewicz et al., 2010].

13
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Algorithm 2 Calculation of vertex transition probabilities by probability tree traver-
sal.
Require: vu is the vertex representing user u, s the length of a single random walk,

and α the transition probability tuning parameter

1: function CalculateP(vu, s, α)
2: m ← an associative array with default value 0
3: TraverseTree(vu,m, 0, 1, s, α)
4: return m
5: end function

6: function TraverseTree(vc,m, depth, p, s, α)
7: if depth < s then
8: neighbors ← GetAllNeighbors(vc)
9: p ← p

neighbors
10: for each vn in neighbors do
11: TraverseTree(vn,m, depth+ 1, p, s, α)
12: end for
13: else
14: m[vc] ← m[vc] + pα

15: end if
16: end function

2.2 Popularity-normalized Graph-based Recommendations

Our analysis of different type of graph-based recommendation algorithms (see Section
3.2) showed that the resulting item ranking of the most accurate methods is strongly
influenced by the popularity of the items, i.e., the most popular items appear for
most users at the top of the recommendation list. We assume that such a ranking
is undesirable for multiple reasons. (i) It is likely that a user is already aware of
the most popular items and hence the recommender system does not help users to
discover unknown items. (ii) A dominating influence of item popularity makes it
less likely for novel items to get recommended even if they match a user’s preference
profile and thereby aggravates the item cold-start problem. (iii) We believe that in
order to engage a user with recommended items, the proposals should convey a feeling
of personalization to the user. (iv) If we think of a recommender system as a means
for content providers to advertise items, the capability to recommend low popularity
items (which in turn increases aggregated diversity) to appropriate users is probably a
desirable performance attribute. Adomavicius and Kwon [2011] ground the desirability
of increased aggregated diversity with a nice example: a Video-on-Demand (VoD)
provider (e.g., Netflix) should encourage users to rent more long-tail movies because
these items are less costly to license and acquire from distributors than new releases
or extremely popular movies of big studios.

14
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For these reasons we investigated algorithmic extensions to existing graph-based rec-
ommendation methods that introduce item popularity as ranking influencing quantity.
We refer to these extensions as popularity normalization. For the Ps type of algorithms
(see Section 2.1), item ranking is based on the transition probability matrix P of a
random walk raised to the power s. Due to the randomness of the walk with uniform
edge selection probabilities and the high vertex degree of popular items, it is likely
that the walk ends at a popular item. To compensate for this effect we propose to
rank items by a popularity normalized quantity (Q) of type

Qu,i = P su,i ∗ f(di,i) (2.2)

where P su,i is the transition probability after s steps from user u to item i and f(di,i)
a function depending on the popularity of i in the training data. di,i is the entry for
vertex i (here representing an item) in the degree matrix of the user-item-feedback
graph. In principle we can replace the transition probability P su,i in Equation 2.2 with
any other property that describes the relationship between two graph vertices, e.g., the
average hit or commute time between a start and target vertex or the entry for u and
i in the pseudoinverse Laplacian matrix L+

u,i. Since transition probability-based graph
recommendation methods showed the best accuracy performance in our preliminary
analysis (see Section 3.2) we examined the effect of popularity normalization only for
these methods.

We experimented with the following two parametrized normalization functions:

fa(di,i) =
1

dβi,i
(2.3)

and

fb(di,i) =
1

rank(di,i)β
(2.4)

where β ∈ R is a tuning parameter for the degree of popularity normalization and
rank(di,i) calculated with the following algorithm:

1. l = 〈d1,1, ..., dn,n〉 is the list of the item degrees ordered ascending

2. Let k (k ∈ 1, 2, ..., n) be the index of di,i in l. Then rank(di,i) = rank(k) =

1 +
∑k

j=2 g(lj−1, lj) where

g(la, lb) =

{
1, if la < lb
0, otherwise

(2.5)

If we choose β = 0, then fa(di,i) = fb(di,i) = 1 and thus the item ranking is fully
determined by the transition probability matrix (Qu,i = P su,i). A positive β value has
the effect of reducing the transition probability to low degree vertices to a smaller
extent than to high degree vertices and hence it becomes more probable for unpopular
items to appear at the top places of a recommendation list. If we choose a negative
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Item P3
α with α AN-P3 with β

-1.0 0.0 1.0 2.0 3.0 4.0 -0.5 0.0 0.5 1.0 1.5

A 0.147 0.133 0.100 0.062 0.033 0.016 0.078 0.100 0.122 0.142 0.158
B 0.441 0.467 0.492 0.512 0.526 0.533 0.605 0.492 0.380 0.279 0.197
C 0.257 0.267 0.292 0.326 0.359 0.387 0.227 0.292 0.356 0.414 0.461
D 0.154 0.133 0.117 0.100 0.082 0.064 0.091 0.117 0.142 0.165 0.184

Figure 2.1: Random walk vertex transition probabilities after 1, 2, and 3 steps (Figures 1-3) and
resulting ranking weights (Table) of a single user in a toy graph. Circles represent user
vertices (1-6) and squares represent item vertices (A-D). The target user (4) is colored in
cyan.
Vertex transition probability tuning (P3

α) attenuates the spread of user preference and
increases the difference of the ranking weights of the two items unknown to the target
user (items A and D) for increasing values of α > 0. The weight of item D decreases to
a smaller extent than of item A because the two 3 edge distance paths from user 4 to
item D pass through vertices of lower degree than the two paths leading from user 4 to
item A. The difference in the ranking weights of the two unknown items also increases for
popularity normalization (AN-P3) with increasing values of β. However, more pronounced
is the redistribution of the user preference from high degree to low degree vertices. Note
that P3

α with α = 1 and AN-P3 with β = 0 (as well as P3) are the same algorithm.

β the popular items are even more likely listed at the top of a recommendation list
than with a pure transition probability-based ranking. In Figure 2.1 we illustrate on a
toy graph the influence of popularity normalization and transition probability tuning
(see Sections 1.2 and 2.1) on the item rank determining weights. In the remainder of
this work we refer to recommendation algorithms using the absolute popularity of an
item for normalization (fa, Equation 2.3) with the prefix AN- and to algorithms with
popularity rank-based normalization (fb, Equation 2.4) with the prefix RN-.

2.3 Dimensions of Recommendation Diversity

In this work we consider four non-accuracy performance dimensions for evaluating
recommendation quality: intra-list diversity, item-space or catalog coverage, person-
alization, and novelty/surprisal. In contrast to accuracy, denoting an algorithm’s
predictive power, we use the term diversity when we refer to any of the non-accuracy
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dimensions. See subsection 3.1.3 for a formal description of the metrics used to mea-
sure a recommender’s non-accuracy performance.

Intra-list diversity measures the quality of a set of recommended items in terms of
the diversity of these items among each other. In this context, the diversity of two
items is determined by the distance between the items in the space of item attributes.
More diverse items are further apart in the space. For instance in the case of movie
recommendations an item attribute could describe the genre of the movie. If a set
of recommendations consists only of movies with the genre attribute value ”Western”
the intra-list diversity score would be low.

Item space or catalog coverage, sometimes also called aggregated diversity, is an
indicator for the uniformity of the abundance of the recommendable items in the
aggregated recommendation sets. A recommender achieves perfect catalog coverage if
each item appears with equal probability in a set of recommendations, as it is the case
for the random recommender. In the remainder of this text we refer to this diversity
dimension simply with coverage.

A random selection of recommended items gives also the highest possible score
in personalization, which evaluates how similar a generated set of recommendations
is when compared to all other sets. A highly personalized set of recommendations
contains only few items that appear also in other sets. We expect that the recom-
mendation performance in the coverage and personalization dimensions are positively
correlated: a recommender with a low coverage recommends the same items multiple
times and therefore the difference among recommendation sets is likely to be smaller.
This is equivalent to a decrease in personalization.

The novelty/surprisal diversity dimension evaluates a single recommendation set
based on the popularity of the items in the set. Since a user is less likely to be aware
of items with low popularity, the novelty/surprisal score of a recommendation set is
high if it consists of low popularity items. Consequently, recommending items based
on a ranking by descending item popularity gives the worst novelty/surprisal scores.
If a recommender does not only recommend the very popular items, the aggregated
recommendation sets comprise a greater number of different items, i.e., the coverage
of the recommender increases. For this reason we also expect a positive correlation
between novelty/surprisal and coverage. In the remainder of this text we refer to the
novelty/surprisal diversity dimension simply with surprisal.

2.4 System Setup

We extended the Java port of the MyMediaLite recommender system framework1

with two additions: (i) a set of metrics (see Section 3.1) measuring recommendation
performance according to the diversity dimensions introduced in Section 2.3 and (ii),
a component implementing the graph-based recommender algorithms introduced in
Section 1.2, which depends on the MyMediaLite framework. The original MyMedi-

1MyMediaLite port from C# to Java - github.com/ jcnewell/ MyMediaLiteJava
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aLite library2 is described by its authors as a lightweight, multi-purpose library of
recommender system algorithms that addresses the two most common scenarios in
collaborative filtering: rating prediction and item prediction from positive-only feed-
back [Gantner et al., 2011]. It contains a wide variety of memory and model based
collaborative filtering recommender algorithms, dedicated evaluation metrics for both
recommendation scenarios and allows the incorporation of contextual or meta data
through a shared data input and output mechanism. The Java port of MyMediaLite
is almost as feature rich as the original version and copes well with the Java-based
graph processing technology stack that we use for the framework extension. The
graph-based recommender algorithms share a common superclass, inheriting from the
MyMediaLite ItemRecommender class, that constructs the graph data structure during
the training phase based on the boolean user-item feedback matrix provided by the
framework. The graph is a TinkerGraph object implementing the Blueprints3 Graph

interface and queryable with a domain specific language called Gremlin4. Various

Figure 2.2: Enabling graph-based recommendations with the MyMediaLite framework. The colored
components of the setup were developed in the context of this work.

types of storage implementations, both persistent and in-memory, are available for
the Blueprints graph API. The back-end used in our experiments is memory-based
and hence the size of the processable graph is limited by the memory available on
the computer. However, it is thinkable to apply graph walk-based recommendation
algorithms to larger datasets by using a more scalable Blueprints enabled storage solu-
tion. The dependences between the system components together with the underlying
technologies are presented in Figure 2.2.

2MyMediLite recommender system library - github.com/ zenogantner/ MyMediaLite
3Blueprints generic graph API - github.com/ tinkerpop/ blueprints
4Gremlin graph traversal language - github.com/ tinkerpop/ gremlin
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3

Evaluation

In the previous chapter and Section 1.2, we introduced different approaches for graph-
based recommendation algorithms. In the following sections we will present and dis-
cuss the algorithms accuracy and diversity performance characteristics based on the
results of off-line experiments with four different datasets. We start by outlining the
evaluation methodology (Section 3.1), including a detailed explanation of the used
diversity metrics (3.1.3), followed by an assessment of the performance of graph-based
recommenders (3.2) when compared to a set of baseline recommenders. Key findings of

the evaluation are
summarized in
margin notes

Subsequently
we discuss the achieved improvements in accuracy and diversity with popularity nor-
malization (3.3) and compare it to the potential of transition probability tuning (3.4)
as proposed in Cooper et al. [2014]. We show in Section 3.5 how popularity normal-
ized graph-based recommenders perform compared to three different baseline methods,
again considering accuracy and the four different diversity dimensions. To exemplify
the effect of popularity normalization we include recommendation lists generated with
increasing degree of popularity normalization for a sample user in Section 3.6. The
chapter is concluded by presenting results of exploratory experiments combining pop-
ularity normalization and transition probability tuning (3.7).

3.1 Methodology

This section starts with an overview over the baseline recommenders considered in
the evaluation followed by a description of the dataset characteristics and the used
performance metrics.

