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Zusammenfassung

Crowdsourcing Plattformen wie Amazons ”Mechanical Turk” oder ”CrowdFlower” bi-
eten Firmen neue Möglichkeiten zur Auslagerung von Arbeit. Diese Dienstleistungsan-
bieter sind sehr gut darin eine grosse Menge von einfachen, repetitiven und voneinander
unabhängigen Aufgaben parallel ausführen zu lassen. Ihnen mangelt es aber an Koordi-
nationsmechanismen, welche es ermöglichen auch gesamte Geschäftsprozesse abzuwick-
eln. Die hier präsentierte Arbeit stellt eine domänenspezifische Programmiersprache vor,
die es erlaubt auch komplexe Abläufe menschlicher Zusammenarbeit (human computa-
tion) zu koordinieren. Wir basieren die Sprache auf den Konzepten von CrowdLang und
evaluieren ihre Fähigkeiten anhand von Beispielimplementationen eines Algorithmus zur
Korrektur von Texten und eines Prozesses zu Kategorisierung von Bildern.





Abstract

Crowdsourcing platforms like Amazon’s Mechanical Turk or CrowdFlower have provided
companies with new opportunities to source their work load. But while they allow the
completion of massive amounts of work in parallel, the tasks performed on said websites
are mainly of simple and isolated nature. The lack of coordination mechanisms has
hindered the advance of crowdsourcing into application areas with more complex and
interdependent working processes. This thesis provides a domain specific language for
the orchestration of complex human computation processes based of the concepts of
CrowdLang. We present the capabilities of our language using example implementations
of a proof reading algorithm as well as an image categorization application.
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Introduction

1.1 Motivation

Automation has been one of the most important driving factors for the ever increasing
productivity of our economy. What started with constructions like windmills and steam
engines replacing or changing the need for physical labour has over the last century
more and more started to influence mental labour as well. Computers have changed
the requirements for white collar jobs in drastic ways, even making some professions
obsolete. Even the eponymous occupation of ”computers” - people who were hired to
manually carry out computation - has disappeared for the most part.

With constantly increasing computing power and new developments in artificial in-
telligence it is to be expected that this process will continue replacing knowledge work
with computers in the future. But there remains the ever changing set of problems
that humans can still be better at than computers. Repetitive ”simple” tasks that com-
puters are not capable of performing reliably enough - yet. Nevertheless, companies
in competitive environments are under the constant pressure of increasing productivity
and efficiency in these areas. A variety of approaches have been pursued, including new
sourcing strategies like outsourcing as well as the constant strive for division of labour
to reduce the complexity and cost of each of those tasks.

Crowd sourcing could be interpreted as a combination of those two approaches. On
the one hand, organizations try to decompose their tasks so that they can be performed
by lower skilled workers in better quality, on the other hand they try to delegate the
management and recruitment of those workers to service companies, potentially even
located abroad. Crowd sourcing drives these tendencies to their extreme. The tasks
are divided into ever so small chunks of work that can usually be performed by any
individual in the manner of seconds or minutes at most, even without prior knowledge
of the task. And the workers are almost anonymous entities from the viewpoint of
the company. In their 2013 paper, Kittur et al. [Kittur et al., 2013] point out the
”remarkable opportunities for improving productivity” but they also ”foresee a serious
risk that crowd work will fall into an intellectual framing focused on low-cost results
and exploitative labor”. But the crowd computing platforms - mainly websites - that
were developed to provide the tools for employers to crowd source their work actually
cater to the needs of workers pretty well. Workers can work from the comfort of their
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home, requiring only an internet connection and an account on the websites. This opens
up possibilities for many people that are required to spend much of their time at home
such as stay-at-home mothers or fathers, or people who have to care for a sick family
member. The payment options are also very worker friendly as any money earned can
usually be paid out instantaneously. The search for work has been simplified, there is
no need for lengthy application processes. Users can also work at any time of the day,
allowing them to work worldwide and according to their own schedule.

The benefits of crowd computing sound promising and in fact over the past years an
ever growing number of websites have been established. Probably the most well-known
one is Mechanical Turk - a service that was launched by Amazon in 2005. But there are
also others who have their own crowds of workers like ClickWorker, while other service
providers build on top of Mechanical Turk by providing higher level functionality to
employers such as selection of worker groups (e.g. high quality workers, workers from a
certain region) or improved worker feedback and many more. CrowdFlower, the website
which we will be using in our evaluation section, is one of these providers.

A lot of the previously mentioned platforms have been successful with many cus-
tomers. But while they are perfectly capable of handling ”atomic” tasks in masses,
they lack functionality to enable collaboration between workers and ways of combining
atomic jobs into more complex processes and algorithms. Novel approaches for mod-
elling and programming human intelligence tasks are required to provide customers with
such functionality.

There have been many attempts to develop models in the crowd research community.
Frameworks like Automan [Barowy et al., 2012] and Jabberwocky [Ahmad et al., 2011]
have shown interesting concepts of domain specific programming languages suited to face
the challenges presented. There have also been a series of papers that focussed on specific
interaction patterns between atomic tasks. CrowdForge [Kittur et al., 2011] has shown
how many of these interactions can be interpreted using the well-known MapReduce
pattern [Dean and Ghemawat, 2008], while the authors of TurKit [Little et al., 2009]
have highlighted the power of an iterative improvement algorithm.

At the Dynamic and Distributed Information Systems Group (DDIS) at the University
of Zurich, Minder, Bernstein et al. have developed the concept of the human compu-
tation language CrowdLang. CrowdLang attemps to support not only asynchronous
parallelization but also the management of arbitrary dependencies among tasks and
workers [Minder and Bernstein, 2012a]. Its capabilities have already been demonstrated
in a series of papers, but while the concept has been refined over time, the actual im-
plementation of the language is still a working prototype. In this thesis we strive to
develop a flexible and open-sourced implementation of a domain specific language for
human intelligence tasks based on the concepts of CrowdLang.

1.2 Goal of this Thesis

The goal of this thesis is to develop a domain specific language (DSL). The language will
aspire to seamlessly integrate human computation performed on crowd sourcing websites

2
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with machine computation into composite computation processes using the conceptual
framework of CrowdLang [Minder and Bernstein, 2012a]. The language should help to
efficiently program novel computation systems, while coping with the challenges of hu-
man work such as latency and varying quality of worker contributions. It will be evalu-
ated using two algorithms introduced in other research papers to show its flexibility and
applicability. The implemented algorithms will be an adaptation of the Find-Fix-Verify
pattern introduced in the Soylent paper by Berstein et al. [Bernstein et al., 2010] and a
image categorization task with confidence levels as described by Barowy et al. in their
Automan platform [Barowy et al., 2012].

1.3 Outline

The remainder of the thesis will be structured as follows. Firstly, we will take a look at
other research that is closely related to ours. In particular, we will show a series of lan-
guages and frameworks that have been proposed for crowd computing, such as Automan
[Barowy et al., 2012], CrowdForge [Kittur et al., 2011], TurKit [Little et al., 2009] and
Jabberwocky [Ahmad et al., 2011]. We will introduce the basic concepts of these frame-
works and how they are important for our own approach. Additionally, we will look into
papers that suggested specific patterns of interaction among human intelligence tasks,
for example Soylent [Bernstein et al., 2010] or PlateMate [Noronha et al., 2011]. We will
then go on to show how CrowdLang is embedded among those frameworks and try to
find a solid foundation for our DSL. Thereafter, we will develop our own adapted model
of CrowdLang and show how we implemented it using code examples. After we have
established the core capabilities of our language we will show how it can be used to
implement real applications using the CrowdFlower platform in our evaluation section.
Lastly we will summarize our results and point out possibilities for future work.

3
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Related Work

This chapter contains information about general research in crowd computing, frame-
works and languages studied during the conception this thesis. We will discuss the
concepts of said frameworks and show how they influence the design of our own.

As a starting point we should look into frameworks that try to categorize existing
crowd computing solutions. Malone et. al [Malone et al., 2010] present their concept
based on four overarching questions:

• What is being done?

• Who is doing it?

• Why are they doing it?

• How is it being done?

Each of those questions represent a dimension of customization along which the existing
crowd computing algorithms and platforms can be placed. In all four dimensions the
authors define an answer to the overarching question as a ”gene”. They identify a set
of established genes for each dimension. The notion of genes has been applied in the
CrowdLang papers, where some of them, mainly the ”create” and ”decide” genes have
been conceptualized into patterns. As our domain specific language will build on top of
the CrowdLang framework, we will also be able to support these genes.

