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Zusammenfassung

Das Semantische Web – ein Netz von Daten, welches aus verknüpften RDF-Daten
gebildet wird – wächst stets. RDF-Daten können in sogenannte Triplestores verwal-
tet werden, welche ebenfalls Unterstützung für SPARQL (SPARQL Protocol and RDF
Query Language) bieten. Mithilfe von SPARQL können RDF-Daten abgerufen werden,
welche benutzerdefinierten Bedingungen entsprechen.

TripleRush ist ein solches Triplestore und benützt eine graph-basierte Struktur, um
SPARQL-Abfragen effizient beantworten zu können. Diese Arbeit beschreibt die Er-
weiterungen in TripleRush zur Unterstützung von SPARQL-Filtern. In dieser Arbeit
wird erläutert, wie die Filter in TripleRush intern dargestellt werden und auf welche
Weise die Filter während dem Ausführen von SPARQL-Abfragen überprüft werden.





Abstract

The Semantic Web – a web of data formed by interlinked RDF data – has seen a
steady increase in size. Triple stores are data management systems for RDF data and
offer support for the SPARQL Protocol and RDF Query Language (SPARQL). With
SPARQL, RDF data can be retrieved which satisfy user-defined criteria.

TripleRush is such a triple store, using a graph-based architecture to efficiently answer
SPARQL queries. This thesis discusses the implementation of SPARQL filter support in
TripleRush. We discuss how the filters are represented after they have been parsed and
describe how they are checked during query execution.
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Introduction

Parallel to the document web there exists the Semantic Web, a graph of data, formed by
data from different datasets connected together by means of references among each other.
The Semantic Web has seen a steady increase in size; DBpedia, for instance, contains
3 billion facts1. In contrast to the traditional document web, which is designed for
humans, the Semantic Web centers around machine-readable data, such that programs
can process and combine data from different datasets in one generic manner. Thanks
to this uniformity, developers are not burdened with the cumbersome task of converting
between different structures and data formats to join data from multiple sources.

The Semantic Web consists of Linked Data – data adhering to a set of publishing prin-
ciples. In Linked Data, all data are expressed as RDF triples, which consist of a subject,
a predicate and an object. Each triple states a fact about the subject; it has a relation-
ship with the object that is described by the predicate. For example, we could state
that Switzerland lies in Europe with the triple (Switzerland, continent, Europe).
An RDF graph can be formed from the RDF triples, wherein the subjects and objects
act as vertices, and the predicates connect the vertices as directed, labeled edges.

The SPARQL Query Language is the standard querying language for RDF graphs. It
allows the retrieval of values from RDF graphs which satisfy user-defined queries and
constraints. For instance, a list of European countries with more than 10 million inhab-
itants could be generated by querying geopolitical datasets. The results of a SPARQL
query are not returned as a graph but as rows, where each row specifies a combination
of values which satisfy the query, akin to SQL.

Collections of RDF triples are saved in triple stores, which facilitate the management
of triples and allow the retrieval of data with SPARQL queries (i.e. criteria supplied by
the user), similar to data management tools for relational databases.

TripleRush is such a triple store. The aim of TripleRush is to efficiently answer
SPARQL queries over large collections of RDF triples. It is built on top of the graph
processing framework Signal/Collect. Prior to this thesis, TripleRush lacked support for
SPARQL filters, which are comparable to the WHERE clause in SQL. This thesis discusses
the implementation of filter support, detailing how the filter information is parsed and
incorporated into the process of query execution.

1Year: 2014, http:// blog.dbpedia.org/ category/ dataset-releases/

http://blog.dbpedia.org/category/dataset-releases/


2 CHAPTER 1. INTRODUCTION

1.1 Contributions

This thesis discusses the implementation of SPARQL filter support in TripleRush, from
the process of parsing the filters in the beginning to the subsequent evaluation of the
filters, such that the returned results of SPARQL queries also satisfy the constraints
specified in the filters. Furthermore, this thesis sheds some light on the structure of
TripleRush, particularly about the special graph – the index graph – it employs and
about the manner in which the query information is passed among its nodes.

1.2 Document Structure

The structure of this thesis is as follows. Chapter 2 provides an overview of the Linked
Data principles and technologies and presents various implementations. Chapter 3 de-
scribes the architecture of TripleRush in detail. Chapter 4 presents the implementa-
tion of filter support in TripleRush. In Chapter 5, we discuss the evaluation results of
TripleRush for queries with filters, before finishing with a conclusion in Chapter 6.
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Related Work

In this chapter, we provide a background in the standards of the Semantic Web and
discuss the approaches employed by various triple stores to implement the Linked Data
standards.

2.1 Linked Data

Traditionally, data on the internet have been published as HTML documents, raw dumps,
or made accessible via APIs. These approaches, however, render it difficult to combine
data from multiple datasets and therefore, they remain largely isolated from each other
[Heath and Bizer, 2011].

HTML (HyperText Markup Language) is “the publishing language of the World Wide
Web,” [Raggett et al., 1999] providing a means to format documents on the web, such
as adding emphasis to text, embedding images or creating tables. The World Wide Web
Consortium (W3C) goes as far as to refer to HTML as the core language of the World
Wide Web in the latest HTML specification, HTML5 [Hickson et al., 2014].

However, the purpose of HTML is to structure text on a webpage – not data. Someone
wishing to use the data displayed on a web page is thus faced with the difficult task of
extracting the data from the HTML page, which are often mixed with other text.

Data can be easily accessed via an API or a data dump (e.g. data dumped into a single
XML or CSV file). While these access methods do not require any filtering between data
and other text, there is no standard way of integrating multiple datasets as they may
employ different formats and likely do not use the same identifiers for their entries.
Additionally, APIs may differ in the methods that they offer to the user.

Linked Data alleviates these problems by following a set of principles for publishing
data. With data abiding to the Linked Data principles, not only is one be able to combine
data from different datasets in a generic way, but it should also be possible for any data
publisher to add facts about a subject on the web and to refer to other datasets, just as
anyone may publish a document on the document web and link to other documents.

Similar to the document web, where new documents can be found by following links
to other webpages, new data should be discoverable by following references to other
datasets. This creates a web of data – the so-called Semantic Web – which can be
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explored by hopping from dataset to dataset by continuously following external links
(i.e. links from one dataset to others).

The Resource Description Framework (RDF) is a family of formats with which Linked
Data can be published. Every fact is expressed as an RDF triple, which consists of a
subject, a predicate and an object. The subject is the topic one wishes to state a fact
about and can be any topic at all, such as a book, a certain event or a programming
language. The predicate describes the relationship between the subject and the object.

Subject Predicate Object

Switzerland continent Europe
Switzerland population 8183000
Switzerland memberOf United Nations
Nepal continent Asia
Nepal population 26495000
Nepal memberOf United Nations

Table 2.1: Sample triples

Consider the triples given in Table 2.1. The first triple states that Switzerland, the
triple’s subject, has a relationship with the object, Europe. The predicate, continent,
describes the type of the relationship, i.e. it specifies that Europe is the continent in
which Switzerland lies.

An RDF graph can be formed from a collection of triples by using the subjects and
objects as vertices, and by regarding each predicate as a directed, labelled edge from the
subject to the object of the according triple. Figure 2.1 shows the RDF graph resulting
from the sample triples.

Figure 2.1: RDF graph resulting from the sample triples

We note that it is possible for two vertices to be connected with multiple edges. For
instance, if we added the triple (Switzerland, likes, Europe) to the sample triples
in Table 2.1, the vertex Switzerland would be connected to Europe with two edges,
labelled continent and likes, respectively.

For identification, a unique Uniform Resource Identifier (URI) is assigned to each
subject and predicate, while the object may be either a URI or a literal value. In other
words, all entities – so-called resources – RDF triples refer to are identified by URIs. In

4
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addition, HTTP URIs should be chosen for the resources [Berners-Lee, 2006]. In this
manner, a URI can be easily looked up over HTTP and the page it returns should contain
additional triples about the resource. This has the advantage that no new protocols must
be adopted for Linked Data, i.e. it builds on top of the existing architecture of the web
[Bizer et al., 2009]. The best practices for defining and handling URIs in Linked Data
are discussed in detail in [Ayers and Völkel, 2008].

In the RDF graph given in Figure 2.1, all round vertices would be identified by URIs,
whereas the square vertices 8183000 and 26495000 would be literals, i.e. the object field
would hold the specific value in the RDF triple – not a URI. Discovery of additional
triples is possible by dereferencing any of the URIs, which may point to the same dataset
or to an external one. Furthermore, ontologies are provided to allow publishers to state
that a URI is equivalent to another one1. Essentially, individual datasets are connected
by such equivalency statements and by the use of external URIs as objects in RDF
triples, thus forming the Semantic Web.