3.1.1 Baseline Recommenders

We measured the performance of the graph-based recommendation algorithms intro-
duced in Section 1.2 in terms of prediction power of future user behavior, hereafter
referred as accuracy, and different diversity metrics. The same measurements were per-
formed for weighted (WI-kNN) and unweighted (I-kNN) k-nearest neighbor item-
based collaborative filtering recommenders using cosine distance as item similarity
measure. Both algorithms are readily available in the MyMediaLite library. We
experimented with different neighborhood sizes varying from 10 to 1’600. We also
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Name Ratings Users Items Min.
User
Degree

Max.
User
Degree

Min.
Item
Degree

Max.
Item
Degree

Median
User
Degree

Median
Item
Degree

Avg.
User
degree

Avg.
Item
Degree

Sparsity Graph
Dia-
meter

MovieLens-S - total 100000 943 1682 20 737 1 583 65.0 27.0 1.1 × 102 5.9 × 101 6.3 × 10−2 5

MovieLens-M - total 1000047 6038 3706 20 2314 1 3426 96.0 123.0 1.7 × 102 2.7 × 102 4.5 × 10−2

MovieLens-M - train 700047 6038 3706 10 1576 1 2407 67.0 86.0 1.2 × 102 1.9 × 102 3.1 × 10−2 6

MovieLens-M - test 300000 6038 3513 1 738 1 1019 28.0 42.0 5.0 × 101 8.5 × 101 1.4 × 10−2

iPlayer - total 4703471 655846 808 1 170 5 147987 6.0 1867.5 7.2 5.8 × 103 8.9 × 10−3

iPlayer - train 4691493 655846 808 1 170 5 147674 6.0 1860.5 7.2 5.8 × 103 8.9 × 10−3 6

iPlayer - test 14616 5000 623 1 30 1 714 2.0 8.0 2.9 2.3 × 101 4.7 × 10−3

BookCrossing - total 369195 4052 18280 20 5399 1 872 42.0 12.0 9.1 × 101 2.0 × 101 5.0 × 10−3

BookCrossing - train 258436 4052 18280 15 3844 1 616 30.0 8.0 6.4 × 101 1.4 × 101 3.5 × 10−3 7

BookCrossing - test 110759 4050 16768 1 1555 1 256 13.0 4.0 2.7 × 101 6.6 1.6 × 10−3

Table 3.1: Datasets properties. Graph diameters are estimates obtained with the built-in function
GraphDiameter and option PseudoDiameter of Wolfram Mathematica 10 R©.

considered a recommender based on a latent factor model obtained with matrix fac-
torization, called BPRMF [Rendle et al., 2009] (also contained in the MyMediaLite
library). We maximized the accuracy of BPRMF by varying the number of latent
factors in the range between 10 and 200. See Appendix A.1 for the complete sets of
parameters used for each recommender. In addition to these three personalized base-
line algorithms we included two non-personalized recommendation strategies in our
analysis: global item popularity (MostPop) and random item ranking (Random).
To facilitate comparison we also calculated all metrics for the perfect recommender
(Perfect) which places all test items of a user at the top of the recommendation list
(with random ordering among the test items). All accuracy figures presented in this
work are relative to the performance of the Perfect recommender. Due to the varying
computational time and space complexity of the different graph-based and baseline
recommendation algorithms, we could not measure the performance of each algorithm
for all datasets. In particularly it was not possible to perform experiments with the
largest dataset (iPlayer, see Section 3.1.2) for graph-based recommenders that use ma-
trix algebra operations (P3 (M), P3

α (M), P5 (M), P5
α (M), and L+ (M)) because of

the large size of the graph’s degree and adjacency matrices. Table A.1 in Appendix
A.2 summarizes the experiments performed for the evaluation.

3.1.2 Datasets

We used four different datasets for our experiments: the 100K MovieLens dataset
(hereafter referred to as MovieLens-S), the 1M MovieLens dataset (MovieLens-M),
the Book Crossing dataset (BookCrossing)[Ziegler et al., 2005], and a dataset obtained
from the iPlayer called VoD system of the British Broadcasting Corporation (iPlayer).
Since this work addresses recommendation generation based on implicit user feedback
we neglected the rating values available in the MovieLens and BookCrossing datasets
for training and testing of the recommenders under evaluation. Results reported for
MovieLens-S were obtained from a 5-fold cross-validation on the dataset splits readily
available in the zip archive downloaded from the GroupLens website. MovieLens-M
was constructed by first selecting all ratings (20 or more) of randomly drawn user ids
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Name Min.
User

Max.
User

Median
User

Avg.
User

Min.
Item

Max.
Item

Median
Item

Avg.
Item

MovieLens-M 10 1576 6.7 × 101 1.2 × 102 1 2407 9.7 × 101 2.0 × 102

iPlayer 1 56 6.0 7.0 18 147674 2.5 × 103 7.3 × 103

BookCrossing 15 3844 3.0 × 101 6.4 × 101 5 616 9.0 1.5 × 101

Table 3.2: Incidence of test users and items in training set. Reading example: a user in the test set
of the of the MovieLens-M dataset rated at least 10, not more than 1576, and on average
approx. 120 items; vice versa, all items in the test set of the MovieLens-M dataset have
between 1 and 2407 ratings in the training set.

until we reached 1 million ratings. In a second step we assigned randomly 300’000
ratings to the test set under the condition that each item appears at least once in the
training set and each test user has at least 10 ratings in the training set. The remaining
700’047 ratings were used for training. The BookCrossing dataset was constructed by
first removing ratings for items with a non-alphanumerical id and less than 10 ratings,
second we selected all users with twenty or more ratings. From the remaining 369’195
ratings we randomly assigned 110’759 ratings to the test set under the condition that
each item in the test set has at least five and each test user at least 15 ratings in the
training set. The training set of the iPlayer dataset consists of the viewing logs of the
VoD system of one week (February 15-21, 2014) and the test data of the log data of the
consecutive week. We considered for both sets, training and test, only viewings with a
minimal duration of 5 minutes. The training data comprises 4’703’471 viewings of 808
TV shows and 655’846 users with each show appearing at least 5 times. From the log
data of the test week, we randomly selected 5’000 users that were also active during
the training week. In the obtained test set with 14’616 viewings each user has at least
one viewings during the training time and each item in the test set was watched at
least 18 times in the training week. In Table 3.1 we list some characteristics of the
used datasets. Figures for the incidence in the training set of users and items used for
testing are listed in Table 3.2.

3.1.3 Performance Metrics

Two metrics readily available in the MyMediaLite framework were used to measure
accuracy of the recommendation algorithms: area under the ROC curve (AUC) and
precision at k (Prec@k). AUC is the number of correctly ordered item pairs consisting
of a hit (item that appears in a user’s test set) and a no-hit item in the ranked
recommendation list divided by the number of all possible pairs of hit and no-hit
items. This is the same as the probability that a randomly drawn hit and no-hit item
are ordered correctly relative to each other in the recommendation list. Prec@k counts
the number of correctly predicted items in the top k items of the recommendation list
divided by the cut-off level k. In consideration of the fact that in most applications
only a small number of recommendations are presented to the user we decided to
calculate Prec@k with small cut-off levels including the top 5, 10 and 20 items.

In order to measure the recommendation quality in the four diversity dimensions

21



CHAPTER 3. EVALUATION

intra-list diversity, coverage, personalization and surprisal introduced in Section 2.3, we
extended the MyMediaLite framework with a set of metrics proposed in the literature.
All used diversity metrics are top k measures and we applied the same cut-off levels as
for Prec@k. For all metrics greater values indicate better diversity in the corresponding
dimension. Intra-list diversity and surprisal assess the quality of each recommendation
list independent of the other lists. For these metrics we report the scores averaged
over all recommendation lists. The personalization score is calculated by comparing
each recommendation list to all other generated lists and hence is averaged over all
pairs of recommendation lists. Coverage is calculated based on the aggregated top k
recommendations for all users.

Intra-list diversity (ILD@k) is measured by the item attributes based diversity metric
proposed in Smyth and McClave [2001] that averages the diversity over all item pairs
of the top k items (i1, ..., ik) in the recommendation list. Top k ILD for a single
recommendation list is calculated according to

ILD@k =

∑
a=1..k

∑
b=a..k(1− Similarity(ia, ib))

k
2 ∗ (k − 1)

(3.1)

As similarity measure for two items, we used the Jaccard similarity coefficient of each
items set of attributes (Ai):

Similarity(ia, ib) =
|Aa ∩Ab|
|Aa ∪Ab|

(3.2)

The similarity of two items is maximal (Similarity(ia, ib) = 1) if both items have the
same set of attributes and minimal (Similarity(ia, ib) = 0) if two items do not share
any attributes. Since ILD@k is the average of the diversity (1− Similarity(ia, ib)) of
all item pairs its value is 0 for minimal and 1 for maximal diversity. For the MovieLens
datasets the item attributes consist of the classification of the items, here movies, in 19
different genres. A movie can be assigned to more than one genre. The iPlayer dataset
has 137 item attributes describing the format of a show (e.g. documentary, game show,
or film), its genre (e.g. factual, news, comedy, entertainment, or drama), the subgenre
(e.g. politics, biographical, or spoof) and the broadcasting station (e.g. BBC One or
BBC Two). Some items have additional attributes for the shows subject, important
places or people responsible for or appearing in the show. The BookCrossing dataset
does not contain item attribute data and for this reason we do not report ILD figures
for this dataset.

To measure coverage we calculated the Gini coefficient (GiniD@k) for the aggregated
top k recommendations of all users in the test set (U) as proposed in Adomavicius
and Kwon [2012] by

GiniD@k = 2 ∗
∑
i∈I

[(
|I|+ 1− rank@k(i)

|I|+ 1

)
×

(
recCount@k(i)

k ∗ |U |

)]
, (3.3)

where |I| denotes the cardinality of the set of recommendable items and recCount@k(i)
the number of users with item i appearing in the top k recommendations. rank@k(i)
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is the rank of item i when ordering the items ascending by the number of their ap-
pearance among the top k items of all recommendation lists. GiniD@k measures the
distribution of the abundance of items in the aggregated recommendation lists. The
contribution of a single recommendable item i to the the overall coverage decreases
with increasing rank of i and increases if i appears more often in the aggregated lists
of recommendations. GiniD@k is equal to 1 if the abundance in the aggregated rec-
ommendation lists is the same for each item. In contrast to the original definition of
the Gini coefficient used to assess wealth distribution where greater values indicate a
more dispersed distribution, GiniD@k increases for a more uniform distribution.

We measured personalization (Pers@k) and surprisal (Surp@k) according to the
metrics suggested in Zhou et al. [2010]. Pers@k measures the distinctness of the top
k recommendations based on the number of common items averaged over all pairs of
generated recommendation sets:

Pers@k =

∑
a=1..|U |

∑
b=a..|U |(1−

|topK(ua)∩topK(ub)|
k )

|U |
2 ∗ (|U | − 1)

(3.4)

where U stands for the set of all test users and topK(ua) denotes the set of the top k
items in user a’s recommendation list. A value of Pers@k = 1 indicates that none of
the items appear more than once among the top k items of any two recommendation
lists.

Surp@k on the other hand is, like ILD@k, a metric that is calculated separately for
each recommendation list and averaged over all users. This metric is based on the
rational that recommendations of items of low popularity are perceived by the users
as unexpected or surprising. The surprisal value of a single recommendation list is
given by

Surp@k =

∑
a=1..k log2(

|U |
pop(ia)

)

k
. (3.5)

Here U is the set of training users and pop(ia) the number of ratings that item a
received during the training phase. Assuming the training data lacks duplicate feed-
backs, then pop(ia)

|U | calculates the probability that a randomly selected user rated item

a during the training phase and thus item a’s self-information [Zhou et al., 2010] or

surprisal value Sia is given by log2(
|U |

pop(ia)
).

Furthermore we measured the performance of all recommenders with two rank sensi-
tive and relevance aware novelty and diversity metrics proposed in Vargas and Castells
[2011]: Expected Free Discovery novelty (EFD@k) and Expected Intra-list Distance
diversity (EILD@k). Since these metrics also assess the quality of a single recommen-
dation list for a given user we again averaged the results over all users. Even-though
the metrics are rank sensitive, which means that a lower ranked item on the recom-
mendation list has a higher impact on the metric score than a higher ranked item, we
limited the calculations to the top 5, 10, and 20 positions of the recommendation lists.
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EFD@k and EILD@k for a given user u have the general form

EFD@ku, EILD@ku =

C ∗
∑
a=1..k

discount(a− 1) ∗ relevance(u, ia) ∗ novDiv(u, ia, i1..k) (3.6)

where ia is the item on the users recommendation list at position a and C denotes a
normalization factor. Rank sensitiveness was considered with the exponential discount
model

discount(a) = ca (3.7)

with c = 0.85, which is the same value as used in Vargas and Castells [2011]. A
relevance aware diversity or novelty metric considers also the recommender’s prediction
power in the metric score. In the implicit feedback case this can be implemented with
a simple boolean function

relevance(u, i) =

{
1, i ∈ Tu
0, i /∈ Tu

(3.8)

where Tu is the set of all test items of user u. EFD and EILD share the defini-
tions for discount(r) and relevance(u, i) and distinguish only in the novelty model
(novDiv(u, ia, i1..k)). In EFD the novelty score is obtained from the items self-information
value Sia , which makes EFD a rank sensitive and relevance aware version of the Surp@k
measure. While EFD uses a popularity-based novelty model EILD is based on a item
distance diversity model calculated from the Jaccard coefficient of the recommenda-
tion lists top k items attribute sets, see Equation (3.2). Hence EILD can be considered
as a rank sensitive and relevance aware version of the ILD@k measure.

3.2 Accuracy and Diversity of Graph-based Recommenders

We used the metrics defined in Section 3.1 to determine the performance of the graph-
based recommendation algorithms introduced in Section 1.2 and the baseline recom-
menders (Section 3.1). The results of this first round of evaluation are summarized in
Table 3.3. Our experiments corroborate the findings presented in Cooper et al. [2014]:
Ranking the items by the entries of the third power of the vertex transition probabil-
ity matrix (P3 and P3

α) is the most accurate graph-based recommendation algorithm.

