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Query-Driven Index Partitioning for TripleRush
Christian Tschanz
University of Zurich

TripleRush is a distributed RDF triple store that can be queried with a subset
of SPARQL. The index structure of TripleRush is represented as a graph.
Executing a query on TripleRush will send messages along the edges in
the index graph. This leads to messages being sent between different server
nodes as the index graph vertices are distributed over multiple servers. The
hypothesis is, that a big part of the query execution time is due to network
latency. Reducing the amount of messages traversing the network during
query execution would result in improved execution times.

The goal of this thesis is to improve the query execution times of a spe-
cific set of queries by analyzing how TripleRush executes them and devising
optimization strategies to reduce the inter-node network traffic. These op-
timizations are based on query execution logs of these queries. These logs
represent a sub-graph, the query graph, of the index structure. The discussed
approach uses the query graph to re-distribute the relevant parts of the index
structure. This optimizes the index graph in such a way that the studied set
of queries will run faster due to the optimized vertex placement. The aim is
to re-partition parts of the index structure to reduce inter-node edges while
maintaining an even distribution for load balancing.

Two approaches are proposed to re-partition and transform the query
graph to produce an optimized distribution of TripleRush index vertices.
The resulting datasets can be re-introduced into TripleRush with minimal
modifications to TripleRush. It has been found that one of the approaches
shows promise to significantly improve query execution times for the stud-
ied set of queries, while maintaining the distributed load balancing.

Categories and Subject Descriptors: C.2.4 [Computer-Communication
Networks]: Distributed System—Distributed databases; H.2.4 [Database
Management]: Systems—Query processing; E.1 [Data Structures]:
Graphs and networks

General Terms: Performance, Measurement

Additional Key Words and Phrases: graph partitioning, triple store, signal-
collect

1. INTRODUCTION

TripleRush [Stutz et al. 2013] is a distributed RDF triple store that
can be queried with a subset of SPARQL. Comparisons of query
execution performance to state-of-the-art triple stores have been
strongly in favor of TripleRush. Until now only little optimizations
have focused on how the index structure of TripleRush could be
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adjusted for greater query execution performance in a multi-node,
distributed setup.

The index structure of TripleRush is represented as a graph. Ex-
ecuting a query on TripleRush will send messages along the edges
in the index graph. This leads to messages being sent between dif-
ferent server nodes as the index graph vertices are distributed over
multiple servers. The hypothesis is, that a big part of the query ex-
ecution time is due to network latency. Reducing the amount of
messages traversing the network during query execution would re-
sult in improved execution times. This can be done by studying
the execution traces of a specific set of queries. These logs span
a sub-graph of the index structure. Re-distributing the vertices of
this sub-graph with the aim of reducing inter-node edges, will op-
timize the execution performance for this specific set of queries.
However, reducing network traversal increases execution locality
on some nodes. Maximizing locality would destroy the load balanc-
ing over multiple nodes. The goal of this thesis is to find a balance
between reducing inter-node communication and load balancing. If
such a balance can be found, query execution will be significantly
increased due to the reduced number of messages traversing the
network while conserving the load balancing over multiple nodes.

The following topics are the main focus of this work:

Inter-node communication Distributed TripleRush [Internal
Sources] disperses the dataset among multiple servers (nodes).
Depending on the query composition, it is possible that a big part
of the execution time is due to network latency. It is, therefore,
favorable to reduce inter-node communication as much as possible
so as to increase processing locality which leads to a gain in query
execution performance.

Distribution The distributed and inherently parallel features of
TripleRush should be conserved as much as possible. Some in-
creases in locality can be achieved with no impact on the node dis-
tribution, but it will become a trade-off between locality and load
balancing depending on the investigated queries and the level of
optimization.

Dictionary TripleRush only operates on datasets where all
triples have been encoded into integer (ID) triples by using a dictio-
nary. The default node assignment is dynamically computed on the
resulting encoded IDs. This facility can be used to define placement
of datasets on specified nodes. Creating an optimized dictionary is
one of the main objectives.