2.2 SPARQL

The SPARQL Protocol and RDF Query Language (SPARQL) is a language for querying
and modifying RDF graphs, comparable to how SQL is used to retrieve and manipulate
data in relational databases. SPARQL allows the retrieval of data which satisfies se-
mantic criteria given in a query. Results are returned as rows, where each row specifies
a possible combination of values for all variables in the SELECT statement, as it is done
in SQL. Consider the following SPARQL query:

SELECT ?country ?pop

WHERE {

?country <continent> <Europe> .

?country <population> ?pop

}

The fields for which values should be returned are declared as variables, which are
denoted by a starting question mark, such as ?country. The SELECT statement specifies
that we want to retrieve the values for the variables country and pop. The criteria
the values must meet is supplied in the WHERE clause in form of triple patterns. As in
RDF, each statement consists of three fields – subject, predicate and object – with the
difference that any field in a triple pattern may be a variable.

In the query above, given a resource X, we state that we only want X returned as a
result for the variable country if there exists a triple (X, continent, Europe). If this
is the case, we ensure that a pattern (X, population, Y) exists for the same X and some
value Y, whereupon we can return the row (X, Y) as a result for ?country and ?pop.
This process is repeated for every possible combination of X and Y; each combination is
represented as a row. All rows constitute the result of the query.

1Most notably, the OWL Web Ontology Language, http:// www.w3.org/ TR/ owl2-overview/

5
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Given the sample triples in Table 2.1, the query only has one result, namely Switzer-
land and its population. The country Nepal does not satisfy the query as there is no
triple (Nepal, continent, Europe).

To further refine queries, it is also possible to supply filters along with triple patterns.
Filters express additional constraints on the binding of a variable, i.e. filters define criteria
which must be satisfied by the value assigned to a variable, or the binding will be
discarded. The following query contains such a filter:

SELECT ?country

WHERE {

?country <population> ?pop

FILTER(?pop >= 10000000)

}

In contrast to the previous query, we declare in SELECT that we only wish to retrieve
the values for the variable country. The query contains one triple pattern with two
variables: (?country <population> ?pop). Based on this triple pattern, we assign
every possible subject S and object O for which a triple (S, population, O) exists to
the variables country and pop. Additionally, we require in the filter that the value
bound to ?pop be at least 10,000,000.

Given the triples in Table 2.1, the only result is Nepal, as the population of Switzer-
land is too small to satisfy the filter. During query execution, we may try to assign
Switzerland and its population to ?country and ?pop, respectively, but the filter will
fail since the value of ?pop is less than 10,000,000 in this case.

2.3 Graph Database Systems

Graph databases have proven to be useful in various domains, such as in the transport
or communications sector. For instance, Twitter keeps track of who follows whom in a
graph database and queries it to suggest new accounts to follow [Gupta et al., 2013].
Since a collection of RDF triples forms a graph, it is possible to use general-purpose
graph engines to execute queries over RDF graphs. We now discuss a couple of real-
world systems.

Pregel [Malewicz et al., 2010] is a distributed graph processing engine, designed to
support graphs of large size. The vertices of the graph execute computations in Pregel
and possess a state, which may be active or inactive. Prior to the execution of an
algorithm, all vertices have the state active. Results are computed in an iterative manner;
all active vertices execute a user-defined function in each iteration, during which they
can send messages along their edges, change the graph topology, and they can choose
to switch their status to inactive. Inactive vertices are only reactivated if they receive a
message. The execution of the algorithm is terminated when all vertices are inactive.

The graph is divided into partitions and distributed among the machines of the cluster
when it is in a distributed setting. The ID of a vertex is the only parameter used

6
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to determine to which machine it will belong and by default, the assignment function
hash(ID) mod N is used, where N designates the number of available machines. However,
Pregel offers the possibility to the user to replace the assignment function with a custom
one. Indeed, the authors note that performance can be enhanced for the Web graph if
all vertices representing documents of the same webpage are kept together. [Malewicz
et al., 2010]

In contrast, the PowerGraph abstraction [Gonzalez et al., 2012] employs a more
elaborate distribution strategy. The authors argue that graphs representing real-world
data usually have power-law degree distributions. In other words, they assume that
graphs are typically sparse but that a small fraction of the vertices have a high degree,
i.e. many vertices in the graph have few neighbors and only few have many.

Pregel distributes a graph over a cluster by assigning each vertex to a machine. There-
fore, sending messages over an edge whose vertices are not on the same machine incurs
network overhead. PowerGraph, in turn, uses vertex-cuts to separate a graph: different
portions of the same vertex may reside on several machines. For every edge in the graph,
its vertices are located on the same machine, such that sending and receiving messages
over the edges does not require any communication over the network.

However, as certain vertices are divided into multiple pieces, synchronization becomes
necessary. One piece of each vertex acts as the master, to which all other pieces send an
aggregated version of the messages they have received. The master may update its status
based on the incoming information and sends a reply to every piece to inform them of
the new status. From there on, each piece copies the status and may send messages
to its outgoing edges to inform the neighbors of the change. Due to the vertex-cut,
sending messages over the edges of any piece does not require any communication over
the network. Thus, only the synchronization between the pieces takes place over the
network, which consists of two messages for each piece per update.

2.4 Triple Stores

Contrary to the graph systems illustrated in Section 2.3, triple stores offer native support
for SPARQL as they are specifically built for the management of RDF triples. Typically,
they are designed with efficiency for SPARQL queries in mind.

A handful of commercial systems exist which are specialized in the management of
RDF data, such as Jena [McBride, 2001], Sesame [Broekstra et al., 2002] and 4Store
[Harris et al., 2009]. Virtuoso – a commercial, general purpose database engine – has
also been extended to support RDF storage and querying by translating SPARQL queries
internally to SQL [Erling and Mikhailov, 2009].

We now discuss further triple stores and the approaches they use to evaluate queries.
TriAD [Gurajada et al., 2014] is a distributed, shared-nothing RDF engine which uses
asynchronous messages to join partial bindings. One node is assigned as the master
node, which holds metadata about the stored RDF triples and is responsible for the
coordination of all the other nodes, the so-called slave nodes.

Each slave node disposes of a disjoint part of the RDF data, connected with each other

7
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by the predicates of triples whose subject and object are not stored in the same part of
the data. A node operates over its part of the data and passes a message to another
node if it must take over the operation because it disposes of the necessary data.

RDF-3X [Neumann and Weikum, 2009] stores all RDF data in one big table, rather
than maintaining a table for each predicate, for example. A clustered B+ tree is created
for every possible permutation of the triple fields from the big table, i.e. a B+ tree with
the fields SPO, SOP, PSO, POS, OSP and OPS is generated, where S, P and O stand
for subject, predicate and object, respectively.

Instead of storing the literal values inside the trees, they are encoded as numbers and
can be looked up in a mapping index to return the real values. By keeping the IDs for
the literal values in lexicographical order, it is easy to look up a certain range in any of
the B+ tree, thereby avoiding random accesses. [Neumann and Weikum, 2009] states
that the size of the six B+ trees is typically smaller than the original data thanks to the
encoding.

Microsoft’s Trinity.RDF [Zeng et al., 2013] uses a distributed, memory-based graph
engine and stores RDF data in their graph form instead of using a relational database for
storage. Thanks to the graph form, it avoids costly join operations and supports queries
over graphs which cannot be expressed in SPARQL, such as determining the shortest
path between two vertices.

It builds on top of Trinity, a graph engine whose goal is to support fast random
accesses and efficient processing of large graphs. Rather than computing all bindings
for each triple pattern separately and then joining these together, Trinity.RDF uses
graph exploration to evaluate queries. As discussed in Section 2.1, RDF triples form
a graph, in which the predicates act as labelled, directed edges between the vertices,
i.e. the subjects and objects. For example, to evaluate a query with the triple pattern
(?country <continent> <Europe>), Trinity.RDF searches for all vertices which have
an outgoing edge of type continent to the vertex Europe. For all additional triple
patterns, it continues to search for the existence of edges and vertices until all triple
patterns are satisfied.

2.5 Database Indexing

Database systems store data as blocks in a storage system. Additionally, they maintain
various indices for one or more fields of a table. In this manner, look-up time can be
improved as it is not necessary to iterate through all of the table’s data if only a portion
of each row is required. Indices serve as “shortcuts” to table rows: they duplicate the
values of one or more fields of a table and store them as ordered entries. For each entry,
a pointer to the physical location of the full row in the storage system is saved alongside.

For instance, if we store the population of countries into a table with two rows,
country, as primary key, and population, we may decide to build an index for the
population field. Then, if we want to select all countries which have between 10,000,000
and 20,000,000 citizens, we can select all entries in that range from the index and follow
the pointers to the actual table rows in order to return the country names as results.

8
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Without such an index, we would have to go through all rows in the table to find the
results, since it is not ordered by population in the storage system.