P3, P3
α, and L+

most accurate
graph-based rec-
ommenders

This finding is consistent through all four datasets and both types of accuracy met-
rics. We also found only a small difference in the performance figures obtained with
simulation of random walks (S) compared to results from matrix algebra calculations
(M), i.e., P3 (S) is similar to P3 (M), P5 (S) is similar to P5 (M), and IR (S) is
similar to IR (M). In accordance with the results of Cooper et al. [2014], we found
recommendation lists of comparable AUC accuracy for L+ when compared to P3. The
precision of L+, however, is lower at all three measured thresholds for all datasets. As
reported by Cooper et al. [2014], we found in our experiments on the MovieLens-M
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Recommender AUC* Prec* ILD GiniD Pers Surp EILD EFD

Perfect 100.0 100.0 0.817 0.233 0.824 3.88 0.736 7.92
Random 49.7 3.4 0.828 0.824 0.985 5.19 0.141 0.23
MostPop 82.7 27.0 0.815 0.024 0.434 1.61 0.555 1.73
I-kNN (k=100) 90.6 36.2 0.789 0.244 0.943 3.00 0.542 2.52
WI-kNN (k=100) 91.1 44.2 0.806 0.127 0.890 2.34 0.627 3.12
BPRMF (d=10) 91.5 41.8 0.794 0.196 0.916 2.65 0.604 2.94
3Path 85.6 34.4 0.820 0.033 0.578 1.71 0.606 2.40
IB-3Path 85.6 34.4 0.820 0.033 0.578 1.71 0.606 2.40

P3 (S) 88.7 38.4 0.821 0.044 0.684 1.81 0.636 2.57

P3 (M) 88.8 38.6 0.820 0.043 0.678 1.80 0.637 2.57

P5 (S) 85.5 32.0 0.821 0.031 0.551 1.67 0.602 2.09

P5 (M) 85.7 32.3 0.820 0.030 0.540 1.66 0.604 2.10

P3
α (M, α = 1.7) 89.6 36.4 0.819 0.051 0.699 1.96 0.627 2.38

IR (S) 81.9 28.8 0.819 0.028 0.504 1.70 0.519 1.89
IR (M) 82.0 29.1 0.818 0.026 0.458 1.69 0.524 1.92
BnB 79.4 27.4 0.815 0.113 0.855 2.23 0.526 1.89
OW (S) 82.7 27.1 0.814 0.025 0.442 1.61 0.556 1.74
CT (S) 82.7 27.2 0.815 0.026 0.464 1.62 0.555 1.74

M
o
v
ie

L
e
n
s-

S

L+ (M) 88.8 37.0 0.788 0.198 0.929 3.06 0.527 2.63

Perfect 100.0 100.0 0.795 0.218 0.927 4.01 0.712 9.90
Random 50.2 1.8 0.832 0.900 0.994 6.33 0.101 0.16
MostPop 85.1 25.1 0.810 0.009 0.401 1.84 0.523 2.09
I-kNN (k=150) 91.4 33.9 0.669 0.221 0.973 3.62 0.476 3.20
WI-kNN (k=150) 91.8 42.3 0.699 0.090 0.918 2.75 0.546 3.93
BPRMF (d=50) 92.1 38.8 0.726 0.189 0.952 3.22 0.567 3.65
3Path 86.7 28.0 0.803 0.010 0.449 1.86 0.559 2.48
IB-3Path 86.7 28.0 0.803 0.010 0.449 1.86 0.559 2.48

P3 (S) 88.9 30.2 0.809 0.011 0.511 1.89 0.602 2.71

P3 (M) 89.1 30.2 0.809 0.011 0.497 1.88 0.604 2.73

P5 (S) 85.8 25.7 0.811 0.010 0.432 1.84 0.537 2.17

P5 (M) 86.0 26.0 0.812 0.009 0.410 1.84 0.537 2.19

P3
α (M, α = 1.8) 90.3 31.0 0.811 0.027 0.644 2.13 0.614 2.81

IR (M) 85.1 25.8 0.802 0.009 0.405 1.85 0.521 2.18
BnB 78.6 15.2 0.807 0.088 0.925 2.78 0.431 1.38

M
o
v
ie

L
e
n
s-

M

L+ (M) 88.1 25.7 0.577 0.218 0.971 4.22 0.378 2.67

Perfect 100.0 100.0 0.857 0.068 0.172 8.21 0.696 2.61
Random 51.5 3.1 0.812 0.954 0.968 8.01 0.031 0.03
MostPop 78.0 19.8 0.861 0.038 0.163 3.31 0.193 0.17
I-kNN (k=50) 89.0 27.9 0.704 0.340 0.867 6.11 0.159 0.33
WI-kNN (k=150) 92.6 48.1 0.724 0.195 0.734 4.55 0.326 0.70
BPRMF (d=50) 91.0 46.8 0.771 0.211 0.734 4.54 0.324 0.62
3Path 89.7 36.2 0.808 0.077 0.490 3.75 0.302 0.41
IB-3Path 89.7 36.2 0.808 0.077 0.490 3.75 0.302 0.41

P3 (S) 91.2 41.2 0.803 0.109 0.569 3.96 0.321 0.49

P5 (S) 89.2 33.2 0.836 0.060 0.420 3.60 0.282 0.32

P3
α (T, α = 1.5) 91.5 42.6 0.792 0.139 0.617 4.13 0.319 0.53

IR (S) 84.9 29.1 0.855 0.042 0.266 3.37 0.255 0.24

iP
la

y
e
r

IR (M) 85.1 29.1 0.855 0.042 0.259 3.36 0.256 0.24

Perfect 100.0 100.0 N/A 0.266 0.828 7.80 N/A 11.43
Random 50.1 0.2 N/A 0.748 0.999 8.57 N/A 0.02
MostPop 71.8 5.1 N/A 0.001 0.111 3.95 N/A 0.41
I-kNN (k=800) 75.3 7.2 N/A 0.148 0.976 7.38 N/A 0.67
WI-kNN (k=1600) 78.1 10.0 N/A 0.150 0.955 6.79 N/A 1.06
BPRMF (d=10) 79.8 5.2 N/A 0.100 0.966 6.39 N/A 0.45
3Path 77.8 7.2 N/A 0.002 0.436 4.14 N/A 0.62
IB-3Path 77.8 7.2 N/A 0.002 0.434 4.14 N/A 0.62

P3 (S) 81.7 9.0 N/A 0.016 0.668 4.58 N/A 0.77

P3 (M) 82.5 9.1 N/A 0.015 0.652 4.56 N/A 0.78

P5 (S) 78.8 6.2 N/A 0.002 0.355 4.12 N/A 0.51

P5 (M) 80.6 6.3 N/A 0.002 0.271 4.09 N/A 0.52

P3
α (M, α = 0.9) 82.5 9.0 N/A 0.010 0.610 4.44 N/A 0.77

P5
α (M, α = 1.3) 81.4 6.9 N/A 0.006 0.426 4.34 N/A 0.57

BnB 66.7 3.5 N/A 0.041 0.923 5.36 N/A 0.32

B
o
o
k
C

ro
ss

in
g

L+ (M) 82.3 5.0 N/A 0.318 0.996 9.19 N/A 0.60

Table 3.3: Accuracy and diversity performance of graph-based (yellow background), personalized
(green), and non-personalized (blue) baseline recommendation algorithms. Due to space
restrictions we include only the measurements for Prec, ILD, GiniD, Pers, Surp, EILD,
and EFD at a cut-off value of 20 (k = 20). Furthermore, we list only the figures for the
parameter setting that achieved the highest AUC performance. The parameter k of the
nearest neighbors-based methods (I-kNN and WI-kNN) denotes the neighborhood size and
the parameter d of the matrix factorization-based technique (BPRMF) denotes the number
of latent factors in the model. *Accuracy performance figures (AUC and Prec) are given in
percentage of the Perfect recommender.
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and iPlayer datasets that the parametrized version of P3, P3
α provides improved accu-

racy (both AUC and precision) over the pure transition probability-based P3 method.
For MovieLens-S P3

α with a value of α that optimizes AUC performance shows a lower
Prec@k performance than P3 at all three measured threshold levels. With the same α
value the AUC performance of P3

α is better than of P3. We could not observe an im-
proved accuracy for P3

α when compared to P3 in the experiments on the BookCrossing
dataset. If we compare the performance of graph-based recommenders to the baseline
methods on the MovieLens and iPlayer datasets, we find that even the best performing
graph-based recommenders give less accurate recommendations than at least one of
the baseline recommenders. For the BookCrossing dataset P3 and P3

α are the methods
with the overall highest AUC values.Worse accuracy of

graph-based recom-
menders compared
to baselines

But if we compare accuracy by Prec@20 the
nearest neighbor-based baseline methods again outperform P3 and P3

α, i.e., maximal
Prec@20 for WI-kNN is 12.5 (neighborhood size of 50) and maximal precision of P3

α

is 9.1 (with α = 1.1, results not included in Table 3.3). Our results contradict earlier
reported results [Cooper et al., 2014; Gori and Pucci, 2007] regarding the accuracy of
the ItemRank (IR) recommender: in our experiments with the MovieLens-S dataset,
the accuracy of this method is lower than for OW or CT and also clearly worse than
for vertex transition probability-based methods or L+.

Now let us compare the performance of graph-based recommenders for the four di-
versity dimensions (see columns 5-8 of Table 3.3):Worse coverage,

personalization,
and surprisal of
most graph-based
recommenders
compared to base-
lines

the best performing graph-based
recommender in terms of coverage (GiniD), personalization (Pers) and surprisal (Surp)
is L+, followed by the very inaccurate BnB method and, with a huge margin, by P3

α

and P3. The intra-list diversity (ILD) of recommendation lists from L+, on the other
side, is worse than for any other method but good for P3 and P3

α. Except for L+, the
most accurate graph-based recommenders are much worse than the personalized base-
line methods in terms of coverage, personalization, and surprisal. P3

α and P3 generate
similar recommendation lists for different users (low Pers) with a small number of dif-
ferent items (low GiniD) of high popularity (low Surp) at the top. This performance
profile indicates that the item ranking of P3 and P3

α is similar to the one produced
by MostPop (MostPop has a Pers> 0 because items already collected by the user are
filtered out from the recommendation list). We also interpret the rather good ILD
performance of many graph-based recommenders as indication for the strong influence
of item popularity on the ranking list since the ranking according to item popular-
ities (MostPop) results also in a recommendation list with good intra-list diversity.

Item ranking of
most graph-based
recommenders is
strongly influenced
by item popularity

Introducing rank sensitiveness and relevance awareness in the ILD (EILD) and Surp
(EFD) metrics does not qualitatively change the findings of our performance assess-
ment (see last two columns of Table 3.3): the recommendation novelty of the best
graph-based recommenders measured by EFD is worse than for the best personalized
baseline algorithms in all datasets while recommendation diversity in terms of EILD
is comparable.
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3.3 Performance Impact of Popularity Normalization

Using our insights from the performance evaluation of graph-based recommendation
algorithms proposed in the literature (see Section 3.2), we developed a re-ranking pro-
cedure to reduce the impact of item popularity on the item ranking (see Section 2.2).
In this section we present the performance improvements achieved with popularity
normalization for graph-based recommendation algorithms based on vertex transition
probabilities. We measured the accuracy and diversity performance of AN-P3, RN-
P3, AN-P5, RN-P5, AN-IB-3Path and RN-IB-3Path for values of the normalization
strength determining factor β in the range from -0.2 to 1.2 in steps of 0.1. Hence we
also measured the performance of the non-normalized (β = 0) methods P3, P5, and
IB-3Path again. In all experiments the AN-methods showed better performance in
terms of accuracy and all four diversity dimensions than the RN-methods. For this
reason we will exclude the RN-methods from the following discussion.

3.3.1 Popularity Normalization Improves Accuracy

In contrast to our expectations, the experiments revealed a clear accuracy improve-
ment for all three AN-methods with small positive values of β when compared to the
non-normalized method (see Figure 3.1).

Accuracy of AN-P3

is comparable to
the performance of
the baseline meth-
ods (see Section
3.5)

The only exception to this finding is the
performance of AN-P3 and AN-IB-3Path on the BookCrossing dataset for which the
AUC remained unchanged for small positive values of β (see Figure 3.1 A4). For all
datasets the highest precision (Prec@20) was observed for popularity normalized tran-
sition probabilities of random walks of length three (AN-P3, see Figure 3.1 B1-B4).
The same method shows also good AUC accuracy and is only outperformed on the
BookCrossing data by AN-P5 (see Figure 3.1 A1-A4). For the MovieLens and iPlayer
dataset both accuracy scores, AUC and Prec@20, steadily increase for AN-P3 with
increasing values of β and reach maximums between 0.6 and 0.8. Increasing β further
(β > 0.8) leads to a very pronounced drop in accuracy. We think it is worth not-
ing that the computationally cheaper AN-IB-3Path method achieved for the iPlayer
dataset almost the same level of accuracy as AN-P3.

Accuracy of pop-
ularity normalized
methods first in-
creases and then
drops dramatically
for increasing val-
ues of β

AN-P3 is also the best performing algorithm in terms of precision for the BookCross-
ing dataset (Figure 3.1 B4). Compared to the other datasets we found the Prec@20
maximum for AN-P3 at a considerably smaller β value of 0.3. The smaller accuracy
maximizing β value for AN-P3 can be explained by the generally smaller item popu-
larity difference for this dataset and the great share of items in a narrow popularity
range (approx. 80% of the items received between 5 and 15 ratings, see also Table
3.1). This dataset structure reduces the probability that a random walk ends at high
degree vertex and hence defeats the purpose of popularity normalization.

