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Zusammenfassung

Aufgrund der Entwicklung von skalierbaren und verteilten Systemen wurde in den let-
zten Jahren die Verarbeitung von grossen Netzwerken mit Millionen und Milliarden
von Knoten und Verbindungen möglich. Oft fehlt diesen Platformen jedoch ein hoher
Abstraktionslevel und eine Integration in bestehende Umgebungen. Beides sind Voraus-
setzungen für das effiziente Arbeiten von Datenanalysten. Unsere Arbeit besteht aus
zwei Zielen: Einerseits haben wir auf der Basis des Signal/Collect1 Frameworks eine
generische Netzwerk Analyse Toolbox (NAT) entwickelt, welche die Integration zu dem
verbreiteten Graphenanalysetool igraph2 ermöglicht. Andererseits haben wir bekannte
Algorithmen im Bereich der sozialen Netzwerkanalyse in das vertex-centric Program-
mierparadigma portiert.

1http://uzh.github.io/signal-collect/
2http://igraph.org





Abstract

In the last years, the processing of huge graphs with millions and billions of vertices
and edges has become feasible due to highly scalable distributed frameworks. But, the
current systems are suffering from having to provide a high level language abstraction to
allow data scientists the expression of large scale data analysis tasks. Our contribution
has two main goals: Firstly, we build a generic network analysis toolbox (NAT) on
top of Signal/Collect3, a vertex-centric graph processing framework, to support the
integration into existing statistical and scientific programming environments. We deliver
an interface to the popular network analysis tool igraph4. Secondly, we address the
challenge to port social network analysis and graph exploration algorithms to the vertex-
centric programming model to find implementations which do not operate on adjacency
matrix representations of the graphs and do not rely on global state.

3http://uzh.github.io/signal-collect/
4http://igraph.org
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1
Introduction

Graphs, also known as networks, are fundamental data structures defined by a set of
vertices where some pairs are connected by links. The study of networks has its origin
in graph theory, but it has found applications in many disciplines. Graphs are used for
modeling data in domains including computer science, protein networks, transportation
networks, bibliographical networks or social networks [Elshawi et al., 2015]. The latter
has traditionally been studied in sociology, where many network analysis methods origi-
nate from. The analysis of the role of vertices in networks and the properties of networks
is known under the name social network analysis (SNA). In the last years, huge graphs
with millions and billions of vertices and edges have become very common and with them
designing scalable systems for their processing and analysis has become a challenging
task for the big data research community.

Several frameworks address the problem of providing scalable graph processing plat-
forms successfully by enabling parallelization and the distribution of the computation
to multiple computers. But, the current systems are suffering in providing a high level
language abstraction for expressing large scale data analysis tasks. Elshawi et al. [2015]
compare the situation to the early days of the Hadoop1 framework. The lack of declar-
ative languages to allow data scientist the formulation of their queries efficiently has
limited its practicality and the wide acceptance. Therefore, several systems like Pig2

and Hive3 have been introduced on top of Hadoop to fill the gap with higher abstrac-
tions.

In practice, end-users like data scientist need to execute computations which combine
graph analysis with other analytics techniques. Concerning that the graph processing
platforms are not able to connect with the ecosystem of other analytics systems, we
address this problem by presenting a framework with an interface to the popular open
source tool igraph4. Csardi and Nepusz [2006] introduce igraph as a network analysis
library which can handle large graphs efficiently and which can be embedded into a
higher level program or programming language providing a clean and comprehensive
interface for manipulating, visualizing and analyzing graphs. Its core is implemented in

1https://hadoop.apache.org
2https://pig.apache.org
3https://hive.apache.org
4http://igraph.org
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C/C++, but the tool provides wrapping libraries for the Python and the R programming
languages. Both are widely-used for statistical and scientific programming.

Despite igraph using space and time efficient data structures and implementing current
state-of-the-art algorithms, the package is not designed for distributed execution. This
limits the size of networks that can be analyzed to the resources available to the local
execution environment on which the algorithm is running.

Stutz et al. [2010] propose a vertex-centric programming model for synchronous and
asynchronous graph algorithms designed for distributed parallel computation. Its im-
plementation supports both parallelization through multiple processor cores as well as
distribute computations to a server cluster.

This thesis aims to create an igraph API implementation that uses Signal/Collect
graphs allowing to perform graph computations in a distributed system. For the pro-
totype we limit the algorithms to a subset of the igraph functionality and focus on the
implementation of algorithms used for social network analysis and graph exploration.
The prototype integrates into the Python wrapper of the igraph package, but its ar-
chitecture allows to extend it easily to support other languages. Calls to our custom
igraph interface from Python are forwarded to the Signal/Collect graph representation
transparently.

Our contribution has two main aspects. Firstly, we build a generic network analysis
toolbox (NAT) on top of the Signal/Collect framework to support the integration into
existing environments. Secondly, we address the challenge to port classic algorithms to
the vertex-centric programming model to find implementations which do not operate on
adjacency matrix representations of the graphs and do not rely on global state.

This thesis is structured as follows: The second chapter gives an overview on existing
approaches and introduces the ideas behind the Signal/Collect framework. The third
chapter explains the architecture of our generic framework. The fourth is the most com-
prehensive one discussing and evaluating all implemented algorithms and is organized
into four sections. It begins with three graph traversal implementations, continuous with
one graph layout algorithm, followed by two graph transformations and concludes with
four centrality measures. Before concluding, the thesis discusses an outline of limitations
and possible future work.

2



2

Related Work

In recent years researches have developed many techniques and frameworks to study very
large graphs. Elshawi et al. [2015] give a solid overview to understand the challenges of
developing scalable graph processing systems and introduce the state-of-the-art graph
processing platforms. One of the most interesting approach is the vertex-centric one,
which we discuss in the next section.

2.1 Thinking Like A Vertex

The publication of McCune et al. [2015] focuses on the very comprehensive discussion
of the vertex-centric programming model. It is an established computational paradigm
recently incorporated into frameworks to address challenges in the processing of large-
scale graphs. Traditional implementations of big data tools, like the popular MapReduce
implementation Hadoop, are not well-suited for iterative graph algorithms. In response,
the vertex-centric approach tries to provide a natural interface allowing to program from
the perspective of a vertex rather than the global graph. Such an interface improves
locality, demonstrates linear scalability and provides a way to express and compute
many iterative graph algorithms in an elegant way. The computation units generally
only interact with data from adjacent vertices along incident edges. This allows for the
design of an efficient decentralized architecture. Famous platforms are Pregel [Malewicz
et al., 2010], Signal/Collect [Stutz et al., 2010], Giraph [Avery, 2011], GraphLab [Avery,
2011], GraphX [Xin et al., 2013] and Aster 6 [Simmen et al., 2014]. We won’t discuss
the systems in detail in this thesis but rather refer to the two survey papers mentioned
above.
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2.2 Existing Distributed Graph Analysis Libraries
There are a number of network analysis packages available. Popular examples are
Graphviz1, Gephi2, igraph3, networkX4, SNAP5 and Cytoscape6. Although having ef-
ficient implementations, all of them are not designed for distributed computation and
therefore are limited by the resources of the local computer where the algorithm is run-
ning. Next, we present three frameworks which support scalable, distributed computing
while providing implementations and high level abstractions for graph analysis tasks
and therefore address the challenge to combine the two worlds of the scalable graph
processing frameworks and the graph analysis libraries.

2.2.1 Aster 6

With Aster 67, Simmen et al. [2014] present a system which adds support for large-scale
graph analytics to its repertoire of analytics capabilities. The solution also provides
a vertex-centered interface to write graph analytics functions which can be executed
using the multi-engine processing architecture with support for bulk synchronous parallel
execution. The engine can be invoked from the context of a SQL query and thereby
enables data scientist and business applications to express computations that combine
large-scale graph analytics with techniques better suited to a different style of processing.
Thanks to its support for standard SQL interfaces, Aster 6 is able to forward its results
to external visualization tools like for example Tableau8. They include the Teradata
SQL-MapReduce9 framework allowing developers to write powerful SQL-MapReduce
functions in languages such as Java, C#, Python, C++ and R.

2.2.2 GraphLab

With GraphLab10, Low et al. [2014] present an open-source framework written in C++
using asynchronous execution mode. On top of GraphLab there is a graph analytics
library11 containing many standard algorithms. Dato Inc12 was founded by Prof. Carlos
Guestrin and supports the development of the project. The company provides a closed-
source Python library on top of the C++ engine.

1http://www.graphviz.org
2http://gephi.github.io
3http://igraph.org
4https://networkx.github.io
5http://snap.stanford.edu
6http://www.cytoscape.org
7http://www.teradata.com
8http://www.tableau.com
9http://www.teradata.com/Teradata-Aster-SQL-MapReduce

10http://graphlab.org
11http://docs.graphlab.org/graph_analytics.html
12http://dato.com

4



2.3. SIGNAL/COLLECT 5

2.2.3 Social Network Analysis with Signal/Collect
Keller [2014] has implemented social network analysis measures on the Signal/Collect
framework. The tool is an extension of the existing graph tool Gephi13 from where all
the metrics can be executed. In contrast to his work our framework is a more generic
approach to building a graph analysis service on top of Signal/Collect. The framework
can be easily extended to support many client programming languages in addition to
the provided Python wrapper. Furthermore, we investigate in finding vertex-centric
algorithms for graph traversal and layouting problems and address some issues of Keller’s
centrality implementations.

2.3 Signal/Collect
Stutz et al. [2010] introduce Signal/Collect, again a vertex-centric programming model,
where graph algorithms are decomposed into two operations. Signaling along edges
informs neighbor vertices about changes and collecting the received signals updates the
vertex’s state. In contrast to many other implementations Signal/Collect supports both
synchronous and asynchronous execution modes. The former is related to the Bulk
Synchronous Parallel (BSP) paradigm. There is a global synchronization between the
computation steps consisting of a signal phase and a collect phase. This ensures that
the signal and the collect phase of different vertices never overlap.