Indices are divided into primary and secondary indices and can be described as sparse
or dense. Primary indices contain the primary key and are therefore guaranteed not to
have any duplicate entries. Furthermore, the entries of a primary index are stored in
the same order as the table’s data [Hector et al., 2009]. Secondary indices are indices
for other fields and therefore do not have such guarantees.

Dense indices contain an entry for every value of a field, and save a pointer to where
the entire table row is stored physically for each entry. In contrast, sparse indices only
contain a portion of the values which are stored in the database. Maintaining a sparse
index for a field is therefore only useful if it is a primary index, in which case all rows
for values which are not present in the index are known to reside between the pointers
of the closest entries in the index.

Since indices mirror a portion of a table and are accessed during query execution, it
is important that their structure be easy to update and that it support fast searches.
Indices are most often implemented with B+ trees [Hector et al., 2009], which are ordered
and self-balancing, i.e. the distance from the root to any leaf node is the same in the
entire tree. For larger secondary indices, hash tables may be used instead, as data are
easily distributed with a hash function, whereas insertion into a B+ tree is more complex,
as to ensure that the tree remains balanced.

Contrary to graph database systems, relational databases have received a lot of at-
tention for several decades, and various indexing and optimization strategies have been
developed, such as in [Selinger et al., 1979], which presents heuristics to best optimize
the execution of a SQL query with the help of indices. [Chaudhuri and Narasayya, 1997]
describes a system which proposes what fields an index should be built for, based on a
collection of SQL queries provided by the user.

Newer research has gravitated towards allowing databases to automatically adapt to
the data they manage and the queries they execute. Adaptive indexing refers to the
process of automatically creating and refining indices based on the queries which are
being processed [Graefe et al., 2011]. Challenges include finding algorithms generic
enough to be applied on various types of data, and identifying how fast the database
should react to changes in queries, since computing indices incurs cost.

Cracked databases, on the other hand, continuously reorganize the physical storage of
the data to enable faster, more precise retrieval of relevant data [Idreos et al., 2007]. A
column’s data are cracked – physically reorganized into various partitions – each time
they are processed by a query, separating the data which satisfy the query’s constraints
from those which do not. A so-called navigational map has to be maintained because
the data are repeatedly cracked. As future queries require data from the cracked row,
they refer to the map to locate the relevant portions of the data and thereby avoid the
need to search through the data themselves.

9
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TripleRush

We now take a detailed look at TripleRush [Stutz et al., 2013], a parallel in-memory triple
store written in the Scala programming language. Built on top of the graph processing
framework Signal/Collect [Stutz et al., 2010], it uses message-passing within its novel,
graph-based architecture to execute SPARQL queries.

At the heart of TripleRush there lies a special graph based on the RDF triples it stores,
called the index graph. To evaluate a query, a so-called query particle is constructed,
explained in detail in Section 3.4. The query particle stores the triple patterns of the
SPARQL query and adds bindings for the variables of the query as it is sent among the
vertices of the index graph. Multiple copies of the query particle are created each time
there are several values a variable can be bound to, allowing every new query particle
to store a different binding and to pursue its own route independently.

The query particles are sent as messages from one vertex to another. Messages can be
passed in parallel and asynchronously. Thanks to these properties, central bottlenecks
caused by slow partial computations are avoided and first results can be reported as
soon as they arrive, instead of having to wait until the query execution has terminated
[Stutz et al., 2013].

3.1 Signal/Collect

Signal/Collect [Stutz et al., 2010] is a programming model for executing graph algorithms
in a distributed setting. The vertices of the graph are the computing units, exchanging
information by sending signals among each other. Afterwards, the vertices collect all
incoming messages and handle them in a user-defined manner, such as by performing a
computation based on the received messages. Algorithms are expressed as iterations of
these two phases, namely signaling and collecting, from which the Signal/Collect model
takes its name.

Algorithms may be executed in synchronous or asynchronous mode. In synchronous
mode, a global synchronization point between the signaling and collecting phase guar-
antees that the vertices only enter the collecting phase once all have completed their
signaling operation. In asynchronous mode, however, vertices call the signal or collect
function in random order and independently of the other vertices. In this manner, the
entire execution of the algorithm does not have to wait on slower partial computations.
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Moreover, Signal/Collect includes various other functions to offer as much flexibility
as possible. In particular, it supports the definition of several vertex and edge types
for differentiation and additional attributes may be added to them. An aggregation
vertex can be introduced to the graph to easily aggregate information from a given set
of vertices. Furthermore, both in synchronous and asynchronous mode, it is possible
to prioritize signal/collect operations by assigning a number of importance to them. A
minimum threshold of importance may be set, below which operations are not executed.
This provides an additional way for an algorithm to end: when all operations do not
meet the minimum threshold, there is no longer anything to execute.

3.2 The Index Graph

TripleRush is a triple store built on top of Signal/Collect. It stores RDF triples in form
of an index graph, a novel architecture designed to efficiently answer SPARQL queries
over a large collection of data. The index graph is built by replacing one or two fields
of each RDF triple with a wildcard, represented by *. Every possible combination of
wildcards is used as an index and is added to the index graph, i.e. a triple (S, P, O)

produces the indices (S, *, *), (*, P, *), (*, *, O), (S, P, *), (S, *, O), and
(*, P, O). Additionally, the index graph contains a root node, (*, *, *).

In other words, to include the triple (Switzerland, continent, Europe), we add
the following indices to the index graph: (Switzerland, *, *), (*, continent, *),
(*, *, Europe), (Switzerland, continent, *), (Switzerland, *, Europe), and
(*, continent, Europe).

We distinguish different index types by the information they store, i.e. by the fields
which are not wildcards. For example, the index (*, continent, *) only contains a
concrete value for the predicate and is therefore referred to as a P-index. Similarly,
(Switzerland, *, Europe) is called an SO-index as it contains information about the
subject and the object.

To reduce the necessary storage space of the index graph, all values are dictionary
encoded: instead of storing the actual values of the RDF triples in each index, they
are stored in an external dictionary where a unique, positive integer is assigned to each
entry. The indices of the index graph only save the numbers of the according entries in
lieu of the actual values, which saves a lot of space.

All indices have children of one other index type. A child of an index contains the same
values in all fields which are already present in the parent. Moreover, one additional field
of the child has a value where the parent has a wildcard. For example, P-indices have SP-
indices as children. The structure of the index graph is given in Figure 3.1. For instance,
the root index (*, *, *) might have a child (*, continent, *), whose children may
be the SP-indices (Switzerland, continent, *) and (Nepal, continent, *).

The indices are connected to form the index graph by such parent-child relationships,
acting as directed edges. Since every index type only has children of another index type,
we only have to store the additional value of each child – the so-called child delta – in a
list to reconstruct the children’s fields.

12
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Figure 3.1: The index graph structure

For instance, provided that (*, continent, *) has (Switzerland, continent, *)

and (Nepal, continent, *) as children, it is sufficient to store the values Switzerland
and Nepal in the P-index to know all fields of its children. This requires little space,
especially since we only need to save the dictionary ID of the values.

We note that an index may have multiple parents, e.g. both S-indices and P-indices
have SP-indices as children. In an attempt to keep the number of children per index as
little as possible, predicates are used as field for the child delta wherever possible. RDF
datasets typically contain far less predicates than subjects or objects, which renders the
predicate field ideal for child deltas.

Considering that SO-indices contain all possible predicates between their subject and
object as child deltas, we realize that the SPO-indices are redundant as the SO-indices
can reconstruct all SPO-indices. Therefore, SPO-indices are omitted in the index graph,
contrary to the structure given in Figure 3.1. Oftentimes, a query has to be routed
to an SPO-index to verify that bound variables satisfy another triple pattern in the
query. TripleRush reroutes such checks to the corresponding SO-index by replacing the
predicate with a wildcard. The index then verifies whether or not an RDF triple exists
with the given subject, predicate and object by searching for the predicate in its list of
child deltas.

3.3 Technical Layout of the Index Graph

We now take a look at the technical layout of the indices and their most important
methods. Figure 3.2 displays the hierarchy of the Scala classes and traits of the vertices
package1, which encompasses all building blocks of the index graph. Traits are shown
as square boxes and their use is depicted with dotted lines. Arrows with solid lines

1The full package name is com.signalcollect.triplerush.vertices

13



14 CHAPTER 3. TRIPLERUSH

represent inheritance relationships. All classes, displayed as oval vertices, are declared
either abstract or final: if the class is not extended any further, it is final, otherwise
it is abstract.

Figure 3.2: The hierarchy of the vertices package

The BaseVertex class extends the basic vertex class from Signal/Collect and ab-
stracts some of the functionalities of Signal/Collect. Similarly, IndexVertex lays the
groundwork for the extending classes, declaring an ID attribute which serves as unique
identifier for all final classes and defining various abstract or empty methods, i.e. meth-
ods meant to be overridden at a later time where necessary. Such methods include:
processQuery, overridden by the traits to handle an incoming query; addChildDelta
such that a new child delta may be added to an index; and cardinality to be able to
query indices for their cardinality (the number of child deltas). The method deliver-

SignalWithoutSourceId builds the heart of the communication – it handles incoming
messages and decides what method to invoke based on the message type.