For the BookCrossing dataset, AN-P3 shows the highest Prec@20 score and AN-
P5 the best AUC performance (Figure 3.1 A4 and B4). This means that AN-P3 is
better in placing relevant items at the top of the recommendation list while AN-P5

is better in distinguishing between relevant and irrelevant items, i.e., with AN-P5

a user needs to retrieve less items to obtain all relevant items than with AN-P3.
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Figure 3.1: Impact of transition probability tuning (P3
α and P5

α) and popularity normalization (AN-P3,
AN-P5, and AN-IB-3Path) on prediction accuracy in dependence of α and β, respectively.
Note that P3

α with α = 1, P3, and AN-P3 with β = 0 describe all the same algorithm, cor-
respondingly P5

α with α = 1, P5, and AN-P5 with β = 0 are also equivalent. Furthermore
AN-IB-3Path with β = 0 is the same method as P3

α with α = 0. In order to facilitate
comparison of identical algorithms, each subplot contains a vertical line colored in cyan at
β = 0 and a vertical line colored in magenta at α = 1.

We can explain this performance difference by considering the structure of the graph
constructed from the BookCrossing training set and the implications of longer random
walks. The BookCrossing graph has a greater diameter compared to the graphs of the
other datasets (see Table 3.1) hence longer walks are required to obtain the ranking
weights for all items. Some of the items that are discovered in walks of length five but
not in walks of length three are relevant even-though they are faraway from the target
user. With AN-P3 these items are placed at the very bottom of the recommendation
list due to the lack of ranking weights, but can populate higher ranks with AN-P5,
which results in the better AUC score for AN-P5. However, the additionally discovered
relevant items are likely to be placed at low positions of the recommendation list and
are therefore of little value from a user’s perspective.Better precision

with shorter ran-
dom walks

The precision, on the other side,
of a transition probability-based recommender is likely to drop with increasing walk
lengths because the recommendation list is constructed by considering user profiles of
non-immediate neighbors that are less similar to the target user than the users in two
edge distance.
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3.3.2 Popularity Normalization Improves Coverage, Personaliza-
tion, and Surprisal

Increasing item space coverage (GiniD) and reducing the dominance of high popularity
items at the top of the recommendation list (Surp) are the primary goals of popularity
normalization. According to the plots presented in Figure 3.2, the absolute popularity
normalization (AN) procedure fulfills these intents: For all AN-methods and datasets
we could find values of β with better GiniD (see Figure 3.2 B1-B4) and Surp (Figure 3.2
D1-D4) than the non-normalized methods. In terms of coverage, AN-P3 is again the
best performing method with better GiniD scores for any value of β than all other AN-
methods. What we find interesting is the pronounced drop in coverage for high values
of β indicating that the top places of the recommendation lists become dominated by
low popularity items. Only low popularity

items are recom-
mended for β > 1

With regard to the surprisal metric (Figure 3.2 D1-D4) none of
the popularity normalized method clearly outperforms the others. But AN-P3 seems
to be favorable since it shows the smoothest transition (smaller curvature) from high
popularity (β ≤ 0) to low popularity items (β > 1.0) dominated recommendation lists.
AN-P3 achieved also the highest personalization scores in all experiments (Figure 3.2
C1-C4). The changes of Pers in dependency of β is for all methods similar to the
impact of β on coverage, consequentially we detected the maximum Pers and GiniD
scores for the same parameter values. In contrast to the other datasets, we observed
for the BookCrossing dataset only a marginal drop in personalization for AN-P3 and
AN-P5 for values of β greater than the value of β that gives maximal coverage (see
Figure 3.2 B4 & C4). Similar relative

coverage, per-
sonalization, and
surprisal perfor-
mance for different
recommenders

For the same dataset, the recommendation lists of AN-P3 with
β > 0.6 and of AN-P5 with β > 0.9 are almost perfectly personalized (Figure 3.2 C4).
This observations can be explained by the much greater number of items than users
in the BookCrossing dataset.

The ILD metric is the only diversity performance measure that shows a lower score
for positive values of β (Figure 3.2 A1-A3). This means that a single recommenda-
tion list contains more items that have the same attribute values assigned, e.g., more
movies of the same genre. Together with the finding of better accuracy and increased
distinctness of recommendation lists (improved Pers), we can follow that recommenda-
tions from AN-methods with small positive values of β better match a user’s preference
profile according to the training items. Better accuracy

reduces intra-list
diversity

We leave it as an open question to analyze
to what extent the drop in ILD is correlated with the user’s perceived diversity of a
recommendation list. The ILD scores increase again for high degrees of popularity
normalization, e.g., for β > 1 in the experiments with the iPlayer dataset (Figure 3.2
A3). Because a great share of all items are low popularity items, we can assume that
a great variety of item attribute values is present among all items with low popularity.
Under this assumption the increase in ILD for strong popularity normalization can be
explained by recommendation lists with a nearly random (low accuracy) selection of
low popularity items placed at the top.

In contrast to the ILD performance, popularity normalization with small positive
values of β increases scores of EILD, the rank sensitive and relevance aware version
of ILD (see Figure 3.3 A1-A3). The improved EILD performance corresponds to the
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Figure 3.2: Impact of transition probability tuning and popularity normalization on intra-list diversity,
coverage, personalization, and surprisal in dependence of α and β, respectively.

30



3.4. POPULARITY NORMALIZATION VERSUS TRANSITION PROBABILITY
TUNING
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Figure 3.3: Impact of transition probability tuning and popularity normalization on rank sensitive and
relevance aware novelty and diversity in dependence of α and β, respectively.

better precision of AN-methods. We also found a steep drop in EILD performance
for greater values of β as it is the case for precision. The drop in EILD occurs at
smaller values of β (e.g. at β = 0.6 for AN-P3 on the MovieLens-M dataset, Figure
3.3 A2) than the drop in precision (β = 0.8, Figure 3.1 B2), which can be explained
by the increasing negative impact of the reduced intra-list diversity for greater β’s.
The underlying metrics of EFD, Surp and precision, both increase for small values in β
hence we could observe a more pronounced increase for EFD than for EILD (see Figure
3.3 B1-B4). Again the EFD performance drops dramatically with a loss in precision
for β > 0.8. For both rank sensitive and relevance aware metrics, AN-P3 outperforms
the other two AN-methods on the MovieLens and BookCrossing datasets. On the
iPlyer dataset AN-IB-3Path shows a slightly better EFD performance than AN-P3.

3.4 Popularity Normalization versus Transition Probability

Tuning

In this section we compare the performance of the popularity normalized methods AN-
P3 and AN-P5 against the improvements achievable by tuning transition probabilities
(P3

α and P5
α) as proposed in Cooper et al. [2014]. As already described in Subsection

3.3.1, the accuracy of AN-methods increases for small positive values of β followed by
a pronounced drop. We observed the same behavior for P3

α when we varied parameter
α over the range of −0.2 to 4.5 in steps of 0.1.

AN-P3 is more
precise than P3

α

The increase in accuracy for P3
α over the
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non-parametrized method P3 (equivalent to P3
α with α = 1) is small (MovieLens and

iPlayer, see Figure 3.1 A1-A3 & B1-B3) to none observable (BookCrossing, Figure
3.1 A4 & B4). In the experiments with the MovieLens and iPlayer datasets, we
obtained more accurate (better AUC and Prec@20) recommendation lists for AN-P3

than P3
α (Figure 3.1 A1-A3 & B1-B3 and Table 3.4). For the BookCrossing data the

AUC performance (Figure 3.1 A4) of P3
α and AN-P3 are comparable but the precision

(Figure 3.1 B4) of AN-P3 is considerably higher.
We assume that the the random walk length of vertex transition probability-based

recommenders needs to be increased with an increasing diameter of the queried user-
item feedback graph. Since the BookCrossing network has a greater diameter (see
Table 3.1) than the graphs constructed from the training data of the other datasets
we measured for BookCrossing also the performance of P5

α for the same values of α as
for P3

α. While AN-P5 outperforms AN-P3 in the AUC metric we could not observe a
similar relative performance shift between P5

α and P3
α (Figure 3.1 A4).

Increasing the parameter α of P3
α and P5

α results in an increased attenuation of a
user’s preference propagation. This means that the ranking of an item increases if the
paths from a user to the item consists of low degree vertices. For this reason we would
expect to see less popular items appearing at higher positions in the recommendation
lists, which in turn means improved coverage and surprisal scores for greater values
of alpha. Our experiments support this hypothesis (see Figure 3.2). For P3

α we found
greater values for GiniD (see Figure 3.2 B1-B4) and Surp (Figure 3.2 D1-D4) with
increasing values of α for all datasets. However, the improvements achieved with
AN-P3 for these metrics were higher. The increase in personalization (see Figure
3.2 C1-B4) of P3

α is comparable to AN-P3, except for the iPlayer dataset, where we
observed a better personalization for all AN-methods (Figure 3.2 C3).AN-P3 gives bet-

ter coverage, per-
sonalization, and
surprisal than P3

α

As for the AN-
methods, ILD performance (Figure 3.2 A1-A3) of P3

α drops with increasing values of
α but the loss in ILD is smaller for P3

α than for any AN-methods. We can explain the
superior ILD performance of P3

α for values of α > 1 by the low Surp gain of P3
α. This

indicates that the recommendation lists of P3
α are still dominated by high popularity

items, which also leads to good intra-list diversity as it is shown by the performance
of the MostPop recommender. The EILD and EFD performances mirror the image of
the accuracy changes upon varying α and β. For both metrics and all four datasets
we found values of β where AN-P3 gives better results than the best performance
observed for P3

α.

Performance dif-
ferences between
P3
α and AN-P3 are

significant

The accuracy and diversity performance of P3
α and AN-P3 with α and β param-

eter values that maximize AUC performance are listed in Table 3.4. At the maxi-
mal level of AUC performance AN-P3 outperforms P3

α in terms of AUC, Prec@20,
GiniD@20, Pers@20, Surp@20, and EFD@20 for all datasets. P3

α shows better ILD@20
and EILD@20 performance. All performance differences are statistically significant
(Wilcoxon p<0.0001) except for the difference in EILD on the MovieLens-S data
(Wilcoxon p=0.053, see Appendix A.3).
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3.5. TRADING-OFF BETWEEN ACCURACY AND DIVERSITY WITH
POPULARITY NORMALIZATION

MovieLens-S MovieLens-M iPlayer BookCrossing

P3
α (M) AN-P3 (T) P3

α (M) AN-P3 (T) P3
α (T) AN-P3 (T) P3

α (T) AN-P3 (T)
α 1.7 1.0 1.8 1.0 1.5 1.0 0.9 1.0
β 0.0 0.7 0.0 0.8 0.0 0.7 0.0 0.2

AUC* 89.6 91.9 90.3 92.9 88.0 89.5 82.5 82.7
Prec@20* 36.4 45.1 31.0 40.8 42.6 49.6 9.0 10.4
ILD@20 81.9 80.0 0.811 0.691 0.792 0.682 N/A N/A
GiniD@20 0.051 0.128 0.027 0.172 0.139 0.327 0.010 0.076
Pers@20 0.699 0.879 0.644 0.941 0.617 0.848 0.610 0.795
Surp@20 1.96 2.49 2.13 3.79 4.13 5.29 4.44 5.36
EILD@20 0.627 0.620 0.614 0.516 0.319 0.298 N/A N/A
EFD@20 2.38 3.11 2.81 3.64 0.530 0.743 0.770 0.977

Table 3.4: Accuracy and diversity of P3
α and AN-P3 at level of maximal AUC performance. See

Appendix A.3 for a significance test of the performance differences of the per-user met-
rics (AUC, Prec, ILD, Surp, EILD, and EFD). *Accuracy performance figures (AUC and
Prec@20) are given in percentage of the Perfect recommender.

3.5 Trading-off between Accuracy and Diversity with Pop-

ularity Normalization

Sacrificing on accuracy for increased recommendation diversity can lead to improved
user satisfaction [Ziegler et al., 2005]. Therefore we think that a recommender should
allow to find a good trade-off between accuracy and diversity. As described in Sec-
tion 3.3, tuning the parameter β of popularity normalized algorithms allows to max-
imize either recommendation accuracy or diversity. In Figure 3.4 and 3.5 we show
the achievable diversity performance at a given level of accuracy of vertex transition
probabilities-based recommenders. In each of the subplots of Figure 3.4 and 3.5 we
also indicate the diversity performance at the highest achieved accuracy level (AUC in
Figure 3.4 and Prec@20 in Figure 3.5) for each of the personalized baseline algorithms
(I-kNN, WI-kNN, and BPRMF). An ideal recommender would occupy the upper right
corner of each subplot, generating recommendations that are both, accurate and di-
verse. The results for MovieLens-S are qualitatively equivalent to the results obtained
with MovieLens-M if not stated otherwise. For this reason and for the sake of clarity
we omitted the plots for MovieLens-S in the Figures 3.4 and 3.5.