In the asynchronous execution mode there are no guarantees about the order in which
the operations on vertices get executed. Stutz et al. argue that depending on the
algorithm, this may perform better, because it has the potential to propagate information
across the graph faster and is less susceptible to oscillations in converging algorithms.
We will investigate the performance differences for our algorithms in the fourth chapter.

Signal/Collect supports both parallelization using multiple cores as well as distribution
over cluster of server nodes using the Akka14 actor framework.

13http://gephi.github.io
14http://akka.io

5





3
Architecture

The framework consists of four separate modules: Thrift Service Interface, Python Client,
Signal/Collect Server and Evaluation. Each is located in its own repository. Figure 3.1
gives an overview of all components and their relationships. In the following sections we
will discuss them in detail.

3.1 Apache Thrift Service Interface
Apache Thrift1 is a framework for building cross-language services. It provides a domain
specific language (DSL) for defining service interfaces, a code generation engine and
a runtime environment to communicate seamlessly between a huge set of supported
languages. The Thrift definition file (NATService) is the interface of the service and
specifies the contract of the API. In the DSL all supported methods and structs of the
service are listed. The generated code for the individual languages integrates very well
into the native language environment, allowing to develop cross-language services almost
transparently. In the scope of this thesis we implemented one client for our NATService
using Python. Due to the modular service definition and the huge language support of
Thrift it could be extended easily to further languages.

The runtime library supports a number of protocols to establish the binary remote
procedure call with a lower overhead than other alternatives like REST or SOAP as a
performance comparison of Sumaray and Makki [2012] shows.

3.2 Python Client
The Python Client implements a graph library. The core is the SCGraph class which
provides a subset of the interface of the igraph library. Providing the same method
signatures, the user can use this class to build a graph and execute algorithms on it using
the same methods as if she would use the igraph library. In contrast, the commands are
executed transparently on a (possibly distributed) Signal/Collect server instance. It is
possible to configure the SCGraph to create and maintain a local igraph instance of the

1https://thrift.apache.org
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Figure 3.1: Components of NAT

same graph. This enables the user to choose which algorithms should be run locally and
which distributed. Also, the full extend of functionalities igraph can be accessed.

SCGraph has an instance of the NATClient class which is responsible for sending and
receiving the binary messages from the NATServer using the Thrift protocol.

We support multiple Python SCGraph instances in parallel. The framework takes care
of the initialization of the Signal/Collect counter part on the server. Furthermore, there
is no need to shutdown a Signal/Collect instance manually. The garbage collection on
Signal/Collect is triggered automatically after Python deletes an instance.

The Python client contains acceptance tests to assess the correctness of the implemen-
tations.

3.3 Signal/Collect Scala Server

The Signal/Collect server is the core of the framework. NATServer launches a socket
server to be able to answer requests from a NATClient. It has an instance of SCGraph-
Service which implements the interface provided by the Thrift Service definition NAT-
Service. It handles the creation and deletion of all SCGraph instances and delegates
incoming service commands to the correct instance. Each service call has to include a
unique identifier of the graph in order to be able to establish the synchronization between
the Signal/Collect graphs and the graph representations on the client side.

SCGraph is the center of the framework from an algorithmic perspective. It implements
the logic of the service commands. It has an instance of the proper Graph provided by
the Signal/Collect framework and lazily instantiates the algorithms when required.

8



3.3. SIGNAL/COLLECT SCALA SERVER 9

3.3.1 Programming Model
In Signal/Collect algorithms are designed from the perspective of vertices and edges.
An algorithm is developed by extending one of the default implementations of a vertex
and edge provided by the library. The instances of the concrete vertex and edge classes
are then registered and distributed by the framework. One big challenge with this
implementation by inheritance approach is the execution of different algorithms without
the need of rebuilding and redistributing of the entire graph structure.

We use a similar approach as Strebel [2013] proposes. We implement a vertex Plug-
gableVertex which implements the Vertex interface provided by Signal/Collect. Rather
than implementing any logic itself, it delegates all calls to an implementation of the Ver-
texAlgorithm which can be plugged in at run-time using the state pattern as originally
described by Gamma et al. [1994]. The abstract VertexAlgorithm class also has an in-
terface analog to the original Signal/Collect Vertex. This allows us to execute multiple
algorithms while preserving the existing graph with all its vertices, edges and attributes.
Changing the algorithm has a complexity of O(n) while n is the number of vertices, but
can be executed in parallel.

The basic idea of the Signal/Collects programming model is that the computations are
executed on a graph, similar to the actor model. The vertices are the computational units
that interact by the means of signals which flow along the edges. The vertices collect the
incoming signals, use them for computation and then signal the neighbors in the graph.
In the default programming model of Signal/Collect a subclass of Vertex implements a
custom collect method and a subclass of Edge may override a custom signal method.
Shifting the signaling operation to the Edge is syntactical sugaring of the programming
model. In the underlying implementation the outgoing edges are attached to the source
vertex and distributed to the same worker. In our implementation both signal and collect
operations are handled by the PluggableVertex which delegates them to the algorithmic
specific VertexAlgorithm. We are using a PlaceholderEdge with does not contain any
algorithmic logic and just forwards all signals. Besides allowing a more memory efficient
implementation we can limit the update process for a new algorithm to the replacement
of the VertexAlgorithm. Having a custom signaling function on the edges would require
to iterate through every edge as well.

Signal/Collect provides two default implementations for vertices2. The DataGraphVer-
tex is suitable for algorithms that iteratively update states associated with vertices and
edges. Often, in iterative computations old values get replaced by newer ones . In the
collect function of a DataGraphVertex only the most recently received signal for each
incoming edge is delivered. The DataFlowVertex is designed for dataflow computations
where data is routed through a network of processing vertices and for algorithms which
rely on the delivery of a signal. In a dataflow computation no signal should ever be lost
and the signals are ordered by their time of arrival. In our framework we adopt this
differentiation and provide the same logic.

In addition, both PluggableVertex and PlaceholderEdge contain a Map to support
the storage of attributes.

2https://github.com/uzh/signal-collect/wiki/Default-Vertex-Types

9
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3.3.2 Execution Model

Figure 3.2 illustrates the life-cycle of a SCGraph. In a first step the Graph is created
and its structure is built by adding PluggableVertices and PlaceholderEdges. We
then can execute multiple Algorithm instances on it by setting the corresponding Ver-
texAlgorithm on all vertices. Some algorithms need additional HelperEdges for the
execution which are added before and removed after the Signal/Collect operation it-
self. Last the algorithm extracts or aggregates the relevant data from the states of the
individual vertices.

Figure 3.2: Algorithm Execution Flow

3.3.3 Testing

For every implemented algorithm there are many unit tests included to ensure the correct
computation of the result. We have created small sample graphs to test the algorithms
against following graph properties: directed and undirected, connected and disconnected,
with and without attributes and edge weights and with and without cycles. In total the
test suite contains 99 tests.

10
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3.3.4 Data Loading
Himsolt [1997] proposes the Graph Modeling Language (GML), a file format for storing
graphs. It is hierarchically structured and allows the description of vertices, edges and
attributes on them. There already already a GML Parser3 for the Signal/Collect frame-
work. The implementation parses the entire file into memory of the master worker and
builds a distributed Signal/Collect graph. We implemented an alternative which itera-
tively builds the distributed graph using functional pattern matching without loading
the entire graph into the local memory to support graphs larger than the memory of the
master worker node.

3.4 Evaluation Module
The framework includes an evaluation module which allows to assess the scalability
and the degree of parallelization of the algorithms. It enables the deployment of an
evaluation batch, testing numerous combinations of properties like different graphs in
GML format, execution modes (synchronous or asynchronous) or server configurations
(number of nodes and cores) within one click to the server. After the calculation, the
results can be pulled from the server in form of a csv file.

3https://goo.gl/8GLv0z

11





4
Algorithms and Evaluation

In this chapter we discuss the algorithms we wrote for the framework described in the
previous chapter. They are organized into four sections. We start with three graph
traversal implementations, present one graph layout algorithm, continue to two graph
transformations and conclude with four centrality measures. For every algorithm we
shortly introduce the addressed problem with its mathematical definition, followed by
our implementation in Signal/Collect. Finally, we evaluate the performance.

Synthetic Evaluation Graphs We have chosen to generate three different types of
graphs to observe the behavior of the algorithms for different topologies. Generating
synthetic graphs has the advantage that we can assess the scalability of the algorithms
by scaling up the graph sizes and compare the heterogenous structures. We use the
Erdős Rényi model to simulate random graphs proposed by Erdös and Rényi [1960], the
Barabási Albert model for scale-free networks using a preferential attachment mechanism
described by Albert and Barabási [2002] and the Watts Strogatz model to produce graphs
with small-world properties formulated by Watts and Strogatz [1998].

Table 4.1 summarizes relevant metrics for the graphs to understand their differences.
The graphs are generated in the way that they have about the same number of edges for
a given number of vertices. This allows to compare the results of the algorithms between
the graphs and leads to a homogenous density, the ratio of the number of edges and the
number of possible edges. The Watt Strogatz model has a higher clustering coefficient
than by random chance. Similar to the Erds Rényi model the degree distribution is a
Poisson distribution leading to a relatively homogeneous network topology. The vertices
have degrees in a similar range. In contrast, in the Barabási Albert model each new
vertex is attached with a probability proportional to the degree of existing vertices. This
results in a degree distribution following the power law. A few vertices have very large
degrees, whereby the majority has small values. This phenomenon can be observed
in many networks including the world wide web, citation networks and some social
networks.

Evaluation Process We focus our evaluation on two properties. In the context of
this paper, under the term scalability we refer to the behavior of the algorithms scaling
up the graph sizes. Parallelization measures the proportional speedup by adding more
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Metric Erdős Rényi Barabási Albert Watt Strogatz
Density 0.008 0.008 0.008
Transitivity 0.008 0.026 0.473
Avg Path Length (v=1000) 5.921 2.626 5.131
Degree Distribution Poisson Power-Law Poisson

Table 4.1: Synthetic Graphs Used For Evaluation

computational power. Akhter and Roberts [2006] and Appuswamy et al. [2013] give
good introductions into parallel computing. We want to invest how the algorithms and
the underlying Signal/Collect framework perform in terms of vertical and horizontal
scaling. Vertical scaling (also known as scale-up) adds more processors and memory to
one computation unit. Horizontal scaling adds more servers. The later is often more
economical, can theoretically scale infinitely and is easier to run fault-tolerance. Vertical
scaling however has the advantage that it can profit from very fast communication speed
in contrast to the higher network latency between servers.