This thesis explores different approaches to optimize the execu-
tion times of a specific set of queries by balancing the reduction
of inter-node communication and load balancing. The main con-
tribution is an analysis of the viability of using query traces to re-
distribute index vertices and a discussion of possible performance
gains.

The following chapter introduces and explains the fundamental
systems, mechanisms and data structures that are central to this the-
sis. After that follows the presentation of the two optimization ap-
proaches and the evaluation thereof. Based on the gathered data, a
preliminary investigation of a cost model is discussed, leading the
the limitations of this thesis and the topics which are still open for
future work. I will then conclude with a discussion of the results.



Query-Driven Index Partitioning for TripleRush • 3

Fig. 1. Index graph, representing the encoded triple [ 16 10 3 ]

2. FUNDAMENTALS

This chapter introduces the systems, mechanisms, data structures
and tools on which the optimization approaches are based. The next
subsection will introduce TripleRush and explain the relevant sub-
systems in more detail. The subsections following this introduction
will present the main data structure to handle the gathered query
traces followed by the presentation of the used tools.

2.1 TripleRush

TripleRush is a parallel and distributed in-memory RDF triple
store, designed to answer queries over large graphs. It is built on
top of the graph processing framework Signal/Collect [Stutz et al.
2010]. The index structure itself is represented as a graph (index
graph) that can be queried with a subset of SPARQL (basic graph
patterns). A distinguishing design aspect is that TripleRush routes
query descriptions through the data. Partially matched query copies
are routed along different paths in the index structure in parallel.
Every vertex in the index graph corresponds to a triple pattern (TP).
Query execution can transparently create implicit edges in the index
structure during execution. The actual triple vertices are stored in-
side the TP vertices, which have only one wildcard (*) element and
are, therefore, only conceptually another level in the index graph.
TripleRush operates on an encoded version of the data. This en-
coding will be produced on the fly while the data is loaded into the
store. The following parts of TripleRush are of special interest to
the proposed (see section 1) ideas and goals.

2.1.1 Index Graph. The index structure of TripleRush is rep-
resented as a graph in which each vertex represents a triple pattern
[Fig. 1]. Partially matched copies of queries will be routed along
the edges in this graph and processed in the vertices. The graph in
[Fig. 1] has previously been optimized for locality by Stutz et al.
[Internal Sources]. Disregarding implicit edges (see section 2.1.3),
some edges in the index graph can inherently traverse node bound-
aries (see section 2.1.4).

2.1.2 Dictionary. While parsing the triples, every unique triple
element (Subject, Predicate or Object) will be assigned a unique in-
teger ID. The triple [ Elvis inspired Dylan ] may be trans-
formed into [ 16 10 3 ]. The default behavior is to assign IDs
in a linear fashion; starting at 1 and assigning the next, not yet en-
coded, element the subsequent, unassigned ID. Wildcard elements
will always be assigned ID 0. These encoded triples are then stored
and the corresponding triple pattern index graph, will be added to
the index structure. These IDs are not only used as an efficient rep-
resentation of the triple elements, but are also used for node as-
signment and intra-node balancing (worker threads) (see section
2.1.4). The dictionary will only be built once during initialization
and does not incur any overhead to the query execution. As node

placement can be directly influenced by assigning a triple element
a specific ID, generating an optimized dictionary in advance is the
optimal way to achieve a specific index graph layout.

2.1.3 Particle Routing. The query execution starts with the ad-
dition of a query vertex to the TripleRush graph. The query vertex
will then emit a single particle, which will be routed to the index
vertex matching its first unmatched triple pattern (representing a
sub-query). A copy of it is then sent along all edges. Once a parti-
cle reaches a triple vertex, its bindings and remaining triple patterns
are updated. The particle is then redirected to the vertex matching
the next unmatched pattern. To optimize query execution one can’t
just improve the distributed layout of the index graph; the implic-
itly added redirection edges resulting from query execution must
also be considered. After all bindings have been determined and
the particle does no longer contain unmatched queries (or it could
not match/bind all variables), it will be sent back to the query ver-
tex. Particles addressed to inexistent triple pattern vertices will be
marked as failed and redirected back to the query vertex. Edges to
inexistent index vertices are also subject to optimization, as par-
ticles sent along such edges they might still traverse the network
before the existence of a certain pattern is checked.