With the appropriate value of β AN-P3 gives for most datasets and metric com-
binations the best trade-off between accuracy and diversity of all vertex transition
probability-based recommenders. The data points in Figure 3.4 and 3.5 for AN-P3

represent the accuracy and diversity performance at different values of β. In all sub-
plots describe the data points of AN-P3 a curve between low accuracy and diversity
and low accuracy and high diversity, passing a point of infinite slope with the high-
est accuracy and moderate diversity. Thanks to the transition from low diversity to
high diversity through the accuracy maximum, popularity normalization seems to be
an appropriate procedure to find an optimal trade-off between accuracy and diversity.
For the coverage, personalization, and surprisal diversity dimensions, increasing values
of β result in higher diversity scores. Intra-list diversity, on the other hand, increases
for smaller values of β (neglecting values of β outside the range that gives reasonable
accuracy). Due to this diverging influence of increasing β values on the four diver-
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Figure 3.4: Trade-off between AUC and the four diversity dimensions. The curves for P3
α and P5

α show
the performance of the recommenders at varying values of α. The curves for AN-P3, AN-
P5, and AN-IB-3Path show the performance of the recommenders at varying values of β.
For the baseline algorithms we show the results for the parameter settings (neighborhood
size for I-kNN and WI-kNN and number of latent factors for BPRMF) that gave the best
AUC performance.
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Figure 3.5: Trade-off between Prec@20 and the four diversity dimensions. For the baseline algorithms
we show the results for the parameter settings that gave the best Prec@20 performance.
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sity dimension it is not only necessary to find an optimal trade-off between diversity
and accuracy but also between intra-list diversity and coverage, personalization, and
surprisal

When we compare the maximal achieved accuracy of AN-P3 on the MovieLens
and iPlayer data with the accuracy of the most accurate baseline recommenders we
find similar or better scores for AN-P3 in both metrics (AUC and Prec@20).AN-P3 is at least

as accurate as the
baseline methods
for datasets with
fewer items than
users

On the
BookCrossing dataset, the AUC performance (see Figure 3.4 B3-D3) of AN-P3 is better
than for all baseline algorithms but both nearest neighbor algorithms achieved with
small neighborhood sizes (k = 10 for I-kNN and k = 50 for WI-kNN) better precision
scores (see Figure 3.5 B3-D3) than AN-P3. The best precision on the BookCrossing
dataset was found for WI-kNN (Prec@20 = 12.49 with k = 50). Increasing the
neighborhood size of WI-kNN results in a steady decrease in precision (Prec@20 =
9.98 with k = 1600). Note that this drop in precision was only observed for the
BookCrossing dataset and that the AUC performance of WI-kNN on the same data
follows the opposite trend. AN-P3 is similar to a kNN procedure with a large k since
with random walks of length three many different user profiles are considered for item
ranking, i.e., the profiles of all users that rated at least one item that also the target
user rated. This explains the lower maximal precision of AN-P3 compared to a kNN
recommender with small k that uses a smaller number of users that are more similar
to the target user for recommendation generation.

Next we compare the recommendation diversity of AN-P3 to the diversity obtained
with the most accurate baseline recommender. AN-P3 did not achieve a comparable
precision for any value of β as the best baseline method (WI-kNN) on the BookCrossing
dataset (see Figure 3.5 B3-D3). For this reason we can not compare their difference in
diversity and hence we will not consider the precision versus diversity performance of
AN-P3 on the BookCrossing data in the following discussion. Coverage and surprisal of
the baseline recommender with the best AUC performance is comparable (MovieLens-
S) or lower (MovieLens-M, iPlayer, and BookCrossing, see Figure 3.4 B1-B3) than the
coverage of AN-P3 at the same level of AUC performance.AN-P3 gives bet-

ter or comparable
diversity than base-
lines at same level
of AUC accuracy

The score for personalization
of the baseline method with the best AUC value is in the same range for MovieLens-S,
MovieLens-M, and BookCrossing (Figure 3.4 C1 & C3) and lower for iPlayer (Figure
3.4 C2) as the personalization score of AN-P3 at the same AUC accuracy. When
comparing intra-list diversity at the level of the best baseline AUC score we find that
AN-P3 gives comparable performance for the MovieLens-S and iPlayer (Figure 3.4
A2) and a slightly better performance for the MovieLens-M (Figure 3.4 A1) dataset.
The performance of AN-P3 is generally less advantageous when we compare Prec@20,
instead of AUC, versus diversity. In particular, we could not observe a better coverage
and surprisal for AN-P3 than for the baseline method in the MovieLens-M experiments
with the best Prec@20 score (WI-kNN, Figure 3.5 B1 & D1). For the same dataset
gives AN-P3 at the precision level of WI-kNN also worse personalization (Figure 3.5
C1). For the iPlayer dataset is the precision of AN-P3 lower at the level of intra-list
diversity of the baseline recommender with the best ILD@20 score (BPRMF, Figure
3.5 A2).

Considering the results obtained with the iPlayer and MovieLens datasets, we can
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3.6. EXAMPLE RECOMMENDATION LISTS

Show Name Attributes Popularity
in Train

Training Items
QI XL formats/gamesandquizzes, genres/comedy, genres/entertainment,

service/bbctwo
35286

Secrets of South America (1) formats/documentaries, genres/factual, service/bbcthree 33239
The Great British Sewing Bee genres/factual/beautyandstyle, genres/factual, service/bbctwo 37541
This World formats/documentaries, genres/factual, genres/news, service/b-

bctwo
28385

Test Items
QI (1) formats/gamesandquizzes, genres/comedy, genres/entertainment,

subjects/trivia, people/jack-dee, people/bill-bailey, people/alan-
davies, people/stephen-fry, service/bbctwo

17867

QI (2) formats/gamesandquizzes, genres/comedy, genres/entertainment,
service/bbctwo

2164

Is Amanda Knox Guilty? formats/documentaries, genres/factual, genres/factual/crimeand-
justice, service/bbcthree

46643

Secrets of Bones formats/documentaries, genres/factual, genres/factual/scienceand-
nature, genres/factual/scienceandnature/natureandenvironment,
service/bbcfour

14502

Secrets of South America (2) formats/documentaries, genres/factual, service/bbcthree 37013
Storyville formats/documentaries, genres/factual, genres/factual/artscul-

tureandthemedia, genres/factual/artscultureandthemedia/arts,
service/bbcfour

3555

The Brits who Built the Modern World formats/documentaries, genres/factual, genres/factual/artscul-
tureandthemedia, genres/factual/artscultureandthemedia/arts,
service/bbcfour

9804

The Truth about Webcam Girls formats/documentaries, genres/factual, service/bbcthree 81237

Table 3.5: Training and test items of an iPlayer sample user.

conclude that the diversity of AN-P3 is with few exceptions comparable or better
than of the baseline methods at the same level of accuracy. Less useful is AN-P3

for the BookCrossing dataset, since the maximal precision of AN-P3 is lower than of
the most precise baseline algorithms. But also for the BookCrossing data provides
popularity normalization a clear increase in coverage, personalization and surprisal
when compared to the corresponding metric score at the level of accuracy of the non-
normalized method.

3.6 Example Recommendation Lists

In this section we illustrate the effect of popularity normalization of vertex transi-
tion probability-based item ranking with a set of recommendation lists for a sample
iPlayer user. Table 3.5 lists the training and test items of the sample user from the
iPlayer dataset. For the same user we generated recommendation lists with AN-P3

and β = 0.0, 0.5 0.6, 0.7, 0.8, 0.9, 0.95 and 1.0 (see Table 3.6 for the top five recom-
mendations of the lists). As expected, are the top places of the recommendation list
for P3 (same method as AN-P3 with β = 0.0) exclusively populated with very popular
TV shows. The first two recommendations of P3 (Top Gear and Outnumbered) are
the two most popular shows in the training set and the least popular show in the top
five recommendations (Dragons’s Den) was still the 13th most watched show during
the training phase. Increasing β leads to a steady decrease of the total popularity of
the top 5 items of the recommendation list and the list becomes dominated by items
of very low popularity for β > 0.9 (Select Committees is the least popular show in the
training set).
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Rank Show Name Attributes Popularity
in Train

β = 0.0 (AUC= 0.958, Prec@5 = 0.20, ILD@5 = 0.90, Surp@5 = 2.86, EILD@5 = 0.67, EFD@5 = 1.14)
1 Top Gear formats/magazinesandreviews, genres/factual, genres/entertain-

ment, genres/factual/carsandmotors, service/bbctwo
132’462

2 Outnumbered genres/comedy, genres/comedy/sitcoms, service/bbcone 147’674
3 The Truth about Webcam Girls formats/documentaries, genres/factual, service/bbcthree 81’237
4 The Graham Norton Show formats/discussionandtalk, genres/entertainment, service/bbcone 61’407
5 Dragons’ Den formats/reality, genres/entertainment, service/bbctwo 61’373

β = 0.5 (AUC= 0.971, Prec@5 = 0.4, ILD@5 = 0.84, Surp@5 = 3.01, EILD@5 = 0.51, EFD@5 = 2.74)
1 Top Gear formats/magazinesandreviews, genres/factual, etc. 132’462
2 Secrets of South America (2) formats/documentaries, genres/factual, service/bbcthree 37’013

3 The Truth about Webcam Girls formats/documentaries, genres/factual, service/bbcthree 81’237
4 Outnumbered genres/comedy, genres/comedy/sitcoms, service/bbcone 147’674
5 The Graham Norton Show formats/discussionandtalk, genres/entertainment, service/bbcone 61’407

β = 0.6 (AUC= 0.981, Prec@5 = 0.60, ILD@5 = 0.83, Surp@5 = 3.62, EILD@5 = 0.63, EFD@5 = 4.55)
1 Secrets of South America (2) formats/documentaries, genres/factual, service/bbcthree 37’013

2 QI (1) formats/gamesandquizzes, genres/comedy, etc. 17’867

3 Top Gear formats/magazinesandreviews, genres/factual, etc. 132’462
4 The Graham Norton Show formats/discussionandtalk, genres/entertainment, etc. 61’407
5 The Truth about Webcam Girls formats/documentaries, genres/factual, service/bbcthree 81’237

β = 0.7 (AUC= 0.984, Prec@5 = 0.40, ILD@5 = 0.88, Surp@5 = 3.89, EILD@5 = 0.69, EFD@5 = 3.73)
1 Secrets of South America (2) formats/documentaries, genres/factual, service/bbcthree 37’013

2 QI (1) formats/gamesandquizzes, genres/comedy, etc. 17’867

3 Top Gear formats/magazinesandreviews, genres/factual, etc. 132’462
4 The Graham Norton Show formats/discussionandtalk, genres/entertainment, etc. 61’407
5 Britain’s Great War formats/documentaries, genres/factual, genres/factual/history,

service/bbcone
31’637

β = 0.8 (AUC= 0.990, Prec@5 = 0.40, ILD@5 = 0.85, Surp@5 = 4.84, EILD@5 = 0.67, EFD@5 = 3.77)
1 QI (1) formats/gamesandquizzes, genres/comedy, etc. 17’867

2 Secrets of South America (2) formats/documentaries, genres/factual, service/bbcthree 37’013

3 Have I Got Old News For You formats/gamesandquizzes, genres/comedy/satire, genres/comedy,
service/bbctwo

15’932

4 Horizon formats/documentaries, genres/factual, genres/factual/science-
andnature, genres/factual/scienceandnature/scienceandtechnol-
ogy, service/bbctwo

18’873

5 Britain’s Great War formats/documentaries, genres/factual, etc. 31’637

β = 0.9 (AUC= 0.991, Prec@5 = 0.40, ILD@5 = 0.85, Surp@5 = 4.84, EILD@5 = 0.67, EFD@5 = 3.77)
1 QI (1) formats/gamesandquizzes, genres/comedy, etc. 17’867

2 Secrets of South America (2) formats/documentaries, genres/factual, service/bbcthree 37’013

3 Have I Got Old News For You formats/gamesandquizzes, genres/comedy/satire, etc. 15’932
4 Horizon formats/documentaries, genres/factual, etc. 18’873
5 Britain’s Great War formats/documentaries, genres/factual, etc. 31’637

β = 0.95 (AUC= 0.985, Prec@5 = 0.60, ILD@5 = 0.87, Surp@5 = 7.36, EILD@5 = 0.68, EFD@5 = 5.60)
1 QI (1) formats/gamesandquizzes, genres/comedy, etc. 17’867

2 Secrets of South America (2) formats/documentaries, genres/factual, service/bbcthree 37’013

3 Asia Business Report genres/news, service/bbcnews 45
4 QI (2) formats/gamesandquizzes, genres/comedy, etc. 2’164

5 Have I Got Old News For You formats/gamesandquizzes, genres/comedy/satire, etc. 15’932

β = 1.00 (AUC= 0.961, Prec@5 = 0.20, ILD@5 = 0.81, Surp@5 = 12.6, EILD@5 = 0.70, EFD@5 = 1.57)
1 Asia Business Report service/bbcnews, genres/news 45
2 HARDtalk formats/discussionandtalk, genres/news, service/bbcnews 36
3 QI (1) formats/gamesandquizzes, genres/comedy, etc. 17’867

4 Select Committees genres/factual, genres/news, genres/factual/politics, service/par-
liament

5

5 Eòrpa genres/factual, genres/news, service/bbcalba 86

Table 3.6: Top 5 items and per-user metric scores of recommendation lists generated by AN-P3 with
values of β in the range 0.0 − 1.0 for the user with the usage behavior presented in Table
3.5. Underlined items are hits in the test set of the user.
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Popularity nor-
malized recom-
mendation lists
include low popu-
larity items that are
similar to the user’s
training items

If we consider the user’s four training items we could describe the user as predom-
inantly interested in game-shows (QI XL) and factuals (The Great British Sewing
Bee), especially documentaries (Secrets of South America (1) and This World). This
preference profile is confirmed by the seven test items that also consist exclusively of
game-shows and documentaries. We would expect a recommender system that max-
imizes for prediction accuracy to recommend shows from the same or similar genres.
However, this is not the case for P3, which, for example, also places a sitcom (Outnum-
bered) among the top 5 items of the recommendation list. AN-P3 with β = 0.8− 0.9,
on the other hand, generates recommendation lists similar to the user’s learned pref-
erence profile by placing only game-shows (QI (1) and Have I Got Old News For You)
or documentaries (Secrets of South America (2), Horizon, and Britain’s Great War)
on the top 5 places of the recommendation lists. In agreement with this observation
the item attribute-based intra-list diversity score decreases and the prediction accu-
racy increases when compared to P3. If we choose a value of β > 0.9 the top of the
recommendation list reflects the user’s preference profile again less accurately. In this
example we include for example also a news show (Asia Business Report) at rank three
of the recommendation list with β = 0.95. Since the iPlayer dataset contains many
factual shows of very low popularity, for example recordings of parliament debates,
recommendations generated with value for β > 0.95 seem to be of little use for most
users.