For the evaluation we use a cluster with a total of 16 machines provided by the
University of Zurich. Job submission is controlled by the Slurm resource scheduling
system1. Each machine has 128 GB RAM and two E5-2680 v2 at 2.80GHz processors,
with 10 cores per processor. The machines are connected with 40Gbps Infiniband. We
also use a commodity laptop (MacBook with two 2.5 GHz Intel Core i5 processors and 8
GB RAM) to evaluate the performance of the Python igraph implementation. It seems
to be unfair to use different hardware for the evaluation, but should reflect the use case
described in the introduction. The data scientist usually does not work directly on a
scaled-up server, but on her local machine. Our framework should enable the usage
of distributed parallel programming transparently. The measured runtime includes the
execution of the algorithm and the aggregation of the results, but excludes parsing and
distributing the graph.

For some algorithms we evaluate the performance of two execution modes Signal/Col-
lects provides. From the four available we select the synchronous mode, with synchro-
nized computation steps and the default optimized asynchronous mode, where there is
one synchronous signal operation before switching to an asynchronous execution sched-
ule.

4.1 Graph Traversals
Graph traversal is the problem of iterating over vertices in a graph in a predefined order.
A lot of algorithms are building upon graph traversal. The applications are numerous
and Russell and Norvig [1995] mention for example searching for the best path to a target
vertex for all kind of routing applications, searching for the best alternative in decision
and game theory setups like the minimax decision rule in a two-player game search,

1http://slurm.schedmd.com

14



4.1. GRAPH TRAVERSALS 15

determining whether a graph is a directed acyclic graph or enumerating all reachable
vertices from a target for garbage collecting.

Generally, given a single vertex or a set of vertices, the goal is to find all reachable
vertices from these roots. In an undirected graph we can follow all edges to find the
target, in a directed one we are restrict to the outgoing ones.

Russell and Norvig [1995] discuss two crucial properties for graph traversal algorithms.
If a strategy is complete it always finds a solution when there exists one. If it is optimal
it finds the highest-quality solution when there are several different ones. We will apply
these properties on the three algorithms we discuss in the next sections.

4.1.1 Breadth First Search (BFS)
The breadth first search is fundamental for the graph theory. It appears in various
applications where shortest paths are searched.

Algorithm
According to Weisstein [2015a] the breadth first search explores all vertices adjacent to
the current vertex before moving on. In other words, the algorithm starts at a given
single root vertex and expands the neighbor vertices level by level. The order reflects
the distance from the vertices to the root vertex. All the vertices at depth d in the
search tree are expanded before the vertices at depth d + 1. The edge weights are not
considered and treated equal to 1.

The algorithm is complete as it always finds a solution if there exists one. It is
also optimal if we assume that deeper solutions are less optimal. To support varying
edge weights we can introduce the uniform cost search (UCS), also known as Dijkstra’s
algorithm.

Rather than treating all edge weights homogeneously, the uniform cost search expands
the vertex first having the smallest path cost represented by the sum of all edge weights.
It is complete and optimal under the assumption that all path cost are strictly positive.
Otherwise it can get stuck in infinite loops.

Implementation
Implementing BFS using the Signal/Collect programming model is very straightforward.
The state of each vertex is represented by a path containing the current path length
and the id of the parent vertex in the search tree. Storing the parent is not required
for building the path sequence, but allows an efficient representation of the final result
according to the igraph API which returns a tuple with the vertex ids in visited order,
the start indices of the layers in the vertex list and the parent of every vertex in the
BFS.

Figure 4.1 displays the process of the implementation. Before execution, the master
sets the state of the root vertex to a path with length of 0. In parallel on each vertex,
the signal function iteratively sends its current path length plus 1 to all its outgoing
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Figure 4.1: BFS Algorithm Activity Diagram

vertices. All incoming signals are collected and their length are compared to the current
knowledge. If the path is shorter it will be stored and the signal function is triggered
again. UCS can be implemented analogously. The only difference is that we sum up the
edge weight rather than incrementing the path length by 1. The algorithm builds on
top of the DataFlowVertex semantics, since it is crucial to receive every signal sent.

Evaluation
Figures 4.2 and 4.3 plot the runtimes of the BFS algorithm for different graph sizes.
For this evaluation we use undirected versions of the discussed graphs to ensure that
the root vertex can reach many other vertices. The former uses the Signal/Collect’s
synchronous execution mode and the second one the optimized asynchronous one. The
x-axis, representing the number of vertices, is plotted in logarithmic scale. We observe
that the asynchronous mode performs much worse in the scale-out setup. In this test
scenario, the runtime for the 6 nodes setup is strictly larger than the one for the single
node one. For the Barabási Albert graph with 500′000 vertices and 6 server nodes using
the synchronous execution mode results in a speedup of more than 460% compared to the
asynchronous one. In the case of the Erdős Rényi the largest graph size with 10 millions
vertices couldn’t even be computed in the asynchronous mode due to a buffer overflow
of the Akka framework. In the single node setup the difference is smaller and for the
Barabási Albert graph the asynchronous mode is even slightly faster. Our interpretation
for this observation is that the synchronous mode allows to send the message in larger
bulks over the network which turned out to be more important than the theoretical
benefit of the asynchronous mode.

The igraph implementation performs very well on our commodity laptop. The runtime
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Figure 4.2: BFS Scalability Evaluation (Synchronous Execution Mode)
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Figure 4.3: BFS Scalability Evaluation (Optimized Asynchronous Execution Mode)

is constant for all three graph types and outperforms both the 1 node and the 6 nodes
Signal/Collect implementations. However, loading the 10 million GML file on the laptop
is at the upper limit of the memory capabilities. If the use case requires to scale up to
larger graphs the usage of the Signal/Collect framework would pay off since the memory
is not the limiting factor anymore and the runtimes are still in a feasible range.

Figure 4.4 illustrates the degree of parallelization running the algorithm in five different
server configurations for a fixed graph size. The three bars on the left display the
vertical scaling possibilities using 1, 9 and 18 cores. The three on the right illustrate
the horizontal scaling using 1, 3 and 6 server nodes witch each 18 cores. The patterns
for the three different graph types are very homogenous. It is striking that scaling-up
the number of cores on a single machine brings a huge benefit to the runtime. For the
Barabási Albert graph using 9 cores instead of 1 is more than 87% faster. The speedup
decreased from 9 cores to 18. What is very surprising is that scaling the system out
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Figure 4.4: BFS Parallelization Evaluation (Synchronous Execution Mode)

by adding 3 or even 6 other nodes leads to a higher runtime than using only one node.
Although the severs are connected by a fast 40Gbps Infiniband, the effect of the network
costs and latency overhead is larger than the additional computation power. The only
scenario where the 6 server nodes can outperform the single node configuration is the
Watt Strogatz graph with 10 millions vertices in the synchronous execution mode.

We conclude that the runtime and the best configuration is difficult to estimate.
Scaling-up on a single machine is beneficial. The optimized asynchronous execution
mode is very fragile running on a scaled-out environment and vertical scaling does not
result in better performance per se.

Future Work

We assume that a message combiner on worker level could improve the horizontal scaling
drastically. We could group the signals by the target vertex id and deliver only the one
with the smallest score. All other signals would be discarded in the collect method of
the target vertex and can therefore be dropped already before sending them across the
network. Having the possibility to run multiple algorithms consecutively is a requirement
and should be supported by our framework. We have not implemented an algorithmic
specific message bus due to the fact that we could not find a solution to plug it into an
existing graph.

4.1.2 Depth First Search (DFS)

The depth first search is another graph traversal mechanism often used in the artificial
intelligence domain. It can for example be used to build backtracking algorithms for
combinatorial and constraint satisfaction problems.
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Figure 4.5: Enumerated Vertex Ranking For All Possible DFS Paths (n = 4)

Algorithm
Sequential Traversal Weisstein [2015b] defines DFS as a search algorithm that ex-
plores the first child of a vertex before visiting its siblings. The naive idea to implement
a DFS without a global adjacency matrix using Signal/Collect is to iteratively visit the
first child up to a leaf vertex and then backtrack in order to visit the siblings in the cor-
rect DFS order. Unfortunately, this idea results in a sequential implementation without
using any benefits of the distributed framework.

The idea is to develop an algorithm which can assign a rank to each vertex and can
be executed in parallel. Ordering the vertices according to the ranks should sort them
according to the DFS order. The ranks are not required to be continuously increasing,
only the order is of relevance.

Enumerating All Structural Combinations Given a graph with n vertices we can
build a search space tree sp enumerating all possible search paths which could occur for
a general graph considering all structural combinations. Figure 4.5 shows an example
for a graph with 4 vertices. Its height is n−1. Starting from the search root, in a general
case the vertex could be connected to all remaining vertices. This leads to a branching
factor of n − 1 at a depth of 0. At a depth of 1 the branching level is reduced by one
since at least two vertices are already expanded. Generally speaking a vertex in the tree
has a branching factor bf which depends on the depth d:

bfsp(v) = n − d − 1 (4.1)

We can calculate the number of vertices nsp in the tree:

nsp = ⌊e ∗ (n − 1)!⌋ (4.2)

Having this enumeration of all cases for a general graph we can design a function to
assign a unique rank to each vertex with the restriction that the ordering follows the
DFS sequence. Given n, the number of vertices in the graph, the depth d(v), the child
position k(v) and rank of its parent pr(v) the exact rank for a vertex r(v) is:

r(v) = pr(v) + 1 + ⌊e ∗ (n − d(v) − 1)!⌋ ∗ k(v) (4.3)
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Figure 4.6: Child Sequence Vertex Ranking For All Possible DFS Paths (n = 4)

With this equation we can assign to every possible case a unique natural number in
parallel without being limited to a sequential backtracking bottleneck. The problem is
that the representation of one rank value for one vertex has a space complexity of O(n!),
which is not feasible at all. With 32bit we could represent a rank for a graph with only
12 vertices. With 64bit it could be increased to 20 vertices. The total space complexity
for all vertices would be O(n ∗ n!). Another downside of the approach is the need to
calculate the factorial of n which has a time complexity of O(n!) by definition. However,
this can be improved using the sterling approximation.