An alternative framework has been presented by Quinn & Pedersen in their ”Taxon-
omy of Distributed Human Computation” [Quinn and Bederson, 2009]. Similar to the
overarching questions in Malone the authors here describe a set of dimensions in which
existing crowd work solutions can be distinguished. Their dimensions are

• Motivation - which describes the different types of compensations for workers

• Quality of the work done

• Aggregation of atomic results into solutions to the global problem

• Human Skill of the workers involved

• Participation Time - how much time a worker has to invest for a typical task
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• Cognitive Load - how much mental work load a task contains

The authors argue that each of these dimensions offer multiple choices and they char-
acterize known approaches like Games with a Purpose along those dimensions. This
paper provides a nice environment to describe the focus of our work. While we will
not directly be concerned with the Motivation dimension, we will try to leave the form
of compensation up to interpretation for the developers of crowd computing platform
integrations (see section 4.4). For the sample integration with CrowdFlower the com-
pensation will be per task cash payments. The Quality dimension will be relevant for
both example algorithms that we will implement in our evaluation section. Both Find-
Fix-Verify and the confidence level based image categorization from Automan try to
combat the generally rather poor results generated by crowd workers, although be it
with very different approaches. The main focus of our paper however will of course be
the Aggregation dimension. While Quinn & Bedersen list some types of aggregation, the
amount of possible patterns is far more extensive and the idea of CrowdLang as well as
our implementation of it is to enable programmers to implement those patterns. We will
leave all other three dimensions mentioned open to customization to any programmer
that uses our work, as they vary strong between applications and should not be limited
by a language.

Now that we were able to place our thesis into the picture of the existing human intelli-
gence research environment, we should look at projects that pursued similar approaches
to ours. The first paper we want to look at in this context is the CrowdForge paper by
Kittur et al. [Kittur et al., 2011]. They developed a web-based toolkit that is built on
three task primitives called partition, map and reduce. As the names already suggest,
their concept is heavily inspired by MapReduce [Dean and Ghemawat, 2008]. In their
framework a partition task will divide a larger task into smaller subtasks, a map task
will compute results to these subtasks and the reduce task will merge the results into a
single output. The approach models a very common interaction pattern between tasks
and we will be implementing an operator called ForEach that is actually very similar
to the concept developed in the CrowdForge paper. Relevant for our work are also the
limitations they mentioned for their framework, namely iteration in the process as well
as dependency between multiple subtasks. We will be addressing both those concerns
with our approach by introducing the Iterate operator and by moving from a sequential
concept to a hierarchical concept of coordination.

Another attempt at trying to model human intelligence processes is presented in the
Jabberwocky framework [Ahmad et al., 2011]. It consists of three components. Dor-
mouse is an interface that interacts with different crowd computing plattforms such as
Amazon’s Mechanical Turk and abstracts their usage for the other components. ManRe-
duce is the intermediate layer that works similar to CrowdForge. It allows programmers
to construct coordination patterns for the tasks created with Dormouse in the MapRe-
duce scheme. The third component is called Dog, which is a top level DSL whose code
compiles into ManReduce scripts and whose goal it is to make the framework easier to
use and accessible to a broader user base. It works with four high-level primitives called
PEOPLE, ASK, FIND, COMPUTE and scripts written in Dog resemble SQL State-
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ments in their appearance. We are very impressed with the Jabberwocky framework
and will use it as inspiration for much of our own design. We will create a separate mod-
ule that handles the integration of crowd computing platforms just like Dormouse does,
and our eventual language will solve similar tasks as ManReduce. But as we already
mentioned, we will not only allow for MapReduce types of task decomposition but also
provide additional coordination operators.

TurKit is a Javascript toolkit [Little et al., 2009] that allows its users easy deploy-
ment of tasks to Mechanical Turk like Dormouse does in the Jabberwocky framework.
Additionally, it supports the crash and rerun model via a JavaScript database using
memoization of results with the so called ”once” function. It is built on the concept
of iterative improvement that can be used for a variety of applications including hand-
writing recognition, image description, copy editing or brainstorming. While iterative
improvement is also mentioned in other papers, we believe TurKit shows the best real-
ization of the concept. As previously mentioned, we will also allow for iteration in our
domain specific language using the Iterate operators, but as the implementation will be
rather basic, future work in this area should be considered using TurKit as guidance.

While the above frameworks tried to model a wide variety of applications with their
MapReduce or iteration based approaches, we should also study some papers that focus
on more specific topics. The PlateMate [Noronha et al., 2011] paper describes an appli-
cation that allows users to upload pictures of their meals for nutritional analysis. The
system works in three steps. First, workers tag individual items in the meal by drawing
a box over them. Then, for each of those tagged items, other worker identify the type
of food using a given library of ingredients and meals. And finally, other workers mea-
sure the amount of food by either using weight or predefined units such as ”wings” or
”nuggets”. The PlateMate process is another example of a complex task that we will
be able to build using our DSL. The most relevant take away point for us in this paper
is the hierarchical structure of tasks that they use. Their process has a top-level task
which then controls the tag, identify and measure tasks, which in turn control their own
subtasks. As we will see later, this kind of tree structure can be very beneficial and we
will in fact compose the tasks in our DSL in a hierarchical manner using Akka actors.

Liem, Zhang and Chen [Liem et al., 2011] present an approach to audio transcription
where the same bit of audio is fed into two separate paths of iterative improvement
for transcription. Each contributor in one path gets the text from his predecessor and
is rated by comparing his results with those of the other path. This is an interesting
approach as it deals with the problem of motivation for crowd workers. The authors show
that the best strategy for any worker in this environment is to give his best effort of
actually solving the task. By using this technique they reach a much higher performance.
The dual pathway structure is a very interesting use case as it includes non-sequential
dependencies between tasks. Each contributors’ rating is dependent on the results of
the other path’s contributors, which are not sequentially related to it. This is a core
problem of a purely sequential approach which we will be discussing later in our design
decisions.

Another source for a complex human computation process is introduced in Automan
[Barowy et al., 2012]. Automan is an automatic crowd programming system that in-

7
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tegrates human computation tasks as ordinary function calls into Scala. It currently
supports multiple-choice and restricted free-text tasks on Mechanical Turk and auto-
matically takes care of acceptance and rejection of worker contributions. The main
concept of Automan is to continuously schedule new copies of a task on Mechanical
Turk until a certain confidence level for the question at hand is reached. We believe
this is a novel and promising algorithm that should be supported by any language that
wishes to automate human computation processes and we will therefore use it as one of
our proof of concepts in the evaluation section, where we will also go into a little more
detail about the specifics of the algorithm.

On a similiar note we also decided to choose the Find-Fix-Verify pattern introduced
in the Soylent paper [Bernstein et al., 2010] as our second use case. The paper itself
describes the Soylent toolkit for Microsoft Word. It consists of three components named
Shortn, CrowdProof and The Human Macro. Shortn lets the user shorten a paragraph
by sending it to the crowd, whereas CrowdProof uses workers on the crowd to proofread
text and The Human Macro allows offloading arbitrary word processing tasks. But as
mentioned, the contribution that is relevant to our work is the Find-Fix-Verify pattern
that is used in Shortn as well as CrowdProof. In this pattern the problem statement is
divided into three stages with three different groups of workers assigned to each stage.
In the Find stage, users are asked to identify parts of the problem statement that require
work. In the case of Shortn these would be sentences that require shortening, in crowd
proof that would be sentences containing errors that need correction. In the Fix stage
other workers are required to correct or shorten said sentences and in the Verify stage
a last group of workers have to choose the best option among a set of possible fixes
provided by the previous group. We will discuss this pattern in more detail in our
evaluation section.

Lastly we also want to mention that CrowdLang [Minder and Bernstein, 2012c] and
[Minder and Bernstein, 2012b] is obviously closely related and of high importance to
this paper. It will therefore be mentioned at multiple points in the thesis and the core
concepts will be explained in our design chapter.

8
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Design Decisions

The following chapter describes the theoretical concepts of CrowdLang and how we
evolved these concepts into our own implementation of a domain specific language. The
idea of describing a human computation process in the terms of data flows, operators
and tasks is laid out and same examples of typical crowd computation algorithms are
presented.

3.1 Finding the Foundation

As we pointed out in our introduction, ”atomic” human intelligence tasks can be han-
dled very well by existing crowd computing solutions. When looking at more complex
human computation processes however, one can find that much of the complexity stems
from the coordination between individual tasks, rather than the tasks themselves. In
fact, most of the papers described in our related work have tried to find ways in which to
describe the interaction patterns and coordination mechanics between individual human
intelligence tasks. Some authors have tried to map the interactions used in HIT pro-
cesses to known patterns from other research areas. MapReduce has been used in both
CrowdForge [Kittur et al., 2011] as well as Jabberwocky [Ahmad et al., 2011], whereas
TurKit [Little et al., 2009] relied on iterative improvement.

CrowdLang differentiates itself from these papers, in that it not only includes one
pattern, but collects the results of previously mentioned papers and provides a total of
six different operators which can be arbitrarily combined into new as well as existing
interaction patterns.

