
Linked Raster Data

Schüpfer Florian
of Willisau LU, Switzerland

Student-ID: 10-718-328
flo.schuepfer@bluewin.ch

Thesis December 13, 2014

Advisor: Dr. Thomas
Scharrenbach

Prof. Abraham Bernstein, PhD
Institut für Informatik
Universität Zürich
http://www.ifi.uzh.ch/ddis

Acknowledgements

I would like to thank all those who supported me during my study time and my bachelor
thesis.
A special thank goes to my advisor Thomas Scharrenbach, who always supported me
with his professional and technical knowledge during my thesis. He often triggered new
thoughts with his ideas during interesting discussion sessions.
I also want to thank my parents, who enabled me to study and who have always sup-
ported me in my life.

Zusammenfassung

Das Semantic Web und Linked Data eröffnen uns riesige Möglichkeiten um Wissen aus
verschiedenen Domänen zu integrieren. In der räumlichen Domäne existieren bereits
Projekte wie linkedgeodata.org oder GeoSPARQL, welche räumliche Daten mit georef-
erenzierten Ressourcen verbinden. Diese Projekte operieren alle auf Vektordaten.

In dieser explorativen Arbeit diskutieren wir die Unterschiede zwischen der Integra-
tion von Vektor- und Rasterdaten im Semantic Web. Weiter werden wir Methoden zur
Verlinkung von Rasterdaten mit georeferenzierten Ressourcen in der SPARQL Abfrage-
sprache finden, diskutieren und Implementieren. Wir zeigen wie geographische Opera-
tionen auf Rasterdaten in RDF beschrieben werden können und wie Rasterdaten mit
Hilfe des WMS Protokols von Remoteservern geladen werden können.

Wir werten unseren Ansatz aus, in dem wir die Ausführungszeit von verschiedenen
Abfragen in verschiedenen Konfigurationen messen. Wir finden heraus, dass die Abfrage
auf dem Remote Endpoint am meisten Zeit in Anspruch nimmt und dass wir so wenig
Resultate wie möglich vom Remote Endpoint holen sollten, um die Ausführungszeit zu
reduzieren.

Am Schluss dieser Arbeit stellen wir fest, dass wir die definierten Ziele erfüllen konnten,
obwohl wir wegen der SPARQL Engine, die wir benutzt haben, ein paar Workarounds
finden mussten.

Abstract

The Semantic Web and Linked Data open huge possibilities for the integration of knowl-
edge from different domains. In the spatial domain, there are already approaches like
linkedgeodata.org and GeoSPARQL, which integrate spatial data with georeferenced
entities. These projects operate on vector data like polygons.

In this explorative work, we discuss the differences between the integration of vector
and raster data into the Semantic Web. Further we find, discuss and implement a
method for linking raster data to georeferenced entities in the SPARQL query language.
We show how geographic operations on raster data can be described in RDF and how we
can load raster files from remote servers by implementing service calls using the WMS
protocol.

We evaluate our approach by measuring and comparing the execution time of different
queries in different configurations and find that the largest bottleneck of Linked Raster
Data queries is the remote endpoint and that we should fetch as few results from the
remote endpoint as possible to reduce the query execution time.

At the end of this thesis, we conclude that we achieved our goals defined at the
beginning, altough we had to find some workarounds because of the SPARQL engine we
used.

Table of Contents

1 Introduction 1

1.1 Linked Data and geographic entities . 1

1.2 Goals and Outline . 3

2 Methods in general 5

2.1 Linked Data . 5

2.2 Linked Geo Data . 5

2.3 Linked Raster Data . 6

2.4 Geographic operations . 6

2.5 Feature description . 8

3 Methods implementation 9

3.1 Querying a raster file . 9

3.1.1 Reading the metadata of a raster 9

3.1.2 Exposing a raster as an RDF graph 9

3.1.3 Using the SPARQL engine of rdflib to evaluate Basic Graph Pat-
terns and custom functions . 10

3.2 Clipping of a raster . 12

3.3 Intersecting multiple rasters and bands . 13

3.4 The structure of Linked Raster Data queries 16

3.5 Describing geo operations in RDF . 17

3.6 Executing remote queries . 20

3.7 Integration of WMS services . 21

3.7.1 Implementation . 22

3.8 Applications . 25

3.8.1 Tomlins Map Algebra . 25

3.8.2 Basic mathematical operations . 26

3.8.3 Geometric operations . 26

4 Evaluation 29

4.1 Setup . 29

4.1.1 The three usecases . 30

4.2 Results . 33

4.3 Observations . 34

viii

Table of Contents ix

5 Discussion 37
5.1 Limitations . 38

5.1.1 Indexing of rasters . 39
5.1.2 Implementation of additional functions 40
5.1.3 Support for more remote endpoints 41

6 Related Work 43
6.1 Geo Data as Linked Data . 43
6.2 Linked Raster Data . 43

7 Conclusions 45

A Appendix 49
A.1 Raster queries from Chapter 4 . 49
A.2 Plots of the evaluation . 53

A.2.1 All queries of the first usecase . 53
A.2.2 All queries of the second usecase 54
A.2.3 All queries of the third usecase . 55

ix

1

Introduction

When you click on a link in an html document in the World Wide Web of today, you get
to another document. When you enter a search term into a search engine in the internet,
you will get a list of links of documents that contain the search term you entered before.
But when we have a link between two documents, the meaning or semantic of this link
is not defined. The relation in which the two documents stand is not explicit. Consider,
for example, a page about vehicles. This page will contain a lot of links to different
classes of vehicles like cars or motorcycles. Of course, for a human agent, it is clear that
a car is a subclass of vehicles. But the search engine has no knowledge of this relation
and thus, a search engine is not capable of explicitly answering a simple question like
”Does a car belong to the class of vehicles?” or ”Is a car a vehicle?”.

In the last decade there was a lot of research concerning the Semantic Web and
Linked Data. The idea of Linked Data is exactly to overcome the shortcomings we have
mentioned above. The goal of Linked Data is to reflect the relations (or meaning) of two
resources in the structure of the data itself.

When we consider the example from above, we could state that every car is a subclass
of the class vehicle. Different Knowledge Representations (KR) have been put on top of
Linked Data such as RDFS and OWL2. Using such a KR we can express the statement
from above as:

ex : Car rdfs : subClassOf ex : Veh ic l e

Listing 1.1: A Linked Data statement

The (abstract) data model of the Semantic Web is the Resource Description Frame-
work (RDF). In RDF all knowledge is represented in triples of subject, predicate and
object [1]. The subject is a resource like the car in the example. The predicate, in this
case rdfs:subClassOf, describes the relation between the car and the vehicle which
is in this case the object of the statement. Each such statement represents a piece of
knowledge that can be evaluated by a SPARQL engine.

1.1 Linked Data and geographic entities

Linked Data is especially useful for linking resources together that belong to different
domains. An example is the linking of geographic entities to vector data like polygons.

2 CHAPTER 1. INTRODUCTION

LinkedGeoData ”LinkedGeoData is an effort to add a spatial dimension to the Web
of Data / Semantic Web” [2]. It uses the database of openstreetmap.org [3] to create
a large spatial knowledge base and link this knowledge to resources of other domains
like cities or countries. An example could be to reference a polygon representing the
boundary of a city like zurich to the resource dbpedia.org/resource/zurich which
contains other information about the city like the population or neighbour towns.

GeoSPARQL GeoSPARQL extends the SPARL protocol by allowing the user the
integration of geographic information about resources in his query. The user,for example,
can retrieve resources that are located nearby a specific georeferenced point like in the
query from Listing 1.2.

PREFIX s p a t i a l :<http :// jena . apache . org / s p a t i a l#>
PREFIX rdfs : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX geo:<http ://www. w3 . org /2003/01/geo/ wgs84 pos#>
PREFIX gn:<http ://www. geonames . org / onto logy#>

Select ∗ WHERE {
? ob j e c t s p a t i a l : nearby (40 . 74 −73.989 1 ’mi ’) .
? ob j e c t rdfs : l a b e l ? l a b e l
}
LIMIT 10

Listing 1.2: GeoSPARQL example query

The expression ”spatial:nearby(40.74 -73.989 1 ’mi’)” is in this case not just a predicate
of the objects we search. It is a function call that is executed on the server and searches
for resources in the database that are nearby the point (40.74 -73.989) in a distance of
1 mile. This function call is expressed as a Basic Graph Pattern in the query. When
the expression ”spatial:nearby” is evaluated from the SPARQL engine, the function, to
which ”spatial:nearby” points to, is executed in the background. We will also use this
approach to specify our raster operations.

Maybe we want to find resources that lay in certain geographic region bounded by a
polygon. Than we can write the query from Listing 1.3.

2

1.2. GOALS AND OUTLINE 3

PREFIX geo : <http ://www. openg i s . net /ont / geosparq l#>
PREFIX geo f : <http ://www. openg i s . net / de f / geosparq l / func t i on/>

SELECT ?what
WHERE {

?what geo : hasGeometry ? geometry .
? geometry geo :asWKT ?wkt .

FILTER(geo f : with in (? wkt ,
”POLYGON((

−77.089005 38 .913574 ,
−77.029953 38 .913574 ,
−77.029953 38 .886321 ,

−77.089005 38 .886321 ,
−77.089005 38.913574
)) ”ˆˆgeo : wktL i t e ra l))
}

Listing 1.3: GeoSPARQL example query

We first state that the object we search for has a geometry. Then we transform the
geometry into a literal in the second statement. Like before, the geof:within expression
represents a function call, that filters our resultset of the first two statements and returns
only resources for which the geometry (for example the bounding polygon of a city) lays
inside the provided boundingbox.

1.2 Goals and Outline

In the last paragraph, we have seen, how we can link vector data like polygons to
geographic entities like cities. In this thesis, we look at an approach for linking raster
data to geographic entities.

We discuss two approaches for linking raster data to georeferenced entities in a sim-
ilar manner: explicit features and feature descriptions. In this explorative work, we
implement the feature description approach. We find, discuss and implement methods
for describing and executing georeferenced functions on raster data by extending the
SPARQL query language. Further we show how to link raster data to georeferenced
entities on remote endpoints and how we can load raster files from remote servers by
implementing service calls using the WMS protocol.

The main goals defined for this thesis are:

• To assemble a dataset of raster data, preferably of Swiss municipal, cantonal and
federal resources.

• To connect the data sets with existing Linked Open Data (LOD), such as GeoN-
ames and dbPedia in order to link entities from the Linked Open Data into the

3

4 CHAPTER 1. INTRODUCTION

raster data.