Child Indexes Queuing Enqueuing the child index is another approach to get a
unique identifier which, when sorted, represents the DFS order. Starting again from the
search root vertex, in every level the current child position is enqueued to the parent
rank. Having the parent rank vector pr(v) and the child position k(v) of a vertex v we
can compute its rank vector r(v) as follows:

r(v) = [pr(v), r(v)] (4.4)

The size of the rank vector is at maximum n. An element in the vector has to represent
the range from minimum to the maximum branching factor in the tree, which is n − 1 in
the worst case. This leads to a worst case space complexity of O(n2). On average this is
lower since the branching factor is much smaller for most vertices in most graph types.
The time complexity for the rank calculation is O(1) using a correct data structure,
which is also a huge improvement to the factorial approach discussed before.

Implementation
At this point, we limit the detailed discussion and evaluation to the child indexes algo-
rithm since it is the most promising approach for the Signal/Collect framework out of
the three proposed ones. The naive sequential implementation does not fit well for the
parallel computing framework Signal/Collect and the absolute rank computation with
the faculty space footprint is not feasible in practice.

Child Indexes Queuing Figure 4.7 shows the flow of the parallel rank propagation.
If the vertex has a rank it sends it to all its outgoing edges. When a vertex receives
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Figure 4.7: Child Indexes Queuing DFS Algorithm (Activity Diagram)

a signal it calculates the rank from the given signal parameters and compares it to its
current rank. If it hasn’t yet a rank associated or the current rank is larger than the
received one it will update it and trigger the signaling operation again. Eventually, the
ranks converge and no messages are sent any more. It is implemented as a data flow to
ensure every signal is collected.

Evaluation
In the Python igraph there is no DFS implementation, therefore igraph runtimes are
missing in our comparison.

Child Indexes Queuing Analogous to the evaluation of the BFS, Figure 4.8 visualizes
the scalability using the three synthetic graphs. However, the x-axis is not in logarithmic
scale. The runtime for the scaled-out version explodes with increasing graph size. This is
reasonable since not only the number of the signals increases with the graph size, but also
the size of one signal itself containing the encoded child index sequence. Sending large
signals across the network has a larger impact than managing it inside one computer.
The asynchronous mode did perform much worse, so we omit the discussion of it for this
algorithm.

We are surprised by the bad performance of this algorithm. For a small-world Watt
Strogatz graph with only 7500 vertices the algorithm needing about 280 seconds to
capture the correct DFS sequence. Assuming that there are no major flaws in the
implementation, we suspect that the biggest issue with the child index propagation
algorithm is that the messages are sent in a BFS order. Figure 4.9 illustrates how
the DFS ranks converge. We split the process into three steps using a directed graph.
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Figure 4.8: Child Indexes Queuing DFS Scalability Evaluation (Synchronous Execution
Mode)
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Figure 4.9: Computation Flow of Child Indexes Queuing Algorithm

Initially, the state of root vertex is set to 0. After a few Signal/Collect steps we obtain
the intermediate state. Every vertex has now a state assigned, the algorithm hasn’t yet
converged because the edge between the vertices 0000 and 02 is not yet considered. The
problematic part is that the algorithm is now required to overwrite all computation done
in the right branch. This leads to a lot of messaging and bad performance.

Future Work
We could change the algorithm in a way that we do not trigger the signaling operation
again after receiving a smaller rank than already known. Instead, we just store the
shorter path additionally as shown in Figure 4.10 . The update process of the affected
vertices is shifted to the aggregation step on the single master machine. For all cases
where we have stored a smaller rank additionally, we use it to update all ranks for all
vertices having the same prefix. Using a TreeMap this could be implemented efficiently,
but still remains an overhead. We leave it as a future work to implement and assess this
idea.
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Figure 4.10: Child Indexes Queuing with Post-processing DFS Algorithm (Activity Dia-
gram)

4.1.3 All Pair Shortest Path (APSP)
The shortest path problem searches for paths between two vertices in a graph such that
the total path length is minimized. We can distinguish three different variants: the
single-source shortest path problem finds the shortest paths from a source vertex to all
other vertices, the single-destination shortest path problem reverses the former problem
and the all-pairs shortest path problem calculates the shortest paths between every pair
of vertices.

We focus our analysis on the all-pairs shortest path problem since it is the most
challenging in terms of time and space complexity. The applications are for example
traffic routing or centrality metrics like closeness or betweenness which we will discuss
in detail in a later section.

Algorithm
Conventionally, as described by Kim et al. [2003] the problem is solved by once applying
the Floyd-Warshall2 or the Dijkstra’s algorithm3 separately for every source vertex.

At the end of the execution of the algorithm every vertex should be aware of all the
shortest paths to all reachable other vertices. The idea of our algorithm, using the

2http://mathworld.wolfram.com/Floyd-WarshallAlgorithm.html
3http://mathworld.wolfram.com/DijkstrasAlgorithm.html
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Figure 4.11: All Pair Shortest Path Computation [(targetId, nextVertex, costs)]

vertex-centric programming model, is that we start with the knowledge we have initially.
Every vertex has a shortest path to itself with cost of 0. In the next step we send
this information along all incoming edges to our neighbor vertices. We add the cost
of the specific edge to the total costs of the individual paths. Each of the neighbor
vertices checks if it is interested in the new information and potentially merges it into
its knowledge. It then forwards the new information again to its connected vertices.

Figure 4.11 shows the iterative building of the shortest paths using a small directed
graph. Initially, no path is known. After one step, the vertices know how to reach their
neighbors and to what costs. For one shortest path leading from a source to a target
vertex, the next vertex in the path and the total costs are memorized. This allows to
resolve the entire shortest path. After executing the same signaling process again the
final state is reached, in which every vertex knows the shortest path to all reachable
other vertices.

The algorithm is both complete and optimal for graphs with strictly positive edge
weights.

Implementation
Minimal Memory Footprint Keller [2014] investigated how to implement the short-
est path problem using the Signal/Collect framework in order to calculate the between-
ness and closeness centrality metrics. We will discuss both of them in detail later in
this paper. His implementation iteratively sends all shortest paths currently known to
all outgoing edges including the full path sequence. According to our evaluation, this
seems to be very memory consuming and the network costs of a scaled-out server setup
explode with increasing graph sizes.

Our minimal memory footprint implementation tries to address this problem. It is
designed for applications and algorithms which are interested only in the costs of the
shortest paths and do not require the full path sequence for every path. The computation
of the closeness centrality metric would be a noteworthy example. With this restriction
we have to send only the costs for a target. The total space complexity of the computation
is O(n2). Assuming we represent the vertex ids as well as the costs in 32bit integers we
have a memory footprint of n2 ∗ 2 ∗ 32bits. For a graph with 10′000 vertices this would
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Figure 4.12: APSP Algorithm Activity Diagram

require at least 800 megabyte storage.

Figure 4.12 overviews the implementation. In Signal/Collect for a directed graph the
outgoing edges are known to a vertex. Since our algorithm works in reverse order we
append additional signaling edges for directed graphs to have access to the incoming
edges. The implementation takes edge weights into account and allows optionally to
calculate an approximated version by limiting the path length to a certain value. Again
the requirement to receive every signal sent lets us build on top of the DataFlowVertex
abstraction.

For some applications we do rely on the path sequences of the shortest paths. In
the following we present three different approaches to resolve the path sequence for the
shortest paths. Storing this information is very expensive since it results in a worst case
scenario of O(n3). However, for many graph topologies the average path length is much
smaller resulting in a more feasible footprint in practice. Referring to experiments of
Milgram [1967] and the theory of Guare [1990] that everyone and everything is six or
fewer steps away, assuming an average path length of 6 and again 10′000 vertices we
would end up with a total memory consumption of 2.8 gigabyte.
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Pushing of Path Details The most straightforward solution is to send the entire
path sequence always as a part of the signal. This has the advantage that the number
of messages does not increase in comparison to the minimal approach discussed before.
However, the downside is that we always send the expensive path sequences although
the target vertex may not be interested in the new path, since it is already aware of a
path with equal or less path length.

Eager Pulling of Path Details This issue is addressed by implementing a mechanism
which allows a vertex to pull the path sequence for a target on demand. The eager
pulling algorithm is implemented in the way that a vertex immediately asks for the
detail information if an incoming shortest path is better than the current knowledge.
The request for the path sequence is recursively passed through the sequence until one
vertex is aware of the information and sends the path sequence back. This has the
advantage that we can reduce the amount of sent path sequences no one is interested in.
The benefit increases when the algorithm converges more and more since the degree of
useful information decreases. On the other side, we introduce a lot more messages, since
a request has to be sent and answered.

Lazy Pulling of Path Details The eager pulling strategy can still be wasting in the
initial state of the algorithm execution. The chances that already eagerly requested path
sequences get overridden during the algorithm lifecycle is high. This let us introduce
another variant of the pulling strategy. The algorithm is split into two consecutive steps.
Firstly, the shortest paths are computed sending and saving only their path lengths
and the first vertex in the path sequence. In the second step, the paths sequences are
requested and resolved recursively. The plus is that we send only path sequences which
are significant. The bulk synchronous execution mode has the problem that we are
forced to wait until the first step has finished completely. In a distributed system this
can be a huge waste of resources when only one node is still busy and all others are idle
and waiting to start the second step.

Evaluation
For the evaluation of the shortest path we use directed versions of the Barabási Al-
bert and Erdős Rényi graphs. Since the Watts and Strogatz model is only defined for
undirected graphs we use the undirected one.