3.2 CrowdLang

The core concept of CrowdLang is that each human computation process can be de-
scribed in a form similar to other process languages. Processes can be described in
the combination of Tasks and Operators. Tasks solve a given problem statement and
represent a single unit of computation, be it machine or human computation. Oper-
ators on the other hand control the data and sequence flow between multiple tasks.
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[Minder and Bernstein, 2011] Together these elements can be combined into arbitrarily
large and complex processes which can solve a wide variety of problem statements.

In their papers, Minder et al. present a total of six operators: Divide & Conquer,
Aggregate, Multiply, Reduce, XOR and AND. We will shortly summarize the function of
each of those operators.

Divide & Conquer The Divide & Conquer operator divides a given problem state-
ment into multiple smaller subproblems and distributes them into multiple paths to be
solved in parallel.

Aggregate The Aggregate operator then collects the results of subproblems and aggre-
gates them to a solution of the original problem statement. Together Divide & Conquer
and Aggregate model a typical case of division of labour.

Multiply The Multiply operator is similar to the Divide & Conquer in that it dis-
tributes work to multiple paths of execution which can be computed in parallel. The
difference between the two is that multiply, rather than decomposing the original prob-
lem into subproblems, sends a copy of the entire problem statement to each path, so
that multiple solutions for the problem can be found.

Reduce The Reduce operator is then the counterpart to the Multiply operator, as it
collects the various results and merges them into one. How this merging process is done
depends on the exact implementation. It could potentially follow a selection approach,
where workers (or a machine) choose the best solution provided, or it could pursue some
sort of combination approach to fuse multiple solutions into one.

XOR and AND Minder et. all also provide some well-known control flow operators
in XOR and AND, where ”XOR is used to create or synchronize alternative paths; AND
can be used to create and synchronize parallel paths.” [Minder and Bernstein, 2012a]

Minder et al. use these operators in combination with a few distinct tasks to describe
common human computation process patterns in their papers. But the concept is more
powerful than that. Leaving the implementation of the tasks open to users of CrowdLang,
the language allows for a wide variety of applications. In this thesis we provide a first
openly available and reusable implementation of a domain specific language based on the
concepts of CrowdLang. As we will see, our model has also evolved from the basic ideas
contained in CrowdLang. The following sections will show how we used CrowdLang as a
foundation and how adapted the design in response to problems we encountered during
our implementation.

10
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3.3 Components

Starting with the model of operators and tasks we set out to create an implementation
of CrowdLang. While working on a class structure for our Scala project we quickly
noticed that on a fundamental technical level, operators and tasks are not that different.
Both tasks as well as operators are components of our ”process network”. They have
to handle data and sequence flow and their behaviour should almost exclusively depend
on the input data they receive in the network. In the interest of parallelization and
eventually distributed execution of processes they should also be as loosely coupled as
possible. All these factors lead us to pursue an approach where we summarized the
commonalities of tasks and operators into the Component trait. All components should
act event-driven to reduce coupling and possess a dedicated thread. Their behaviour is
state-based and mainly dependent on the type of input they receive. All these capabilities
are supported and simplified by the Akka programming framework and its actor-based
computation model, which is why we decided to build our core functionality using Akka.
In the following section we will shortly summarize the ideas behind Akka’s actor model
and how we translated the above concept of components into actors.

3.4 The Akka Framework

Akka is an open-source toolkit for the distribution and parallelization of computation. It
is built around the actor model which has been introduced by Erlang [Armstrong, 2007].
It allows programmers to build event-based, fault-tolerant, scalable applications for the
Java Virtual Machine [Raychaudhuri, 2013] and provides support for both Scala and
Java. The basic building block of any Akka application are actors, hence we are going
to take a look at them in the next section.

3.4.1 Actors

”Actors are objects which encapsulate state and behavior, they communicate exclusively
by exchanging messages which are placed into the recipient’s mailbox.” [Akka, 2014]

Actors are event-driven, i.e. they react to messages they receive in their mailbox.
Once they receive a message they process it and usually reply the result to the sender.
Consider the following example:

class MyActor extends Actor {
override def r e c e i v e : Receive = {

case s : S t r ing =>
p r i n t l n ( s )

}
}
The receive is where programmers can specify the behaviour of an actor. In the above
example, the actor can only handle messages of type String and it will print any String

11
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it receives to the console.
In Akka, each actor is part of a hierarchy - the ActorSystem. At the top of it we find

the so called guardian actor which can be created using a command that looks like this.

val system = ActorSystem ( ” Addit ion ” )

Once the ActorSystem and its guardian actor are created, new actors can be added
using actorOf.

// top l e v e l actor , d i r e c t l y under the guardian
val topLevelActor = system . actorOf ( Props [ MyActor ] )
// lower l e v e l actor , to be c r e a t e d from w i t h i n i t s
// s u p e r v i s o r ( parent )
val ch i ldActor = context . actorOf ( Props [ Chi ldActor ] )

Using these methods, a hierarchy of actors can be created, where each parent controls
the work of its children. The parents take a supervisory role and can not only send work
to their child actors but also control their shut-down and restart in case of an error.

3.5 Sequential Approach

Originating from the basic Akka actor model, we started implementing the interface
for our operators and tasks, thereby developing the previously mentioned Component
class. A component is an element in a process network that expects a certain type of
input and then reacts according the the input given in a stateful manner. For a task
this behaviour would usually consist of performing some kind of calculation based on
the input, be it using machine or human computation, and then sending the result as
output to some other task. For an operator, the behaviour would usually consist of a
simple redistribution of the input to other operators, without actual computation done
in the data. This highlights the role of operators as structural influence, rather than
computational influence in the process. To simplify: Tasks compute data, operators
distribute data.

Using this model we initially described components that are connected to each other
in a sequential way. This seemed only natural, as a process is usually conceived as a
”series” of actions. So we started building sequential webs of components, where each
individual task would know its predecessor(s) and its successor(s).

The model was developed to a working prototype and implementation of some algo-
rithms started. However, some problems were soon discovered with the approach.

3.6 Issues with the Sequential Approach

3.6.1 Non-local Dependencies and Information Propagation

The first issue with the above approach is the lack of global knowledge. What do
we mean by that? Well, each actor contains certain information, e.g. what type of

12
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Figure 3.1: An Example of a Purely Sequential Process Model

component it is, what state it currently is in, what data it received, what results it
computed using this data and whether it is still functional. On a local level, this data
can be used to decide the correct course of action for every individual component and its
predecessors and successors. On a non-local level however, this data is not available to
every component in the process, which can lead to problems. Lets for example consider
the case of Op2 in Figure 3.1. It is waiting for the branch of Task C1A and Task C1B
to finish before it can forward the sequence flow to Task D. Let us now assume that
Task C1A fails during execution. In this case, Op2 will wait forever because it does not
know about the failure. Task C1A knows it has failed, and through its connections Op1
and Task C1B also know about the failure. But Op2 has no direct connection to Task
C1B, yet it is still dependent on its proper execution. This problem could potentially be
solved using timeouts, although that is often not the best idea in the presence of human
computation which often takes hours to complete. Alternatively, the problem requires
some form of progagation of knowledge along the network, but we have to be careful
not to broadcast irrelevant information to the entire network. In the example, neither
Task A nor Task B have any interest in knowing that Task C1A has crashed. What
we have to develop is a model that incorporates dependencies between tasks in order to
send relevant information to the components that need it.

3.6.2 Dead-Ends

An different issue that comes up in the above example is the question of dead ends.
Let’s assume that in the figure the programmers accidentally forgot to connect Task C2
to Op2. In this case we have a dead end of computation. Task C2 will calculate a result
to its subproblem, but no component will receive it. Somehow, we have to make sure
that each solution for a subproblem is collected once again to solve the original problem
statement. With a purely sequential approach, we cannot guarantee that each path of
execution that has been opened at some point also gets closed again.

As a consequence of the above problems we decided that a purely sequential approach
is not sufficient. Luckily, the Akka framework already gave us an idea that seemed more
promising: a hierarchical structure of actors.

13
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3.7 Hierarchical Approach

In Akka, each actor is part of a hierarchy. What is beneficial about this approach is, that
each actor has some form of supervision. In case a child actor fails, its parent has the
capability to detect this fault and restart the child actor or create a new one. It also has
information about the progress its children are making and can forward this information
to its own parent if so desired. This could potentially solve some of the shortcomings
of the purely sequential approach, which is why we decided to pursue this concept for a
while.

The most important question then becomes, whether it is possible to convert the
sequential model described by Minder et. al into a hierarchical one. The following
section will try to show that it is possible and how we accomplished that.