• To assemble statistical data, preferably from Swiss municipal, cantonal and federal
offices, and link these to Linked Open Data and the raster data.

First, we will look at the fundamentals of Linked Raster Data and geooperations in
greater detail in Chapter one.

We will outline our approach of implementing Linked Raster Data in Chapter three.
For the implementation, we use the rdflib framework as our SPARQL engine. With help
of the lrdgdal framework, we expose our raster files as RDF graphs, such that we can
query the metadata of each raster and its bands. We also describe the semantics and
parameters of our extension functions in RDF.

For loading rasters from remote endpoints, we decide to use the WMS protocol. We
use the GetMap request to specify the service call. By providing an additional polygon,
we can restrict the returned raster file to the desired area. In Chapter five, we also
discuss how we could retrieve raster files by category.

In Chapter four, we run some basic usecases of Linked Raster Data queries in different
configurations and compare the results. In Chapter five, we will look back at the goals we
stated before and discuss our findings. We also discuss the limitations of our application
and what still needs to be done in the future.

4

2

Methods in general

2.1 Linked Data

Linked Data is a recommendation how to publish links to and between data entities,
called resources. In the RDF data model, links are established by triples (s, p, o) where
p is a qualified binary predicate and o and p are resources. Each of these are uniquely
identified by its IRI or anonymous identifier. The instance data and the schemata are
both expressed in RDF [4].

In SPARQL, queries are represented as graph patterns that are matched against one
or more RDF graphs. The results are obtained by evaluation of these patterns. Further
constraints on the results are put by FILTER and JOIN operations. The results are
presented by lists of n-tuples or by graphs [4].

In SPARQL, the query predicate itself can be a variable. The evaluation of the Basic
Graph Pattern map:poly1 ?prop map1:poly2, for example, contains all links that exist
between two particular polygons in a map. Evaluating the query variable ?prop will
provide us with all those properties that exist between the two polygons, for example,
topological relations expressed by rcc:touches or rcc:tangentialProperPartOf.

RDF triples can be universal or valid within a certain context only. In the first case,
they are part of the default graph whereas they are part of a named graph in the latter
case. Named graphs are referred to by an IRI and can be queried for explicitly by using
SPARQL [4].

2.2 Linked Geo Data

Linked Data can be helpful in finding geographic entities. Consider, for example, you
want to find all nature reserves in Switzerland with at least 20 percent forest area and
all intersecting municipalities. Linked Data provides metadata for layers and geographic
entities of a GIS. These metadata can then be linked to other Linked Data of other
domains (graphs) and is thus building a bridge between different knowledge domains [4].

In the example above, we would treat each object o in the layer containing nature
reserves as an RDF resource and identify them with the type of a nature reserve. This
is expressed by the pattern: ?o rdf:type dbpedia:naturereserve. For the results

6 CHAPTER 2. METHODS IN GENERAL

of the query evaluation, there exist other links to other resources in other domains.
For example, the different areas lay in different municipal districts of the canton which
themselfs have a lot of links. To get only those areas with at leat 20 percent forest, we
have to calculate the forest area. Since the forest area is most probably a categorical
raster file, we need Linked Raster Data [4].

2.3 Linked Raster Data

Raster Data represent data fields. These are either categorical fields, such as the forest
coverage or continous fields, such as elevation or slope.

Vector data describes geometric objects, such as polygons and lines. Vector data
can be easyly represented in RDF by assigning every object an IRI. For raster data,
it is not that simple. In a raster, objects only exist in a certain context. The entities
of a raster are just pixel values that represent certain features. Examples would be
categorical features such as rivers or roads or continous features such as elevation or
temperature [4].

When we want to implement Linked Raster Data, we can either use explicit features
(e.g. rasterized geo-objects) or feature descriptions [4].

Explicit features can be directly represented in RDF or GML. We only need a proper
way of feature extraction. For example, a mountain can be represented as a set of pixels
with an IRI applied to it, such that it can be linked to other resources. In this approach,
there exists the problem of proper bounding of the object in the raster. For example, it
isn’t clear where the mountain begins and ends in an elevation raster. Another approach
could be to identifiy an object by the position of the corresponding cells in the raster
and store only the metadata of the raster and the position of the object in RDF [5].

When using feature description to describe objects, we actually describe parametrized
geographic operations that calculate the result depending on additional context infor-
mation or subqueries. In the example before, we have a feature description, because we
only want nature reserves with a forest area of at least 20 percent. Consider extending
the example with the additional constraint that the resulting areas on average have to
have a slope value that is larger than the average slope of all forest areas. In this case,
the result can’t be computed directly because of the context. Pre-computation is also
not possible, because the constraint (above average slope) can change over time.

2.4 Geographic operations

In order to perform Linked Raster Data operations, the raster file has to store metadata
about the geographic region it covers and the coordinate system it uses. One important
information is the projection of the image. A map projection is necessary to transform
the latitude/longitude of a point on a sphere surface into locations onto a plane. There
exist a lot of different projections depending on the purpose of the map. Below are
two examples: The Figure 2.1 shows a cylindrical projection and Figure 2.2 a azimuthal

6

2.4. GEOGRAPHIC OPERATIONS 7

(projection on a plane) projection. In the first case, one sees that the spatial distortion
gets larger to the poles. In the second case, the map shows distances and directions
accurately from the center point, but distorts shapes and sizes elsewhere [6].

Figure 2.1: A cylidrical mercator projection [7].

Figure 2.2: An equidistant azymutal projection [8].

The creation of a map projection involves two steps. In the first step a model for the
earth is chosen. In most cases this is a sphere or an ellipsoid. Since the earth is not
a perfect sphere, some information is always lost. In the second step, the geographic
coordinates (longitude/latitude) have to be transformed into cartesian or polar plane
coordinates [6].

Every raster file with geographic metadata has therefore a Spatial Reference System
with a specific coordinate system (a specific map projection) and supports transforma-
tions between different spatial reference systems. Spatial Reference Systems are defined
by the OGC (Open Geospatial Consortium) and are expressed in Well Known Text
(WKT) literals [9].

One of the most widely used standards is the WGS84 (World Geodetic System) refer-
ence system. All coordinates provided and obtained by SPARQL queries are expressed
in WGS84 literals by default; other reference systems can, of course, be specified. Since
the raster itself can have a different Spatial Reference System, the coordinates of the
query have to be transformed into coordinates suitable for the dataset of the raster.

When we want to make operations on the raster by providing geo coordinates, we
not only have to convert the geo coordinates into the correct Spatial Reference System,
we also have to convert them into raster coordinates. In order to do this, the raster

7

8 CHAPTER 2. METHODS IN GENERAL

provides an affine geotransfom. The geotransform is a matrix providing all necessary
parameters to make the calculations. For example, in GDAL (see Section 3.1.1), in the
case of north-up images (when theres no rotation involved), the geotransform consists of
4 parameters: the pixel width and height (in geo coordinates) and the geo coordinates
of the top-left corner [10].

2.5 Feature description

For the feature description approach, we need RDF for describing the context and the
parameters of our operations in terms of Basic Graph Patterns.

To achieve the execution of a certain operation in SPARQL, we need to express our
function call as a set of Basic Graph Patterns. This means, that we have to identifiy
each operation on raster objects as a query predicate with its own IRI. For example, the
Basic Graph Pattern ?points gis:lessThan 500 would execute the function to which
gis:lessThan points to and would in this case return all points on the selected raster
that have a lower value than 500.

8

3

Methods implementation

3.1 Querying a raster file

In order to evaluate SPARQL queries involving raster files, we have to find efficient
methods for reading the metadata of the raster file and exposing it as an RDF Graph,
such that it can be queried in SPARQL. We also need a method for hooking into the
SPARQL engine in order to evaluate our own Basic Graph Patterns. In the following
sections, we will outline all the relevant techniques and tools used to achieve these goals.

3.1.1 Reading the metadata of a raster

To open and read a georeferenced raster file, we need the gdal python-bindings from
osgeo [11]. GDAL is an opensource translator library for raster and vector geospatial data
formats [12]. GDAL provides a convenient interface to obtain general metadata, such
as width, height, the number of bands etc, as well as geographic metadata, such as the
central longitude/latitude, the vertical and horizontal resolution, the Spatial Reference
System and the geotransform (see also Section 2.4) . With the help of gdal, we can
represent a raster file as a memory object by mapping the relevant metadata into a
python class. This is already implemented in the lrdgdal framework [13].

3.1.2 Exposing a raster as an RDF graph

In the next step we convert the metadata of a raster file into a set of RDF triples. For
every raster file, there is one graph (the default graph) that stores the metadata of the
raster and one named graph that stores the metadata of a band in the raster. This has
also already been implemented in lrdgdal. We illustrate a query that retrievs all bands
of a raster with the IRI ”http://example.com/raster” in Listing 3.1:

10 CHAPTER 3. METHODS IMPLEMENTATION

PREFIX java : <http :// e v o l i z e r . org / o n t o l o g i e s / seon /2009/06/ java . owl#>
PREFIX gdal : <http :// scharrenbach . net /gdal#>
PREFIX rdf : <http ://www. w3 . org /1999/02/22−rdf−syntax−ns#>
PREFIX geo : <http ://www. openg i s . net /ont / geosparq l#>
SELECT ? r e s u l t WHERE {

<http :// example . com/ ra s t e r> gdal : Band ?b .
}

Listing 3.1: An lrdgdal example query

3.1.3 Using the SPARQL engine of rdflib to evaluate Basic Graph
Patterns and custom functions

To process SPARQL queries we use rdflib. Rdflib is a Python library for working with
RDF. It also comes with a built-in SPARQL-Engine [14].

When we want to evaluate our own custom functions, we can do this by writing our own
evaluation function for the Basic Graph Pattern (BGP) matching. From there, we have
access to all triples in a basic SPARQL query. We can then define our own predicates in
our own namespace and process all triples that match our predicates. With help of these
predicates, we can than specify our function calls in triple patterns. All other triples
that are not in our namespace are delegated to the query processor of rdflib.

An exampe query, where we retrieve a single value belonging to a specific geocoordinate
in the raster for the first band is illustrated in Listing 3.2.

PREFIX gdal : <http :// scharrenbach . net /gdal#>
PREFIX rdf : <http ://www. w3 . org /1999/02/22−rdf−syntax−ns#>
SELECT ∗ WHERE {

?g a gdal : Band .

Graph ?g {
? band value gdal : Function gdal : GetPixelValue .
? band value gdal : Param1 POINT(4 7 . 3 6 , 7 . 8 5) .