In contrast to the evaluation of the other algorithms, we omit the aggregation of the
calculated shortest paths in the timed section. Due to limitations of Signal/Collect, or
more precise the underlying Akka4 actor system, the aggregation of the large states is
very challenging. The default settings for Akka support a maximum message size of
2.09 megabytes. If we recall the calculations we did before, for a graph with 10′000
vertices we need to transfer at least 800 megabyte if we only want the path length
for every pair of shortest paths or 2.8 gigabyte if we want to have all path sequences

4http://akka.io
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Figure 4.13: APSP Minimal Memory Footprint Scalability Evaluation (Synchronous Ex-
ecution Mode)

as well. We can enlarge the value for the Akka setting, but we observe an enormous
performance drop by applying it. However, for numerous algorithms one is interested in
aggregated results, where you can combine the states before sending them back to the
master worker. An interesting new feature in Signal/Collect would be the transparent
splitting of large messages in order to support use cases where you can’t combine your
result to for example one single value per vertex. The evaluation of our shortest path
implementations is nevertheless interesting, since there are a lot of algorithms which are
built on top of the all-pairs shortest problem but eventually have a smaller result which
can be transferred easily.

Minimal Memory Footprint Figure 4.13 and 4.14 plot the scalability of the algo-
rithm using both synchronous and asynchronous execution. Please note that the number
of vertices is plotted in logarithmic scale. Comparing the two modes similar conclusion
as for the breadth first search can be deduced: the asynchronous execution performs
worse on our multiple node setup. Even the single node configuration cannot profit, but
at least it is relatively stable. We will focus the further analysis of algorithms based
on the shortest path calculation on the usage of the synchronous mode. The igraph
execution times are relatively constant for the different graph types. In the scale free
Barabási Albert graph the Signal/Collect algorithm outperforms the igraph algorithm
significantly. For the other two types the differences are smaller, but in favor of the
multi node Signal/Collect cluster. The directed Barabási Albert graph scales to much
larger graphs. The power-law distribution of the degrees avoids the constant neglecting
of already computed shortest paths. The majority of the vertices have small in-degrees
and have communicated their knowledge after a small number of steps leading to fast
convergence of the entire graph. Both the Erdős Rényi and the Watt Strogatz model
have a relatively uniform degree distribution resulting in much more noise.

Next, we discuss the behavior of the vertical and horizontal scaling. Figure 4.15

27



28 CHAPTER 4. ALGORITHMS AND EVALUATION

103 104 105
0

10

20

30
R

un
tim

e
[se

c]

(a) Barabási Albert

103 104 105

Vertices
(b) Erdős Rényi

S/C 1N/18C S/C 6N/18C igraph 1N/2C

103 104 105
0

10

20

30

(c) Watt Strogatz

Figure 4.14: APSP Minimal Memory Footprint Scalability Evaluation (Optimized Asyn-
chronous Execution Mode)
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Figure 4.15: APSP Minimal Memory Footprint Parallelization Evaluation (Synchronous
Execution Mode)

processed the three graphs with the server configuration analogously we have done in
the BFS algorithm evaluation section. Again, we can observe that the scaling-up factor
is enormous. In contrast to the BFS algorithm we can also profit by adding additional
servers having increasing graph sizes. Working with 6 servers instead of 1 reduces the
runtimes for the Barabási Albert with 500′000 vertices by 7.71%, for the Erdős Rényi
with 7500 vertices by 44.29% and for the Watt Strogatz with also 7500 vertices by
63.19%.

To conclude, we can state that for this algorithm it is best to use the synchronous
execution mode and to add as much servers as available working with large graphs. For
short runtimes a single node setup may be faster.
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Figure 4.16: APSP Pushing of Path Details Scalability Evaluation (Synchronous Execu-
tion Mode)

Pushing of Path Details How does the performance alter when we add the full path
sequence to the signal? Figure 4.16 shows a very similar trend as the minimal memory
algorithm (Figure 4.15), but overall longer runtimes. For the Barabási Albert graph
with 500′000 vertices the performance decrease is almost 100%. For both Erdős Rényi
and Watt Strogatz only smaller graphs could be processed in a feasible time. Another
observation is that the multi node configuration performed proportionally worse which
is due to the higher network load caused by the bigger messages.

Eager and Lazy Pulling of Path Details Figures 4.17 and 4.18 plot the results for
the eager and lazy pulling approach. Comparing them we can summarize that the lazy
one performs worse than the eager one although they have a very similar behavior. Our
explanation is that the synchronization costs of the two step execution mode of the lazy
pulling are higher than the savings of the messages sent.

Next, we are interested in the difference between the runtimes of the eager pulling
and the pushing approach. Lets consider Figures 4.16 and 4.17. The results are ambiva-
lent. For the Barabási Albert graph the runtimes are similar, however the eager pulling
algorithm could not finish the 10 million vertex graph in the single node setup. In the
random graph topology (Erdős Rényi) the behavior is contrarily. While in the pushing
variant the single node performs better due to the big messages, in the eager pulling
approach the multi server node setup outperforms the single node one. The single node
pushing algorithm performs better than the multi node eager pulling one. Looking at
the last topology, the Watt Strogatz graph, there is a huge difference in favor of the
eager pulling algorithm using 6 server nodes. The pushing algorithm cannot handle the
sample graph with 7500 vertices. Our explanation for this phenomenon is that the eager
pulling approach can profit from the shorter average path lengths of the Watt Strogatz
graph. Since it asks the path sequence only for a potential shortest path this results in
a better performance in this case.
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Figure 4.17: APSP Eager Pulling of Path Details Scalability Evaluation (Synchronous
Execution Mode)

We summarize that the topology of the graph is crucial for both the selection of the
algorithm as well as the server scaling strategy.

Future Work
Similar to the BFS we could extend the Signal/Collect framework to support pluggable
message combiners on the worker nodes. This would allow us to discard paths before
sending it to other nodes.

Another functionality which could have a lot of potential is the usage of a clever,
algorithmic specific partitioning schema. Kalpana and Thambidurai [2014] present a
technique based on degree which could be used as a heuristic to minimize the messaging
between multiple nodes.

A promising approach would be to extend Signal/Collect’s scoreSignal method to
prioritize the signals. We argue that it could beneficial to send the signals in increasing
order respect to the incoming degree of the source vertex. The chance that a vertex with
a small amount of edges directing to it gets new information is lower than for a huge
hub. This would reduce the noise in the system.

As mentioned before, the possibility to aggregate a large amount of data from the mas-
ter worker node should be supported transparently by the Signal/Collect framework.

4.2 Graph Layout
Aesthetically pleasing visualization of a graph can be important to understand the topol-
ogy of a network. Generally, layout algorithms position the vertices in a predefined space
trying to minimize the number of edge crossings while keeping the edge lengths as ho-
mogenous as possible.

30



4.2. GRAPH LAYOUT 31

103 104 105
0

20

40

60

R
un

tim
e

[se
c]

(a) Barabási Albert

103 104 105

Vertices
(b) Erdős Rényi

S/C 1N/18C S/C 6N/18C

103 104 105
0

20

40

60

(c) Watt Strogatz

Figure 4.18: APSP Lazy Pulling of Path Details Scalability Evaluation (Synchronous
Execution Mode)

4.2.1 A Force-Based 2-Dimensional Graph Layout Algorithm
Tutte [1963] introduces the idea of attaching forces to the vertices and edges based on
their relative positions and then to use these forces to iteratively letting the system settle
into an equilibrium with minimized energy.

Algorithm
Fruchterman and Reingold [1991] propose a force-based layout algorithm based on two
principles: the vertices connected by an edge should be drawn near each other but the
vertices should not be drawn too close to each other. For every iteration the algorithm
consists of three steps: calculate the effect of attractive forces on each vertex, then
calculate the effect of repulsive forces and finally limit the total displacement to some
maximum value which decreases over time. Fruchterman and Reingold refer to this
maximum value as temperature. If it is hot, the vertices move faster. As the layout
becomes better, the temperature cools and the amount of adjustment becomes smaller
and smaller. Once the vertices stop moving, the algorithm terminates. The attractive
forces are computed between adjacent vertices and the repulsive forces between all pairs
of vertices.

An attractive force fa between two adjacent vertices u and v is given by

fa(duv) = d2
uv

k
(4.5)

whereby duv is the distance between the two vertices and the optimal distance k is defined
as

k = C ∗
√

a

n
(4.6)
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Figure 4.19: Fruchterman Reingold Algorithm Activity Diagram

given the area of frame a, the total number of vertices n and a constant C to readjust
the distance between the vertices.

The repulsive force fr between two vertices u and v is

fr(duv) = − k2

duv
(4.7)

Implementation

Figure 4.19 overviews the main steps implementing the algorithm in Signal/Collect. Due
to a missing global state we are forced to create a fully connected graph in order to
broadcast the positions of the vertices to each other. For each received position of
another vertex the repulsive and the attractive forces (if there the vertices are neighbors)
are calculated. Using the forces the displacement multiplied by current the temperature
and the resulting new position are computed. For this implementation we can use the
DataGraphVertex abstraction, which only tracks the most recent signals and triggers
the collect function batch-wise. The possible drop of outdated position signals is not of
importance.

In our Python Client we can call the distributed layout algorithm to get returned a
pair of X- and Y-coordinates for each vertex. The call is integrated within the igraph
plotting process allowing to plot the graph on the local machine transparently.
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Figure 4.20: Fruchterman Reingold Scalability Evaluation (Synchronous Execution
Mode)

Evaluation
We evaluate the layout algorithm using 500 iterations. igraph does provide an imple-
mentation of the Fruchterman Reingold algorithm. However, comparing the two imple-
mentations regarding performance is difficult since the algorithm termination conditions
and temperature cooling differ. For this reason we restrict the evaluation to the Signal/-
Collect implementation.

Figures 4.20 and 4.21 shows the execution time for the usual graphs for the syn-
chronous respective the asynchronous execution mode. Since we build a fully connected
graph the topology of the origin graph is not a determining factor for the runtimes.
For this DataGraphVertex algorithm the asynchronous execution outperforms the syn-
chronous one. Especially in the single server mode.