2.1.4 Triple Mapper. The TripleMapper’s responsibility is to
uniquely assign a node and worker thread to any given triple pat-
tern. By default, node assignment is governed by only one of the
IDs in the triple: the significant ID. As the the index vertices
have wildcards in different positions, to decide which ID is sig-
nificant for node assignment, the following hierarchy is respected:
subject > object > predicate. Starting from the top (sub-
ject), the first non-wildcard element in the hierarchy is considered
the significant ID. Node assignment is then decided through the
following function:

a(i, n) = i mod n (1)

where i is the significant ID and n the total number of nodes over
which TripleRush is distributed.

Worker thread assignment can be done through different strate-
gies, depending on the desired load balancing properties.

Distributed Worker assignment is decided by summing the non-
wildcard elements in the triple pattern (or 0 if all elements are wild-
cards) and then applying function (1) with i as the summation of the
IDs and n the available worker threads per node.

Alternative This strategy is similar to the Distributed approach
but only uses the significant ID (or 0) instead of the summation of
non-wildcard IDs.

Hashing To generate a good distribution over worker threads,
the sum of the non-wildcard IDs (or 0) is hashed by using the mix-
ing functions of MurmurHash 3 [Appleby 2010] before applying
(1), with i as the hash value and n the available worker threads per
node.

2.2 Query Graph

To analyze and optimize the index graph distribution, query traces
were gathered. Every sent particle traveling along explicit or im-
plicit index graph edges, logged the edge they traversed, which
query they belong to and wether its an explicit or implicit edge. Par-
ticles sent back to the query vertex, failed or successful, were not
logged for these edges were not considered part of the query execu-
tion on the index graph. These logs describe the sub-graph which is
actively used for query execution. The gathered data is then trans-
formed into an undirected, weighted graph, the query graph [Fig.
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Fig. 2. Example Query Graph. Brackets beside vertices contain a vector
of binary vertex weights equal to the number of analyzed queries.

2]. Both the edges and the vertices in the query graph are weighted.
Edges were assigned weights proportional to the number of query
particles sent along these paths. Vertex weights are represented as
a vector of binary weights. The length of the vector is equal to the
number of different queries for which traces were generated.

The undirected and weighted query graph is the basis upon
which all optimizations were based.

2.3 Tooling

To transform the gathered traces, a tool has been developed1 which
can build the query graph raw, or reduced to the node assignment
IDs, partition the resulting graph using METIS [Karypis and Ku-
mar 1998] and generate the resulting dictionary or lookup table
(see chapter 3). A second, small tool2 has been created to gather
statistics on the query traces.

3. OPTIMIZATIONS

Two different approaches to improve query execution, using the
analysis of query traces, are proposed.

The general idea is to use the query graph to re-partition the ver-
tices over the worker nodes in order to reduce edge cut (inter-node
communication). The weighting of edges and aggregation of multi-
ple queries in one graph favor the placement of strongly connected
vertices on the same node. A naive partitioning of the query graph
could yield an unbalanced partitioning where the vertices partici-
pating in a specific query could be entirely clustered on one node.
Clustering all vertices which are responsible for a certain query on
the same node would forgo the load balancing and parallelism of
spreading the vertices over multiple nodes. This poses a trade-off
between increased locality and load balancing. The goal is to find
a good balance between these extremes to increase locality while
still conserving the load balancing. This is achieved by partition-
ing the query graph in a multi-constrained fashion using the ver-
tex weights. Every element of the vertex weight vector represents
a resource that acts as a constraint for the partitioning algorithm.
It will try to spread every resource evenly over as many partitions
as possible. This will ensure that the distributed nature will not be
lost while optimizing edge cut. This approach allows to optimize
a group of queries rather than of just one, but will also introduce