We see that SO-Index, SP-Index and PO-Index use the trait Binding, whereas the
classes for S-index, P-index, O-index and the root index use the trait Forwarding. The
first are commonly referred to as Binding indices, while indices of the latter group are
so-called Forwarding indices.

The main task of the Forwarding indices is to forward incoming query particles (mes-
sages with information about the SPARQL query to process) to all of their children,
e.g. the P-index (*, continent, *) forwards incoming query particles to its children,
(Switzerland, continent, *) and (Nepal, continent, *). The children are SP-
indices and therefore part of the Binding indices, which, in turn, are responsible for
binding values to the variables of the SPARQL query.

For instance, if the SP-index (Nepal, continent, *) receives a message wherein
it must process the triple pattern (?country <continent> ?cont), it binds the value

14



3.4. QUERY PARTICLES AND QUERY EXECUTION 15

Nepal to ?country and for each of its children, it binds the child delta to ?cont. For
every binding combination, it sends a message to the next destination, determined by
the next triple pattern to process2. We discuss query evaluation in Section 3.4.

The traits Binding and Forwarding override the method processQuery, declared
in IndexVertex. In Forwarding, the incoming query particle is divided into as many
copies as there are children and a copy is sent to each child. Forwarding accesses the
ID of the children through the method nextRoutingAddress, an abstract method in
Forwarding which the Forwarding indices have to implement, i.e. the classes SIndex,
OIndex, PIndex and RootIndex. This method allows each index type to define for
which field the child deltas represent a value, e.g. a child delta stored in the root index
designates a child of type P-index. In other words, the presence of a child delta c in
RootIndex implies that a P-index (*, c, *) exists, which is a child of the root index.

On the other hand, the Binding trait is responsible for binding values to SPARQL
variables. As in Forwarding, it creates as many copies as there are child deltas. For
each child delta, adds bindings for the variables of a triple pattern. For example, given
the triple pattern (?country <memberOf> ?org) and the PO-index (*, memberOf,

UnitedNations) with child deltas Switzerland and Nepal, the variable org is bound
to UnitedNations, and country will be set to Switzerland in one case and to Nepal in
the other. Similar to Forwarding, it defines an abstract method bindIndividualQuery

such that each Binding index may define what field the child delta stands for.
As mentioned at the end of Section 3.2, besides the task of binding variables, the

SOIndex type is also used in place of SPO-indices to verify the existence of RDF triples.
We see in Figure 3.2 that it is the only class inheriting from SearchableIndexVertex.
This class handles the management of the child deltas and stores them in a structure
which supports binary search for fast lookup, whereas in OptimizedIndexVertex – the
class all other indices inherit from – the child deltas are managed in a splay tree.

3.4 Query Particles and Query Execution

We now take a detailed look at the query particle and how it is used to process queries.
A query particle is a message that is passed among the indices of the index graph, in
which data about the SPARQL query to answer is stored. It contains the triple patterns
of the query and provides a means to save a binding for each variable, which are added
by the Binding indices the query particle is routed to during query execution.

Entries are dictionary encoded as integers, and variable names in the query are sub-
stituted with negative integers. Therefore, we only require a collection of integers to
represent and transmit all triple patterns of a query. The query particle is essentially an
array of integers augmented with methods to ease the manipulation of the fields, such as
to add a binding or to remove a triple pattern. Query particles are passed as simple Int

arrays from index to index and implicitly converted to the Scala class QueryParticle3.
The layout of the array is given in Table 3.1.

2Of course, in the case of (Nepal, continent, *), there is only one child delta, Asia.
3The class QueryParticle is located in the package com.signalcollect.triplerush

15
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0 1 - 2 3 4 to 4+b-1 t1 to t2
query ID number of tickets number of bindings b bindings triple patterns

Table 3.1: Indices of the query particle, where b = number of bindings, t1 = 4+b,
n = number of triple patterns, and t2 = 4+b + n·3 - 1

A query ID is saved in field 0 of the array as to distinguish different queries which
may be running at the same time over the index graph. The number of tickets, stored
in indices 1 and 2, hold the number of times the query particle may be separated to
pursue different paths. It is a number of type Long, saved as two Int fields in order to
keep all query particle information in an Int array. For example, if the P-Index (*,

continent, *) contains two children and receives a query particle, it will separate the
query particle into two copies and the number of tickets will be divided among them.
The number of tickets defaults to Long.MAX_VALUE and is reported by [Stutz et al., 2013]
to be sufficient even for large datasets. Due to the asynchronous character of TripleRush,
it is important to keep track of the number of tickets as TripleRush can only determine
whether or not the execution has terminated by checking if all tickets have been sent
back.

As previously mentioned, the query particle provides space to save bindings for the
variables in the SPARQL query. The number of bindings b is saved in index 3 of the
array. For instance, if a SPARQL query uses three variables, the number of bindings b

is set to 3 and the three following fields – fields 4 through 6 (4+b-1) – are reserved to
be able to store a binding for each variable. The fields for the bindings are organized by
descending order of variable ID, i.e. the field at index 4 saves the binding for the variable
encoded as -1, index 5 holds the value for -2, etc.

Finally, the triple patterns of the SPARQL query are saved at the end of the array,
requiring three fields per triple pattern, either containing a dictionary encoded value or
a negative integer to represent a variable. Since the number of bindings b may vary
from query to query, the field in which the subject of the first triple pattern is stored,
t1, depends on b and is equal to 4+b. The final field of the array, t2, stores the object
of the last triple pattern. It depends on the number of triple patterns n and can be
computed as t2 = t1 + n·3 - 1.

Optimization. The triple patterns are ordered by an optimizer, based on estimations
of how many results each element produces. The triple pattern expected to produce the
least results is executed first and the triple pattern guessed to generate the most is
processed last4. Triple patterns are added to the array of the query particle in reverse
order; the first triple pattern to process is at the end of the array. Once the variables
of the triple pattern have been bound, the triple pattern is removed from the array and
the new triple pattern that is now at the end will be processed. This is repeated until
the query particle does not contain any triple patterns anymore.

We now discuss how a query particle is processed through the index graph. Trivially,
if a URI is present in a triple pattern which does not exist in the dictionary, we can

4This is the default optimizer, but TripleRush provides other, more elaborate approaches.
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3.4. QUERY PARTICLES AND QUERY EXECUTION 17

infer that it is not present in the dataset and therefore, we know that the query will not
produce any results. In such cases, we immediately report that the query has no results
and no query particle is created. This also avoids adding values to the dictionary which
would have to be removed afterwards.

If a query passes the dictionary check, the execution starts with the addition of a query
vertex to the index graph. This vertex serves as return point for all query particles of the
SPARQL query. The query particle which was created is then sent to its first destination,
determined by replacing the variables with wildcards in the first triple pattern to process.
For instance, the triple pattern (?country <continent> ?cont) would be processed by
the index (*, continent, *).

Every index copies an incoming query particle as many times as it has children. The
number of tickets is distributed equally among all copies and each query particle will
continue its own path, with its individual combination of bindings. Forwarding indices
simply forward a copy of the query particle to each of their children, while Binding
indices add bindings to the query particle.

A Binding index uses its fields and its child deltas as values for bindings. For exam-
ple, if the SP-index (Switzerland, continent, *) has to process the triple pattern
(?country <continent> ?cont), it will bind the variable in the subject field to its own
subject, Switzerland, and the variable cont is bound to one of its child deltas.

During the binding process, not only is the field storing the binding of a variable set
to a given value, but any occurrence of the variable in other triple patterns is replaced to
the value as well. In other words, if the variable cont is bound to Europe and there exists
another triple pattern where this variable occurs, e.g. (?cont <population> ?pop), it
is replaced to (<Europe> <population> ?pop). If this is the next triple pattern to
process, the query particle is sent to the SP-index (Europe, population, *).

There is no guarantee that the next destination exists. In the example, if there is
no index (Europe, population, *), the tickets of the query particle are sent back to
the query vertex to inform it that no result was found for the given number of tickets.
However, if such an SP-index does exist, the variable pop would be bound to the child
deltas of the index.

A query particle will either be sent to a destination that does not exist, whereupon
the tickets are returned to the query vertex, or all triple patterns can be processed
successfully, after which the query particle is sent back to the query vertex, reporting
a result. Eventually, all tickets will be returned and the query vertex will be removed
from the graph, as the query it is associated with has been executed.

17
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3.5 A Query Example

We now take a detailed look at how a sample query is processed in TripleRush. Consider
the RDF triples given in Table 2.1 and the following SPARQL query:

SELECT ?country ?pop

WHERE {

?country <continent> <Europe> .

?country <population> ?pop

}

We assume the dictionary encodings given in Table 3.2 and that the query ID is 2.