Similar to the algorithms discussed before, the speedup using more cores on a sin-
gle machine is highly beneficial as we deduct from Figure 4.22. Scaling-out drops the
throughput by a factor of about three. The immense connectivity and message flow is
not suitable for a server cluster configuration.

Future Work
Implementing this kind of algorithms where you rely on information from all other
vertices is the counter example of the underlying idea of vertex-centric programming
model. Rather than using a fully connected graph to send the positions of the vertices it
could be possible to implement a grid based approximation. However, an implementation
using Signal/Collect is very challenging without introducing a new bottleneck at the
synchronous point which is responsible for the continuous reassignment of the vertices
to new grid slots. Tamassia [2013] also describes multiscale variants as a way to deal
with large graphs.
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Figure 4.21: Fruchterman Reingold Scalability Evaluation (Optimized Asynchronous Ex-
ecution Mode)
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Figure 4.22: Fruchterman Reingold Parallelization Evaluation (Optimized Asynchronous
Execution Mode)
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4.3 Graph Transformations
In this section we discuss two transformations which return one or more new graphs
from an existing one.

4.3.1 One-mode Projection of Bipartite Networks
The one-mode projection is used to compress bipartite networks, graphs which vertices
can be divided into two disjoint sets and connections are only possible between two
vertices of different sets. One interesting type of bipartite network is the collaboration
network, which is generally defined as networks of actors connected by a common collab-
oration act. There are many natural appearances, as for example movie actors connected
by costarring the same movie.

Algorithm
Zhou et al. [2007] give a good overview on how to project bipartite networks. Given a
bipartite network with the vertex types X and Y , the one-mode projection onto X results
in a network containing only X vertices. They are connected when they have at least one
common neighboring Y -vertex in the original network. The simplest way is to project
a bipartite network onto an unweighted graph without considering the frequency of the
connection. Although some qualitative topological properties can be deducted from this
approach, the quantitative loss of information is obvious. For example, the information
that two actors in a collaboration network have starred in 10 movies together is treated
the same as if the two had appeared on screen together. To better reflect connections,
one has to use the bipartite graph to quantify the weights in the projection graph. A
straightforward approach is to weight an edge by the number of times a corresponding
collaboration occurs. Our implementation keeps the multiplicity of the edges as an edge
attribute.

Implementation
As in the previous sections, Figure 4.23 summarize the implementation in Signal/Collect
in form of an activity diagram. We can transfer all vertices to the corresponding projec-
tions in one iteration. The ideal approach would be to implement this in a distributed
for each loop on the worker nodes, but that is not possible since it requires the serializa-
tion of the entire projection. Therefore, we iterate over the graph vertex by vertex and
pull the vertex information and its attributes to the master worker to add the vertex
to the projection of the same type. The vertex is created on the fly to keep the space
complexity low. Having projected the vertices we have to distribute the new vertex ids
of the projections if we want to follow the convention of igraph to have only consecutive
vertex ids starting from zero. Otherwise, we can omit this step. To know the edges in
the projections, for each vertex, every pairwise combination of the target vertex ids of
the outgoing edges is sent to one vertex of the pair. The signal’s target vertex increments
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Figure 4.23: One-mode Projection of Bipartite Networks

the counter per edge pair to allow the support of the discussed multiplicity. After this
step vertices of type X have the edge connections for the Y projections and vice-versa.
The master worker can then iterate again over all vertices, collect the edges and build
them in the projections. Finally, we remove the signaling edges to have a clean state
for the execution of the next algorithm. We cannot afford the drop of any sent signals,
therefore the DataFlowVertex is used as base.

Evaluation
Figure 4.25 shows the runtimes for the construction of the projections. We restrict
the evaluation to one worker node since the Slurm Signal/Collect deployment project5

creates only one Akka system for one execution run. A scaled-out distribution of the
projections would require a unique Akka system for every created graph. We observe
that the execution times are linear to the graph size. Scaling-up the server does not
result in a performance drop. The synchronous code blocks dominate the execution
time and neglect the parallelized parts.

Future Work
Observing the execution times we can deduct that the runtime is the larger constraint
than the memory. Therefore, we may could optimize the algorithm by pulling the en-
tire data from the distributed vertices to the master using the built-in Signal/Collect
aggregation operations and then iterate over the local data. This could result in lower
latencies, but enforces that the entire graph fits into the memory of the master and
that the aggregation supports the transfer of large data. As we have seen aggregating
the computed shortest paths, the underlying Akka messaging system is not designed to
transfer huge amounts of data in one chunk.

5https://github.com/uzh/signal-collect-slurm
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Figure 4.24: One-mode Projection of Bipartite Networks Activity Diagram
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Figure 4.25: One-mode Projection Scalability Evaluation (Synchronous Execution
Mode)

4.3.2 Line Graph Construction
A line graph is built from another graph representing the adjacencies between edges of
the original graph. As a possible application consider a wireless ad-hoc network. Two
edges cannot be simultaneously active if they are incident to the same vertex. This
interference can be modeled using the line graph of the original network. More details
can be found in the paper of Ganesan [2014].

Algorithm
Referring to Weisstein [2015c] a line graph L(G) of an undirected graph G is obtained
by associating a vertex with each edge of the graph and connecting two vertices with
an edge if the corresponding edges of G have a vertex in common. The line graph of a
directed graph G is the directed graph L(G), whose vertex set corresponds to the arc
set of G and having an arc directed from an edge e1 to and edge e2 if in G, the head
of e1 meets the tail of e2. Figure 4.26 shows an example of a directed graph with its
corresponding line graph.

From the perspective of a vertex v, every pairwise combination of an incoming edge
ein(v) and and an outgoing edge eout(v) in the directed graph G is an edge e in L(G)
pointing from the transformed vertex ein to transformed one eout. This formulation is
already very near the implementation discussed in the next section.

Implementation
The Figure 4.27 shows the process of the construction of a line graph from an existing
graph in the framework. If the graph is directed we add helper edges in reverse order to
have access to the incoming edges in a vertex instance. We then iterate over every edge
in the graph and put them as vertices in the line graph while transferring all attributes.
In the next step we add an edge to the line graph for every combination of outgoing and
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Figure 4.26: Line Graph Constructions

incoming edges in the original graph. Since undirected graphs are modeled as double
directed graphs in Signal/Collect we can reuse the same algorithm.

Evaluation
The runtime of the transformation process is independent from the topology of the graph
and behaves the same for both the Barabási Albert and the Erdős Rényi graphs as shown
in Figure 4.28. The Watt Strogatz sample graphs are undirected in contrast to the other
two. Since in Signal/Collect an undirected graph is modeled as a doubly connected
directed one, the transformation involves the creation of more edges. Keeping in mind
that the x-axis is in plotted in logarithmic scale the algorithm handles an increasing
number of vertices very well.

We are confronted by the same problems as discussed for the one-mode projection.
There is trade-off between aggregating all data fast to the local master and then building
the line graph or iteratively pulling the data and building the new graph on the fly.

4.4 Centrality Measures
Boldi and Vigna [2014] give an excellent introduction into axioms for centrality. One of
the crucial question when analyzing a network is to determine which of its vertices are
more central. We discuss four important classic centrality measures.

4.4.1 Degree Centrality
The degree of a vertex is the most basic centrality metric. The degree can be interpreted
in terms of the chance of a vertex for observing whatever is flowing through the network.

Algorithm
Weisstein [2015d] defines the degree of a of vertex v of a graph G as the number of
graph edges which touch v. For directed graphs we can distinguish between two types
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Figure 4.27: Line Graph Construction Activity Diagram
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Figure 4.28: Line Graph Construction Scalability Evaluation
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Figure 4.29: Degree Scalability Evaluation (Synchronous Execution Mode)

of degrees, number of incoming edges known as the in-degree and number of outgoing
edges, the out-degree.

Implementation
The implementation to extract the degree values of vertices in an undirected graph or
the out-degrees in a directed graph is trivial since every vertex has a list of its outgoing
edges. We just have to aggregate the information. For the in-degrees in the directed
graph the aggregation needs a little twist. Using the classic parallel map reduce counting
pattern we put the target ids to a map and sum the values in the reduce step.

Evaluation
Figure 4.29 shows a very uniform behavior of the out-degree algorithm for all graph types
with some outliners due to the very short execution times. The algorithm does not use
the graph topology for the execution, but just aggregates the data from the distributed
vertices in a divide and conquer approach which does benefit from a scaled-out setup.
However, the local igraph instance can access the data way faster for graphs fitting in
the local memory having an incredibly fast response time of 13.5 ms for a graph with
500′000 vertices. The performance of the in-degree aggregation is almost identical and
we will omit its detailed discussion.

4.4.2 Closeness Centrality
The closeness centrality assigns high centralities values to vertices that have short average
distances to other reachable vertices. The intuition is that the lower the distances of a
vertex to all other vertices is the more central it is.
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Algorithm
Bavelas [1950] defines closeness C(v) of a vertex v as the reciprocal of its farness to all
other vertices. This is the sum of the distances of all shortest paths between all pair of
vertices.

C(v) = 1∑
v ̸=wd(v, w)

(4.8)

This is well defined for strongly connected graphs. In general directed or disconnected
graphs the distance between two pairs of vertices can be infinite. There are several
workarounds for this problem. To handle disconnected graphs one can limit the closeness
measure to the largest component in the graph. However, this is no general solution for
directed graphs where no link has to exist for every pair.

In igraph, the closeness implementation6 takes the total number of vertices instead of
the path length if there is no (directed) path between vertex v and w. This workaround
leads to unexpected out-comings applying it to a graph with edge weights larger than
1. Figure 4.30 illustrates the igraph closeness calculations for a directed weighted graph.
Although vertex 0 has a path to 1 and 1 has no outgoing paths at all, igraph calculates
a smaller closeness for 1 than for 0.