3.8 Mapping Sequential Patterns into Hierarchical Patterns

In this section we will try to show that it is possible to map sequential process models
as described in the CrowdLang papers into hierarchical models. The very basic concept
behind this transformation is to merge an opening operator like Divide & Conquer with
its counterpart closing operator - in this case Aggregate - into a single operator that works
as parent for the tasks that were between the two original operators. Let’s consider the
illustration in Figure 3.2.

Figure 3.2: Conversion from a Sequential to Hierarchical Structure

As you can see, we merged the operators and attached the tasks as children just
as mentioned above. This way we transformed the original sequential structure into a
hierarchical one, with the added bonus of having a dedicated supervisory actor for the
tasks. While this transformation is rather obvious for the above simple example, we want

14
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to illustrate that it is also possible for more complex structures. Therefore we will later
look at a more complicated example taken from [Minder and Bernstein, 2012a]. But
first we need some names for the newly merged operators. We decided on the following:

Multiply and Merge/AND The definition of this pattern has slightly varied be-
tween the different papers about CrowdLang. The basic concept is that a problem
statement is copied and distributed into multiple tasks and the solutions of said tasks
are gathered into a set. In [Minder and Bernstein, 2012a] Minder et. al called this gath-
ering Merge - to be distinguished from the subsequent Reduce operator, which selects
the ”best” solution from this set. In other papers, the Merge operator is replaced by
an AND operator. This combination of operators has also been referred to as Classi-
cal Collection in some of the CrowdLang papers. To transform this pair of sequential
operators into a single hierarchical operator we introduced our own Multiply operator.

Divide & Conquer and Aggregate This pattern is a fairly general one. It states
that the original problem solution is divided into subproblems, however it does not
specify how this division takes place. The most common use case is that the original
problem is divided into multiple subproblems of the same kind. For this scenario we
implemented the ForEach operator, which has two types of children. The first one is a
single component that divides the problem into similar subproblems, whereas the second
type is called for each of the subproblems generated. Eventually the ForEach operator
collects all the solutions generated for the subproblems. The merging of the subproblems
is left for a subsequent task.

XOR The XOR operator has the function to conditionally route the sequence flow in
the sequential structure. We transformed this operator into the If operator. Addition-
ally we provided an operator called Iterate which simplifies one of most common usages
of the XOR operator, namely the iterative feedback loop where the solution of a task is
fed back into the task until a certain condition is met.

This covers all the operators contained in the initial CrowdLang specification. How-
ever, since we abandoned the sequential approach, a new operator is necessary to indicate
the sequence and data flow between two components. We called this operator Then .
A Then has two child components, where the first one accepts the input data and com-
putes a result on it, which is then sent to the second child. This pattern introduces an
extra layer of communication. Where in a sequential approach the first child would have
simply sent its result directly to the second component, in the hierarchical approach this
communication new runs through the parent Then operator.

Now that we have covered all operators of our language it is time to look at the
more complex example of a human computation pattern as promised. We are there-
fore referring to the ”Parallelized Interdependent Subproblem Solving” as described in
[Minder and Bernstein, 2012a].

15
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Figure 3.3 shows the pattern as described by Minder et. al.

Figure 3.3: Collaborative Subproblem Solving by Minder et. al

The pattern on the first look seems similar to what we have shown above in our
simple example, but it has to be noted that here both the Job as well as the Decision
are patterns themselves, rather than atomic task. It is this composition that makes this
pattern more complicated. In our hierarchical approach this pattern will have multiple
levels in the hierarchy, so let us look at how we would construct it (Figure 3.4).

Figure 3.4: Collaborative Subproblem Solving Transformed

As you can see, the process is built in tree form. To indicate the sequential flow from
the Job to the Decision components, we had to connect them with a Then operator. The
root operator is a ForEach. As mentioned earlier, this operator has two types of children.
On the left we have a Splitter. This can be any kind of Component that decomposes the
initial problem into subproblems. These subproblems are then each sent to a copy of the
other type of child components. This example shows that using our newly introduced
operators, we can transform even complex interaction patterns from CrowdLang syntax
into our own syntax. As we believe our hierarchical approach has substantial advantages

16
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over a sequential approach, we will be following it in our implementation.

3.9 Summary

In this chapter we have shown that a purely sequential approach to modelling human
computation processes has issues. We indicated that most of these issues can be solved
when moving to a hierarchical approach instead. We then showed how sequential pat-
terns can be transformed into hierarchical patterns using a simple example as well as a
more complex pattern called ”Parallelized Interdependent Subproblem Solving” that had
previously been described by Minder et. al in [Minder and Bernstein, 2011]. Now that
we have established our basic concept, we will go on to cleanly introduce and lay out our
implementation of the hierarchical model. We will summarize the required components
and show how they can be used and adapted with some code examples.
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Implementation

In this chapter we are going to take a look at the implementation of our DSL. Our
implementation is split into three parts. First of all, we will be discussing the core part
which handles the basic components to be used in our language. The second part is
concerned with the integration of crowd sourcing platforms and describes the API we
provide as well as a sample implementation for the CrowdFlower website. The third
part is concerned with triggering and handling events that allow future modules outside
of the core structure (e.g. a GUI client) to gain information about the current status of
the process network.

4.1 Akka in the Component Trait

This section discusses the core module of our DSL. We are going to start with a short
description how Akka is used in our component trait and will then move on to an
overview of the available operators and tasks including code snippets that demonstrate
how they can be used. As mentioned before we used the basic actor model to develop
our concept of a component trait, which summarizes the common requirements of tasks
and operators.

The following snippet is part of the component class in our code.
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tra it Component extends Actor with ActorLogging {
type Input

/∗∗
∗ General behav iour t h a t every component i s a b l e to perform
∗ in every s t a t e
∗/

private def genera lBevav iour : Receive = {
. . .

}

private val i n i t i a l : Rece ive = {
case Work( data : Input ) =>

l og . i n f o ( ” Started work . ” )
l og . i n f o ( s ”Data i s : $data ” )
work ( data )

}
s t a t e s . addState ( i n i t i a l , ” i n i t i a l ” )

f ina l override def r e c e i v e = genera lBevav iour o rE l s e i n i t i a l

/∗∗
∗ Runs t h i s component . Override to s p e c i f y the behav iour
∗ o f your component when r e c e i v i n g Work .
∗ @param data − the input data to work wi th
∗/

protected def work ( data : Input )
.
.
.

}

There are a few things to point out and explain in this code sample. Firstly, we want
to take a look at the override of the receive method. As we have learned in previous
sections, this method manages how an actor reacts to certain types of messages. It
incorporates a partial function which is wrapped in a case class called ”Receive”. In this
partial function, programmers can use pattern matching to filter messages received by
another actor and decide on what to do with each type of message.

For our implementation, we want to make sure that each component is able to receive
and respond to some control messages at any time, independent of the state it is in or
the type of actor it is at runtime. Therefore we removed this source of customization
by finalizing the receive method in our Component trait. We also used partial function
chaining to make sure that the general behaviour is always part of an actor’s receive
method.

20
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Another thing to point out is the initial behaviour. This is once again the same for
each component. However, it is highly specifiable. The initial partial function reacts to
any Work message containing data of the type input. This input type marks which kind
of data an actor can actually handle and has to be specified by each concrete implementer
of the Component trait. In response to the Work message, the component then calls the
work method. What we achieve with this code is that we can execute some functions
and methods any time a component receives a message, for example logging the message
received, or throwing events for the event module. So, while this initial behaviour is the
same for each component, the only thing it really constrains is the type of messages it
can initially handle, namely messages of the Work type. How a component reacts to
those messages is once again specifiable by each implementation of the Component trait
via the work function.

We mentioned that one of the reasons to use the Akka framework is that its actors
can encapsulate state information. At this point, said capability comes into play. After
receiving and handling a Work message in the initial state as described in the previous
paragraph, each component is free to change its behaviour and thereby the messages
it accepts and handles. This incorporates a change of its internal state and it can be
achieved via the state machine that has been defined within the component trait. The
following code shows the method that can be used to manipulate said state machine.

/∗∗
∗ This f u n c t i o n t r a n s i t i o n s the component to i t s next s t a t e .
∗ Use i t when a l l work i s done f o r the curren t s t a t e .
∗/

protected def nextState ( ) = s t a t e s . next ( )

/∗∗
∗ S i g n a l s t h a t t h i s component i s done wi th work .
∗ I t e n t e r s the done s t a t e , where i t can only p roce s s
∗ messages d e f i n e d in the g e n e r a l behav iour .
∗/

protected def done ( ) = s t a t e s . done ( )

/∗∗
∗ Appends a new s t a t e to t h i s components ’ s t a t e machine .
∗ @param behav iour the behav iour t h a t the ac tor shou ld
∗ e x h i b i t in the new s t a t e
∗ @param name a meaningfu l name to d e s c r i b e the s t a t e
∗/

protected def addState ( behaviour : Receive , name : S t r ing ) =
s t a t e s . addState ( behaviour , name)

The methods here are pretty straightforward. nextState transitions the component to
its next state, while addState adds a new state to the end of the state machine. One thing
to mention is the done state. In Akka, an actor that is done with its work would usually
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get an order to shut down by its supervisor. Once it has shut down it will no longer be
able to react to any messages. This behaviour is not desirable for our language, since
we still want to be able to use the general behaviour mentioned above, even if the actor
is done with its workload otherwise. This would for example allow the component to be
reset to its original state, even after it had already done its work. Therefore we created
the done state which is the final state of a component, where it waits until the process
as a whole is complete and it finally receives a shut down order from its supervisor.