Value ID Value ID

Switzerland 3 continent 5
Europe 7 Nepal 9
population 13 8183000 14

Table 3.2: Assumed dictionary IDs for the given values

The triple patterns can be processed in two different orders. As discussed in Section
3.4, the order of the triple patterns is usually determined by an optimizer and also
depends on the dataset.

Starting with the continent triple pattern. If we assume that the triple pattern
(?country <continent> <Europe>) has been selected to be handled first, the query
particle which would be produced is given in Table 3.3. The query particle starts with
the query ID, 2, and then stores the number of tickets as a Long number by making use
of two Int fields. Index 3 informs us that there are two variables to save bindings for –
country and pop – and therefore, we know that the following two indices are reserved
for the bindings. As the variables are not bound in the beginning, the fields are set to 0.

As of index 6, all remaining fields are triple patterns. In this case, they are (-1 13 -2),
followed by (-1 5 7). We can decode these triple patterns to (?country <population>

?pop) and (?country <continent> <Europe>), respectively, with the dictionary and
the knowledge that -1 stands for ?country and -2 for ?pop.

0 1 - 2 3 4 5 6 7 8 9 10 11

2 Long.MAX_VALUE 2 0 0 -1 13 -2 -1 5 7

Table 3.3: Sample query particle

To start solving the query, TripleRush takes the last triple pattern of the query particle,
replaces the variables with wildcards, and sends the query particle to the according index
in the index graph – in this example, to (*, continent, Europe) (dictionary encoded
as (0, 5, 7)). As the index only has one child, the query particle does not have to be
separated into multiple copies. The variable country can be bound to the child delta,
Switzerland, encoded as 3. The last triple pattern is removed from the query particle.

18
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After this first binding, the query particle has the form as shown in Table 3.4. We
notice that field 4 now holds the new binding and that the last triple pattern has been
removed. Additionally, the variable -1 in the remaining triple pattern has been replaced
to its binding, 3.

0 1 - 2 3 4 5 6 7 8

2 Long.MAX_VALUE 2 3 0 3 13 -2

Table 3.4: Sample query particle after first binding

The query particle is now sent to its next destination, determined by the remaining
triple pattern. As before, variables are replaced with a wildcard and so the query particle
is sent to the index (3, 13, 0) (i.e. (Switzerland, population, *)). There, the
variable -2 can be bound as well and, as there are no more remaining triple patterns,
the query particle is sent back to the query vertex to report the result.

Starting with the population triple pattern. Alternatively, we assume that the
triple pattern (?country <population> ?pop) has been given precedence. We deter-
mine the index to start at by replacing the variables in the triple pattern, (-1 13 -2),
with wildcards, yielding the index (0, 13, 0), i.e. (*, population, *). For the sam-
ple triples in Table 2.1, (*, population, *) has two children, namely the SP-indices
(Switzerland, population, *) and (Nepal, population, *). Therefore, two copies
of the query particle are produced, each carrying half of the tickets, and they are routed
to their next destination. Note that (*, population, *) is a Forwarding index – it
neither adds bindings, nor does it remove triple patterns from the query particle; it
merely forwards incoming query particles to its children indices.

One query particle is forwarded to the index (Switzerland, population, *) while
the other goes to (Nepal, population, *). Being Binding indices, these will remove
the last triple pattern of their query particle and bind the two variables present in it.
Binding indices use their own values where possible, i.e. Switzerland and Nepal are
bound to ?country in the respective query particle. Both indices only have one child
delta, namely the population of the country, so the query particle does not have to be
separated and ?pop is set to the according population number in either query particle.

The query particle is shown in its unbound form and in its bound form for Switzerland
in Table 3.5. We see that the variable -1, which was present in the remaining triple
pattern, has been replaced with the binding, i.e. the remaining triple pattern has been
changed from (-1 5 7) to (3 5 7) for ?country = Switzerland. The query particle
at (Nepal, population, *) contains one triple pattern of the form (9 5 7) after the
binding process.

0 1 - 2 3 4 5 6 7 8 9 10 11

Beginning: 2 Long.MAX_VALUE 2 0 0 -1 5 7 -1 13 -2
Bound variables: 2 Long.MAX_VALUE/2 2 3 14 3 5 7

Table 3.5: Query particle for alternative route
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Although the remaining triple patterns in both query particles do not contain any
variables anymore, they must be checked nonetheless and cannot be simply discarded.
The query particles are forwarded to their next destination, determined by the last triple
pattern. As it does not contain any variables anymore, it is routed to the corresponding
SO-index by replacing the predicate with a wildcard. We see why this step is necessary
in the query particle where ?country is assigned to Nepal. The remaining triple pattern
is (9 5 7) and so its destination is (9, 0, 7) – i.e. (Nepal, *, Europe). However, as
no such vertex exists, the query particle is halted and the tickets are sent back to the
query vertex without any result.

Even if the index (Nepal, *, Europe) existed (for example, because there exists a
triple (Nepal, likes, Europe) in the stored data), the query particle would still be
halted, as the SO-index would check that it has a child entry for (Nepal, continent,

Europe). Since this is not the case, the tickets are sent back to the query vertex with no
results; otherwise, as in the query particle where ?country is bound to Switzerland,
the query particle is sent back to the query vertex to report the successful binding.

The paths the query particles go through in either possibility are shown in Figure 3.3.
If we start with the triple pattern that limits the results to European countries, we see
that we never have to generate any copies of the query particle path during execution, as
both indices the query particle travels through only have one child. On the other hand,
if we start by selecting the population for all countries, the query particle is divided into
two copies in the index (*, population, *) as it has two children, enabling each query
particle to pursue its route for its individual binding.

Figure 3.3: Query particle paths for both orders of execution.
Left: Query particle path when selecting European countries first.
Right: Query particle paths when starting with the population triple pattern.
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Implementation of Filters

In this chapter, we describe the implementation of SPARQL filter support in TripleRush1,
from parsing the SPARQL query to extract filter information to the subsequent evalua-
tion of the filters. Prior to this thesis, SPARQL filters were not recognized by TripleRush
and attempting to evaluate queries with filter clauses would result in an error.

An additional parser has been added to TripleRush to parse the information from
the filter clauses. It is discussed in Section 4.1. The index graph of TripleRush has
been expanded to include a new vertex, namely the dictionary vertex, which is discussed
in Section 4.2. Filters are represented as trees, designed with modularity in mind.
Additional elements can be added easily and there is no need to need to know the actual
layout of the trees to evaluate the filters. They are presented in Section 4.3.

4.1 SPARQL Filter Parsing

The first step to processing a SPARQL query is to parse it, such that the conditions and
constraints of the query can be understood. TripleRush comes with its own SPARQL
parser for this purpose – a custom parser extended from the Parsers family of traits in
Scala. The parser has been extended to recognize filter clauses among the triple patterns.
However, it does not parse the filter body (the text in the FILTER clause) any further
due to the extensive grammar of SPARQL filters.

After the SPARQL query has been generally parsed, the extracted filter bodies are sent
to an additional parser, the filter parser, which checks the filter bodies for syntactical
validity and transforms them into a representation which TripleRush can evaluate. The
filters are transformed into filter trees, whose structure corresponds to a simplified version
of the grammar provided in the SPARQL specification [Prud’hommeaux and Seaborne,
2008].

Terms in the original grammar which merely refer to another term have been skipped
in the implementation of the filter parser. For instance, consider the following two
grammar rules in the SPARQL specification:

In the filter parser, these rules have been merged as one – ConditionalAndExpression

is defined as RelationalExpression ( '&&' RelationalExpression )*. This helps
keep the parser and the resulting trees free of unnecessary elements.

1https:// github.com/ jacqueslk/ triplerush-filter

https://github.com/jacqueslk/triplerush-filter
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[48] ConditionalAndExpression ::= ValueLogical ( '&&' ValueLogical )*
[49] ValueLogical ::= RelationalExpression

The constraints supplied in the filters may contain multiple arithmetic and boolean
operators, such as FILTER(?A*3 = ?B+2 && ?B > 0). Trees are therefore a suitable
structure to represent the complex combinations of the many elements SPARQL filters
may consist of. Variables are identified by the same numbers as in the query particle
(see Section 3.4), i.e. if a variable such as ?pop is encoded as -2, the variable is identified
by -2 in the filter tree as well.

Figure 4.1 shows the representation of the filter FILTER(?pop > 10000000), given
that ?pop is encoded as -2.

Figure 4.1: Filter tree for ?pop > 10000000

The different elements of the filter trees are discussed at length in Section 4.3. Once
the filter parser has constructed the filter trees, they are returned to the main SPARQL
parsing class and saved with the remaining data which were parsed from the query.

After the SPARQL query has been parsed successfully, we construct a query particle
as presented in Section 3.4. Due to the complexity of SPARQL filters, we do not save
any filter information to the query particle as it consists only of an Int array. Instead,
we send the filter trees of the query to the so-called dictionary vertex, which allows us
to check the filters for every new binding during the execution of the query.