0

1

10

(a) Sample Graph

Vertex igraph Closeness Harmonic
0 0.1 0.1
1 0.5 0

(b) Calculated Values

Figure 4.30: Closeness Calculation of Directed Weighted Graph by igraph

Boldi and Vigna [2014] introduce the harmonic centrality by replacing the arithmetic
mean of the distance with the harmonic mean. Assuming ∞−1 = 0, the harmonic mean
can handle infinite distance cleanly and can be applied to graphs that are not strongly
connected. Figure 4.30 shows that vertex 1 has a closeness of 0, since it has no outgoing
edges.

H(v) =
∑

v ̸=w
1

d(v, w)
(4.9)

Implementation
The calculation of the closeness metric only relies on the distances of the shortest path
between all pairs of vertices. The sequence of the shortest path is not required for
the computation. This allows us to reuse the Minimal Memory Footprint algorithm
described in the section 4.1.3 and to change only the last aggregation step.

6http://www.inside-r.org/packages/cran/igraph/docs/closeness
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Figure 4.31: Closeness Scalability Evaluation (Synchronous Execution Mode)

Graph Name #Vertices #Edges Keller’s Runtime [sec] Our Runtime [sec]
yeast 2361 7182 14.28 1.64
facebook 4039 88234 358.19 39.94
power 4941 6594 2.23 3.67

Table 4.2: Closeness Runtime Comparison to Keller [2014]

Evaluation

The algorithm builds on top of the APSP Minimal Memory Footprint algorithm dis-
cussed earlier and differs only in the aggregation step. Therefore, the runtimes are almost
exactly the same and the same conclusions can be drawn. Since the asynchronous mode
was not competitive at all we omit to plot the results of its execution. Interesting is that
the performance of the igraph implementation differs drastically for both the Barabási
Albert and the Erdős Rényi graphs. While our implementation could outperform it for
the computation of the shortest paths, calculating the closeness values is faster on the
local igraph machine. It seems that the used algorithm is optimized for the closeness
problem.

Keller [2014] has also implemented the closeness metric using Signal/Collect. Although
performance comparisons have to be taken with caution, Table 4.2 compares the runtime
from his evaluation with ours. As Keller’s evaluation, we used three machines with 23
processors on each machine. For both the yeast and facebook graphs we could improve
the performance by 89%. Which is especially important for the facebook graph, having
reduced the runtime by 318 seconds. The power graph performed worse (1.44 seconds),
which we think is due to the fact that we included the aggregation step into the runtime
evaluation and Keller did not.

43



44 CHAPTER 4. ALGORITHMS AND EVALUATION

4.4.3 Betweenness Centrality
Vertex betweenness is a centrality measure of a vertex reflecting the number of shortest
paths between two other vertices bridging through this vertex. Assuming that the net-
work flow follows the shortest paths we can infer that a vertex with high betweenness
has a large influence in the network flow. Freeman [1977] is generally credited with the
development of the betweenness centrality measure.

Algorithm
Given the total number of shortest paths σst from vertex s to vertex t and the number
of those paths that pass through v σst(v), the betweenness centrality of a vertex B(v) is
defined by the following equation:

B(v) =
∑

v ̸=s ̸=t
σst(v)

σst
(4.10)

Implementation
Analogous to the closeness centrality metric, calculating the betweenness requires the
computation of all shortest paths between all vertices. However, for the betweenness we
need to track the number of shortest paths going through every vertex. Additionally, we
have to consider all shortest paths having the same distance to be able to compute the
ratio of the number of shortest paths described in Equation 4.10.

As discussed in Section 4.1.3 we have implemented multiple solutions to resolve the
shortest paths while keeping a low memory footprint and to avoid sending the entire
path from vertex to vertex. For the calculation of the betweenness we propose a two
step approach with a synchronization point in between. First, we calculate the shortest
paths similar to the Minimal Memory Footprint approach, while additionally keeping
the next vertex of the path in memory. In the second step, we resolve the paths and
count the signals sent through the vertices.

To be able to calculate the ratio of the number of all shortest paths between two
vertices and the number of shortest paths going through a particular vertex, we have to
extend our Minimal Memory Footprint algorithm. The shortest paths for each vertex
are stored as follows:

paths = tv 7→ [(nextV ertex, distance, nrPaths)] (4.11)

We have a map with target vertex tv as key and a list with nested tuples. In the tuple we
introduce a new information, the number shortest paths we known. Figure 4.32 shows
the final states of the vertices after the first step. For illustration, only the shortest
paths to the target vertex 4 are listed.

Having this information we can calculate the betweenness in the second step by itera-
tively sending the current betweenness value along the shortest path. The betweenness
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for one vertex v and target vertex t pair is calculated for an alternative a as follows:

B(v, t) = previousSignal(t, v) ∗ nrPaths(t, v, a)
totalNrPaths(t, v)

(4.12)

Figure 4.32 shows the calculation of the betweenness starting from vertex 0 and iter-
atively propagating to the target vertex 4 by annotating the edges.

0 : 4 7→ [(1, 1, 2)]

1 : 4 7→ [(2, 2, 1), (3, 2, 1)]

2 : 4 7→ [(4, 1, 1)] 3 : 4 7→ [(4, 1, 1)]

4

1 ∗ 2/2

1 ∗ 1/2 1 ∗ 1/2

0.5 ∗ 1/1 0.5 ∗ 1/1

Figure 4.32: Betweenness Computation (for target vertex 4 only)

Figure 4.33 illustrates the same process as an activity diagram to obtain an impression
for the implementation as well.

Evaluation
Figure 4.34 evaluates the performance of the betweenness and compares it to the igraph
implementation. Again, we focus on the synchronous execution mode due to its better
performance. We can observe that the the runtimes are slower in comparison to the
closeness by a factor of more than 2. Resolving the shortest paths in a second step
to count the absolute number of paths going through the vertices is a costly operation.
Additionally, finding the shortest path in the first step is more expensive since we have
to keep track of paths with the same lengths. Depending on the graph topology this can
lead to much more noise. This could be an explanation why the Watt Strogatz graph
has the largest performance drop in comparison to the closeness implementation. Due
to its topology the number of shortest paths with same lengths is higher than for the
other graphs.

We planned to compare the runtimes to the ones of Keller [2014], but we realized
that the algorithm is not implemented in the same way. His algorithm divides the
number of shortest paths going through a vertex by the the total number of all shortest
paths. However, in the standard formulation the fraction is calculated for each shortest
path from a source vertex to a target vertex with equal lengths. As mentioned in the
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Figure 4.33: Betweenness Activity Diagram

implementation section this requires the additional tracking of paths with equal lengths
which adds complexity to the problem. Therefore we omit a comparison here.

Future Work
Another approach to calculate the betweenness would be to calculate the shortest path
including the path sequences as described in the APSP Section. Knowing all intermediate
vertices for all shortest paths allows to calculate the betweenness value in the aggregation
step. We discussed three different implementations to resolve the path sequences and
pushing the path sequence always with each signal performed best. Comparing the
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Figure 4.34: Betweenness Scalability Evaluation (Synchronous Execution Mode)

path sequence evaluation (Figure 4.16) to the betweenness one (Figure 4.34) shows that
pushing the sequences is faster. This comparison is not totally fair since the shortest
path algorithm does not track multiple shortest paths with the same length and does not
include the additional aggregation costs, but gives an idea that the alternative approach
could be feasible.

4.4.4 PageRank Centrality (Eigenvector)
With PageRank Page et al. [1999] (the founders of Google) introduce one of the most
discussed and quoted centrality or importance measurement for graphs, mainly because
it used to be the core of Google’s web-page ranking method. The idea is that a vertex is
more central if it is in relation with vertices that are themselves central. The argumen-
tation is that the influence of some vertex does not only depend on the absolute number
of its adjacent vertices, but also on their value of centrality.

Algorithm
The algorithm starts with the number of incoming edges, calculates its rank and passes
its rank iteratively forward to other vertices via its outgoing edges. Hence a vertex
with a high rank can endorse other vertices more strongly. This basic definition of the
algorithm converges to a state where vertices without outgoing edges ultimately end up
with all of the PageRank. This can be avoid this by introducing a damping factor, the
probability of jumping to a random vertex, rather than by following an edge. There are
various studies testing different damping factors, but the original suggestion of 0.85 by
Brin and Page is the most used one.

Given the damping factor d, the set vin(v) representing all vertices linking to vertex
v, the number of outgoing edges eout(u) of a vertex u then the PageRank PR(v) of a
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vertex v is defined as

PR(v) = (1 − d) + d ∗
∑

u∈vin(v)
PR(u)
eout(u)

(4.13)

Implementation
The implementation of the PageRank algorithm is very straightforward in Signal/Collect
and also part of the examples in the paper of the authors of the framework Stutz et al.
[forthcoming]. They propose an optimized alternative of the original implementation
modeling PageRank as a data flow algorithm by signaling only the rank deltas. We
adopted their implementation7 to fit into our environment. To each outgoing edge the
difference between the current state and the one of the last iteration divided by the
number of outgoing edges is sent. Every incoming signal is multiplied with the damping
factor and added to the current rank.

Evaluation
Stutz et al. [forthcoming] evaluate the scalability of the Signal/Collect framework with
their PageRank implementation. They analyze both the vertical and horizontal scala-
bility. However, they use different versions of the algorithm for the two evaluations and
start the horizontal scaling with 4 nodes. Therefore, their paper does not enable us to
compare the performance of a single node setup to a scaled-out one. As in the evaluation
of the previous algorithms we would like to investigate how the runtimes change switch-
ing from a single node setup to a distributed one. Since PageRank is again an algorithm
which converges towards a given threshold which differs slightly in each implementation,
it is difficult to compare the runtimes to the igraph framework since the quality of the
results differ. However, to get an impression of the performance we included it as a
reference in the plots. As usual, Figures 4.35 and 4.36 plot the scalability using the syn-
chronous and the optimized asynchronous mode. Please note that they are log-log plots
to obtain better illustration. In the synchronous mode we can observe that the igraph
implementation has worst scaling properties. We couldn’t process the largest variant
of our graphs containing 10 millions vertices. It is very fast for small graphs but its
runtime increases fast working with larger graphs. The distributed Signal/Collect setup
with 6 server nodes has the best scaling quality. The differences are immense. While for
example the single node uses 412 seconds for the Watt Strogatz graph with 10 millions
vertices, the distributed one requires 28 seconds which is about 93% faster.