4.2 Operators

We will now take a look at the types of components we implemented. So let us quickly
recapitulate from last chapter. Our language consists of Tasks and Operators. Tasks
are computation units. They take an input and use it to calculate some sort of result.
Operators provide structure to the data and sequence flow between tasks. Both of them
extend the component trait. We have already implemented a series of operators that we
used to replace the operators in CrowdLang. They are Then, Multiply, ForEach, If and
Iterate. We will now look at how these operators can be used by programmers using
simple code examples.

Then Then is the operator that indicates a sequence in the process.

val a = Props [A]
val b = Props [B]
val aThenB = a . then (b)
aThenB ! Work( data )

The above code indicates that whenever a work request is sent to aThenB, it is first
passed to a, whose result is then forwarded to b via the aThenB parent node. Once b is
finished, its data is forwarded from aThenB to whoever sent the work request.

Multiply Multiply is the operator that indicates that each work request is copied n
times and each copy is sent to a different child component.

val a = Props [A]
val mult ip ly = a . mult ip ly (10)
mult ip ly ! Work( data )

In the code, when the multiply component receives work, it will spawn 10 child com-
ponents of the type A. The data is then sent to each of these components and once
they are finished processing, their results are gathered by the multiply component and
forwarded to the original requester.

ForEach The ForEach operator has two child types. The first child splits the problem
statement into subproblems. Therefore its result has to be of type List. Then, for each
element in the list, a child of the second type is generated and processes the data.
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Eventually, the results are gathered and passed to the original requester. The usage of
this operator can be seen in the following code.

val s p l i t t e r = Props [ S p l i t t e r ]
val b = Props [B]
val forEach = s p l i t t e r . forEach (b)
forEach ! Work( data )

If The If operator functions as a conditional router in the process.

val i f A c t o r = Props (new Str ingActor ( ” I f ” ) )
val e l s eAc to r = Props (new Str ingActor ( ” Else ” ) )
val cond i t i on = ( data : Any) =>

data . as InstanceOf [ S t r ing ] . equa l s IgnoreCase ( ”A” )
val i f E l s e A c t o r = i f A c t o r . o rE l s e ( e l s eActor , cond i t i on )
i f E l s e A c t o r ! Work( ”B” )

The code snippet above shows how the If operator can be used. We define two tasks
- in this case StringActors, who simply return the text provided to them on creation as
result - and a condition for when to route to which task. In the provided example the
ifElseActor would forward the traffic to the elseActor because the sent data ”B” does
not equal ”A” , so we would get ”Else” as result. Note that the function to use the If
operator is called orElse since if is a reserved keyword in Scala.

Iterate The Iterate operator allows to repeatedly feed the result of a component back
into a copy of itself. This allows for iterative improvement, which is a common pattern
for crowd computing and also used in TurKit [Little et al., 2009]. The following snippet
shows the usage of the Iterate operator.

val appendActor = Props (new AppendActor ( ”B” ) )
val i t e r a t e A c t o r = appendActor . i t e r a t e (4 )
i t e r a t e A c t o r ! Work( ”A” )

The AppendActor is a simple actor that just appends the String provided at construc-
tion to the data it receives. This process is repeated 4 times, so the result of the above
example will be ”A B B B B”.

All of the above operators have been implemented by creating a class that extends
the Operator trait, which in turn extends Component trait that we mentioned earlier.

In order to use these operators in the form of functions, rather then having to create
new objects every time we want to use them, we also introduced TaskProps. TaskProps is
an implicit class that extends the normal functionality of the Props class that is required
for actor creation in Akka with the above functions. So instead of writing code like this:
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Figure 4.1: A Simplified Class Diagram of our Architecture

val a = Props [A]
val mult ip lyActor = new Mult ip ly ( chi ldType = a ,

numberOfChildren = 10)

we can simply write code like this:

val a = Props [A]
val mult ip lyActor = a . mult ip ly (10)

The TaskProps then handles the object creation.

Another thing to mention is that, while these operators should allow to implement
most of the common and not so common interaction patterns in human computation
processes, our code also allows the creation of additional, specialized operators. You can
code your own operators by simply extending the Operator trait.

This concludes the section about operators. We have so far mostly talked about them,
since they are the ones that provide structure in the web of human and machine com-
putation tasks. But now it is time to also take a look at how tasks can be implemented
using our language to perform some actual computation.

4.3 Tasks

While we can find a very small group of operators that will support most of the coordina-
tion patterns required for human computation processes, the variety in tasks descriptions
is sheer endless. Of course there are well known default tasks like multiple choice ques-
tions or free text questions. But there are countless others that are very specific to the
context of their application. Therefore the following section does not provide a list of the
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tasks we programmed, but rather uses two examples to illustrate how one can implement
their own versions.

We will start with a very simple example task, which is part of our arithmetic package.
This package contains tasks that perform simple arithmetic operations on the data they
are provided with and are mainly there to tie together more complex processes without
having to break out of our language and doing the arithmetic operation manually.

The following code snippet shows the entire code of our Addition class.

class Addit ion extends Task {
type Input = ( Double , Double )

/∗∗
∗ Runs t h i s t a s k . This message i s c a l l e d when a Task i s
∗ in i t s i n i t a l s t a t e and r e c e i v e a Work message .
∗ Adds the two numbers prov ided as input and
∗ r e t u r n s t h e i r sum .
∗ @param data − the input data to work wi th
∗/

override protected def work ( data : Input ) : Unit = {
context . parent ! data . 1 + data . 2
done ( )

}

}

As you can see the Addition task has a very simple functionality. It expects input
tuples of two Double values and returns their sum to the parent component. Then it
goes into the done state. This task therefore only has two states, the initial state and the
done state. It is an example for a machine computation task. One of the most important
goals of our language is the seamless integration of machine and human computing. So
let us next look at an example of a human computation task.

The MultipleChoiceJob task is part of our hit (Human Intelligence Task) package.
This package contains default implementations for standard questions that almost every
crowd computation platform supports. Currently it contains implementation for free text
questions and multiple choice questions (which also supports single choice questions).

The following snippet contains the entire code for our MultipleChoiceJob class.
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class Mult ip leChoiceJob (
a p i c o n t r o l l e r : ActorRef ,
i n s t r u c t i o n s : Str ing ,
maxResults : Int = I n t e g e r .MAX VALUE,
opt ions : Map[ Str ing , Any ] = Map. empty [ Str ing , Any ] )

extends Task {
type Input = L i s t [ S t r ing ]
/∗∗
∗ S t a t e 0 − send work to c o r r e c t HIT p la t form
∗ @param data− o p t i o n a l data to pr oce s s
∗/

override def work ( data : L i s t [ S t r ing ] ) = {
val max = L i s t ( maxResults , data . s i z e ) . min
a p i c o n t r o l l e r ! Mul t ip l eCho i ceSt r ing ( i n s t r u c t i o n s ,

opt i ons = data ,
maxNumberOfResults = max ,
params = opt ions )

nextState ( )
}

/∗∗
∗ S t a t e 1 − wai t f o r HIT p la t form to send r e s u l t s
∗ then forward i t to parent
∗/

private val waitForResult : Receive = {
case Mult ip l eCho i ceSt r ingResu l t (

c h o i c e s : Map[ Str ing , Boolean ] ,
work ) =>

context . parent ! c h o i c e s
done ( )

}
addState ( waitForResult , ” waitForResult ” )

}

The code is once again pretty simple. In the initial state, this task expects a list
of String data, which are the options that should be provided for the multiple choice
question. The task then simply wraps this data into a case class containing all necessary
information for a crowd computing platform and sends it to the apicontroller and then
goes to the next state. The apicontroller is a special actor within our network that
accepts human computation task jobs and distributes them to the platforms. We will
look at this in more detail in section 4.4. The MultipleChoiceJob task is now in the
second state called waitForResult. It will stay alive and wait for a response from the
apicontroller. It is worth mentioning that the task requires very little resources while
waiting thanks to the Akka framework. Once the result from the crowd platform is
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replied via the apicontroller it is simply forwarded to the parent component and the
MultipleChoiceJob goes into its done state. As you can see this task has three states,
but more states can easily be added by using addState method as mentioned earlier.