1https://github.com/chrigi/TripleRush-QueryTraceTool
2https://github.com/chrigi/TripleRush-QueryStatsTool

Fig. 3. Transformed significant ID graph based on Fig. 2. The larger num-
bers are the respective significant IDs. The Triple pattern vertices are only
shown for illustrative purposes.

possible bad vertex placements when assigning a vertex in favor of
one query instead of others that share this vertex. As it is not possi-
ble to produce the best partitioning for any single query nor for the
group as a whole, only an approximation can be generated. It is ex-
pected that there will be uneven vertex distribution to some extent,
due to the fact that only an approximation can be computed and
that the multi-constrained approach will introduce a further trade-
off between query distribution and edge cut. The aim is to create a
good distribution of the index vertices relevant to the selected set of
queries. As only the query graph is re-partitioned, no optimizations
over the whole index structure is performed. This will reduce inter-
node communication and increase processing locality only for the
selected queries. Other queries which are similar to the ones used to
generate the query graph, should also profit from the optimizations.
Queries which are entirely different won’t be explicitly optimized
and might even get de-optimized.

The query graph can either be partitioned in raw form or reduced
further to its significant node assignment IDs. These strategies are
discussed in the following subsections.

3.1 Significant ID Partitioning

The most efficient way to import the new vertex partitioning
into TripleRush is to define a new Dictionary, which can be im-
ported during startup. This is only possible if all triple elements
(subject, object and predicate) contained in the query graph are
uniquely mappable to an ID. Instead of defining a new encod-
ing, the currently implemented Triple Mapper is used. It assigns
nodes to index triples based on either the subject, object or pred-
icate (in this order), based on which elements are non-wildcards.
TriplePattern(10,0,23) has no wildcard in the subject posi-
tion, so the significant node assignment ID (significant ID) is 10.

The first approach is to reduce the query graph further. Ver-
tices in the reduced graph represent only the unique, signifi-
cant IDs. Edges which were between vertices with the same
significant ID are discarded and edges between different sig-
nificant IDs are [Fig. fig:siggraph]. The resulting graph can
then be partitioned as previously described. As the vertices
represent the ID responsible for node assignment, a unique
triple_element -> significant_id -> node mapping is
possible.

To generate the dictionary, the partitioning results as well as the
previously valid dictionary are combined. The generated dictionary
maps a triple element to an ID. The vertex ID (representing a sig-
nificant ID in the reduced query graph) is used to extract the corre-



Query-Driven Index Partitioning for TripleRush • 5

sponding triple element string form the previously valid dictionary.
The new ID is then computed using the partitioning results. These
results contain information about which vertex (vertex/significant
ID) has been put into which partition. The new ID is generated by
assigning the next (in an increasing manner), free (not yet assigned
to another triple element) ID which maps to the given partition
(when applying function (1)) taken form the partitioning results.
The exact equation to determine the new ID is as follows:

n(p, n) = g(n) ∗ n+ p (2)

where p is the partition assigned to the vertex through the re-
partitioning, n is the total number of partitions and g(n) is the
number of vertices which were already assigned to partition p.

Using (2) ensures that a given triple element will be assigned the
next free ID but might not generate a contiguous dictionary. Some
IDs might be skipped and never be assigned to a triple element
while IDs before and after are used. This happens when the sig-
nificant ID vertices are not perfectly distributed over all partitions.
Skipping is necessary to ensure that every ID maps to the correct
partition when applying (1).

This approach can re-use already existing facilities of
TripleRush. The necessary reduction of the query-graph however
allows for sub-optimal index vertex distribution. Re-partitioning of
the query graph might lead to a clustering of bigger (e.g. vertex for
ID 16 in [Fig. 3], which abstracts two index vertices) significant
ID vertices on one node, resulting in a disproportional amount of
index vertices on that node. This is expected and can be seen as the
trade-off between locality and distribution. It has to be verified that
the partitioning algorithm will neither reduce vertices on one node
to an unreasonably small number nor overload another.