}
}

Listing 3.2: query for retrieving a single pixelvalue

First we define that ?g is a gdal:Band and since all bands are treated as named graphs,
we have to execute the query for retrieving the pixel value in the GRAPH-section of the
query. We first specify the function we want to execute and then the parameters of
the function, which in this case is the georeferenced point. From our custom evaluation
function, we can then access the pixeldata of the band from the query context, which is
in this case the band graph.

As mentioned before, we have to define our own predicates and objects that are in
this case: gdal:Function, gdal:GetPixelValue and gdal:Param1. We will use this

10

3.1. QUERYING A RASTER FILE 11

structure to specify all our function calls.

Problems with rdflib and workaround The case with have described above is a
SPARQL approach to specify function calls in terms of triple patterns that should reflect
the underlying graph structure. This is the ideal case.

In practice, we have experienced several problems with rdflib that prevented us from
implementing our queries in the way we described before:

• The query processor of rdflib always evaluates the triples inside the GRAPH-
section before all other triples. This prevents us from restricting the graph variable
(?g in the case before) and thus we are not able to reflect the graph structure of
lrdgdal in our queries.

• Another problem is that we can not mix BGPs with other expression like BIND
or FILTER. This is also due to the execution order of rdflib. The Basic Graph
Patterns are always executed before the other expressions. This is a problem since
we may want to use a BIND-expression to execute a custom function and process
the result further or we want to use a FILTER-expression to restrict the result set
before further processing.

To prevent the problems from above, we would have to seriously modify the framework,
which is beyond the scope of this work. Therefore, we had to find a workaround to
simulate the execution of our Basic Graph Pattern evaluation.

Custom functions Direct function calls are already implemented on most SPARQL
endpoints. One example is the ”CONCAT” function for concatenating two strings to-
gether [1]:

PREFIX f o a f :<http :// xmlns . com/ f o a f /0.1/>
SELECT (CONCAT(?G, ” ” , ?S) AS ?name)
WHERE { ?P f o a f : givenName ?G ; f o a f : surname ?S }

Listing 3.3: Concatenation of 2 strings in SPARQL

When we want to store the result of the function as a new variable for further pro-
cessing, we can do this with the BIND expression [1]:

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
SELECT ?name
WHERE {

?P f o a f : givenName ?G ;
f o a f : surname ?S

BIND(CONCAT(?G, ” ” , ?S) AS ?name)
}

Listing 3.4: Concatenation of 2 strings with BIND expression

11

12 CHAPTER 3. METHODS IMPLEMENTATION

Every SPARQL endpoint has a set of built-in functions. At the same time, SPARQL
can be extended by providing custom functions. When we want to execute our own
functions, we have to extend our SPARQL engine, since by default, rdflib doesnt allow
that.

In our custom functions, we can access the query context, that is the dataset, that
holds all our rasters and bands. From there, we can access all the data we need for the
evaluation.

Consider the example from Listing 3.2, where we queried a pixel value for all bands.
With custom functions, we can write the same query like this:

PREFIX gdal : <http :// scharrenbach . net /gdal#>
PREFIX rdf : <http ://www. w3 . org /1999/02/22−rdf−syntax−ns#>
SELECT ∗ WHERE {

? r a gdal : Raster .
BIND(gdal : GetRasterBand (? r , 1) AS ?b1)
BIND(gdal : GetRasterBand (? r , 2) AS ?b2)
BIND(gdal : GetRasterBand (? r , 3) AS ?b3)
BIND(gdal : GetPixelValue (? b1 , POINT(4 7 . 3 6 , 7 . 8 5)) AS ?pv1)
BIND(gdal : GetPixelValue (? b2 , POINT(4 7 . 3 6 , 7 . 8 5)) AS ?pv2)
BIND(gdal : GetPixelValue (? b3 , POINT(4 7 . 3 6 , 7 . 8 5)) AS ?pv3)

}

Listing 3.5: query for retrieving a single pixelvalue with extension functions

This query does exactly the same thing like the query 3.2. Actually, its not the idea
of SPARQL to make excessive use of BIND expressions and custom functions, because
the graph structure of our raster can not be reflected in the queries with this approach.
However, because of the problems we experienced with rdflib, we had to find a suitable
workaround.

In the coming sections and chapters, we will always write our queries in BGP-form
but in our implementation, we will simulate the queries by using custom functions.

3.2 Clipping of a raster

When we do calculations on a raster file, we execute operations on a restricted area of
the raster. Do define this area we provide a polygon as WKT Literal and generate a
binary mask out of it. The masking process is illustrated in Figure 3.1.

With the help of the mask and the bounding box, we generate a new dataset with
bands that are restricted to the area in the boundingbox of the mask. The lrdgdal
framework already provides methods for the clipping of a dataset.

In order to implement clipping in our application, we can define a new function
”ClipRasterToPolygon” which expects a valid IRI of the raster we want to clip, a polygon
that defines the clipping region and a name for the new raster. Below is an example query
that clips a single (already loaded) raster with the IRI ”http://example.com/raster” to
a polygon and returns the IRI of the new raster as result.

12

3.3. INTERSECTING MULTIPLE RASTERS AND BANDS 13

Figure 3.1: Illustration of the masking process [15].

PREFIX gdal : <http :// scharrenbach . net /gdal#>
PREFIX rdf : <http ://www. w3 . org /1999/02/22−rdf−syntax−ns#>
SELECT ∗ WHERE {

? i r i gdal : Function gdal : ClipRasterToPolygon .
? i r i gdal : Param1 ” http :// example . com/ r a s t e r ” .
? i r i gdal : Param2 ”POLYGON((4 7 . 1 3 7 . 5 8) , (4 7 . 3 6 , 7 . 5 4) , (47 . 13 7 . 5 8)) ” .
? i r i gdal : Param3 ”wald” .

}

Listing 3.6: query for clipping a raster to a polygon

3.3 Intersecting multiple rasters and bands

When we want to execute useful geo operations on raster data, we often have to query
multiple maps to obtain the result. Consider the example from Section 2.2, where we
wanted to find all nature reserves in Switzerland with at least 20 percent forest area and
all intersecting municipalities.

To answer the query, we have to go through the following steps:

1. We first have to take a map that contains all forest areas in Switzerland. We then
generate a binary map, that marks every forest pixel on the map with a one and
all other pixels with a zero.

2. We intersect the binary map with a map containing all nature reserves of switzer-
land to obtain the intersecting areas.

3. In the last step, we take the result and intersect it with a map containing all
municipalities of Switzerland to obtain the final result.

13

14 CHAPTER 3. METHODS IMPLEMENTATION

In the example, we can use different raster files for each map. However, intersecting
raster files is not that easy as it may look at the first glance. When we intersect different
raster files, we have to take different problems into account:

• The different rasters may not cover the same geographic area. That means, we
need to calculate the intersection of the rasters and clip both to the resulting
bounding box.

• The different rasters may have different Spatial Reference Systems. This implies
that we have to convert them into the same system.

• Raster files can have different spatial resolutions. Therefore, the same geographic
area can cover more pixels on one raster, than it covers on another raster.

Figure 3.2: Intersection of two rasters [16]

The first two problems are solved, since we already have functions provided in the
framework for this tasks. For solving the third problem, we need to interpolate pixel
values and convert all rasters to the same resolution. We have multiple ways to do this.
Here we will outline two of them:

• We use the gdal translate command from the gdal framework to convert the whole
raster (and thus all bands) into another spatial resolution [12]. Lets assume that
we have a raster from a file called ”forest.tif” and we want to convert it to the
resolution 800 X 600. Then we would execute the following command from the
gdal-bin library:

g d a l t r a n s l a t e −o f GTiff −o u t s i z e 800 600 f o r e s t . t i f f o r e s t 2 . t i f

Listing 3.7: A gdal translate command

This will create a new raster file with a different spatial resolution that can be
loaded into our dataset as a new graph.

• Another approach is to only convert the raster arrays themselves if we have binary
operations involving another rasters with other resolutions. We can do this with the
”zoom” function of scipy when we use numpy arrays to store our raster data [17].

14

3.3. INTERSECTING MULTIPLE RASTERS AND BANDS 15

A downsampling example with two arrays A and B with different resolutions looks
like the following:

sca leX = f loat (B. shape [0] /A. shape [0])
sca leY = f loat (B. shape [1] /A. shape [1])
out = sc ipy . ndimage . i n t e r p o l a t i o n . zoom(A, [scaleX , sca leY])

Listing 3.8: A downsampling example

When using the first approach, we always have to convert the whole raster, even if
we only need a single band. The creation of a new file each time we have to rescale the
raster is also a large overhead. When we use the second method, we dont have these
problems and we can convert the arrays when we need to. Therefore, we decided in
favour of the second approach. However, when we want to convert the resulting array of
a map operation back to GeoTiff, we have to take into account that the spatial resolution
changed and we have to recalculate the geotransform manually.

We could ommit all problems resulting from the intersection of different rasters when
we only work with bands inside the same raster file. This way, we would have no problems
with different resolutions, spatial reference systems and geographic areas. However, this
approach proved as not suitable for our task, since we want to be able to load different
raster files from different servers (see also Section 3.7) and intersect them to perform our
calculations. With one raster, this is not possible, because we would have to ”pack” all
maps we need manually into the same raster file, which is not a dynamic and practical
approach for the user of our endpoint. Therefore we decided against this approach.

Figure 3.3: Illustration of multiple bands of a raster [18].

15

16 CHAPTER 3. METHODS IMPLEMENTATION

3.4 The structure of Linked Raster Data queries

When we construct SPARQL queries involving raster data, we go through the same
steps:

1. We obtain our georeferenced points or possibly polygons for which we want to
calculate something on the raster either locally or from a remote endpoint. This
step is optional.

2. We select the rasters and bands on which we want to calculate.

3. We get the data (the pixel values) of the selected bands.

4. We perform the actual operations, such as projections and aggregations, on the
matrices of the bands.

5. In the last step, we return the result in a useful format for the user (optional).

In the last step, we have to convert the resulting matrix (the pixel values) back into a
raster file format like GeoTiff.
In order to be able to convert the matrix into a raster file, we have to get the relevant
metadata of the raster (like SRS, GeoTransform, width and height). We can obtain
these values when we reference the raster belonging to the pixelvalues we have obtained.
From this raster we can then take the Spatial Reference System. The geotransform
has to be recalculated since the resolution of the arrays could have changed. A simple
query that adds two bands of a single raster file (that is already loaded) with the IRI
”http://example.com/raster” and returns the result as Base64-encoded GeoTiff file, is
illustrated in Listing 3.9.