Next, we analyze the optimized asynchronous execution mode. The runtimes for the
single node setup are faster. For 10 millions vertices the performance increase is 6% for
Barabási Albert, 38% for Erdős Rényi and 71% for Watt Strogatz. On the other hand,
the distributed server setup has a massive performance drop: 1586% for Barabási Albert,
521% for Watt Strogatz. The random graph topology is affected most and for the 10
million vertex graph the computation could not be finished due to a buffer overflow.

7https://goo.gl/BLjwbp
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Figure 4.35: Page Rank Scalability Evaluation (Synchronous Execution Mode)

Figure 4.37 presents the usual parallelization plot using synchronous execution mode.
The vertical scaling is beneficial as for the most of the algorithms we discussed. Looking
at a graph size of 10 millions vertices using 6 servers outperforms the single node for all
three graph types. Adding only 3 servers has a mixed output. For the Barabási Albert
graph there is a performance drop of 32%, for the Erdős Rényi topology the runtimes
are relatively constant with an improvement of 6%. Watt Strogatz profits most with an
decrease runtime of 88%.

We can conclude our evaluation with the confirmation of the good scaling properties
claimed in the paper of Stutz et al. regarding the PageRank algorithm.
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5
Limitations and Future Work

The evaluation shows that the current implementations are capable to solve some of the
standard social network analysis algorithms, but struggles with others. In this chapter
we discuss the limitations we are confronted with together with a suggestion of future
work on how these limitations could be overcome.

5.1 Implementation
We are certain that the performance of our implementations could be improved by opti-
mizing the code. The memory footprint of a signal is crucial for the total runtime. Using
data structures which can be serialized by Kryo1 efficiently in both time and memory
aspects could lead to big improvements. However, this can lead to a worsening of the
architecture and code quality in terms of readability and reusability.

The deployment of the framework to a cluster is not yet designed finally. This includes
for example the programming of a user and resource management system, or the dynamic
maintenance of the Akka actors for the Signal/Collect framework.

Discussing the algorithms we have already mentioned two techniques which could be
beneficial. An algorithm specific message combiner on a server node level could decrease
the number of messages sent across the network by aggregating or simply dropping them.

The computation cost is driven by communication overhead sending messages between
the distributed servers. The goal is to maximize the locality of processing. Using a
custom partitioning mechanism rather than a random hash function could help. However,
finding a general graph partitioning strategy for a framework which should execute
multiple algorithms on the same graph without the need of a constant reshuffling of the
data is an inherently challenging task.

5.2 Programming Model
We agree with the conclusions of Elshawi et al. [2015] that parallelizing graph algorithms
while preserving an efficient performance is very challenging as we have seen comparing

1https://code.google.com/p/kryo/
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the runtimes to the serial implementations of igraph. The usage of a scalable graph
framework supports the resilient, transparent distribution of the data and processing
power with the price of a restrictive programming interface as for example the vertex-
centric one which works well for a huge set of iterative algorithms. But many well-
elaborated algorithms with extremely efficient implementations rely on having a global
state or operate on adjacency matrix representations of the graphs and therefore cannot
be ported trivially to a distributed environment while still providing high-performance.
It is therefore difficult to reuse existing work.

Sending signals asynchronously along the outgoing edges to the adjacent vertices, as
the model propagates, leads to an execution flow similar to breadth-first traversal. We
have the impression that we can elegantly implement algorithms which somehow base
on a BFS approach as for example PageRank or APSP, but have major difficulties when
they differ. We think that for the development of a new algorithm it would be crucial
to think more outside the box and to consider a rigorous reconnecting of the graph to
obtain the results and to avoid to be restricted to a BFS distribution pattern. However,
this is conceptually very complex for the developer.

The vertex-centric programming model divides input graphs into partitions and hides
low level optimizations generally. Tian et al. [2013] introduce the graph-centric paradigm.
It adds the partitioning mechanism as integral aspect of the programming model to
allow algorithm specific optimizations. Signal/Collect does already support this from a
technical perspective, but it is not part of the core programming model to support for
example the dynamic physical reshuffling of the vertices.

Yan et al. [2014] propose a block-centric graph-parallel abstraction, called Blogel.
Their claim is that it is conceptually as simple as the vertex-centric one, but works
in coarser-grained graph units called blocks. Here, a block refers to a connected sub-
graph of the graph, and message exchanges occur among blocks. The argumentation
is that the vertex-centric model largely ignores the characteristics of real-world graphs
in its design and hence suffers from severe performance problems. Their model should
allow an efficient partitioning reducing communication costs. We could imagine that a
programming model which deals with a larger neighborhood could be very interesting
for developing algorithms which do not fit perfectly into the vertex-centric design due
to its expensive costs to obtain an extended view.

5.3 Signal/Collect
Signal/Collect is a very powerful platform to develop scalable graph processing algo-
rithms. In this section we would like to notice some aspects which from our perspective
could be improved. For some of them there may exist elegant solutions which we are
not aware of.

Generally, the programming interface of Signal/Collect is relatively static using the
reuse by inheritance principle for many parts. Although the framework perfectly allows
to configure its usage down to the underlying Akka framework, the entire architecture
is built to be configured at compile time. This works great if you want to execute one
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algorithm per distributed graph. We think the framework would be much more flexible
if it would support its configuration at runtime, for example through the consequent
usage of the strategy pattern. This includes the partitioning mechanism, message com-
biner, and of course the vertex and edge implementations. With the PluggableVertex we
implemented a first step in this direction.

Another issue is the aggregation of large vertex states. The current implementation
suffers from the support to transparently split the serialized aggregated data structures
into chunks to send them back to the master worker.

Having the possibility to prioritize the signals could improve the converging speed of al-
gorithms especially when combined with the asynchronous mode and the DataGraphVer-
tex behavior which allows to drop out-dated signals. This could be implemented within
the same interface using the scoreSignal value.

5.4 Standardized Benchmarks
Elshawi et al. [2015] mention that benchmarks need to play an effective role in helping
users to make decisions regarding the choice of adequate platforms for their requirements.
Designing a meaningful benchmark is challenging. At the current state, most of the
reported benchmarking studies have been self-designed, including the ones in this paper,
because there is a lack of standard benchmarks that can be used.
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6
Conclusions

We used Apache Thrift to define a network analysis toolbox (NAT) service based on a
subset of the igraph library to simplify the integration of graph processing frameworks
into existing analytics environments.

We built a flexible and generic framework on top of Signal/Collect which implements
the NAT interface and provides a Thrift server. The system supports the creation and
maintaining of multiple Signal/Collect graph instances including garbage collection. In
contrast to the plain Signal/Collect programming interface, we added the support of
the consecutive execution of different algorithms on the same graph without the need to
redistribute the data again. Edges and vertices can be associated with attributes.

We transferred well-known algorithms in the social network analysis domain to the
vertex-centric programming model. All of them deliver correct outputs while their per-
formance efficiency vary as we have seen in the evaluation chapter.

Our Python client allows the transparent forwarding of the implemented igraph func-
tionalities to the Signal/Collect graph representations.

While developing the system the following insights emerged:

Influence of the Graph Topology We are surprised by the explosion of the space
and time complexity for many algorithms. We can observe that the runtimes of our
implementations depend much more on the topology of the graph rather than on the
serial counterparts of the igraph implementation do. This is due to the fact that the
number of messages sent depends often on the topology and the communication costs
dominate.

Execution Mode One of the distinguishing features of Signal/Collect is the asyn-
chronous execution mode. However, in our implementations its performance was mixed
for one node setups and often poor for multi node clusters. Of course our implementa-
tions and configurations can be optimized drastically, but we argue that the complexity
of developing asynchronous algorithms do often not reflect the performance benefit over
a bulk synchronous system for the many applications. The conclusion is that there is
not one best execution mode but the correct decision depends on the graph topologies,
the server environment and the algorithms.
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Scaling Strategy Developing an algorithm it is very difficult to predict its runtime on
a distributed environment. This is not limited to the Signal/Collect framework. What
scalability strategy is the best? We observed that vertical scaling always results in faster
runtimes and can be applied without risking slower execution times due to the increased
overhead. Our evaluations show that it is very difficult to estimate if an algorithm profits
from horizontal scaling. In our evaluation, we used a high-end cluster with many cores
per node and a very fast InfiniBand network. Nevertheless, adding more nodes did often
not result in faster computations. This could be much worse using commodity hardware
with slower network connections. Adaptive techniques which transparently optimize the
degree of horizontal scaling depending on the characteristics of the underlying graph
topology and algorithm used would be a very interesting field of research. Generally, we
can conclude that it requires a numerous amount of servers to neglect the overhead of
the scaled-out setup and to outperform a single node server.

Performance Comparsion to igraph Having evaluated the framework and having it
compared to the runtimes of local igraph instances we come to the following conclusions.
We distinguish three different cases:

The first scenario is that our Signal/Collect algorithm scales better than the igraph
implementation resulting in a faster runtime given a certain graph size. This is for
example the case for the all pair shortest path problem where we are only interested in
the path lengths.

A second case is that Signal/Collect cannot outperform the serial implementation.
But after reaching the memory limit of the local resources the Signal/Collect algorithm
can still solve the problem within a feasible time. This applies for problems where the
space complexity of the problem increases faster than the computation time complexity.
For these cases we can profit from the resources available in a distributed system. The
degree centrality metric is an example since the storage of a huge graph is more limited
in a local environment although the computation of the metric itself does not require
complex computations.

In the last category are algorithms for which the Signal/Collect framework again
performs worse than the serial implementation, but the runtimes explode to infeasible
times before reaching the memory limit. In other terms the time complexity neglects
the space complexity. In this case we cannot profit from having more memory available.
One approach is to deviate from the standard implementations and find other algorithms
which approximate a solution for the problem. The betweenness centrality metric is an
example for this category.
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