3.2 Raw Query Graph Partitioning

Using the significant ID partitioning from 3.1 has the benefit that
the resulting dictionary only has to be loaded once before the data
is loaded into the store. This is an efficient way to define index
vertex placement without any query execution overhead and with
only small impact on distribution as the size scales well.

Another approach is to partition the raw query graph, where ev-
ery vertex represents an index triple pattern. This could theoreti-
cally produce a more balanced and finer grained partitioning. This
results in a TriplePattern -> node mapping which depends on
a unique S P O pattern. The currently implemented TripleMappers
determine the node assignment dynamically at run time, based on a
single triple element ID (the significant ID). Using a specific triple
element ID pattern is not supported for node assignment as it would
depend on multiple IDs and their order, which can’t be dynamically
computed at runtime when using the available TripleMappers. One
approach would be to develop a new TripleMapper function and
TriplePattern encoding which would allow such an operation.

Instead of developing a new encoding scheme, the
TriplePattern -> node mapping was implemented in the
form of a lookup table. The existing, distributed TripleMapper
was modified to read from a lookup table based on the afore-
mentioned mapping and to search this map before employing the
default computation. This approach has several limitations:

Size The resulting lookup table can become very big. Queries
which traverse a big part of the index graph would result in du-
plicating much of the dataset in the lookup table. As the raw query
graph inherently has double the number of vertices than the reduced
graph, a much bigger result has the be expected.

Distribution As the lookup table has to explicitly be accessed
upon node assignment in the TripleMapper, it needs to be avail-

able on every node at all times. This can complicate the distributed
deployment of TripleRush.

Overhead Node assignment lookup is no longer implicit from
a simple operation on the available triple pattern elements. It be-
comes a more expensive lookup in a hash table combined with a
possible fallback mechanism.

The following techniques were employed to try to circumvent these
limitations:

Size The query graph was extended to include one additional
vertex per worker node, representing the nodes. Edges from index
vertices to their natural worker node with constant, small weight
were added to create an affinity of the vertices to their natural node.
During the partitioning step it was made sure that the node vertices
were evenly distributed over the partitions. After the partitioning
took place, the triple vertices which were placed in the partition
of their corresponding natural node, could be excluded from the
lookup table, leading to a smaller table.

Distribution Cutting down the size of the lookup table increases
feasibility of the distribution.

Overhead To increase the hash table lookup speed, the triple pat-
terns were converted into a more efficient representation. As every
index triple pattern consists of a maximum of two non-wildcard
integer IDs, it is possible to combine them in a single number of
type long and encode which kind of pattern it is in the sign and
placement as first or second in the long representation.

This representation has become the standard index vertex repre-
sentation in TripleRush.

This approach introduces new mechanisms to TripleRush. The
chosen lookup table is a small component which can easily be in-
troduced into any TripleMapper. A more advanced, new encoding
scheme would require deeper integration.

4. EVALUATION

This section compares the baseline performance of the current
TripleRush implementation with the modified TripleRush instance
by using the previously described, generated dictionary and lookup
table. Different TripleMapper strategies will also be explored.

4.1 Evaluation Setup

All queries were executed on the same JVM (version
1.7.0_65-b32) running on machines with two, twelve-
core AMD OpteronTM 6174 processors and 66 GB RAM,
connected through Gigabit ethernet links and running on
Debian 3.2.60-1+deb7u1 x86_64. Every query was run for
40 seconds (executed as often as possible within 40 seconds) in
order to warm up the JIT compiler and garbage collection was
triggered before the actual query executions. These evaluations
were repeated 15 times per query and the cold run was discarded.
The execution times include SPARQL query parsing, execution
and result enumeration.3 Evaluations have been performed in a
distributed setting of either 2 or 4 nodes.