22
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4.2 The Dictionary Vertex

The dictionary vertex is an index in the index graph which has access to the dictionary
of TripleRush. During query execution, query particles are sent to the dictionary vertex
each time one or more variables have been bound. The dictionary vertex checks all
relevant filters for the new bindings in the query particle. If any filter fails, the dictionary
vertex halts the query particle and sends the tickets back to the query vertex. Otherwise,
the query particle is sent to its next destination.

4.2.1 Communication

Once a SPARQL query has been parsed, a query vertex is created and added to the
index graph. Before sending the initial query particle to its first destination, the query
vertex sends the list of filters in the query to the dictionary vertex, along with the query
ID. The dictionary vertex saves the list of filters with the query ID as key for future
referral. At the end of the query execution, before the query vertex is removed, it sends
a message to the dictionary vertex to signal that the filters can be removed.

During query execution, multiple copies of the query particle may be created whereby
each follows an individual path, i.e. each copy holds a unique set of bindings for the
variables in the query (cf. Section 3.4). To expand TripleRush to support filters, we
need to guarantee not only that all triple patterns are satisfied, but that the bindings
also fulfill the conditions of the filters.

To achieve this, we send query particles to the dictionary vertex every time a new
binding is saved. Since bindings are only added in indices with the Binding trait, we
only need to change the routing system in the Binding trait to be aware of the dictionary
vertex. Essentially, there is only one situation in which it is necessary to send the query
particle to the dictionary vertex: when new bindings have been added.

However, we differentiate between three cases: (a) a new binding is saved to the query
particle of a system query, (b) a new binding is saved to a query which is now completely
solved and planned to return to the query vertex, and (c) a new binding is stored to a
query particle which will be sent to another index for further processing.

In case (a), system queries, we can immediately send the query particle to its next
destination without any interference. System queries are launched by TripleRush itself
to gather statistics about the RDF data and the index graph (e.g. to get the cardinality
of an index) and never make use of SPARQL filters. System queries are easily identified
as they are the only ones to use negative query IDs.

In both remaining cases, (b) and (c), we must contact the dictionary vertex at some
point to evaluate the filters. We append the IDs of all newly bound variables to the
query particle array and also add the next destination of the query particle, i.e. the ID
of the vertex the query particle should be sent to after passing through the dictionary
vertex. For case (b), the query particle the next destination is the query vertex, while
for (c), it is another index of the index graph.

For case (b), we directly send this modified query particle to the dictionary vertex. The
dictionary vertex will remove the additional information from the query particle before
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processing the filters and finally transmitting the query particle to the destination it was
provided, if all filters passed.

The final case, (c), covers the addition of bindings to a query particle which is not
fully solved yet, i.e. it will be sent to another index, which will process another triple
pattern of the query particle. In this case, we wrap the modified query particle into a
so-called FilterPending object and send it to the next destination, as determined by the
query particle.

At the arrival of a FilterPending message, the index simply sends the query particle it
contains to the dictionary vertex, akin to what is immediately done in case (b). Again,
the dictionary vertex will extract and remove the additional information from the query
particle, evaluate the relevant filters, and send the query particle to the destination it
was given if the filters pass.

Handling these three cases separately offer us considerable advantages. In the case
of (a), it is evident that the query will never have any filters, so we save overhead by
immediately sending the query to its next destination. In the case of (b), we know that
the query vertex exists and we avoid modifying any code in the query vertex classes by
handling all filter matters beforehand.

Contrary to the latter case, for (c), we send a FilterPending message to the next index
the query particle should continue to, rather than sending the query particle directly to
the dictionary vertex for evaluation. The reason behind this seemingly inefficient design
is the simple fact that there is no guarantee that a query particle’s next destination
actually exists. We recall from Section 3.4 that the next destination of a query particle
is determined by the triple pattern which will be processed subsequently. However,
such a triple patterns may contain bound variables, which do not necessarily satisfy the
next triple pattern. In such situations, it is possible that the query particle should be
sent to an index which simply does not exist in the index graph2. In those cases, the
tickets of the query particle are sent back to the query vertex to signal that no results
have been found for that portion of tickets. By sending a FilterPending message to the
destination index, we avoid checking filters for a query particle which will be forwarded
to a nonexistent index.

4.2.2 Filter Evaluation

As soon as the dictionary vertex receives a list of filters for a new query, it checks whether
any filters do not contain any variables, i.e. if they can be evaluated directly without any
binding information. The dictionary vertex processes all such filters immediately and
removes them from the collection. If a filter with no variables cannot ever be true, e.g.
FILTER(1 > 5), a global false filter is placed at the start of the filter list. The global
false filter is a simple filter which always evaluates to false; it signals to the dictionary
vertex that it should immediately halt any query particles of the query and simply send
back the tickets to the query vertex.

2For example, in Section 3.5, we explore how a sample query is solved in TripleRush and bind ?country

to Nepal in one query particle. The next triple pattern, (?country continent Europe), dictates that
the query particle should be sent to the index (Nepal, *, Europe), but no such index exists.
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Query particles are sent to the dictionary vertex every time a new variable is bound.
Therefore, it is possible that the same query particle is sent to the dictionary vertex
on multiple occasions. To avoid evaluating any filters for the same query particle more
than once, we also send a list of the variable IDs which have been newly bound to the
dictionary vertex. Thanks to this information, the dictionary vertex is able to select the
filters which require one of the newly bound variables and to evaluate only these.

The dictionary vertex can query each filter for its variable set, i.e. for the list of
variables required to evaluate the filter. The dictionary vertex determines whether or
not a filter should be evaluated by checking that the variable set contains at least one
newly bound variable, and by ensuring that the filter does not require any variables
which have not yet been bound. The remaining filters were either checked previously, or
they cannot be checked yet as another required variable still has to be bound.

If a filter is deemed relevant, the dictionary vertex must retrieve the actual values of
the bindings and pass them to the filter. The bindings are saved as dictionary IDs in the
query particle. All other indices of the index graph are only aware of the dictionary IDs
and do not know the actual values. In contrast, the dictionary vertex has access to the
dictionary of TripleRush, hence its name. Therefore, it can retrieve the actual values of
the required variables to process the filter.

Filters are evaluated by passing the real values of the variables to a method in the
Filter object. The filter responds with a boolean value, informing the dictionary vertex
whether or not the filter passes with the given values. If all checked filters pass, the
dictionary vertex sends the query particle to its next destination. If any filter fails, the
dictionary vertex sends the number of tickets back to the query vertex, indicating that
no result was found for the returned tickets.

Since filters with no variables are immediately evaluated and query particles are sent
to the dictionary vertex every time a new binding has occurred, we can guarantee that
all filters in the list will have been evaluated exactly once for each query particle before
it is sent as a result to the query vertex.

4.3 Filter Trees

We now take a more technical look at the filter trees. As discussed in Section 4.1, trees
are a suitable structure to save filter information as they allow us to represent even
complex forms of constraints. We show the filter tree for FILTER((?A+10)*5 > 200 &&

(?A || 10 < ?B)) in Figure 4.2 as an example. We see that, especially when comparing
it to the simpler tree shown in Figure 4.1, the tree is simply expanded as the constraints
become more complex.

The root of every filter tree is a Filter object. It contains the necessary methods to
use the SPARQL filter the tree represents, without having to consider the underlying
structure. Leaf nodes represent variables and literals. All remaining nodes – the internal
nodes, aside from the root – may have one or more children and represent a type of rela-
tionship between the child nodes. For example, a comparison such as ?pop > 10000000

is modeled as a node of type RelationalExpression; it stores two children, ?pop and
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10000000, and the type of the relationship (e.g. comparison with >). Trivially, if no such
comparison is present in the SPARQL filter, the node only has one child, and the value
the node evaluates to is equal to that of its only child.

Figure 4.2: Filter tree for (?A+10)*5 > 200 && (?A || 10 < ?B)

4.3.1 Filter Elements

Each element of the filter tree is represented by a Scala class; the names are taken from
the grammar published in the SPARQL specification [Prud’hommeaux and Seaborne,
2008]. It is thus easy to understand what type of information an element contains by
referring to the SPARQL specification.

Every filter is represented by an object of the class Filter. Following the principles of
encapsulation, it is sufficient to know the methods in Filter to use such an object during
query evaluation, e.g. in the way the dictionary vertex does. The filter class contains two
methods: getVariableSet() and passes(). The method getVariableSet() returns
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a Scala Set()3 of all variables present in the filter. With this method, it is possible to
determine whether the necessary variables have been bound to evaluate the filter. The
method passes() takes a list of bindings for the variables it requires as parameter and
returns whether or not the filter passes.