3.7 Combining Popularity Normalization and Transition

Probability Tuning

In Section 3.4 we showed that both optimization procedures, popularity normalization
and transition probability tuning, can increase recommendation accuracy, coverage,
personalization, and surprisal. In this section we describe the influence on recommen-
dation performance when combining both methods. Since transition probabilities after
random walks of length three combined with absolute popularity normalization (AN-)
showed the best accuracy performance we limit our analysis to the AN-P3

α algorithm.
We measured the algorithm’s performance for the MovieLens-M and iPlayer dataset
with values of α ranging from -0.4 to 3.0 in steps of 0.2 and β ranging from -0.2 to 1.1
in steps of 0.1 and indicate the results in Figure 3.6 as contour lines in dependency of
〈α, β〉 parameter pairs.

For both datasets and accuracy metrics (AUC and Prec@20) the measurements
describe a similarly shaped surface with a distinct global maximum. When compared
to the purely popularity normalized AN-P3 (α = 1) algorithm we found for AN-P3

α no
or only very small accuracy improvements. AN-P3

α gives the best AUC performance for
the MovieLens-M dataset at 〈1.0, 0.8〉 and for the iPlayer dataset at 〈0.4, 0.8〉, Prec@20
maxima were found at 〈0.8, 0.7〉 for MovieLens-M and at 〈0.4, 0.8〉 for iPlayer. The
α values of AN-P3

α that give the best accuracy performance are much smaller than
for the non-popularity normalized (β = 0) method P3

α (AUC and Prec@20 maxima of
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P3
α were found for the MovieLens-M dataset at α = 1.8 and for the iPlayer dataset

at α = 1.6 ). Hence, the accuracy improvements achievable with combined α and β
tuning are not additive.No striking accu-

racy or diversity
performance im-
provements for
AN-P3

α over AN-P3

In fact, the accuracy of the AN-P3
α algorithm slightly increases

for α < 1, which is the opposite trend than for pure transition probability tuning with
P3
α.
As it is the case for accuracy, the surfaces indicating the diversity performance are

roughly consistent between the datasets. The only exception is the ILD metric that in-
dicates improving diversity for values of α > 1.0 at β = [0.6, 1.1] for MovieLens-M but
decreasing diversity for values of α > 1.0 in the same β range for the iPlayer data. As
for accuracy, we did not find a parameter pair that gives clearly better performance
in any of the four considered diversity dimension than AN-P3. Our measurements
suggest to set 〈0.8, 0.7〉 as default parameter pair in order to maximize recommen-
dation list accuracy. A greater value of β would improve coverage, personalization,
and surprisal but only on the expense of dramatically reduced accuracy, especially
precision, and intra-list diversity. If we increase α slightly, maybe up to α = 1.2, at
constant β = 0.7, we can potentially improve surprisal, personalization, and coverage,
causing a smaller loss in accuracy than for increasing β. The impact of the greater α
value on intra-list diversity is unclear: our measurements suggest a notable increase
for the MovieLens-M dataset but a slight decrease for the iPlayer dataset. However,
combining α and β tuning does not seem to be a promising optimization approach if
we consider the much larger parameter search space and the small achievable diversity
improvements with an acceptable loss in accuracy.
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Figure 3.6: Contour plots of the accuracy and diversity performance of AN-P3
α (T) in dependency

of α in the range of [−0.4, 3.0] and β in the range of [−0.2, 1.1]. Better recommender
performance is indicated by a brighter background shade (brightness values for the plot
areas between the measuring grid intersections were obtained with Gaussian interpolation).
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4

Conclusions

Together with the emergence of large-scale graph storage and processing techniques
over the last decade, also the interest of researchers in the field of recommender systems
for graph-based approaches increased. Most of the various graph-based recommenda-
tion algorithms that have been proposed try to maximize recommendation accuracy,
even-though it has been widely recognized that accuracy is not the only performance
characteristic that needs to be considered when assessing the quality of a recommender
system.

In this study we evaluated some of the most accurate graph-based collaborative fil-
tering recommendation algorithms, i.e., P3 and P3

α, with an item ranking task on four
implicit feedback datasets in terms of accuracy but also intra-list diversity, coverage,
personalization, surprisal and rank sensitive and relevance aware versions of intra-list
diversity and surprisal. The evaluation comprised the widely used MovieLens dataset,
a dataset from a VOD system for TV shows and a dataset from an online bookstore.
Besides a slightly worse accuracy of the proposed graph-based algorithms, we found
a much worse performance for the most accurate graph-based methods in terms of
coverage, personalization and surprisal when compared to recommenders using item-
based nearest-neighbor classification or a latent factor model. The graph-based rec-
ommenders that achieved the best accuracy scores rank items according to the vertex
transition probability of a random walk of length three (P3 and P3

α). However, the
generated recommendation lists are dominated by the most popular items and are
therefore of little use in helping users discover unknown items. The only graph-based
recommendation strategy that showed good accuracy and non-accuracy performance
ranks vertices by the entries in the Moore-Penrose pseudoinverse of the graph’s Lapla-
cian matrix (L+). But this method is clearly disadvantageous compared to ranking
vertices according to random walk transition probabilities from a computational point
of view (L+ can be obtained through a singular value decomposition of the Lapla-
cian matrix and P 3, with lower computational effort, by raising the graphs transition
probability matrix P to its third power).

In order to achieve better non-accuracy scores with vertex transition probability-
based recommenders, we applied an item popularity dependent recommendation list
re-ranking procedure, referred as popularity normalization. Popularity normalization
changes the rank determining weight of an item (i.e., the vertex transition probability
from the target user to the recommendation candidate items) in dependency of the
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item’s popularity and a parameter β. Increasing β reduces the weights of popular items
and hence makes it more likely for items of low popularity to populate top ranks of
the recommendation lists. With popularity normalization we observed not only better
coverage, personalization and surprisal but also improved precision for small values of
β. For greater values of β the accuracy of the recommender drops dramatically. We
conclude that popularity normalized recommendation lists are more desirable from a
user’s perspective because they support users in discovering unknown items and from
a provider’s perspective since they contain also items from the long-tail. Furthermore
popularity normalization allows to find an optimal trade-off between recommendation
accuracy and the frequency of low popularity items in the recommendation list. Our
experiments also showed that the relative performance of all evaluated recommenders
is consistent between coverage, personalization and surprisal. For this reason it is
thinkable to simplify the evaluation of recommender systems in future studies without
losing explanatory power by measuring only one of these three performance dimen-
sions. An even more straightforward methodology would be the use of a metric that
combines the measurement of precision and long-tail item frequency, i.e., the rank
sensitive and relevance aware EFD metric.

In this study we also compared the performance improvements achievable with pop-
ularity normalization against tuning of transition probabilities. Popularity normaliza-
tion outperformed transition probability tuning significantly for all datasets in terms
of accuracy. We also experimented with a recommendation algorithm that combines
both optimization procedures but found no clear improvement for any accuracy or
non-accuracy metric over the pure popularity normalization approach.

Many of the evaluated graph-based recommenders (e.g., P3 and P3
α) generated di-

verse lists of recommendations according to intra-list diversity, measuring the variety of
meta attribute values among the recommended items. By introducing popularity nor-
malization we observed a decrease of intra-list diversity while the accuracy increased.
This means that the recommender generated recommendation lists with more similar
items that better match the users’ preference profile. It is worth noting that the very
simple popularity-based recommendation strategy (MostPop) achieves better intra-list
diversity scores than state-of-the-art recommendation algorithms. While it is possi-
ble that this finding could be confuted by experiments with different datasets (the
most popular items in the used datasets feature apparently a wide variety of differ-
ent item meta attributes), the usefulness of the intra-list diversity metric to assess
recommendation quality seems to be questionable.

In our experiments we considered three different approaches to calculate vertex tran-
sition probabilities of short random walks: matrix algebra, random walk simulation,
and probability tree traversal. The matrix algebra approach gave precise transition
probability values and therefore slightly more accurate recommendations but is not
applicable to real life datasets with millions of user feedbacks due to the high time
and space complexity. Transition probabilities obtained by simulating random walks
are estimates that converge to the actual values with increasing number of walks. By
using this incremental calculation approach prediction accuracy can be traded in for
runtime improvements, which can be desirable in a real world application. Calculating
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vertex transition probabilities with a probability tree traversal gives precise probabil-
ity values and circumvents the need to construct matrices that do not fit into the
computers memory. With this approach the required computation time depends on
the neighborhood size of the target user up to the considered random walk length and
hence increases with increasing graph size. While the scalability of the simulation ap-
proach is better (computational complexity does not depend on the graph size given a
fixed number of random walks per user) than of the tree traversal approach (computa-
tional complexity for a single user depends linearly on the users neighborhood size) the
runtime of the latter for random walks of length three was short enough to apply the
method to the biggest dataset of our evaluation. Therefore, we think that probability
tree traversal is worth considering as an alternative implementation approach to ran-
dom walk simulation when implementing a recommender based on vertex transition
probabilities.

In the introduction to this work we mentioned that graph-based recommenders
are a possible approach to overcome the flaw of limited coverage of state-of-the-art
neighborhood-based recommendation methods thanks to the access to transitive rela-
tionship information encoded in the graph data structure. The results of our experi-
ments do not support this hypothesis: the vertex ranking according to the transition
probability for random walks of length three gave better recommendation precision
than for random walks of length five, independent of the diameter of the underlying
graph. Incorporating the preference profiles of users in four edges distance for the
item ranking gave recommendation lists that are very similar to a global popularity
ranking, which is a bad estimate of the actual preference profile of a particular user.

4.1 Future Work

The herein presented work bears opportunities for future research efforts in three
different directions: additional off-line experiments, user studies, and applicability of
the findings in real world systems.

In this work we studied the performance of graph-based recommenders in the implicit-
feedback case only. We did not consider explicit rating values but this data could be
introduced in the graph data structure as edge weights in order to, for example, influ-
ence the edge selection probability of random walks. This additional data would allow
to better estimate a users preference profile and to predict item rating values. Hence,
we could measure a recommender’s accuracy not only based on the item ranking order
but also by the deviation between the actual and predicted item rating value.

We proposed and evaluated two different re-ranking procedures that compensate for
the impact of item popularity and improve precision of vertex transition probability-
based recommenders (see Section 2.2). A future study could potentially discover more
effective re-ranking procedures by further analyzing the distribution of ratings among
items. It may also be worth testing the influence of popularity normalization on the
performance of other graph- and non-graph-based recommenders.

Popularity normalization increases the probability to recommend items with fewer

45



CHAPTER 4. CONCLUSIONS

ratings. Therefore, it seems reasonable that the method alleviates the item cold-
start problem, which is immanent to collaborative filtering recommenders. To assert
this assumption, we suggest to perform off-line experiments with datasets of different
sparsity levels.

An interesting continuation of the presented work would be to test popularity nor-
malized vertex transition probability-based recommenders (e.g., AN-P3) in a user
study to explore the effect of the re-ranking procedure on user satisfaction and per-
ceived recommendation diversity. Beside the aim to detect the appropriate degree
of popularity normalization, the result of the user study could help to decide for
the best metric to estimate user-centric quality attributes in off-line experiments. It
is reasonable to assume that not all users appreciate the same degree of popularity
normalization, thus the procedure introduces a new dimension for recommendation
personalization. From an application perspective we could think of a recommender
system that analysis the rating history of a user to estimate the users preferred degree
of popularity normalization. An other application could be an interactive recom-
mender system that allow users to bias the recommendation generation process to
more or less surprising recommendations by specifying the desired level of popularity
normalization.