4.2 Dataset and Queries

All queries were run on the LUBM (Leigh University Bench-
mark) [Guo et al. 2005]. Datasets were generated using UBA1.74

3Details on the used evaluation procedure can be found here: https://drive.
google.com/file/d/0B-ztn8ONihzsT0pNSGM1a1hsTnc/edit?usp=sharing
4http://swat.cse.lehigh.edu/projects/lubm
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and transformed into the n-triples format. The evaluations were run
on the datasets LUBM-40, LUBM-80 and LUBM-160. All eval-
uations were carried out using the DistributedTripleMapper if not
noted differently. To be consistent with other evaluations, the same
seven queries that were used in the Trinity.RDF evaluation [Zeng
et al. 2013] and TripleRush evaluation have been run. Additional
queries were devised as well as incorporated from the Semplore
evaluation [Zhang et al. 2007]. All Queries can be found in ap-
pendix A.1.

4.3 Evaluations

All gathered, raw data produced by the evaluation is also available.5
All cited values are the based on the measured minima if not noted
differently.

4.3.1 Lookup Table. As discussed in 3.2, the use of a lookup
table has many disadvantages. Its use would only be warranted if
it led to significant performance improvements. A comparison of
query execution times can be seen in [Table I]. The results show
that L12, the most expensive query, could be executed in signifi-
cantly less time but many of the other queries show considerable
regressions. Overall the execution time could be significantly de-
creased. Still, it might not be desirable to have only one dominating
query improved. A more favorable approach would have execution
improvements for many queries. As long as these queries are not
executed in rapid succession (batch), no immediate improvements
could be found when most of them run slower than the default case.
The same behavior can be found in the smaller dataset LUBM40
[Table II]. This disqualifies the Lookup Table approach as a feasi-
ble, general query execution optimization technique.

The bad performance of this approach is most likely due to the
overhead of the required hash table lookup. When comparing re-
ductions in inter-node edges, it is possible to see that the lookup
table reduced the number of inter-node edges for L7, the worst per-
forming query, even more aggressivly than the dictionary approach
did, boasting an 86.84% reduction. The increased locality should
yield a much better query execution time than measured. Another
factor would be distribution of work over worker threads. This an-
gle is analyzed further in 4.3.3.

4.3.2 Dictionary. Generating a dictionary, to improve vertex
placement, was the main goal. Not only is it more practical and
easier to work with and generate, but it is also exhibits superior
node scalability. [Table III] shows the file size differences of the
generated dictionaries and lookup tables. While the dictionary sizes
remain constant when adding more nodes, the lookup table drasti-
cally increases in size. It is easy to see that scaling to many more
nodes and bigger datasets, puts the lookup table approach at a clear
disadvantage with regard to size efficiency.

Total query execution times could be significantly improved in
larger data sets, but not to the same extent that the lookup table en-
abled. This disparity stems from the more even distribution of ex-
ecution time improvements. Multi-constrained partitioning on the
raw query graph mainly optimized the most dominant query at the
cost of others [Table I]. However, applying the same partitioning
to the reduced query graph, allowed for a much more balanced

5Measurements:https://docs.google.com/spreadsheets/d/
1YI35Dj2KJPAgbw RWCwAlXV NXJkK1yFbRbV2Tt9jYE/edit?usp=
sharing
Data: https://drive.google.com/file/d/0B-ztn8ONihzsbTFxS1phMXNmdGM/
edit?usp=sharing

Table III. Filesize differences
Dataset

(# Nodes)
Dictionary Lookup

LUBM40 (2) 88M 73M
LUBM160 (2) 359M 337M

LUBM40 (4) 88M 120M
LUBM160 (4) 359M 520M
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Fig. 4. Execution time improvement (based on execution time sum over
all queries) vs. Dataset size, 2 Nodes

partitioning in regard to improvements in individual query execu-
tions [Table II]. Using the generated dictionary did not only im-
prove query execution times for more queries but it also bounded
the ones which ran slower. Most of the queries which show a de-
crease in performance, show less then a 10% increase in execution
time compared to the default case. This is a considerable improve-
ment as compared with the use of a lookup table when executing
the queries individually.