16

3.5. DESCRIBING GEO OPERATIONS IN RDF 17

PREFIX java : <http :// e v o l i z e r . org / o n t o l o g i e s / seon /2009/06/ java . owl#>
PREFIX gdal : <http :// scharrenbach . net /gdal#>
PREFIX rdf : <http ://www. w3 . org /1999/02/22−rdf−syntax−ns#>
PREFIX geo : <http ://www. openg i s . net /ont / geosparq l#>
SELECT ? r e s u l t WHERE {

?b1 a gdal : Band
gdal : BandNumber 1 .

?b2 a gdal : Band .
gdal : BandNumber 2 .

GRAPH ?b1{
?pv1 gdal : Function gdal : GetPixelValues .

}
GRAPH ?b2{

?pv2 gdal : Function gdal : GetPixelValues .
}

?add gdal : Function gdal :ADD.
gdal : Param1 ?pv1 .
gdal : Param2 ?pv2 .

? r e s u l t gdal : Function gdal : CreateGeoTif f .
gdal : Param1 ” http :// example . com/ r a s t e r ” .
gdal : Param2 ?add .

}

Listing 3.9: Addition of 2 bands

As mentioned, we select the bands on which we want to perform our calculations.
Therefore we first provide the IRI of the raster from which we want to access the bands.
The second parameter is the index of the raster.

In the next step, we want to select the pixelvalues of the bands.

In the last section of the query, we finally perform our calculations on the pixelvalues
and return our result as a GeoTiff - string. For the CreateGeoTiff - function we also
provide the iri of the raster from which we want to copy the metadata.

3.5 Describing geo operations in RDF

In the last section, we discussed the structure of Linked Raster Data queries. We saw,
that we have to implement different functions in order to process useful queries.

In a real world application, we want to send our query to a SPARQL endpoint any-
where in the World Wide Web. Since our implementation of Linked Raster Data is only
available on our own Endpoint, we have to provide a mechanism that allows the user to
lookup all available extension functions and their descriptions on our server. We have
to provide all information necessary for the user to be able to construct his query.

17

18 CHAPTER 3. METHODS IMPLEMENTATION

We could provide all information necessary to use our endpoint on a website or in a
textfile, but that wouldn’t be a very dynamic or userfriendly approach. Consider for
example, that we have multiple endpoints that provide Linked Raster Data functions
and the user wants to find the most suitable for his needs. It would be very cumbersome
to search multiple websites or files to get all information necessary. It would be much
easier to just send a SPARQL query to different endpoints and compare the results.
Therefore, we have to describe our functions in RDF and add the resulting triples to our
Default Graph of the raster.

Meta Data In order to be able to describe our functions, we need a vocabulary for
all relevant properties that functions have.

When we want to describe subjects in a given domain, we use the same vocabulary
to describe them in RDF. For example, when we want to describe the country in which
some resource is located, we use the predicate dbo:country.

Since there doesn’t exist an implementation of Linked Raster Data that operates on
feature descriptions yet, we will just add predicates and objects in our own namespace
for our function descriptions.

The most important properties of a function are:

• The parameters of the function

• The name of the function

• A description of what the function does

• All parameters of the function and its result

• The datatypes of the parameters and the result

The description of our vocabulary in RDF is shown in Listing 3.10.

18

3.5. DESCRIBING GEO OPERATIONS IN RDF 19

gdal : Pixe lArray rdf : type gdal : Parameter .
gdal :Number rdf : type gdal : Parameter .
gdal : Integer rdf : type gdal : Parameter .
gdal : Base64 rdf : type gdal : Parameter .
geo : long rdf : type gdal : Parameter .
geo : l a t rdf : type gdal : Parameter .
gdal : Polygon rdf : type gdal : Parameter .
gdal : Radius rdf : type gdal : Parameter .
gdal : Raster IRI rdf : type gdal : Parameter .
gdal : Band IRI rdf : type gdal : Parameter .

gdal : Pixe lArray gdal : Datatype gdal : NumpyArray .
gdal :Number gdal : Datatype xsd : f loat .
gdal : Integer gdal : Datatype xsd : Integer .
gdal : RasterBand gdal : Datatype gdal : Band .
gdal : Base64 gdal : Datatype xsd : base64Binary .
geo : long gdal : Datatype geo : wktL i t e ra l .
geo : l a t gdal : Datatype geo : wktL i t e ra l .
gdal : Radius gdal : Datatype xsd : f loat .
gdal : Polygon gdal : Datatype geo : wktL i t e ra l .
gdal : Raster IRI gdal : Datatype xsd : s t r i n g .
gdal : Band IRI gdal : Datatype xsd : s t r i n g .

Listing 3.10: Description of the meta data

First we introduce all parameters we use in our functions and assign them the type
of gdal:Parameter. Then we describe the datatype of all parameters. For types, that
are already described in XML or GeoSparql, we use the appropriate namespace. For all
other types, we just introduce a datatype in the gdal-namespace.

The next step is the description of the actual functions. A block for one function is
shown in Listing 3.11.

gdal : l e s s e q u a l s rdf : type gdal : Function .
gdal : l e s s e q u a l s gdal : De s c r ip t i on ” Returns a binary matrix with ’ True ’ f o r

a l l va lue s sma l l e r or equal than the provided th re sho ld and ’ False ’
o therwi s e ” .

gdal : l e s s e q u a l s gdal : FunctionName ” l e s s e q u a l s ” .
gdal : l e s s e q u a l s gdal : Param1 gdal : Pixe lArray .
gdal : l e s s e q u a l s gdal : Param2 gdal :Number .
gdal : l e s s e q u a l s gdal :Output gdal : Pixe lArray .

Listing 3.11: description of the ”less equals” function

As mentioned before, we have to introduce predicates to describe the most important
properties of our functions. For the description of the parameters and the output, we
use the names from above.

When we want to find out all relevant information of the function with the name
”less”, we would write the query illustrated in Listing 3.12

19

20 CHAPTER 3. METHODS IMPLEMENTATION

PREFIX java : <http :// e v o l i z e r . org / o n t o l o g i e s / seon /2009/06/ java . owl#>
PREFIX gdal : <http :// scharrenbach . net /gdal#>
PREFIX rdf : <http ://www. w3 . org /1999/02/22−rdf−syntax−ns#>
PREFIX geo : <http ://www. openg i s . net /ont / geosparq l#>
SELECT ∗ WHERE {

? f a gdal : Function ;
gdal : FunctionName ’ l e s s ’ ;
?p ?o .

}

Listing 3.12: query for the ”less equals” function

3.6 Executing remote queries

In the example we have seen so far, when we needed some georeferenced coordinates,
we have provided them manually. One of the main goals of this thesis is to provide a
mechanism to integrate raster data and Linked Data.

In a real world application, we want to be able to query some georeferenced points or
whole polygons directly from a remote endpoint like dbpedia and link these coordinates
somehow to one or more georeferenced rasters to perform calculations. Therefore we
have to be able to ”outsource” a part of the whole Linked Raster Data query to a
remote endpoint.

SPARQL already supports queries on multiple endpoints with federated queries and
the SERVICE keyword [1]. In Listing 3.13 is an example that combines the results of
a local graph from a file (myfoaf.rdf) with the results of a remote graph with the IRI
”http://people.example.org/sparql”.

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
SELECT ?name
FROM <http :// example . org / myfoaf . rdf>
WHERE
{

<http :// example . org / myfoaf / I> f o a f : knows ? person .
SERVICE <http :// people . example . org / sparq l> {

? person f o a f : name ?name . }
}

Listing 3.13: federated query

At the moment of this writing, rdflib does not implement the SERVICE keyword.
But there exists another method to query remote graphs. With the python library
”rdflib sparqlstore” [19], we can wrap a remote endpoint into an rdflib graph object
and add it as a named graph to our dataset. We then have to make our remote query
inside the GRAPH-section of the SPARQL query, because we do not want to query the
default graph but the named graph. An example where we obtain the coordinates of
five municipalities in the canton of zurich is illustrated in Listing 3.20

20

3.7. INTEGRATION OF WMS SERVICES 21

PREFIX gdal : <http :// scharrenbach . net /gdal#>
PREFIX rdf : <http ://www. w3 . org /1999/02/22−rdf−syntax−ns#>
PREFIX geo : <http ://www. openg i s . net /ont / geosparq l#>
PREFIX prop : <http :// dbpedia . org / property/>
PREFIX dbo : <http :// dbpedia . org / onto logy/>
SELECT ∗ WHERE {

GRAPH ?g {
? r a dbo : Sett lement .
? r dbo : country <http :// dbpedia . org / r e sou r c e / Switzer land> .
? r prop : canton ” Zurich ”@en .
? r geo : l a t ? l a t .
? r geo : long ? long .
}

}
LIMIT 5

Listing 3.14: remote query

As you can see, we do not specify the name of the graph we want to query. Rdflib
does this automatically. To this time, we do not know why we can not state the graph
IRI explicitly. We have discussed the same issue in Section 3.1.3.

3.7 Integration of WMS services

WMS stands for Web Map Service and is a standard protocol for requesting georeferenced
maps from a server [20]. WMS supports different request types. The two most important
are:

• ”GetCapabilities - returns parameters about the WMS (such as map image format
and WMS version compatibility) and the available layers (map bounding box,
coordinate reference systems, URI of the data and whether the layer is mostly
opaque or not)” [20]

• ”GetMap - returns a map image. Parameters include: width and height of the
map, coordinate reference system, rendering style, image format” [20]

To get a better idea of a GetMap request, consider the following real world example.
The url in Listing 3.15 retrieves a forest map of the canton of zurich in switzerland as a
png image.

http ://wms. zh . ch/WaldarealZHWMS?LAYERS=WaldarealZHWMS
&SERVICE=WMS&VERSION=1.3.0&REQUEST=GetMap
&FORMAT=image%2Fpng%3B%20mode%3D8bit&CRS=EPSG%3A21781
&BBOX=680000 ,243000 ,696931 ,255698&WIDTH=800&HEIGHT=600

Listing 3.15: GetMap request for retrieving a categorical raster

When we look closer at the query, we can see that there are different parameters
included. In Listing 3.16 is a short description for each of them:

21

22 CHAPTER 3. METHODS IMPLEMENTATION

s e r v i c e − s e r v i c e name
reques t − operat i on name
ve r s i on − s e r v i c e ve r s i on
l a y e r s − l a y e r s to d i sp l a y
s r s − S p a t i a l Reference System f o r map output
format − format f o r the map output
width − width o f map output (in p i x e l s)
he ight − he ight o f map output (in p i x e l s)
bbox − bounding box f o r map extent (minx , miny , maxx , maxy)

Listing 3.16: Query parameters of a GetMap request [21]

Of course, we do not want to copy and paste a url in the browser window to retrieve
the map. We have to find a way to call a wms service in an automated fashion and
convert the resulting image (png in this case) to the GeoTiff format, such that we can
add it as a new raster graph in our application (see listing 3.19).