Our goal for all tasks was to keep the interface as flexible as possible to allow for
any kind of task programmers might require. There are some default implementations
available for a series of applications, like the arithmetic package or a package with tasks
relevant to statistics. We hope that in the future this library of preprogrammed and
reusable tasks can grow. Each algorithm implemented in our language will have poten-
tially new sources of task configurations.

In the previous sections we have discussed the core building blocks of our language
in operators and tasks. We will now go on to the second module of our implementation
which is concerned with the integration of crowd computing platforms.

4.4 Crowd Computing Platform Integration

The crowd computing platform integration consists of two main parts: the HITController
and the HITWorkers. The HITController is a dedicated actor that is known to all tasks
that want to schedule jobs on a crowd computing site. We have already encountered this
actor in the last section where we referred to it as apicontroller. Usually our network will
have exactly one HITController for each website we want to interact with. If this ever
becomes a bottleneck, it is easily possible to have multiple controllers per site though.

HITController The HITController expects any type of work that extends its HIT-
Work trait and will create a new HITWorker for every job it receives. It will then
wait for the HITWorker to return a result in the form of a HITResult. It will forward
this result to the original requester. This class can usually be used unchanged for any
integration of a new platform, since it is basically just acting as forwarding mailbox for
a HITWorker.

HITWorker The HITWorker trait on the other hand is the main source of customiza-
tion for any API integration. It uses partial function chaining in combination with a
stackable trait pattern to allow any implementing platform to flexibly specify which
types of jobs it supports from the existing library and also allows for additional custom
jobs. We can use the FreeTextHandler as an example to show how this works.
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tra it FreeTextHandler extends HITWorker {
r e c e i v e r {

case work : FreeText =>
val f u tu r e : Future [ FreeTextResult ] = writeText ( work )
fu tu r e onComplete {

case Success ( r ) => context . parent ! r
case Fa i l u r e ( f ) => context . parent ! Status . Fa i l u r e ( f )

}
}
def writeText ( work : FreeText ) : Future [ FreeTextResult ]

}

object FreeTextHandler {
case class FreeText (

i n s t r u c t i o n s : Str ing ,
params : Map[ Str ing , Any ] = Map. empty [ Str ing , Any ] )
extends HITWork

case class FreeTextResult ( t ex t : Str ing , work : FreeText )
extends HITResult [ FreeText ]

}

The FreeTextHandler itself has to be a trait and extend the HITWorker trait to
enable the stackable trait pattern [Odersky et al., 2008]. It declares in its receiver that it
handles a new type of message called FreeText, which is defined as a case class extending
the previously mentioned HITWork in its companion object. The partial function then
calls the writeText method, which has to be overridden by any implementing worker.
For example the CrowdFlowerWorker looks something like this:

class CrowdFlowerWorker extends HITWorker
with ActorLogging with Mult ip l eCho iceStr ingHandler
with FreeTextHandler with MultipleChoiceImageHandler {
.
.
.
override def writeText ( work : FreeText ) : Future [ FreeTextResult ]

= s c a l a . concurrent . Future { . . . }
.
.
.
}

As you can see, the programmer of the CrowdFlowerWorker has chosen to not only
support free text jobs but also two kinds of multiple choice questions, one with text
answer options and one with image answer options. If the CrowdFlower platform were
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to introduce a new kind of job, the integration to our DSL could easily be adapted by
creating a new handler like the FreeTextHandler and adding it to the traits implemented
by CrowdFlowerWorker. These would be the only changes required in our API. In
the case of CrowdFlower, the writeText by the way uses a the sites’ RESTful API by
preparing JSON requests and regularly querying the API for finished jobs.

4.5 Event Queue

The third module of our code is concerned with events within the network of components.
While the networks’ communication is implemented in the core module, some of the
things that are going on while a computation process is running are of interest to third
parties. We are, for example, currently working on a graphical user interface to work with
our language. To support applications like these, we need to have some capabilities to
transport data from within the network to this third party component. We decided to use
an event based approach here, since it very well fits into the event based mechanisms that
Akka already uses and is also standard for almost all model-view-controller architectures
(MVC) out there. Our EventQueueActor can be freely added to any actor system created
with our language. Similar to the HITController from the previous section, this actor
is known to all of our components and whenever a component performs an action that
should trigger an event it will send that event to the EventQueueActor, which will in
turn distribute it to any third party that is interested in these kinds of events by using
a publish-subscribe pattern.

This module is only in its infancy by now. As we mentioned we are working on a
graphical user interface, but we are currently early on in development. Therefore this
module is still subject to change and will probably evolve within the next months of
work.

This concludes our implementation chapter. We have shown how we implemented the
design we developed in earlier chapters and we have presented some examples on how
programmers can use our language. We will now move to the evaluation part of this
thesis were we implement two algorithms as proof of concept.

29





5

Evaluation

5.1 Implemented Algorithms

To show the capabilities of our programming language we implemented a series of ex-
amples, ranging from very simple examples only using computer power to complex al-
gorithms that include human intelligence tasks deployed on CrowdFlower. Some of the
basic examples have been used in the previous chapter for illustration purposes, the rest
of them can be found in our codebase. In the following section we are going to show
two examples that are more complicated and include human intelligence tasks deployed
on CrowdFlower: text correction with Find Fix Verify and image categorization with
confidence levels.

5.2 CrowdFlower Integration

For the deployment of our sample algorithms we chose the CrowdFlower platform. It
provides a RESTful API to developers, who want to automatically schedule now jobs.
In our experience, the API is powerful and well documented, but it is also very unreli-
able. Sending equivalent requests may often cause differing responses. Requests would
sometimes time out, and other times the page would try to forward to another page
(HTTP Code 302). Additional issues were caused by the lengthy process required to
set up a job. The normal process for interacting with the API involved four steps. In
the first step, a new job can be created using a POST request that includes URL based
parameters. In the second step, data has to be provided for the job. As an example: to
create a multiple choice question, one would first have to create a new multiple choice
type job, and then send the answer options in the second step as POST request. This
data has to be formatted in JSON. In the third step CrowdFlower expects a launch com-
mand provided via HTTP POST, but this time in URL encoding again. After that, the
API can continuously be queried with GET requests, to find out whether a job has been
completed. This complex process, in combination with the unreliable responses, made
it quite hard to interact with the API and we hope that future versions can improve.

After a large amount of debugging and trial and error, we were able to address the
above issues in our code. We are for example resending requests that were not handled
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correctly and we are limiting the amount of requests that can be sent at once, so that
one does not overload the CrowdFlower API.

After having discussed the struggles we encountered during implementation, we will
now come to the description of the algorithms we ran on CrowdFlower, starting with
Find Fix Verify.

5.3 Find Fix Verify

One of the sample applications developed in our language is the Find-Fix-Verify pat-
tern as it was described in the Soylent paper [Bernstein et al., 2010]. It conceptualizes
an algorithm to be used for any kind of quality improvement process. Such processes
have been addressed in other crowd computing algorithms as well, including ones where
multiple improvement steps have been chained together to iteratively improve the solu-
tion for a given problem like TurKit [Little et al., 2009]. The contribution of the Find
Fix Verify algorithm in this context is the decomposition of the task into smaller sub-
tasks. The motivation for this deconstruction is the authors’ observation that crowd
work comes in a wide variety of qualities. ”We are primarily concerned with tasks where
workers directly edit a user’s data in an open-ended manner. [...] In our experiments,
it is evident that many of the raw results that Turkers produce on such tasks are un-
satisfactory. As a rule-of-thumb, roughly 30% of the results from open-ended tasks are
poor.” [Bernstein et al., 2010] The authors describe their algorithm on the application
of shortening a written paragraph. Workers are provided with a long section written by
a user of the Soylent Microsoft Word plug-in and are expected to shorten the section.
In order to combat the cited problems, they split the task into three stages called Find,
Fix and Verify. We will now take a look at how the three steps work exactly.

5.3.1 Concept

Find

The first step in the process is the Find step. At the beginning, the long section is split
into paragraphs. Workers in this step are then asked to identify only those paragraphs
that provide room for shortening the section as a whole. This step can be modelled as a
multiple-choice task, where each part (paragraph) of the solution is one of the choices.
Just like subsequent steps, this first step is performed by multiple workers in parallel.
Among all the paragraphs marked to be too long - we call them ”patches” - only those
that have been mentioned by at least 20% of all workers are sent to the next step.

Fix

In the Fix step, the workers are asked to actually improve on the patches selected in the
Find step. They see the original paragraph and their job is to shorten it without losing
information in the process. Once again, this task is performed by multiple workers in
parallel to get a decent solution space.
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Figure 5.1: The Find Fix Verify Algorithm in Shortn

As mentioned, by separating the Find and Fix stages the authors of the Soylent paper
try to combat the lazy workers’ tendency to only focus on the simplest paragraph to
shorten. When the workers who identify the paragraphs with potential are separated
from those who have to shorten them, lazy workers are forced to take care of more
difficult tasks as well.