As mentioned in the introduction to this work, graph-based recommenders feature
the advantageous property of a computationally cheap training phase. Recommenda-
tion generation, on the other hand, requires to run computationally expensive graph
queries. The time required to generate a recommendation list for a single user with
the AN-P3 method using the largest training set by simulating random walks or per-
forming a probability tree traversal was in the range of seconds on current commodity
hardware. This computing time requirement makes it challenging to apply graph-
based methods in a productive setting with thousand or more recommendation list
requests per second. For this reason future research efforts should also attempt to
reduce the response time of graph-based recommenders by developing efficient graph
queries or recommendation list precalculation procedures.

46



Bibliography

Adomavicius, G. and Kwon, Y. (2011). Maximizing Aggregate Recommendation Di-
versity: A Graph-Theoretic Approach. In Proceedings of the Workshop on Novelty
and Diversity in Recommender Systems (DiveRS ’11), at the 5th ACM International
Conference on Recommender Systems (RecSys ’11), pages 3–10, Chicago, IL, USA.

Adomavicius, G. and Kwon, Y. (2012). Improving Aggregate Recommendation Di-
versity Using Ranking-Based Techniques. Knowledge and Data Engineering, IEEE
Transactions on, 24(5):896–911.

Aggarwal, C. C., Wolf, J. L., Wu, K.-L., and Yu, P. S. (1999). Horting Hatches an
Egg: A New Graph-Theoretich Approach to Collaborative Filtering. In Proceedings
of the fifth ACM SIGKDD international conference on Knowledge discovery and
data mining (KDD ’99), pages 201–212, San Diego, CA, USA.

Ahn, Y. A., Park, S., Lee, S., and Lee, S.-g. (2013). A Heterogeneous Graph-based
Recommendation Simulator. In Proceedings of the 7th ACM conference on Recom-
mender systems (RecSys ’13), pages 471–472, Hong Kong, China.

Baluja, S., Seth, R., Sivakumar, D., Jing, Y., Yagnik, J., Kumar, S., Ravichandran, D.,
and Aly, M. (2008). Video Suggestion and Discovery for YouTube: Taking Random
Walks Through the View Graph. In Proceeding of the 17th international conference
on World Wide Web (WWW ’08), pages 895–904, Beijing, China.

Bogers, T. (2010). Movie Recommendation using Random Walks over the Contextual
Graph. In Proceedings of the 2nd RecSys Workshop on Context-Aware Recommender
Systems (CARS ’10), at the 4th ACM International Conference on Recommender
Systems (RecSys ’10), Barcelona, Spain.

Cooper, C., Lee, S. H., Radzik, T., and Siantos, Y. (2014). Random Walks in Rec-
ommender Systems: Exact Computation and Simulations. In Proceedings of the
Companion Publication of the 23rd International Conference on World Wide Web
Companion (WWW Companion ’14), pages 811–816, Seoul, Korea.

Desrosiers, C. and Karypis, G. (2011). A Comprehensive Survey of Neighborhood-
based Recommendation Methods. In Ricci, F., Rokach, L., Shapira, B., and Kantor,



Bibliography

P. B., editors, Recommender Systems Handbook, pages 107–144. Springer, Berlin,
Germany.

Fouss, F., Pirotte, A., and Saerens, M. (2005). A Novel Way of Computing Similarities
between Nodes of a Graph, with Application to Collaborative Recommendation. In
The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI ’05),
pages 550–556, Halifax, NS, Canada.

Gantner, Z., Rendle, S., Freudenthaler, C., and Schmidt-Thieme, L. (2011). My-
MediaLite: A Free Recommender System Library. In Proceedings of the 5th ACM
Conference on Recommender Systems (RecSys ’11), pages 305–308, Chicago, IL,
USA.

Gori, M. and Pucci, A. (2007). ItemRank: A Random-Walk Based Scoring Algorithm
for Recommender Engines. In Proceedings of the 20th International Joint Conference
on Artifical Intelligence (IJCAI ’07), pages 2766–2771, Hyderabad, India.

Haveliwala, T. H. (2002). Topic-sensitive PageRank. In Proceedings of the eleventh in-
ternational conference on World Wide Web (WWW ’02), pages 517–526, Honolulu,
HI, USA.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. T. (2004). Evalu-
ating Collaborative Filtering Recommender Systems. Information Systems, ACM
Transactions on, 22(1):5–53.

Huang, Z., Chen, H., and Zeng, D. (2004). Applying Associative Retrieval Techniques
to Alleviate the Sparsity Problem in Collaborative Filtering. Information Systems,
ACM Transactions on, 22(1):116–142.

Jamali, M. and Ester, M. (2009). TrustWalker: A RandomWalk Model for Combining
Trust-based and Item-based Recommendation. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining (KDD
’09), pages 397–405, Paris, France.

Koren, Y. and Bell, R. (2011). Advances in Collaborative Filtering. In Ricci, F.,
Rokach, L., Shapira, B., and Kantor, P. B., editors, Recommender Systems Hand-
book, pages 145–186. Springer, Berlin, Germany.

Lee, S., Park, S., Kahng, M., and Lee, S.-g. (2012). PathRank: A Novel Node Ranking
Measure on a Heterogeneous Graph for Recommender Systems. In Proceedings of
the 21st ACM international conference on Information and knowledge management
(CIKM ’12), pages 1637–1641, Maui, HI, USA.

Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N., and
Czajkowski, G. (2010). Pregel: A System for Large-scale Graph Processing. In
Proceedings of the 2010 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’10), pages 135–146, Indianapolis, IN, USA.

48



Bibliography

McNee, S. M., Riedl, J., and Konstan, J. A. (2006). Being Accurate is Not Enough:
How Accuracy Metrics Have Hurt Recommender Systems. In CHI ’06 Extended
Abstracts on Human Factors in Computing Systems (CHI EA ’06), pages 1097–
1101, Montreal, QC, Canada.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1998). The PageRank Citation
Ranking: Bringing Order to the Web. Technical report, Stanford University.

Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-Thieme, L. (2009). BPR:
Bayesian Personalized Ranking from Implicit Feedback. In Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (UAI ’09), pages
452–461, Montreal, QC, Canada.

Ricci, F., Rokach, L., and Shapira, B. (2011). Introduction to Recommender Sys-
tems Handbook. In Ricci, F., Rokach, L., Shapira, B., and Kantor, P. B., editors,
Recommender Systems Handbook, pages 1–38. Springer, Berlin, Germany.

Shani, G., Chickering, M., and Meek, C. (2008). Mining Recommendations from
the Web. In Proceedings of the 2008 ACM Conference on Recommender Systems
(RecSys ’08), pages 35–42, Lausanne, Switzerland.

Shani, G. and Gunawardana, A. (2011). Evaluating Recommendation Systems. In
Ricci, F., Rokach, L., Shapira, B., and Kantor, P. B., editors, Recommender Systems
Handbook, pages 257–298. Springer, Berlin, Germany.

Smyth, B. and McClave, P. (2001). Similarity vs. Diversity. In Proceedings of the
4th International Conference on Case-Based Reasoning: Case-Based Reasoning Re-
search and Development (ICCBR ’01), pages 347–361, Vancouver, BC, Canada.

Stutz, P., Bernstein, A., and Cohen, W. (2010). Signal/Collect: Graph Algorithms
for the (Semantic) Web. In Proceedings of the 9th International Semantic Web
Conference on The Semantic Web - Volume Part I (ISWC ’10), pages 764–780,
Shanghai, China.

Vargas, S. and Castells, P. (2011). Rank and Relevance in Novelty and Diversity
Metrics for Recommender Systems. In Proceedings of the Fifth ACM Conference on
Recommender Systems (RecSys ’11), pages 109–116, Chicago, IL, USA.

Xiang, L., Yuan, Q., Zhao, S., Chen, L., Zhang, X., Yang, Q., and Sun, J. (2010).
Temporal Recommendation on Graphs via Long- and Short-term Preference Fusion.
In Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD ’10), pages 723–731, Washington, DC, USA.
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Appendix

A.1 Parameter Sets of Recommenders

In addition to the optimized parameters listed in Table A.1, we evaluated the recom-
menders with the following configurations. Recommenders not listed hereafter have
no additional configuration options.

I-kNN and WI-kNN
Type of item similarity measure: cosine.

BPRMF
Number of gradient stochastic ascent iterations for training: 30, use item bias:
false, length of iteration: 5, learning rate α: 0.05, regularization parameter for
positive item factors: 0.0025, regularization parameter for negative item factors:
0.00025, regularization parameter for user factors: 0.0025.

P3 (S) and P5 (S)
See section 2.1 for a description of the simulation convergence criterion.

IR (S)
Decay or damping factor α: 0.85 (as proposed in Gori and Pucci [2007]), same
simulation convergence criterion as described for P3 (S) and P5 (S) in Section
2.1 but with n = 5, r = 20′000 and a maximal number of iterations of 1’000’000
for all datasets.

IR (M)
Decay or damping factor α: 0.85, iterations per user: 20 (both parameter values
were proposed in Gori and Pucci [2007]).

BnB
Edge weight: 0.5 (as proposed in Huang et al. [2004]), number of iterations: 35
(Huang et al. [2004] proposed 70 but 35 showed better accuracy).

OW (S) and CT (S)
Number of simulated random walks per user: fixed to 2 ∗ |I|, no convergence
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criterion was used to control the simulation length. Each random walk had a
destination vertex assigned and was terminated once this vertex was reached for
OW, or once the start vertex was reached after the destination vertex was passed
for CT. Hence each item vertex was reached or passed at least twice. In order to
compensate for the small number of distinct walks and to improve the ranking
quality, we also considered the step count of item vertices intermediately passed
during the random walks.

A.2 Experiments Performed for Evaluation

Table A.1 lists the experiments performed to obtain the results presented in this work.
The computing infrastructure used for the experiments consisted of a Slurm1 cluster
with 16 nodes. Each cluster machine has 128 GB of RAM and two Intel R© Xeon R©

E5-2680V2 processors (25 MB Cache, 2.80 GHz base frequency) with 10 cores per
processor (40 threads per machine).

A.3 P3
α vs. AN-P3 Significance Test

We verified the statistical significance of the performance differences between P3
α

(M/T) and AN-P3 (T) with a two sided paired Wilcoxon signed rank test as pro-
posed in Shani and Gunawardana [2011]. For each dataset we compared the perfor-
mance of the two recommenders for the parameter values, α and β, that achieved
the best AUC performance. We only considered metrics that can be calculated for
each user independent of the recommendations for other users. The p-values of the
Wilcoxon tests are listed in Table A.2. The following R2 command was used to
run the tests: wilcox.test(<vector of P3

α measurements>, <vector of AN-P3

measurements>, mu=0, alt="two.sided", paired=T, conf.int=T,

conf.level=0.999, exact=FALSE, correct=FALSE).

1Slurm Workload Manager - slurm.schedmd.com
2R software environment for statistical computing - r-project.org
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A.3. P3
α VS. AN-P3 SIGNIFICANCE TEST

Dataset

Recommender Parameter MovieLens-S MovieLens-M iPlayer BookCrossing

B
a
se

li
n
e

M
e
th

o
d
s

Perfect N/A + + + +
Random N/A + + + +
MostPop N/A + + + +

I-kNN
neighbourhood

size (k)
10, 50, 100, 150,

200
10, 50, 100, 150,

200
10, 50, 100, 150,

200

10, 50, 100, 150,
200, 400, 800,

1600

WI-kNN
neighbourhood

size (k)
10, 50, 100, 150,

200
10, 50, 100, 150,

200
10, 50, 100, 150,

200

10, 50, 100, 150,
200, 400, 800,

1600, 3200

BPRMF
number of latent

factors
10, 50, 100, 150,

200
10, 50, 100, 150,

200
10, 50

10, 50, 100, 150,
200

G
ra

p
h
-b

a
se

d
M

e
th

o
d
s

AN-P3 (S) β
-0.2 - 1.2 in 0.1

steps
-0.2 - 1.2 in 0.1

steps
-0.2 - 1.2 in 0.1

steps
-0.2 - 1.2 in 0.1

steps

AN-P3 (T) β -
-0.2 - 1.2 in 0.1

steps
-0.2 - 1.2 in 0.1

steps
-

RN-P3 (S) β
-0.2 - 1.2 in 0.1

steps
-0.2 - 1.2 in 0.1

steps
-0.2 - 1.2 in 0.1

steps
-0.2 - 1.2 in 0.1

steps

RN-P3 (T) β -
-0.2 - 1.2 in 0.1

steps
-0.2 - 6.0 in 0.2

steps
-

AN-P5 (S) β
-0.2 - 1.2 in 0.1

steps
-0.2 - 1.2 in 0.1

steps
-0.2 - 1.2 in 0.1

steps
-0.2 - 1.2 in 0.1

steps

RN-P5 (S) β
-0.2 - 1.2 in 0.1

steps
-0.2 - 1.2 in 0.1

steps
-0.2 - 1.2 in 0.1

steps
-0.2 - 1.2 in 0.1

steps

P3
α (M) α

-0.2 - 4.5 in 0.1
steps

-0.2 - 4.5 in 0.1
steps

x
-0.2 - 4.5 in 0.1

steps

P3
α (T) α - -

-0.2 - 4.5 in 0.1
steps

-

AN-P3
α (T) α, β -

α: -0.4 - 3.0 in
0.2 steps,

β: -0.2 - 1.1 in
0.1 steps

α: -0.4 - 3.0 in
0.2 steps,

β: -0.2 - 1.1 in
0.1 steps

-

P5
α (M) α 1.0 1.0 x

-0.2 - 4.5 in 0.1
steps

3Path N/A + + + +

AN-IB-3Path β
-0.2 - 1.2 in 0.1

steps
-0.2 - 1.2 in 0.1

steps
-0.2 - 1.2 in 0.1

steps
-0.2 - 1.2 in 0.1

steps
IR (S) N/A + x + x
IR (M) N/A + + + x
BnB N/A + + x +
OW (S) N/A + x x x
CT (S) N/A + x x x

L+ (M) N/A + + x +

Table A.1: Experiments performed for evaluation. A ’+’ or a parameter specification denote experi-
ments that were successfully performed. A ’x’ indicates that the experiment failed due to
insufficient memory of the compute node or that the experiment was aborted because the
maximal available processing time of 24 hours expired. If we did not attempt to perform
an experiment the table cell contains a ’-’. Due to insufficient computing resources we
could not measure the performance of the baseline method BPRMF with number of latent
factors > 50 for the iPlayer dataset. Since the AUC accuracy of the kNN recommenders
has not converged for a neighborhood size of 200 in the experiments with the BookCross-
ing dataset, we performed additional measurements for this dataset considering a larger
neighborhood.