3.7.1 Implementation

There are multiple ways to implement an automated WMS service call. We will focus
on WMS service calls using the gdal library.

The gdal library provides us with the ”gdal translate” command. With ”gdal translate”
we can transform our image result into another file format. We can also change the Spa-
tial Reference System of the result file, if we want.

With ”gdal translate”, we have two ways of implementing our service call:

Using a service description file When we use a service description file, we provide
the parameters of our service call as an XML document. An example could look like the
example in Listing 3.17

22

3.7. INTEGRATION OF WMS SERVICES 23

<GDAL WMS>
<S e r v i c e name=”WMS”>

<Version >1.1.1</ Version>
<ServerUrl>http :// ganimed . geopor ta l . dgu . hr/cwms</ServerUrl>
<SRS>EPSG:3765</SRS>
<CRS>CRS: HTRS96</CRS>
<ImageFormat>image/ jpeg</ImageFormat>
<Layers>DOF</Layers>

</Serv ice>
<DataWindow>

<UpperLeftX>399609</UpperLeftX>
<UpperLeftY>4887306</UpperLeftY>
<LowerRightX>400326,</LowerRightX>
<LowerRightY>4888023</LowerRightY>
<Ti leLeve l >19</Ti l eLeve l>

<TileCountX>1</TileCountX>
<TileCountY>1</TileCountY>
</DataWindow>
<Pro jec t ion>EPSG:3765</ Pro jec t ion>
<BlockSizeX>256</BlockSizeX>
<BlockSizeY>256</BlockSizeY>
<BandsCount>3</BandsCount>

</GDAL WMS>

Listing 3.17: A service description file [21]

With a service description file, the gdal translate command could look like the example
in Listing 3.18.

g d a l t r a n s l a t e −o f GTiff −o u t s i z e 256 256 gdal wms dgu . xml g e o t i f f . t i f

Listing 3.18: gdal translate command

This approach is not very suitable for us, since we would have to generate an xml file
for each request. This can be a large overhead, especially when we have a lot of requests.

Using a GetMap request directly A faster and more practical approach to specify
a WMS service call, is to just provide a GetMap request in the query. This way, a user
can just copy and paste the url of the map he wants into the query and specify the region
he wants as a polygon.

Since we can not pass the GetMap request directly to the gdal translate command, we
have to first get the image result from the server and than use gdal translate to convert
it into the GeoTiff format with a specified Spatial Reference System. This can be done
with a simple shell-script like in Listing 3.19

23

24 CHAPTER 3. METHODS IMPLEMENTATION

ulx=”$2”
l r x=”$4”
l r y=”$5”
uly=”$3”
c r s=EPSG: ”$6”
url=”$1”
c u r l −o temp . png $ur l
g d a l t r a n s l a t e −a s r s ${ c r s } −a u l l r $ulx $uly $ l r x $ l r y temp . png temp . t i f

Listing 3.19: shell-script for retrieving a remote raster

We pass the Bounding Box and the Spatial Reference System as parameters, download
the image and than translate it to GeoTiff.

A query that retrieves a map from a WMS service is illustrated in Listing 3.20.

PREFIX gdal : <http :// scharrenbach . net /gdal#>
PREFIX rdf : <http ://www. w3 . org /1999/02/22−rdf−syntax−ns#>
PREFIX geo : <http ://www. w3 . org /2003/01/geo/ wgs84 pos#>
PREFIX dbo : <http :// dbpedia . org / onto logy/>
PREFIX rdfs : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX prop : <http :// dbpedia . org / property/>
SELECT ? r ?avg WHERE {

? r a dbo : Sett lement .
? r dbo : country <http :// dbpedia . org / r e sou r c e / Switzer land> .
? r prop : canton ” Zurich ”@en .
? r geo : l a t ? l a t .
? r geo : long ? long .

? poly gdal : Function gdal : CreatePolygonFromPoint .
gdal : Param1 ? long .
gdal : Param2 ? l a t .
gdal : Param3 2000 .

? r a s t e r i r i gdal : Function gdal : LoadRasterFromURL .
gdal : Param1 ” http ://wms. zh . ch/WaldarealZHWMS?LAYERS=

WaldarealZHWMS&SERVICE=WMS&VERSION=1.3.0&REQUEST=GetMap&
FORMAT=image%2Fpng%3B%20mode%3D8bit&CRS=EPSG%3A21781&BBOX
=680000 ,243000 ,696931 ,255698&WIDTH=800&HEIGHT=600” .

gdal : Param2 ”wald” .
gdal : Param3 ? poly .

}

Listing 3.20: query for loading a raster remotely

24

3.8. APPLICATIONS 25

3.8 Applications

To demonstrate the use of Linked Raster Data, one of the main goals of this work is
to develop different modules with specific or general use cases. In this thesis, we will
implement a small amount of general mathematical functions, map algebra operations
and geometric operations to demostrate the possibilities of Linked Raster Data.

Of course there are a huge amount of other operations from different domains we could
also implement, but that would take too much time for this thesis and is the subject of
future work.

3.8.1 Tomlins Map Algebra

Map Algebra is a set-based algebra. The main idea is to provide a set of primitive
mathematical operations, which take two or more raster layers (maps) as input and
return a new raster layer as output.

The provided operations include all primitive binary operations, such as addition,
subtraction, multiplication and division. Boolean operations can also be implemented.
In general, each operation that takes multiple maps as input and returns a new map can
be a map algebra operation.

In a further distinction, the operations can be categorized into 4 classes: local, focal,
global, and zonal. Local operations operate on single raster cells, or pixels. Focal
operations operate on cells and their surrounding neighbors, whereas global operations
operate on the entire map. Finally, zonal operations operate on areas of cells that have
the same value [22].

As being said, the output of each operation is a itself a map, therefore, the operations
can be combined into a procedure or script, in order to perform more complex tasks. [22]

Figure 3.4: Addition of 2 rasters [23]

In our application, we implemented the following Map Algebra operations:

• Addition of two raster

25

26 CHAPTER 3. METHODS IMPLEMENTATION

• Subtraction of two raster

• Multiplication of two raster

• Division of two raster

• Logical AND operation on two raster

• Logical OR operation on two raster

• Logical NOT operation on two raster

• Smaller operation on a raster

• Smaller-equals operation on a raster

• Greater-equals operation on a raster

• Equals operation on a raster

• Not-equals operation on a raster

3.8.2 Basic mathematical operations

In addition to our map algebra opertions, we need a small amount of aggregation func-
tions that return only one value per raster. This is useful, when we want to have
information about the values of a band as a whole.

One could argue that these are also map algebra operations since a number can be
seen as a 1x1 matrix. However, in this thesis we decided to separate all aggregation
functions from the map algebra operations, because it doesnt make sense to generate a
raster out of a single value.

We implemented the following operations:

• Minimum value

• Maximum value

• mean value

• median value

3.8.3 Geometric operations

When we want to define regions for which we want to perform raster operations, we
often have multiple polygons to intersect. Suppose we have the coordinates of two
municipalities and we want to know the percentage of forest that covers the intersection
of the two places in a radius of four kilometers.

To answer this query we have to first generate a polygon for all places that covers the
area in a radius of four kilometers. Then we have to intersect those polygons to obtain

26

3.8. APPLICATIONS 27

the final region for which we have to aggregate a map containing the forest area of these
regions.

For obtaining the two polygons only from the coordinates of the places and a desired
radius, we implemented a function ”GeneratePolygonFromPoint” which takes the lon-
gitude and latitude of a georeferenced point as well as a radius in meters to generate a
polygon with four points that lay on the circle defined by the radius.

There are already GeoSPARQL endpoints that support geometric operations on poly-
gons, for example for retrieving all places that lay in a certain area. However in our
endpoint we have to implement these operations ourselfs. For demonstration purposes,
we implemented the following operations:

• Intersection of 2 polygons

• Difference of 2 polygons

• Union of 2 polygons

27

4

Evaluation

4.1 Setup

As we saw in Chapter 2, we can evaluate our query for obtaining the geocoordinates on
which we want to calculate either locally or from a remote endpoint such as dbpedia.

In this chapter, we will measure the execution time with respect to different queries
(usecases) and different scenarios. The usecases differ in the number of raster files
on which we calculate our results. The resolution of the clipped regions stays always
constant. The scenarios differ in the way we fetch the rasters and geo-coordinates (either
local or remote). Another variable for the scenarios is the number of places, for which
will calculate the results.

The 3 usecases are formally defined as follows:

1. In the first usecase (UC1), we will use one raster. We make one projection (logical
less operation) and one aggregation (average) on the raster for each place.

2. In UC2, we will use two raster. We make three projections (2 x less operation, 1
x logical-and) and one aggregation (average) on the raster for each place.

3. In UC3, we will use three raster. We make five projections (3 x less operation, 2
x logical-and) and one aggregation (average) on the raster for each place.

Each usecase is executed in four different configurations:

1. The fetching of the raster files as well as the query for the geo coordinates are exe-
cuted remote. That means, we fetch the rasters via WMS and the geo coordinates
via dbpedia.

2. The fetching of the raster files as well as the query for the geo coordinates are
executed locally. That means, we load the rasters from a local file and we query
the local default graph for the coordinates.

3. We fetch the raster files via WMS and the geo coordinates locally.

4. We load the raster files locally and the geo coordinates via dbpedia.

30 CHAPTER 4. EVALUATION

With this configurations, we are able to measure the difference between local and
remote execution. Further we can examine different query execution strategies when
executing locally or remotely. As a third variable, we will execute each configuration for
one and five places on the map. This way, we will find out, how the query scales with
respect to the number of results.

Each scenario is executed 20 times. Scenarios with remote queries are executed during
different day times, since we dont want biased results resulting from different loads on
the server.

4.1.1 The three usecases

In the following subsection, we will look at the three usecases in more detail. All three
rasters are categorical rasters of the canton of zurich that are available online on the
WMS server [24]. The places are all municipalities that lay also in the canton of Zurich.
We will only give an abstract description of each query, since the actual queries are very
long. You can find them in Appendix A.1.

UC1 In the first query, we obtain the coordinates of a number of municipalities and
calculate for each the percentage of forest area in a radius of two kilometers. We need
a map with the forest area in the canton of zurich and mark all values that are not 255
(white) with a one. We than calculate the average of the resulting map to obtain the
percentage of forest in this area.

The query of UC1 is outlined in Listing 4.1.