Verify

In the Verify step, the previously gathered solutions are put to a contest for quality
control. Workers in the Verify step are presented a single-choice question with all the
proposed improvements as well as the original passage for reference. After all workers
have voted on what they think is the best improvement, the proposal with the most
votes is selected and integrated into the original text. According to the authors, the
Verify stage ”[...] reduces noise in the returned result.”[Bernstein et al., 2010]
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5.3.2 Experimental Setup

While the authors of the Soylent paper chose paragraph shortening as an illustrative
example, we decided to go with the other algorithm mentioned in their framework for
our experimental application, namely proofreading. This section will show the exact
workings of our sample application, including screenshots from the CrowdFlower jobs
presented to workers.

Find

In the Fix step of our process, workers are presented with a multiple choice task. They
are given an entire paragraph containing grammatical errors and are asked to select
those sentences, which they think will need corrections. Note here, that users can and
are encouraged to select multiple options. Figure 5.2 shows a sample task for a worker
in the Find stage.

Figure 5.2: Sample Task of the ”Find” Stage in CrowdFlower

All stages of the FFV algorithm should be completed multiple times and in parallel by
different workers. From their suggestions, we then automatically selected those answers,
that had been marked by at least 20% of the them. For each of the selected sentences,
we queued up a number of Fix jobs on CrowdFlower.

Fix

In the Fix stage, the workers are presented with one of the previously identified sentences
and are asked to fix all grammatical errors they can find. In order to do so, they have
a text field that allows for arbitrary input. Figure 5.3 shows a sample task for a worker
in the Fix stage.
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Figure 5.3: Sample Task of the ”Fix” Stage in CrowdFlower

The results that are acquired here are expected to be of very variable quality as has
been mentioned before. Therefore, all solutions for a specific sentence are gathered and
presented in the Verify step, where another group of workers can then vote on which
solution they deem to be the best improvement.

Verify

Figure 5.4 shows a sample task for a worker in the Verify stage, where they are asked to
select the best solution among those gathered in the Fix step.

Figure 5.4: Sample Task of the ”Verify” Stage in CrowdFlower

Once all the tasks in the Fix and Verify stages have been completed, the best solutions
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are then gathered and merged together with the original, now improved paragraph.

5.3.3 Results

For the evaluation we ran the algorithm multiple times with different specifications on
the amount of workers involved. Bernstein et al. suggested 3-5 workers for each the Fix
and Verify stages of the algorithm. For the Find stage they made no clear suggestion.
We therefore executed the algorithm in three configurations:

• 2 workers in the Find stage, 3 per Fix, 3 per Verify

• 5 workers in the Find stage, 3 per Fix, 3 per Verify

• 10 workers in the Find stage, 5 per Fix, 5 per Verify

All workers received a compensation of $0.10, no matter in which stage or which run
they participated in.

Let us look now at the following paragraph that has been entered into the algorithm
during our evaluation phase. It is a sentence from a website [English for Everyone, 2014],
which lets users work on their grammar skill. It does therefore contain several gram-
matical errors on purpose, which should be corrected in our process.

Jaime been applying for full-time jobs for several months. The last week he received a
call from the Human Resources director at a computer software company the HR director
asked Jaime could he fly to Chicago for a job interview. The company offered to pay for
Jaime’s plane ticket to Chicago, so that he will not have to pay for it himself. Jamie
agreed to come for the interview. Since then, Jaime has been busy collecting informaton
about the company. He also went shopping for a new suite. Jaime and his wife have
been rehearsing answers to possible interview questions, so that Jaime will be good and
ready his best. Jaime is nervous about the interview, but his looking forward to working
at a new place.

What we found in our experiments was, that the results of our algorithm heavily
depended on the amount of workers involved in the Find stage. Bernstein et. al had
the goal to reduce the amount of bad results that make it to the end of the process and
hoped to achieve it by including the Verify stage and having multiple people perform
the Fix stage at once as quality control mechanisms. This goal was reached - at least in
our experiments. But the authors of Soylent also hoped to reduce the influence of lazy
workers in the algorithm by splitting the Find and Fix stages. In their words: ”Lazy
Turkers will always choose the easiest error to fix, so combining Find and Fix will result
in poor coverage. By splitting Find from Fix, we can direct Lazy Turkers to propose
a fix to patches that they might otherwise ignore.” [Bernstein et al., 2010]. We believe
this goal has only partially been reached. While it is true, that lazy workers are forced
to also correct harder mistakes in the Fix stage due to the setup, their influence in the
Find stage on the other hand is very strong. In the environment of a combined Find
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and Fix stage, lazy workers will only fix the easiest mistake. In the environment of
split Find and Fix stages, they will only find the easiest mistake. As mentioned, that
made the algorithm highly dependent on the amount of workers in the Find stage. The
more workers in the find stage, the better the chance of having multiple lazy workers
”accidentally” find different problems (i.e. not every workers finds the same easy mistake,
but rather another easy mistake instead).

The following paragraph shows the results we gathered in our first configuration with
only two workers in the Find stage.

Jaime has been applying for full-time jobs for several months. The last week he
received a call from the Human Resources director at a computer software company.
The HR director asked Jaime could he fly to Chicago for a job interview. The company
offered to pay for Jaime’s plane ticket to Chicago, so that he will not have to pay for
it himself. Jamie agreed to come for the interview. Since then, Jaime has been busy
collecting informaton about the company. He also went shopping for a new suite. Jaime
and his wife have been rehearsing answers to possible interview questions, so that Jaime
will be good and ready his best. Jaime is nervous about the interview, but his looking
forward to working at a new place.

Comparing this to the sample solution is rather disappointing:

Jaime has been applying for full-time jobs for several months. Last week he received
a call from the Human Resources director at a computer software company. The HR
director asked Jaime if he could fly to Chicago for a job interview. The company offered
to pay for Jaime’s plane ticket to Chicago, so that he will not have to pay for it himself.
Jamie agreed to come for the interview. Since then, Jaime has been busy collecting
information about the company. He also went shopping for a new suit. Jaime and his
wife have been rehearsing answers to possible interview questions, so that Jaime will be
prepared. Jaime is nervous about the interview, but he is looking forward to working at
a new place.

As you can see, only one mistake was actually fixed. That is the case, because it was
the only sentence marked for correction in the Find stage. In this context, it is also
not surprising that it was the first sentence in the paragraph that was up for selection
in the Find task. The workers involved probably read the task description and then
immediately found the (relatively) easy mistake in the first paragraph, which prompted
them to select it and commit their result.

For comparison, the following paragraph is the solution of the run-through that in-
cluded 10 workers in the Find stage. As you can see, the results are much better here,
although the text is still far from perfect and some of the corrections are not really of
high quality. A total of six sentences were selected in the Find stage compared to the
one sentence in the run above.
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Jaime has been applying for full-time jobs for several months. Last week he received
a call from the Human Resources director at a computer software company the director
asked Jaime could he fly to Chicago for a job interview. The company offered to pay
for Jaime’s plane ticket to Chicago, so that he will not have to pay for it himself. Jamie
agreed to come for the interview. Since then, Jaime has been busy collecting information
about the company. He also went shopping for a new suit. Jaime and his wife have been
rehearsing answers to possible interview questions, so that Jaime will be prepared. Jaime
is nervous about the interview, but he is looking forward to working at a new place.

The apparent dependency on the amount of workers in the Find stage is an interesting
observation that could be investigated in more detail in the future. Especially when
considering to use the FFV algorithm in a productive environment where compensation
is a cost factor, finding the optimal amount of workers required to get decent results
for a given task is an important question. For our own results, we had no problem
increasing the amount of workers involved, as we only ran the algorithm a few times.
The only trade-off we had to make was an increased time commitment to complete the
algorithm. But both, the time commitment as well as the compensation can become
important factors when massive amounts of tasks have to be computed for a company.

5.4 Image Labelling

5.4.1 Concept

For our second use case we decided to go with an image categorization task. The
exact idea stems from the Automan [Barowy et al., 2012] paper and is there referred
to as ”Which one does not belong?”. Users are confronted with a selection of images
among which they have to find the one that does not belong with the others. This
kind of task is often part of building ontologies and clusters of images. What made
this use case interesting for us specifically is, that on top of the relatively simple single
choice question, the authors of Automan extended the process to calculate the statistical
measure of confidence levels after each set of jobs for a task to conditionally terminate the
algorithm or queue new jobs. This element of conditional task deployment is relatively
rare and not used or mentioned in the other papers we studied. It is therefore an
interesting challenge for our language.