All classes for internal nodes of the filter tree contain the methods getVariableSet()
and getValue(). A given element’s getVariableSet() method typically calls the
getVariableSet() method of its children. For instance, given the filter tree in Fig-
ure 4.1, calling getVariableSet() of the RelationalExpression object invokes the
method getVariableSet() of both AdditiveExpression objects and returns the union
of the sets. Thus, it would receive Set(-2) from the child on the left-hand side and an
empty set from the right one. The result is therefore Set(-2).

The Var class represents a variable identified by the variable ID, a unique nega-
tive integer assigned to each variable during the parsing process. NumericLiteral, in
turn, represents a concrete value provided in the filter. These two classes are part of
the primary expressions as given in the official SPARQL grammar in [Prud’hommeaux
and Seaborne, 2008]. We realize this rule by making the classes inherit from the trait
PrimaryExpression.

A MultiplicativeExpression object saves one or more primary expressions and rep-
resents consecutive multiplications and divisions among such items, e.g. ?A*5/?B. One
level above in the tree hierarchy, the AdditiveExpression class represents one or more
multiplicative expressions connected by consecutive additions or subtractions, such as
5+?A or ?A*3 - ?B/2, where ?A*3 and ?B/2 are multiplicative expressions.

Each RelationalExpression object consists of one or two additive expressions. Triv-
ially, if it only contains one additive expression, it simply forwards the value its only
child evaluates to. If it has two children, it represents the boolean result of one of the
binary operators =, !=, <, >, <=, or >=. A relational expression can thus represent a
comparison such as ?pop > 1000, where ?pop and 1000 are trivial additive expressions.

Finally, ConditionalAndExpression represents one or more relational expressions
which are concatenated with the Boolean AND operator (&&). In other words, if such an
object stores multiple elements, it only evaluates to true if all children evaluate to true.
Similarly, a ConditionalOrExpression object stores one or more ConditionalAnd-

Expression objects which are combined with the Boolean OR operator, ||. When it
contains several conditional-and expressions as children, it returns true if at least one
element evaluates to true, too.

3A set is a collection in which each element may only appear once.

27



28 CHAPTER 4. IMPLEMENTATION OF FILTERS

4.3.2 Effective Boolean Value and Combination of Elements

The inner nodes (besides the root) represent a specific type of relationship between
their children. If no such relationship exists – e.g. if there is no && operator in the
filter – the node has only one child. Furthermore, bracketed expressions such as (?A+5)
in (?A+5)*3 represent an additional challenge. Consider the following rules from the
SPARQL grammar4 [Prud’hommeaux and Seaborne, 2008]:

[55] PrimaryExpression ::= BrackettedExpression | NumericLiteral | Var
[56] BracketedExpression ::= '(' Expression ')'
[46] Expression ::= ConditionalOrExpression

A bracketed expression can act as a primary expression, along with variables and
literals. We note that a bracketed expression is simply a ConditionalOrExpression within
brackets and therefore, we simply state that a ConditionalOrExpression is also of type
PrimaryExpression in the filter trees. The SPARQL parser in TripleRush still checks
for brackets but simply discards them and creates a ConditionalOrExpression object.
In this manner, we guarantee that we still follow the rules of the SPARQL grammar
but we can avoid trivial BracketedExpression or Expression nodes, which would only
evaluate to the value of the only child they could have.

A filter must result in a boolean value, i.e. the result of the Filter object’s passes()
method must always be a boolean. It is, however, possible to have a filter body of numeric
type, such as FILTER(?A+5) or simply FILTER(-3). In cases where a non-boolean value
must act as a boolean, the so-called effective boolean value is used [Prud’hommeaux and
Seaborne, 2008]. For instance, numeric values evaluate to false only if the value is NaN
or equal to 0, and to true otherwise.

The filter tree of a simple filter like FILTER(-3) consists of a root Filter node and
the remaining internal nodes are trivial nodes of the following types, given in order:
ConditionalAndExpression, ConditionalOrExpression, RelationalExpression, Additive-
Expression and MultiplicativeExpression. The last node contains one child – the tree’s
only leaf node – of type NumericLiteral, which represents the number -3 given in the
filter.

Calling the root node’s passes() method will make it invoke its child’s getValue()

method. The child is of type ConditionalOrExpression and retuns a boolean value if it
has multiple children: true if at least one child evaluates to true, or false otherwise.
In our case, the ConditionalOrExpression node only has one child, in which case it
simply “forwards” the value of its only child, regardless of the type. In this example,
ConditionalOrExpression evaluates to -3 and passes this to the Filter object. The
Filter’s passes() method is required to return a boolean, and therefore, the effective
boolean value of the result is returned, i.e. the filter passes.

Various nodes may require their children to evaluate to boolean values if they have
multiple children. All such cases are given in Table 4.1. Keeping the original value as
long as possible – rather than forcing all ConditionalOrExpression nodes to evaluate to

4Some members of the rule for PrimaryExpression have been removed in the listing for brevity.
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a boolean value, for instance – allows us to support bracketed expressions for arithmetic
operations. For example, the left-most ConditionalOrExpression node in Figure 4.2
represents the bracketed expression (?A+10) in the expression (?A+10)*5 > 200.

Class Condition Represents

Filter Always Result of the filter
ConditionalOrExpression Multiple children Boolean operator ||
ConditionalAndExpression Multiple children Boolean operator &&
RelationalExpression Two children Boolean comparator (e.g. !=)

Table 4.1: Cases when a node uses the effective boolean value of its children.

Finally, we recognize that not all SPARQL filters which conform to the SPARQL
grammar can be evaluated. For instance, a filter such as FILTER(?A*(?B>10)) does
not break any grammar rules and a filter tree can be created. However, the bracketed
expression ?B>10 returns a boolean value and cannot be multiplied to ?A as it is only
possible to multiply two numeric values.

According to the SPARQL specification [Prud’hommeaux and Seaborne, 2008], such
expressions should return the value error, an additional value to the two boolean ones,
and the entire filter may evaluate to the error value. In TripleRush, every time an error
occurs, i.e. in any case where the SPARQL specification tells us to return the error value,
it is reported to the user with specific information about the error, and we use boolean
false instead.

4.3.3 A Filter Evaluation Example

We now make an example of how a filter tree is used to determine whether or not a
given set of bindings satisfy the SPARQL filter the tree represents.

Given the filter FILTER(?pop > 10000000), whose filter tree is shown in Figure 4.1, we
assume that ?pop, encoded as -2, is bound to the value 8,000,000 in a query particle. To
invoke the Filter object’s passes() method, we must pass the binding for all variables
present in the filter. We query the filter for the variables it contains by calling its
getVariableSet() method. In this example, the filter returns Set(-2) – a set with the
ID of the only variable it contains.

Bindings are stored as dictionary encoded IDs in the query particle. The dictionary
vertex retrieves the ID of the binding for ?pop from the query particle, with which it
can look up the actual value of the binding from the dictionary. It saves the bindings in
a Map and passes all of the retrieved bindings to the filter’s passes() method. In our
example, the Map contains one entry with key -2 and 8,000,000 as value.

The filter, in turn, invokes the getValue() method of its child, i.e. of the Condition-
alOrExpression node, and passes the list of bindings along. ConditionalOrExpression
only has one child and therefore simply evaluates to what its child evaluates to. Thus, it
calls getValue() of its only child, the ConditionalAndExpression node, which, in turn,
invokes the getValue() method of the RelationalExpression node.
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The RelationalExpression node has two children and has to check whether the left
child is greater than the one on the right-hand side. First, it must know the values of
both children, so it calls the getValue() method of its AdditiveExpression children. The
left AdditiveExpression node simply refers to the value of its child, which again refers
to its child, the Var node. Each time a parent calls its child’s getValue() method, it
supplies the list of bindings, and therefore, the Var node can look up its binding and
return it as result. The bound value of the Var, 8,000,000, wanders up from Var to
MultiplicativeExpression and from there on back to AdditiveExpression, which reports
it as its value to RelationalExpression. Similarly, the right AdditiveExpression node
reports 10,000,000 as its value, which was returned from the NumericLiteral node.

Knowing the value of its children, the RelationalExpression node can now evaluate
the expression and checks whether 8,000,000 is greater than 10,000,000. As this is not
the case, it evaluates to false and the boolean value wanders all the way up to the root,
the Filter object. As the value is a boolean, the value can be returned as is and the
invoker of the passes() method is informed that the filter failed.

4.4 Conclusions

In this Chapter, we have presented how filters are transformed and processed. The filter
tree structure allows us to represent and evaluate even complex forms of constraint.

The filter trees have been built in a modular fashion, such that it is not necessary to
know the structure of the tree to evaluate the filter. Additionally, all elements of the
trees only know about their direct children. As such, it is easy to introduce additional
elements to the tree or to change the implementation of certain nodes.