SELECT ?avg WHERE {

Match coo rd ina t e s .
create a polygon from the coo rd ina t e s .
Cl ip the r a s t e r .
Match the f i r s t band .

GRAPH ?g{
Retr i eve p i x e l v a l u e s (pv) f o r the band .

}

execute f unc t i on ” sma l l e r ” (sma l l e r) on pv .
execute f unc t i on ” average ” f o r sma l l e r .

}

Listing 4.1: query of UC1. For the full query see A.1

30

4.1. SETUP 31

UC2 In the second query, we retrieve the coordinates of a number of municipalities
and calculate for each the percentage of forest area that lays on archelogical sites in a
radius of two kilometers. In addition to the forest map, we also make a projection on the
archeological map to mark the archelogical sites. We than calculate the logical and

function to get the intersection of forest sites and archeological sites. At the end we
obtain the average value of the resulting map like we did before.

The query of UC2 is outlined in Listing 4.2.

SELECT ?avg WHERE {

Match coo rd ina t e s .
create a polygon from the coo rd ina t e s .
Cl ip the f i r s t r a s t e r .
Cl ip the second r a s t e r .
Match the f i r s t band o f r a s t e r 1 .

GRAPH ?g{
Retr i eve p i x e l v a l u e s (pv1) f o r the band .

}

Match the f i r s t band o f r a s t e r 2 .

GRAPH ?g{
Retr i eve p i x e l v a l u e s (pv2) f o r the band .

}

execute f unc t i on ” sma l l e r ” (sma l l e r1) on pv1 .
execute f unc t i on ” sma l l e r ” (sma l l e r2) on pv2 .
execute f unc t i on ” l o g i c a l a n d ” (pro j) on sma l l e r1 and sma l l e r2
execute f unc t i on ” average ” f o r pro j .

}

Listing 4.2: query of UC2. For the full query see A.2

31

32 CHAPTER 4. EVALUATION

UC3 In the last query, we add a third raster that contains all memorial places in the
canton of zurich. As before, we additionally project the third raster to a binary map,
calulate the intersection to the other 2 maps and take the average as result.

The query of UC3 is outlined in Listing 4.3

SELECT ?avg WHERE {

Match coo rd ina t e s .
create a polygon from the coo rd ina t e s .
Cl ip the f i r s t r a s t e r .
Cl ip the second r a s t e r .
Cl ip the th i rd r a s t e r .
Match the f i r s t band o f r a s t e r 1 .

GRAPH ?g{
Retr i eve p i x e l v a l u e s (pv1) f o r the band .

}

Match the f i r s t band o f r a s t e r 2 .

GRAPH ?g{
Retr i eve p i x e l v a l u e s (pv2) f o r the band .

}

Match the f i r s t band o f r a s t e r 3 .

GRAPH ?g{
Retr i eve p i x e l v a l u e s (pv3) f o r the band .

}

execute f unc t i on ” sma l l e r ” (sma l l e r1) on pv1 .
execute f unc t i on ” sma l l e r ” (sma l l e r2) on pv2 .
execute f unc t i on ” sma l l e r ” (sma l l e r3) on pv3 .
execute f unc t i on ” l o g i c a l a n d ” (pro j) on sma l l e r1 and sma l l e r2 .
execute f unc t i on ” l o g i c a l a n d ” (pro j2) on sma l l e r3 and pro j .
execute f unc t i on ” average ” f o r pro j2 .

}

Listing 4.3: query of UC3. For the full query see A.3

4.2 Results

In this section we will illustrate the results of our experiments. In table 4.2, we summa-
rized the means and standard deviations of all evaluation runs. In Appendix A.2.1 you
will also find the plots for all configurations.

32

4.3. OBSERVATIONS 33

#rasters raster places #places mean std

1 remote remote 1 2.44s 1.45s

1 local local 1 0.15s 0.01s

1 remote local 1 0.44s 0.07s

1 local remote 1 2.00s 0.77s

1 remote remote 5 36.05s 18.71s

1 local local 5 0.35s 0.02s

1 remote local 5 0.61s 0.03s

1 local remote 5 35.52s 7.20s

2 remote remote 1 7.28s 2.66s

2 local local 1 0.30s 0.03s

2 remote local 1 0.77s 0.03s

2 local remote 1 1.99s 0.27s

2 remote remote 5 46.33s 15.77s

2 local local 5 0.69s 0.02s

2 remote local 5 1.13s 0.05s

2 local remote 5 39.27s 11.27s

3 remote remote 1 4.37s 1.92s

3 local local 1 0.46s 0.02s

3 remote local 1 1.18s 0.14s

3 local remote 1 2.98s 1.09s

3 remote remote 5 43.34s 12.80s

3 local local 5 1.03s 0.02s

3 remote local 5 1.68s 0.05s

3 local remote 5 39.35s 8.91s

4.3 Observations

When we look at the different statistics in the results section, we can immediately see
some big differences in the execution time of the different scenarios:

• All queries that evaluate the coordinates via remote endpoint, take much longer.
This observation is independent of the usecase. This is what we would expect,
since it takes time to query the endpoint and the load of the server can differ
significantly over time.

• All queries that evaluate the coordinates via remote endpoint have a relatively
large variance in comparison to local queries. This is also because the load of the
server can vary over time.

• The overhead for fetching the raster via WMS is small and constant. This is most
probably because this particular WMS server is visited less frequently than for
example the server of dbpedia. For other servers, this may not be the case and the
overhead can be significantly larger.

33

34 CHAPTER 4. EVALUATION

• In all queries that obtain the places remote, the execution time grows overpropor-
tional to the number of places. This means that the more results we have to fetch
from the remote endpoint, the larger the overhead will be.

Implications on the query structure As mentioned above, the number of results
that we fetch from a remote endpoint can have a big impact on the query execution
time. Therefore it is important to filter the results on the remote endpoint and not
locally. This is also important since local FILTER expressions are evaluated after all
other expressions (see Section 3.1.3). This means that we would execute operations on
the rasters for results we actually do not want.

34

5

Discussion

Based on our goals we have defined in the introduction, we can state the following:
To connect the data sets with existing Linked Open Data (LOD), such as GeoNames

and dbPedia in order to link entities from the Linked Open Data into the raster data.

• In the GeoSPARQL examples of the introduction chapter, we saw a way of linking
vector data to other linked data resources. Our goal was to implement similar
functions for linking raster data to linked data resources and express them as a set
of Basic Graph Patterns.

In Section 3.5 we saw one possible approach of describing our custom functions
in RDF. We saw how we can introduce our own predicates and resources for the
meta data and using them to describe our functions.

In Section 3.1.3 we have explained that the Basic Graph Pattern approach can
not be implemented in rdflib, because of the execution order of the query engine.
Therefore, we had to find a workaround for making our function calls. We saw,
that we can achieve the same functionality with help of extension functions and
BIND expressions.

An example of the original approach we saw in Listing 3.2. An example of the
second approach we saw in Listing 3.5.

In order to register our custom functions in the query engine, we had to modify
rdflib. We also have to take care when mixing BGPs and extension functions
because of the query execution order in rdflib.

In Section 3.6 we saw that we can not use federated queries to query remote
endpoints since rdflib does not implement the SERVICE keyword. We have found
a workaround by using the rdflib-sparqlstore [19] wrapper for the dbpedia endpoint
and add it as a named graph to our dataset. This way, we are able to execute
remote queries on the dbpedia endpoint. However, to this time, we can not specify
the endpoint we want to query because rdflib does not allow that. Therefore we
can only query one endpoint at the moment.

In Chapter 4, we saw that it is important to filter the results on the remote server
and not locally, because otherwise, we will compute all raster operations for all
results and the query will take significantly longer.

36 CHAPTER 5. DISCUSSION

To assemble statistical data, preferably from Swiss municipal, cantonal and federal
offices, and link these to Linked Open Data and the raster data.

• We did not succeed in assembling enough data from offical sources to achieve this
goal. Instead, we decided to implement WMS service calls to load raster files from
remote sources.

In Section 3.7 we have discussed two approaches to implement WMS service calls
in our application:

– Using a service description file to specify the call and retrieving the image
result and using gdal translate to transform into the GeoTiff format.

– Using a GetMap request directly to retrieve the image result from the server
and using gdal translate to transform it into the GeoTiff format.

We have concluded that the second approach is more suitable for our needs since
we dont have to generate an XML file for each request and because the user has
to specify less parameters but can just copy the url into the SPARQL query.

In Subsection 5.1.1 we have discussed that it would be desirable to load rasters
without explicitly copying the GetMap request into the query. Instead we could
use an index server to retrieve rasters by category. We explained that this is not
yet possible because the following conditions have to be fullfilled:

– We need a (or very few) servers for every country to retrieve the metadata
for all rasters.

– We need a protocol (or extend the WMS protocol) that supports categoriza-
tion of rasters.

To assemble a dataset of raster data, preferably of Swiss municipal, cantonal and
federal resources.

• Since we implemented WMS service calls in our application, we used the WMS
server of the canton of zurich [24] to retrieve the rasters for our examples and
usecases.

In the following section, we will discuss the limitations of our application so far and
what future work needs to be done in order to fully integrate raster data with Linked
Data in a real world application.

5.1 Limitations

Altough we worked out a possible query structure and some additional features useful
for Linked Raster Data queries, we still have limitations in our application:

• the lack of a broad support of raster functions for different domains and raster
types. We will discuss this issue in Section 5.1.2.

36

5.1. LIMITATIONS 37

• the limited support for WMS services we have implemented so far. We will discuss
how we could improve the support in Section 5.1.1.

• at the moment, our application does only support one remote endpoint (dbpedia).
We will discuss how to add additional endpoints in Section 5.1.3.

5.1.1 Indexing of rasters

So far, the user of our enpoint can load a raster from a WMS server by copying the
GetMap-request for the map he needs directly into the query (see Section 3.7). It also
can restrict the result map to the polygon he provides to our function.

This method described above is only suitable when the user of our endpoint knows
exactly which raster he needs and where to find it. It is also possible, that the user does
not know where to search for WMS services or he does not know which raster he will
need for his query.

It would be very useful when the user could search for rasters by category and/or
location that he needs for his query and our server would automatically retrieve one or
multiple rasters that match his conditions.

One possibility to make this possible, is to implement an index server for WMS re-
quests, that stores the metadata for every GetMap request:

• the boundingbox of the area the raster covers (in geo coordinates)

• the Spatial Reference System of the raster

• the category/categories of the data the raster stores

• the GetMap request to retrieve the raster

With this information, we are able to resolve maps for which the user has only to
specify the category and a point or polygon that has to lay in the raster. A further
restriction could be the number of maps he wants to use, since there can be multiple
maps satisfying his conditions. He could also select the average value from a specified
number of rasters. This behaviour could be useful to correct outliers or inaccurate
results.