MovieLens-S MovieLens-M iPlayer BookCrossing

α (P3
α (M/T)) 1.7 1.8 1.5 0.9

β (AN-P3 (T)) 0.7 0.8 0.7 0.2

AUC <0.0001 <0.0001 <0.0001 <0.0001
Prec@20 <0.0001 <0.0001 <0.0001 <0.0001
ILD@20 <0.0001 <0.0001 <0.0001 N/A
Surp@20 <0.0001 <0.0001 <0.0001 <0.0001
EILD@20 0.053 <0.0001 <0.0001 N/A
EFD@20 <0.0001 <0.0001 <0.0001 <0.0001

Table A.2: P-values of Wilcoxon signed rank tests of P3
α (M/T) versus AN-P3 (T) at maximal level

of AUC performance for per-user accuracy and diversity metrics. Figures in bold indicate
a better average performance of AN-P3, underlined figures a better performance of P3

α.
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A.4 Calculating Transition Probabilities with Signal/Col-

lect

The Scala3 code listings A.1, A.2, and A.3 exemplify random walk vertex transition
probability calculations for a toy graph with the Signal/Collect4 framework.

1 package com.signalcollect.examples
2
3 import com.signalcollect._
4 import com.signalcollect.configuration.ExecutionMode
5
6 class PsEdge[Id](t: Id) extends DefaultEdge(t) {
7
8 type Source = PsVertex[Id]
9 def signal = source.state / source.sumOfOutWeights * weight

10 }
11
12 class PsVertex[Id](id: Id) extends DataGraphVertex[Id, Double ](id, 0.0) {
13
14 type Signal = Double
15 def collect: Double = signals.sum
16 }
17
18 object Ps extends App {
19 val g = new GraphBuilder[Any , Any ]().build
20 g.awaitIdle
21
22 var user1 = new PsVertex (1)
23 g.addVertex(user1)
24 user1.state = 1.0
25 g.addVertex(new PsVertex (2))
26 g.addVertex(new PsVertex (3))
27 g.addVertex(new PsVertex (4))
28 g.addVertex(new PsVertex (5))
29 g.addVertex(new PsVertex (6))
30
31 g.addVertex(new PsVertex(’A’))
32 g.addVertex(new PsVertex(’B’))
33 g.addVertex(new PsVertex(’C’))
34 g.addVertex(new PsVertex(’D’))
35
36 g.addEdge(1, new PsEdge(’A’))
37 g.addEdge(’A’, new PsEdge (1))
38
39 g.addEdge(2, new PsEdge(’A’))
40 g.addEdge(2, new PsEdge(’B’))
41 g.addEdge(’A’, new PsEdge (2))
42 g.addEdge(’B’, new PsEdge (2))
43
44 g.addEdge(3, new PsEdge(’A’))
45 g.addEdge(3, new PsEdge(’B’))
46 g.addEdge(3, new PsEdge(’C’))
47 g.addEdge(’A’, new PsEdge (3))
48 g.addEdge(’B’, new PsEdge (3))
49 g.addEdge(’C’, new PsEdge (3))
50
51 g.addEdge(4, new PsEdge(’B’))
52 g.addEdge(4, new PsEdge(’C’))
53 g.addEdge(’B’, new PsEdge (4))
54 g.addEdge(’C’, new PsEdge (4))
55
56 g.addEdge(5, new PsEdge(’C’))
57 g.addEdge(5, new PsEdge(’D’))
58 g.addEdge(’C’, new PsEdge (5))
59 g.addEdge(’D’, new PsEdge (5))
60
61 g.addEdge(6, new PsEdge(’D’))
62 g.addEdge(’D’, new PsEdge (6))
63
64 g.awaitIdle
65 val stats = g.execute(ExecutionConfiguration.withExecutionMode(ExecutionMode.Synchronous).

withStepsLimit (3))
66 println(stats)
67
68 g.foreachVertex{v =>
69 println("Transition Probability from user 1 to vertex with id " + v.id + ": " + v.state)
70 }
71
72 g.shutdown
73 }

Listing A.1: Calculating transition probabilities for user 1 after a three step random walk
with α = 1.0 (P3).

3Scala programming language - scala-lang.org
4Signal/Collect graph processing framework - uzh.github.io/ signal-collect
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A.4. CALCULATING TRANSITION PROBABILITIES WITH
SIGNAL/COLLECT

1 package com.signalcollect.examples
2
3 import com.signalcollect._
4 import com.signalcollect.configuration.ExecutionMode
5
6 class PsAlphaEdge[Id](t: Id) extends DefaultEdge(t) {
7
8 type Source = PsAlphaVertex[Id]
9 def signal = source.state.map{_ / source.sumOfOutWeights * weight}

10 }
11
12 class PsAlphaVertex[Id](id: Id) extends DataGraphVertex[Id, List[Double ]](id, List()) {
13
14 type Signal = List[Double]
15 def collect: List[Double] = signals.flatten.toList
16 }
17
18 class PsAlphaAggregator[IdType] (alpha: Double) extends ModularAggregationOperation[Map[IdType ,

List[Double ]]]{
19 val neutralElement = Map[IdType , List[Double ]]()
20 def extract(v: Vertex[_, _]): Map[IdType , List[Double ]] = {
21 try {
22 Map[IdType , List[Double ]]((v.id.asInstanceOf[IdType], List(v.state.asInstanceOf[List[

Double ]]. foldLeft (0.0)(_+ math.pow(_, alpha)))))
23 }
24 }
25 def aggregate(a: Map[IdType , List[Double]], b: Map[IdType , List[Double ]]): Map[IdType , List[

Double ]] = a ++ b
26 }
27
28 object PsAlpha extends App {
29 val g = new GraphBuilder[Any , Any ]().build
30 g.awaitIdle
31
32 var user1 = new PsAlphaVertex (1)
33 g.addVertex(user1)
34 user1.state = List (1.0)
35 g.addVertex(new PsAlphaVertex (2))
36 g.addVertex(new PsAlphaVertex (3))
37 g.addVertex(new PsAlphaVertex (4))
38 g.addVertex(new PsAlphaVertex (5))
39 g.addVertex(new PsAlphaVertex (6))
40
41 g.addVertex(new PsAlphaVertex(’A’))
42 g.addVertex(new PsAlphaVertex(’B’))
43 g.addVertex(new PsAlphaVertex(’C’))
44 g.addVertex(new PsAlphaVertex(’D’))
45
46 g.addEdge(1, new PsAlphaEdge(’A’))
47 g.addEdge(’A’, new PsAlphaEdge (1))
48
49 g.addEdge(2, new PsAlphaEdge(’A’))
50 g.addEdge(2, new PsAlphaEdge(’B’))
51 g.addEdge(’A’, new PsAlphaEdge (2))
52 g.addEdge(’B’, new PsAlphaEdge (2))
53
54 g.addEdge(3, new PsAlphaEdge(’A’))
55 g.addEdge(3, new PsAlphaEdge(’B’))
56 g.addEdge(3, new PsAlphaEdge(’C’))
57 g.addEdge(’A’, new PsAlphaEdge (3))
58 g.addEdge(’B’, new PsAlphaEdge (3))
59 g.addEdge(’C’, new PsAlphaEdge (3))
60
61 g.addEdge(4, new PsAlphaEdge(’B’))
62 g.addEdge(4, new PsAlphaEdge(’C’))
63 g.addEdge(’B’, new PsAlphaEdge (4))
64 g.addEdge(’C’, new PsAlphaEdge (4))
65
66 g.addEdge(5, new PsAlphaEdge(’C’))
67 g.addEdge(5, new PsAlphaEdge(’D’))
68 g.addEdge(’C’, new PsAlphaEdge (5))
69 g.addEdge(’D’, new PsAlphaEdge (5))
70
71 g.addEdge(6, new PsAlphaEdge(’D’))
72 g.addEdge(’D’, new PsAlphaEdge (6))
73
74 g.awaitIdle
75 val stats = g.execute(ExecutionConfiguration.withExecutionMode(ExecutionMode.Synchronous).

withStepsLimit (3))
76 println(stats)
77
78 var alpha = 1.5
79 var m = g.aggregate(new PsAlphaAggregator[Any](alpha))
80 var sum = m.values.flatten.sum
81
82 g.foreachVertex{v =>
83 println("Transition Probability from user 1 to vertex with id " + v.id + " with alpha=" +

alpha +": " + m.get(v.id).get.head / sum)
84 }
85
86 g.shutdown
87 }

Listing A.2: Calculating normalized transition probabilities for user 1 after a three step
random walk with α = 1.5 (P3

α).
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1 package com.signalcollect.examples
2
3 import com.signalcollect._
4 import com.signalcollect.configuration.ExecutionMode
5
6 class PsBEdge[Id](t: Id) extends DefaultEdge(t) {
7
8 type Source = PsBVertex[Id]
9 def signal = source.state.mapValues { _/ source.sumOfOutWeights * weight}

10 }
11
12 class PsBVertex[Id](id: Id) extends DataGraphVertex[Id, Map[Id, Double ]](id, Map[Id, Double ]()) {
13
14 type Signal = Map[Id, Double]
15 def collect: Map[Id, Double] = signals.flatten.groupBy(_._1).mapValues(_.map(_._2).sum)
16 }
17
18 object PsB extends App {
19 val g = new GraphBuilder[Any , Any ]().build
20 g.awaitIdle
21
22 for (id <- 1 to 6) {
23 var user = new PsBVertex(id)
24 user.setState(Map(id -> 1.0))
25 g.addVertex(user)
26 }
27
28 g.addVertex(new PsBVertex(’A’))
29 g.addVertex(new PsBVertex(’B’))
30 g.addVertex(new PsBVertex(’C’))
31 g.addVertex(new PsBVertex(’D’))
32
33 g.addEdge(1, new PsBEdge(’A’))
34 g.addEdge(’A’, new PsBEdge (1))
35
36 g.addEdge(2, new PsBEdge(’A’))
37 g.addEdge(2, new PsBEdge(’B’))
38 g.addEdge(’A’, new PsBEdge (2))
39 g.addEdge(’B’, new PsBEdge (2))
40
41 g.addEdge(3, new PsBEdge(’A’))
42 g.addEdge(3, new PsBEdge(’B’))
43 g.addEdge(3, new PsBEdge(’C’))
44 g.addEdge(’A’, new PsBEdge (3))
45 g.addEdge(’B’, new PsBEdge (3))
46 g.addEdge(’C’, new PsBEdge (3))
47
48 g.addEdge(4, new PsBEdge(’B’))
49 g.addEdge(4, new PsBEdge(’C’))
50 g.addEdge(’B’, new PsBEdge (4))
51 g.addEdge(’C’, new PsBEdge (4))
52
53 g.addEdge(5, new PsBEdge(’C’))
54 g.addEdge(5, new PsBEdge(’D’))
55 g.addEdge(’C’, new PsBEdge (5))
56 g.addEdge(’D’, new PsBEdge (5))
57
58 g.addEdge(6, new PsBEdge(’D’))
59 g.addEdge(’D’, new PsBEdge (6))
60
61 g.awaitIdle
62 val stats = g.execute(ExecutionConfiguration.withExecutionMode(ExecutionMode.Synchronous).

withStepsLimit (3))
63 println(stats)
64
65 g.foreachVertex { v =>
66 v.state.asInstanceOf[Map[Any , Double ]]. foreach{e =>
67 println("Transition Probability from user " + e._1 + " to item " + v.id + ": " + e._2)
68 }
69 }
70 g.shutdown
71 }

Listing A.3: Calculating transition probabilities for all users after a three step random walk
with α = 1.0 (P3).
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