5.4.2 Experimental Setup

We chose to go with cars as the subject of our categorization experiment. We provided
each user with five images of cars, where in each case four of them were of the same
manufacturer whilst the other was of a different manufacturer. Users were then asked
to find the one that does not belong to the others. So the question is a single choice
question. Each worker was paid $0.10 to complete this task.
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Figure 5.5: Example Selection of Cars

On the first run three jobs were scheduled at once, since this is the minimum number
of people that have to agree for the required 90% confidence. Once the first set of workers
finished the task, the results were compared and confidence levels were calculated. If all
three workers had agreed, the confidence level was obviously reached and the result was
returned. If there was disagreement, we found the maximum amount of agreeing workers
and used this number to determine how many new jobs had to be at least scheduled to
reach the required confidence level in case the new workers all agreed with the previous
majority. This is what the authors of Automan called the optimistic approach. The
confidence level calculations were implemented using MonteCarlo simulation, just like
the authors of Automan did in their public github repository [Barowy, 2014].

5.4.3 Results

As we implemented this algorithm mainly as proof of concept, the number of runs is
once again limited. We ran it a total of five times, with a different selection or ordering
of cars each time. In all our executions, the results gathered showed that workers were
able to correctly identify the car that did not fit with the others. For example in 5.5 the
workers decided on the first car from the left as the outsider, which is the correct choice.
This car is an Audi, whilst the other cars are all BMWs. Interestingly, this exact run
had a very special outcome. Many Workers named the second car from the left instead
of the Audi. This was probably the case because the image shows an older model than
the other cars in the selection and therefore looks slightly different. Unsurprisingly, runs
of the algorithm including this image required the most workers to reach the confidence
level of 90% that we aimed for. They required 11 , 9 and 8 workers in total, whereas the
other runs required 5 and 6 workers respectively.

5.5 Discussion

In the previous sections we have implemented two algorithms using our domain specific
language and CrowdFlower as a source for human computation. We have discussed the
problems of the CrowdFlower API and how we addressed them. We then saw, how
the Find Fix Verify algorithm is very susceptible to lazy or malicious workers in the
Find stage, which led to disappointing results when running the algorithm with only
two workers in the Find stage. We pointed out that there might be potential for future
research in this area. Meanwhile, our image categorization task ran without problems
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and the workers were consistently capable of identifying the car which did not belong to
the others.

In any case, the main goal of the evaluation section was not to measure the performance
of the algorithms themselves, but rather to show that our language can be used to develop
fully integrated computation algorithms. The evaluation part is therefore to be viewed
mainly as a proof of concept. And after some initial struggles with the CrowdFlower
API we reached our goal.

A limitation to the results presented is, that all experiments have been conducted on
a single crowd computing platform. This leaves open the question whether the existing
code base is sufficiently flexible as well as powerful for the seamless integration of different
websites such as Amazon’s Mechanical Turk.

It is also worth mentioning that most of the programming and debugging for the
Find Fix Verify and image categorization algorithms has gone hand in hand with the
further development of both the DSL, as well as the CrowdFlower API integration. It is
therefore yet to be seen whether the DSL is intuitive and flexible enough to support the
development of different algorithms by personnel outside the original developer team.

Furthermore, a side concern for our DSL was the eventual possibility of distributed
computing. That side concern was part of the reason why we decided to use Akka as a
foundation for our implementation, but although this foundation should be a reasonable
starting point for distributed computing, it has yet to be shown whether we can handle
massive amounts of components distributed over a cluster of processors. This concern
will once again be taken up in our suggestions for future work.
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Future Work

The goal of this thesis was the initial description and implementation of a human com-
putation programming language based on the concepts of CrowdLang. That being the
case, the possibilities for future work based on the our current results are manifold.

A first approach to extending the current environment lies in the implementation of
further algorithms using the language. As proof of concept, we implemented two well-
known algorithms in Find-Fix-Verify and image categorization with confidence levels.
Additionally we included an implementation of an algorithm based on a dual pathway
structure [Liem et al., 2011] as part of our development process, although we have not
evaluated that algorithm yet. It is evident, that there exist a variety of other human
computation algorithms which can be programmed in our language - after all, that was
the main motivation for our project.

Another branch of future work should be the implementation of other operators and
tasks. Our current code covers all the concepts described in the CrowdLang papers, and
we are confident that with these operators alone a vast variety of human computation
processes can be covered. However, it is to be expected that additional operators or
specializations and adaptations of existing ones for different applications will be required.
Of course this development goes hand in hand with the development of additional human
computation processes in our language as described above. Whenever the existing set
of operators are not enough to implement a certain process, we wish to extend the set
of operators. The same goes for new, flexible implementations of tasks. Our goal is to
eventually have an extensive library of reusable tasks and operators in our language.

A more technical area of future work is the integration of more crowd computing
websites with our language. For our evaluation we implemented an integration with
CrowdFlower, but at all times tried to keep the interface as flexible as possible to al-
low for future integration of additional websites and applications like Mechanical Turk
or ClickWorker. We hope that with growing interest in our language, the number of
available platform integrations will also increase.

Furthermore, our language has from early on been built with distributed computing in
mind. While current algorithms for human computation do not explicitly require a large
amount of computing power in terms of hardware, the better the integration of human
work and computers becomes, the more we have to expect the need for distribution of
computing power onto multiple cores. As our language is built on the Akka framework,
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we would expect that from a conceptual perspective it is already very suitable for dis-
tributed computing. However, the proof of this hypothesis is one to be made. Additional
research and improvements in this area are to be expected.
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Conclusions

In this thesis we presented our new domain specific language based on the concepts
of CrowdLang. We started by describing the challenges that current crowd work faces.
While simple, atomic tasks can readily be deployed and solved using platforms like Ama-
zon’s Mechanical Turk, more complex problems that need coordination and data flow
between the individual tasks are still hard to solve. We showed that the need for coordi-
nation has been addressed by a multitude of research groups and that some patterns as
well as frameworks to implement them have been proposed. We discussed how Crowd-
Lang offers a more open framework than other comparable papers who solely focus on
one type of interaction, for example CrowdForge with the Map-Reduce paradigm.

Starting from CrowdLang we then initiated the development of our own model for
a possible implementation of a domain specific language. We found that a sequential
approach, while intuitively understandable and well suited to graphically represent a
process, is not a preferable structure for the actual implementation of our language.
When individual tasks are just sequentially connected to each other, it is hard to keep
track of dead-end branches in the network and establishing global knowledge about
the state of the process is difficult. We therefore worked towards a hierarchical model,
where a splitting operator and a merging operator from the sequential model are merged
into a single parent operator in the hierarchical model. All components in between the
two sequential operators are then attached as child nodes to the hierarchical operator.
We showed how one can transform coordination patterns in the sequential model into
equivalent patterns in the hierarchical model.

Once we established our concept for the domain specific language, we showed how
we implemented it using the Akka framework and its actor model. We discussed how
a Component trait can be used to incorporate the similarities between operators and
tasks. We pointed out details in our implementation and showed some examples on how
to use the language. What makes our language so powerful is the enormous flexibility
it offers to users. While we established a set of default operators in Multiply, Then,
ForEach, Iterate and If that should be sufficient to implement most algorithms in the
crowd sourcing environment, we also showed how one can program their own dedicated
operators. Thereafter we explained how one can specify and use their own tasks. As
tasks are very specific to their use case, we decided to leave their implementation open
to developers.
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In the remainder of the implementation chapter, the modules for event handling and
crowd computing platform integration were introduced. It was shown how one can use
the interface to accommodate for any crowd computing platform out there, although we
have only provided a sample integration for CrowdFlower so far.

We used said CrowdFlower integration in our evaluation section to run two different
algorithms as a proof of concept. The first algorithm we ran, was an adaptation of the
Find-Fix-Verify algorithm introduced in Soylent [Bernstein et al., 2010]. We provided
CrowdFlower workers with a text passage that contained grammatical errors and over
the three stages of the algorithm and the contribution of more than twenty workers,
we were able to fix at least some of the mistakes. But we also noticed that the lazy
worker problem could not be solved completely with this algorithm, as the influence of
lazy workers in the find stage negatively influenced the whole process. We found that
when using only a small number of workers in the Find stage, the results acquired are
drastically reduced in quality.

In our second algorithm for the evaluation part, we implemented a image categoriza-
tion task, where users were asked which one of a set of cars does not belong to the
others (the criterion for exclusion was brand). In this algorithm we continuously put
additional jobs onto CrowdFlower, asking the same question, until a sufficient number
of workers had agreed on one of the options for us to expect the correct result with a
90% confidence level. Our observations showed that workers here were able to identify
the correct answer in all of our executions after 11 scheduled jobs at most.

Following our evaluation, we pointed out limitations to our results. The language has
yet to be tested by developers outside of the original developer team. Also, we have so
far only implemented an integration for one crowd platform - namely CrowdFlower. We
pointed out these and other angles for further research and development in our future
work section, which concluded this thesis.
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