Suppose a user wants to query a map containing elevation data for the point (7.566,
47.695). He could then load a suitable map with an expression like in Listing 5.1.

? r a s t e r gdal : Function gdal : LoadRasterByCategory .
gdal : Param1 ” e l e v a t i o n ” .
gdal : Param2 POINT(7 .566 47 .695) .

Listing 5.1: A possible query for loading a raster by category

In this simple example, we assume that we take the first raster that satisfies our
condition.

37

38 CHAPTER 5. DISCUSSION

Challenges In order to implement such an index server, a lot of work needs to be done.
For every country, there exist a huge amount of rasters that are usually not available
from a central WMS server. If there was a central WMS server for every country, we
could make a GetCapabilities request (see Section 3.7) to retrieve most metadata for
a map like the boundingbox, the supported Spatial Reference Systems and supported
image formats. But there are no raster categories available in WMS and therefore we
would still have to look at the data and decide for every map in which category it belongs.
Doing this for every country would still need a lot of workforce and time.

So we can conclude that to make a raster index server possible on a global scale, there
are two main challenges that have to be done:

• We need a (or very few) servers for every country to retrieve the metadata for all
rasters.

• We need a protocol (or extend the wms protocol) that supports categorization of
rasters.

5.1.2 Implementation of additional functions

So far we saw a small number of logical and mathematical functions in Section 3.8.
However there are still a lot of possible operations that could be implemented.

Consider for example that you want to go on a ski tour and you want to know where
the avalanche zones lay. Avalanche zones are zones with an ascending slope greater than
30 degrees. When we dont have a map containing the slopes of an area but only the
elevation map, we would need to calculate the derivative for our map.

Another example could be the statistical evaluation of multiple maps of the same
category that cover the same area. A user could be interested in comparing different
statistical properties of the maps. In this case we would need to implement further
statistical functions for the calculation of the variance or the percentiles of the dataset.

A limitation that we have not discussed yet, is the interpretation of categorical raster
data and its implications on our customfunctions. Consider for example that we have a
categorical raster containing the population density of a country and we want to know
the number of people that live in a an area bounded by a polygon.

In this case we have to first resolve the actual densities for every pixel in the region,
since we can not work directly with the colour value of the map. We can obtain the
density value of a pixel with help of the metadata that is encoded in the raster file. We
than perform a weighted sum over all pixels in the bounded area. The weight of a pixel
is its area in square kilometers.

Aggregation operations on categorical rasters are at the moment only partially pos-
sible, because we would need to implement special functions for density rasters such as
the transformation into actual densities instead of colour avalues and the calculation of
the weighted sum.

38

5.1. LIMITATIONS 39

5.1.3 Support for more remote endpoints

At the moment, we can only query the remote endpoint of dbpedia (see Section 3.6). In
a real world application it would be desirable to specify different endpoints in our query,
since a lot of ressources and functions are not available on every endpoint.

Since rdflib does not support the ”SERVICE” keyword and we can not specify the
named graph we want to query (see also Section 3.6), this is not possible at the mo-
ment. We hope that in the future, the support for federated queries in rdflib will be
implemented.

39

6

Related Work

6.1 Geo Data as Linked Data

Fleischli [5] wrote a master thesis about the topic of exposing geo data as Linked Data.
He discussed standards for linking vector data, such as GeoSPARQL [?] or linkedgeo-
data.org [2] as well as new approaches for the linking of raster data.

In his thesis he discusses two possible approaches to link raster data:

• The VKE approach

The VKE approach stands for ”Vektorisierte Kleinste Einheiten” and can be used
to represent raster as well as vector data in RDF. The idea is to extract features
from a raster and store them explicitly in RDF such that they can be queried
directly without further processing. This is the same concept as the ”explicit
features” approach we discussed in Section 2.3.

• The ARO approach

ARO stands for ”Ausgegliederte Räumliche Operationen”. It is the idea of using
parametrized geo operations to calculate features of a raster in a context sensitive
way. It is the same idea like the ”feature description” approach we discussed in
Section 2.3.

In his thesis, he concludes that the first approach is difficult to implement since the
implicit fatures in the raster have to be explicitly stored in RDF. This means that we
have to decide which features we want to extract in what quality. Using this approach,
we are not able to answer all possible usecases for a raster. We have discussed the same
problem in Section 2.3 and came to the same conclusion.

6.2 Linked Raster Data

Scharrenbach, Bischof, Fleischli and Weibel [4] also discussed the theory and possible
imlementations of Linked Raster Data in their paper. Concerning the implementation
of Linked Raster Data, they came up with the two approaches of explicit features and
feature descriptions, which we have already discussed in Section 2.3.

42 CHAPTER 6. RELATED WORK

The paper also proposes to use RDF to describe the semantics and parameters of geo-
operations, such that they can be queried on the endpoint. We discussed the description
of functions in Section 3.5.

42

7

Conclusions

In chapter 1 of this document, we discussed two approaches of implementing Linked
Raster Data: explicit features and feature description. We decided to implement the
features description approach.

In Chapter 3, we saw a possible implementation of an endpoint. We discussed a possi-
ble query structure and its implementation in python with help of rdflib and lrdgdal. We
did not succeed in implementing the Basic Graph Pattern approach in our application,
because of the execution order of the query engine. We had to find a workaround for
making our function calls. We simulated the same functionality with help of extension
functions and BIND expressions. We conclude that we were successfull in linking Linked
Data to raster data but the implementation is not optimal because of the lack of certain
features in the SPARQL engine of rdflib.

Further, we saw how to integrate remote endpoints into our queries in Section 3.6.
Since rdflib does not implement the SERVICE keyword, we had to find a workaround
by using the rdflib-sparqlstore wrapper for the endpoint. With this implementation,
we can not query more than one remote endpoint, because we can not explicitly define
the graph, on which the query is executed. We conclude that the integration of remote
endpoints is not a problem when the SPARQL engine supports federated queries.

We were not able to collect a lot of raster data from official sources. Instead, we
decided to implement WMS service calls to load raster files remotely and use a WMS
server to obtain the maps for our queries. We conclude that using the GetMap request
directly in our queries to specify the service call, is the most suitable approach for us,
because we do not need to specify a service description file for every call. In Section [?],
we conclude that in order to search rasters by category, we would need a central map
server for every country as well as a protocol, that supports raster categories.

In Chapter 4, we evaluated three usecases in different configurations. We conclude
that remote queries take significantly longer. Further we conclude that it is important
to filter the results on the remote server and not locally, because otherwise, we have to
compute all raster operations for all results.

Finally, we can conclude that we successfully implemented an approach that combines
Linked Data and raster data with help of the SPARQL query language. We hope that
in the future, there will be more research in the area of Linked Raster Data.

References

[1] Antoniou, van Harmelen A semantic Web primer. Cambridge, Massachusets, MIT
Press, 2008

[2] http://linkedgeodata.org/About

[3] http://openstreetmap.org

[4] Scharrenbach, Bischof, Fleischli, Weibel. Linked Raster Data. University of Zurich,
Department of Informatics, Zurich

[5] Fleischli (2012). Geodaten als Linked Data Eine Untersuchung zur Strukturierung
und Vernetzung von Umweltdaten für das Semantic Web. Geographic Institut,
University of Zurich, Zurich

[6] http://en.wikipedia.org/wiki/Map projection

[7] http://en.wikipedia.org/wiki/File:Usgs map miller cylindrical.PNG

[8] http://en.wikipedia.org/wiki/File:Usgs map azimuthal equidistant.PNG

[9] http://en.wikipedia.org/wiki/Spatial reference system

[10] http://www.gdal.org/gdal datamodel.html

[11] http://www.osgeo.org/

[12] http://www.gdal.org

[13] https://pypi.python.org/pypi/lrdgdal/0.0.4

[14] http://www.rdflib.net

[15] http://resources.esri.com/help/9.3/arcgisengine/java/gp toolref/geoprocessing/GPKAC Extract by mask.gif

[16] https://trac.osgeo.org/mapguide/attachment/wiki/MapGuideRfc51/MapRasterIntersection.png

[17] http://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.ndimage.interpolation.zoom.html

46 References

[18] http://resources.arcgis.com/en/help/getting-started/articles/GUID-5BD98316-
8BF4-430C-BA24-F47EFF8BF66D-web.png

[19] https://github.com/RDFLib/rdflib-sparqlstore

[20] http://en.wikipedia.org/wiki/Web Map Service

[21] http://ipasic.com/article/get-data-wms-layers-using-gdal-and-python/

[22] https://en.wikipedia.org/wiki/Map algebra

[23] http://2012books.lardbucket.org/books/geographic-information-system-
basics/section 12/095c6533afae0ad16c99688a3d0d489e.jpg

[24] http://www.geolion.zh.ch/opendata

[25] https://en.wikipedia.org/wiki/GeoSPARQL

46

A

Appendix

A.1 Raster queries from Chapter 4

PREFIX gdal : <http :// scharrenbach . net /gdal#>
PREFIX rdf : <http ://www. w3 . org /1999/02/22−rdf−syntax−ns#>
PREFIX geo : <http ://www. openg i s . net /ont / geosparq l#>
PREFIX prop : <http :// dbpedia . org / property/>
PREFIX dbo : <http :// dbpedia . org / onto logy/>
SELECT ?avg WHERE {

GRAPH ?g{

? r a dbo : Sett lement .
? r dbo : country <http :// dbpedia . org / r e sou r c e / Switzer land> .
? r prop : canton ” Zurich ”@en .
? r geo : l a t ? l a t .
? r geo : long ? long .

}

? poly gdal : Function gdal : CreatePolygonFromPoint .
gdal : Param1 ? long .
gdal : Param2 ? l a t .
gdal : Param3 2000 .

? r a s t e r gdal : Function gdal : ClipRasterToPolygon .
gdal : Param1 ” http :// example . com/ r a s t e r ” .
gdal : Param2 ? poly .
gdal : Param3 ”wald” .

? r a s t e r gdal : Band ?band .
?band gdal : BandNumber 1 .

GRAPH ?band{
?pv1 gdal : Function gdal : GetPixelValues .

}

? l e s s gdal . Function gdal : sma l l e r .
gdal : Param1 ?pv1 .

48 APPENDIX A. APPENDIX

gdal : Param2 255 .

?avg gdal : Function gdal : average .
gdal : Param1 ? l e s s .