Finally, we evaluate all filters as soon as possible to directly discard any unsatisfactory
query particles. Not only are filters processed as soon as possible, but we also guarantee
that we do not process any filters multiple times for the same query particle.
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Evaluation

In this chapter, we discuss the performance of TripleRush, especially in regards to queries
with SPARQL filters.

All experiments were conducted on one machine with 128 GB RAM and two E5-2680
v2 at 2.80 GHz processors, with 10 cores per processor. We ran the evaluation with
version 1.8.0 25 of the Java Runtime and allocated 30 GB to the Java virtual machine
(JVM) in every run.

The data for the evaluation stems from the Berlin SPARQL Benchmark (BSBM)
[Bizer and Schultz, 2009]. Datasets and use case queries were created with the standard
generator from BSBM. The evaluation was performed on five datasets of varying size,
namely on a total of 100, 666, 2785, 28850 and 70812 RDF triples, respectively. Prior
to each evaluation, 20 queries were run as warm-up queries, i.e. they were executed in
the beginning but no statistics were gathered from them.

Ten subqueries were executed for each query category in BSBM. SPARQL elements
which are currently not implemented in TripleRush have been removed from the queries,
notably the OPTIONAL clauses, string and date filters, the OFFSET keyword, and type casts
in the ORDER BY clause1. Queries 9 and 12 have been excluded from the evaluation, as
TripleRush lacks support for the DESCRIBE and CONSTRUCT query forms.

We start measuring the execution time of a subquery when the SPARQL query is
passed to the parser, and we consider the execution to have terminated once the returned
results have been iterated through. The results are dictionary encoded; looking up the
actual values from the dictionary is not included in the execution time. We compute the
average of all subqueries for each query category individually and report the average of
these figures as the average execution time for each dataset.

To contrast the time it takes to evaluate the SPARQL filters, we also evaluated the
same queries without any filters. The comparison is shown in Figure 5.1.

We notice a drastic increase in execution time for the variant with the SPARQL filters
as the datasets grow. Especially in query 5, there is a drastic difference between the
execution time of the filter variant and the one in which the SPARQL filters were omitted.
For instance, in the dataset with 28850 triples, executing the queries with filters took
an average of 883 ms (best time: 333 ms), whereas omitting the filters from the query
required a mere 30 ms on average (best time: 17 ms). The average execution times over
query 5 is given in Figure 5.2.

1In query 10, ORDER BY xsd:double(str(?price)) has been replaced with ORDER BY ?price
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Figure 5.1: Average execution time over BSBM datasets

Figure 5.2: Average execution time of query 5
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An increase in execution time is to be expected for SPARQL queries which contain
filters, as they represent more criteria which TripleRush must take into account. In
order to evaluate the filters for a query particle, the dictionary vertex must decode the
dictionary IDs and pass the real values of all variables to the filter tree. The filter trees
resulting from complex SPARQL filters consist of numerous nodes, which all take part
in the evaluation of the filter.

We note that query 5 contains the following complex filters2.

FILTER (?sim1 < (?orig1 + 120) && ?sim1 > (?orig1 - 120))

FILTER (?sim2 < (?orig2 + 170) && ?sim2 > (?orig2 - 170))

In contrast, the subqueries of query 1 only contain a simple arithmetic filter, such
as FILTER(?value1 > 214), whereby the number the variable is compared to differs
in each subquery. With such queries, we do not observe large differences between the
execution of queries with and without filters. The average execution times are given in
Figure 5.3.

Figure 5.3: Average execution time of query 1

Aside from the apparent difference in filter complexity, we notice other differences
between query 1 and query 5. The latter is specified to never return more than five
results with LIMIT 5, whereas query 1 includes the constraint LIMIT 10. However,
query 5 always returns five results, even when executed over the smallest dataset with
SPARQL filters. Query 1, on the other hand, usually returns less than the allowed
maximum of ten results. For instance, ten results were only reported once when we
executed ten subqueries over the dataset of 28850 triples, even when the SPARQL filters
were discarded.

2Note: The variable names have been shortened for layout purposes.
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Therefore, we can assume that there are fewer query particles in query 1 which the
dictionary vertex has to process. In query 5, there are many copies of the query particle,
and the dictionary vertex acts as a central bottleneck as all newly bound query particles
must traverse through it.

We can conclude that the ideal time to evaluate filters depends on the type of the
query. Especially if there is a low LIMIT to a query with many results and lenient filters,
it is evident that processing the filters afterwards is more efficient. On the other hand,
if filters are strict and prevent many copies of the query particle to spawn which will not
produce any end results, the current design for filter evaluation, i.e. evaluating after any
new binding, is the most efficient.
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Conclusion and Outlook

The result of the work during this thesis is the implementation of SPARQL filter sup-
port1. Particularly, TripleRush has been expanded to be able to parse and to transform
SPARQL filters into a flexible, machine-processable format and to incorporate the pro-
cess of checking filters into the overall execution of SPARQL queries. The filter trees
have been designed in a modular fashion, allowing developers to include additional filter
elements with ease and few modifications.

The parser and the structure of the filter trees follow the SPARQL specification closely,
aside from the discussed “element shortcuts” where multiple rules are summarized into
one. Furthermore, the elements of the filter attempt to follow the specification as closely
as possible during evaluation, e.g. by applying the effective boolean value as late as
possible to retain the original value a branch evaluates to.

Moreover, the additions to the TripleRush codebase are well-documented and test
cases are provided to verify that the parser and the overall filter evaluation behaves
properly and that the new features are well integrated into TripleRush.

Additionally, this thesis sheds some light on the general mechanics of TripleRush and
its layout, especially on the novel index graph it employs and may hopefully serve as a
useful reference for newcomers to TripleRush.

In conclusion, we note some areas in the filter processing mechanism of TripleRush
that will hopefully see additions or improvements in the future.

Inefficient aspects. (a) During the binding process, the list of newly bound variables
is computed for each child delta, while it would suffice to determine the newly bound
variables beforehand. (b) TripleRush does not dedicate a field in the query particle for
the binding of variables which are not declared in SELECT. Filters, on the other hand,
may require variables absent from the SELECT clause. As a quick fix, the smallest variable
ID present in a filter is used to determine the number of bindings to save in the query
particle. For example, a query may select two variables, encoded as -1 and -2, and a
filter may require a variable encoded as -7. In such a case, the query particle is expanded
to maintain a field for the binding of all variables from -1 to -7, rather than only for -1,
-2 and -7. (c) At the arrival of filters, the dictionary vertex checks whether any do not
depend on any variables. This is achieved by calling the variable set of each filter and
checking whether or not it is empty. However, it would be sufficient to stop the execution

1https:// github.com/ jacqueslk/ triplerush-filter

https://github.com/jacqueslk/triplerush-filter


36 CHAPTER 6. CONCLUSION AND OUTLOOK

as soon as the first variable has been found. (d) Queries which do not contain any filters
do not have to be sent through the dictionary vertex. A possible way of avoiding routes
to the dictionary vertex would be to let the query IDs of filterless queries be above or
below a given number. For example, all queries with filters could have IDs above 500.

Type system. Presently, the dictionary saves all values as strings and it is therefore
impossible to distinguish true strings from other datatypes. For instance, we cannot tell
whether the original data was a string of digits (e.g. “15”) or an actual number (e.g. the
number 15). Moreover, it is necessary to reconstruct datatypes such as xsd:dateTime

from their string representation.
Currently, we assume that all bindings provided to the filter tree are of numeric type.

All numbers are treated as doubles in the filter trees to easily perform arithmetic opera-
tions, to avoid checking for cases such as integer overflow or division among two integers,
where we would have to switch to doubles.

Further filter features. Certain SPARQL filter types are not yet supported in
TripleRush, notably built-in functions and external functions. The issues with the type
system render the implementation of functions like isIRI problematic. Furthermore,
TripleRush’s lack of support for OPTIONAL clauses currently renders the use of the func-
tion bound meaningless.

General optimization. Optimization for queries with filters might not be the same
as for queries without filters. The estimations of the optimizer may need changes for
better results, and it may be desirable to store additional meta information for more
accurate estimates.

Filter optimization. While we evaluate filters which do not contain any variables
once and then discard them if they pass (or we block query processing if any fails),
potential for optimization lies in merging nodes of the filter trees which do not depend on
any bindings, such as optimizing FILTER(3+5 > ?A*3*(2+2)) to FILTER(8 > ?A*12),
or recognizing that FILTER(?A>5 && 3>4) will never evaluate to true. Similarly, it
may be desirable to recognize when filters are tautologies, such as FILTER(?A = ?A), or
contradictions like FILTER(?B-?B > 0).

As discussed in Chapter 5, it may be interesting to evaluate the filters as a post-
processing step in certain situations, e.g. when a query has many triple patterns which
numerous copies of the query particle would not satisfy.

Another potential for speed may lie in reordering multiple filters in an optimal order,
or even the children of ConditionalAndExpression and ConditionalOrExpression nodes.
This, of course, is a complex task and requires meta information to be available.
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