}

Listing A.1: query of the first usecase

PREFIX gdal : <http :// scharrenbach . net /gdal#>
PREFIX rdf : <http ://www. w3 . org /1999/02/22−rdf−syntax−ns#>
PREFIX geo : <http ://www. openg i s . net /ont / geosparq l#>
PREFIX prop : <http :// dbpedia . org / property/>
PREFIX dbo : <http :// dbpedia . org / onto logy/>
SELECT ?avg WHERE {

GRAPH ?g{

? r a dbo : Sett lement .
? r dbo : country <http :// dbpedia . org / r e sou r c e / Switzer land> .
? r prop : canton ” Zurich ”@en .
? r geo : l a t ? l a t .
? r geo : long ? long .

}

? poly gdal : Function gdal : CreatePolygonFromPoint .
gdal : Param1 ? long .
gdal : Param2 ? l a t .
gdal : Param3 2000 .

?wald gdal : Function gdal : ClipRasterToPolygon .
gdal : Param1 ” http :// example . com/ r a s t e r 1 ” .
gdal : Param2 ? poly .
gdal : Param3 ”wald” .

? archeo gdal : Function gdal : ClipRasterToPolygon .
gdal : Param1 ” http :// example . com/ r a s t e r 2 ” .
gdal : Param2 ? poly .
gdal : Param3 ” archeo ” .

? r a s t e r 1 gdal : Band ?band1 .
?band1 gdal : BandNumber 1 .

GRAPH ?band1{
?pv1 gdal : Function gdal : GetPixelValues .

}

? r a s t e r 2 gdal : Band ?band2 .
?band2 gdal : BandNumber 1 .

GRAPH ?band2{
?pv2 gdal : Function gdal : GetPixelValues .

}

48

A.1. RASTER QUERIES FROM CHAPTER 4 49

? l e s s 1 gdal . Function gdal : sma l l e r .
gdal : Param1 ?pv1 .
gdal : Param2 255 .

? l e s s 2 gdal . Function gdal : sma l l e r .
gdal : Param1 ?pv2 .
gdal : Param2 255 .

? pro j gdal : Function gdal : l o g i c a l a n d .
gdal : Param1 ? l e s s 1 .
gdal : Param2 ? l e s s 2 .

?avg gdal : Function gdal : average .
gdal : Param1 ? pro j .

}

Listing A.2: query of the second usecase

PREFIX gdal : <http :// scharrenbach . net /gdal#>
PREFIX rdf : <http ://www. w3 . org /1999/02/22−rdf−syntax−ns#>
PREFIX geo : <http ://www. openg i s . net /ont / geosparq l#>
PREFIX prop : <http :// dbpedia . org / property/>
PREFIX dbo : <http :// dbpedia . org / onto logy/>
SELECT ?avg WHERE {

GRAPH ?g{

? r a dbo : Sett lement .
? r dbo : country <http :// dbpedia . org / r e sou r c e / Switzer land> .
? r prop : canton ” Zurich ”@en .
? r geo : l a t ? l a t .
? r geo : long ? long .

}

? poly gdal : Function gdal : CreatePolygonFromPoint .
gdal : Param1 ? long .
gdal : Param2 ? l a t .
gdal : Param3 2000 .

?wald gdal : Function gdal : ClipRasterToPolygon .
gdal : Param1 ” http :// example . com/ r a s t e r 1 ” .
gdal : Param2 ? poly .
gdal : Param3 ”wald” .

? archeo gdal : Function gdal : ClipRasterToPolygon .
gdal : Param1 ” http :// example . com/ r a s t e r 2 ” .
gdal : Param2 ? poly .
gdal : Param3 ” archeo ” .

?denkmal gdal : Function gdal : ClipRasterToPolygon .
gdal : Param1 ” http :// example . com/ r a s t e r 3 ” .

49

50 APPENDIX A. APPENDIX

gdal : Param2 ? poly .
gdal : Param3 ”denkmal” .

? r a s t e r 1 gdal : Band ?band1 .
?band1 gdal : BandNumber 1 .

GRAPH ?band1{
?pv1 gdal : Function gdal : GetPixelValues .

}

? r a s t e r 2 gdal : Band ?band2 .
?band2 gdal : BandNumber 1 .

GRAPH ?band2{
?pv2 gdal : Function gdal : GetPixelValues .

}

? r a s t e r 3 gdal : Band ?band3 .
?band3 gdal : BandNumber 3 .

GRAPH ?band3{
?pv3 gdal : Function gdal : GetPixelValues .

}

? l e s s 1 gdal . Function gdal : sma l l e r .
gdal : Param1 ?pv1 .
gdal : Param2 255 .

? l e s s 2 gdal . Function gdal : sma l l e r .
gdal : Param1 ?pv2 .
gdal : Param2 255 .

? l e s s 3 gdal . Function gdal : sma l l e r .
gdal : Param1 ?pv3 .
gdal : Param2 255 .

? pro j gdal : Function gdal : l o g i c a l a n d .
gdal : Param1 ? l e s s 1 .
gdal : Param2 ? l e s s 2 .

? pro j2 gdal : Function gdal : l o g i c a l a n d .
gdal : Param1 ? pro j .
gdal : Param2 ? l e s s 3 .

?avg gdal : Function gdal : average .
gdal : Param1 ? pro j2 .

}

Listing A.3: query of the third usecase

50

A.2. PLOTS OF THE EVALUATION 51

A.2 Plots of the evaluation

A.2.1 All queries of the first usecase

0 5 10 15 20 25
0

1

2

3

4

5

6

7

runs

ti
m

e
(s

)

UseCase 1, all remote, 1 place

Figure A.1: All remote, 1 Place

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

runs
ti
m

e
(s

)

UseCase 1, all local, 1 place

Figure A.2: All local, 1 Place

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

runs

ti
m

e
(s

)

UseCase 1, raster local, places remote, 1 place

Figure A.3: Raster local, places remote, 1 place

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

runs

ti
m

e
(s

)

UseCase 1, raster remote, places local, 1 place

Figure A.4: Raster remote, places local, 1 Place

0 5 10 15 20 25
0

20

40

60

80

100

120

runs

ti
m

e
(s

)

UseCase 1, all remote, 5 places

Figure A.5: All remote, 5 Places

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

runs

ti
m

e
(s

)

UseCase 1, all local, 5 places

Figure A.6: All local, 5 places

51

52 APPENDIX A. APPENDIX

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

runs

ti
m

e
(s

)

UseCase 1, raster local, places remote, 5 places

Figure A.7: Raster local, places remote, 5 Places

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

runs

ti
m

e
(s

)

UseCase 1, raster remote, places local, 5 places

Figure A.8: Raster remote, places local, 5 places

A.2.2 All queries of the second usecase

0 5 10 15 20 25
0

2

4

6

8

10

12

14

runs

ti
m

e
(s

)

UseCase 2, all remote, 1 place

Figure A.9: All remote, 1 Place

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

runs

ti
m

e
(s

)

UseCase 2, all local, 1 place

Figure A.10: All local, 1 Place

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

runs

ti
m

e
(s

)

UseCase 2, raster local, places remote, 1 place

Figure A.11: Raster local, places remote, 1 place

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

runs

ti
m

e
(s

)

UseCase 2, raster remote, places local, 1 place

Figure A.12: Raster remote, places local, 1 Place

52

A.2. PLOTS OF THE EVALUATION 53

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

runs

ti
m

e
(s

)

UseCase 2, all remote, 5 places

Figure A.13: All remote, 5 Places

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

runs

ti
m

e
(s

)

UseCase 2, all local, 5 places

Figure A.14: All local, 5 places

0 5 10 15 20 25
0

10

20

30

40

50

60

70

runs

ti
m

e
(s

)

UseCase 2, raster local, places remote, 5 places

Figure A.15: Raster local, places remote, 5 Places

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

runs

ti
m

e
(s

)

UseCase 2, raster remote, places local, 5 places

Figure A.16: Raster remote, places local, 5 places

A.2.3 All queries of the third usecase

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

runs

ti
m

e
(s

)

UseCase 3, all remote, 1 place

Figure A.17: All remote, 1 Place

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

runs

ti
m

e
(s

)

UseCase 3, all local, 1 place

Figure A.18: All local, 1 Place

53

54 APPENDIX A. APPENDIX

0 5 10 15 20 25
0

1

2

3

4

5

6

runs

ti
m

e
(s

)

UseCase 3, raster local, places remote, 1 place

Figure A.19: Raster local, places remote, 1 place

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

runs

ti
m

e
(s

)

UseCase 3, raster remote, places local, 1 place

Figure A.20: Raster remote, places local, 1 Place

0 5 10 15 20 25
0

10

20

30

40

50

60

70

runs

ti
m

e
(s

)

UseCase 3, all remote, 5 places

Figure A.21: All remote, 5 Places

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

runs

ti
m

e
(s

)

UseCase 3, all local, 5 places

Figure A.22: All local, 5 places

0 5 10 15 20 25
0

10

20

30

40

50

60

runs

ti
m

e
(s

)

UseCase 3, raster local, places remote, 5 places

Figure A.23: Raster local, places remote, 5 Places

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

runs

ti
m

e
(s

)

UseCase 3, raster remote, places local, 5 places

Figure A.24: Raster remote, places local, 5 places

54

List of Figures

2.1 A cylidrical mercator projection [7]. 7
2.2 An equidistant azymutal projection [8]. 7

3.1 Illustration of the masking process [15]. 13
3.2 Intersection of two rasters [16] . 14
3.3 Illustration of multiple bands of a raster [18]. 15
3.4 Addition of 2 rasters [23] . 25

A.1 All remote, 1 Place . 53
A.2 All local, 1 Place . 53
A.3 Raster local, places remote, 1 place . 53
A.4 Raster remote, places local, 1 Place . 53
A.5 All remote, 5 Places . 53
A.6 All local, 5 places . 53
A.7 Raster local, places remote, 5 Places . 54
A.8 Raster remote, places local, 5 places . 54
A.9 All remote, 1 Place . 54
A.10 All local, 1 Place . 54
A.11 Raster local, places remote, 1 place . 54
A.12 Raster remote, places local, 1 Place . 54
A.13 All remote, 5 Places . 55
A.14 All local, 5 places . 55
A.15 Raster local, places remote, 5 Places . 55
A.16 Raster remote, places local, 5 places . 55
A.17 All remote, 1 Place . 55
A.18 All local, 1 Place . 55
A.19 Raster local, places remote, 1 place . 56
A.20 Raster remote, places local, 1 Place . 56
A.21 All remote, 5 Places . 56
A.22 All local, 5 places . 56
A.23 Raster local, places remote, 5 Places . 56
A.24 Raster remote, places local, 5 places . 56

55

List of Tables

56