Comparing execution times in a 2 node setup exhibits the most
consistent improvements. [Fig. 10] and [Fig. 11] shows significant
improvements over all dataset sizes. Closer inspection reveals that
the biggest gains result from a drastic improvement in the dom-
inant query L12. As previously mentioned, this is also the case
when using a lookup table, which suggests to remain cautious about
conclusions regarding general improvements. Fortunately the data
[Table II] does not exhibit the narrow optimizations one might ex-
pect. A comparison of the gains in query execution performance
over different datasets [Fig. 12] shows a clear downwards trend.
By further scaling up dataset size, intra-node worker distribution
and edges would become the dominating factor that diminishes
the gains from optimizing inter-node communication. This can be
clearly seen when taking into account the reduction of inter-node
edges which result from using the optimized dictionary [Fig. 5].
Doubling the dataset size from LUBM80 to LUBM160 drastically
increases the load on individual nodes, but the partitioning could
not reduce the inter-edge communication in a similar fashion.

Analyzing execution times on 4 nodes shows a different situa-
tion. Deploying the generated dictionary on small datasets can even
lead to worse performance. The improvements in individual queries
is still better than with a lookup table [Table II], [Fig. 6] and [Fig.
7], but the dominating query could not be optimized as aggres-
sively. Increasing the dataset size shows improvement [Fig. 8] in
the summed query execution times, leading to a speedup of over
10% for LUBM160. Combining these insights with the scalability
on 2 nodes [Fig. 12] and the trends in [Fig. 8] suggests that the max-
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Table I. Query execution times, LUBM160, 4 nodes

Query Default (ms) Lookup (ms) Dictionary (ms)
Improvement
Lookup (%)

Improvement
Dictionary (%)

L1 158.7 346.6 128.5 -118.40 19.03
L2 162.5 198.4 149.2 -22.09 8.18
L3 156 315.6 150.3 -102.31 3.65
L4 4.9 11.8 5.1 -140.82 -4.08
L5 3.2 3.1 3.1 3.13 3.13
L6 5.9 6.8 6 -15.25 -1.69
L7 89.7 312.5 62.9 -248.38 29.88
L8 8.4 20.1 8.6 -139.29 -2.38
L9 9.9 10.5 8.3 -6.06 16.16
L10 61.6 53.8 48.6 12.66 21.10
L11 29.8 17.5 40.4 41.28 -35.57
L12 4798.4 1622 4027.7 66.20 16.06
L13 156.9 180 167 -14.72 -6.44
L14 2.4 1.2 1.2 50.00 50.00
L15 787.2 794.7 814.3 -0.95 -3.44
L16 27.2 26.3 23.2 3.31 14.71
Sum 6462.7 3920.9 5644.4 39.33 12.66
Average 403.92 245.06 352.78 39.33 12.66
Geometric Mean 44.00 51.51 39.61 -17.07 9.97

Table II. Number of queries which could be optimized or were de-optimized

Dataset (# Nodes) Optimization
# optimized Queries

gain>0%
# slightly de-optimzed Queries

-10%≤gain≤0%
# strongly de-optimized Queries

gain<-10%

LUBM40 (4) Lookup 3 4 9
LUBM80 (4) Lookup 0 0 0
LUBM160 (4) Lookup 6 2 8

LUBM40 (4) Dictionary 7 4 5
LUBM80 (4) Dictionary 9 3 4
LUBM160 (4) Dictionary 10 5 1

LUBM40 (2) Dictionary 10 5 1
LUBM80 (2) Dictionary 10 5 1
LUBM160 (2) Dictionary 12 2 2
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Fig. 5. Reductions of Inter-Node Edges vs. Dataset size, 2 Nodes

imum possible performance improvement will most likely peak for
a larger dataset and then decrease again. Reductions in inter-node
edges [Fig. 9] between LUBM80 and LUBM160 is similar to the
2 nodes setting. Nevertheless, a higher performance increase for
LUBM160 can be measured if compared with LUBM80 in the 4
nodes setting. Distributing the computation over 4 nodes increases
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the sensitivity to inter-node communication. A 4 node distribution
inherently has more inter-edges compared to a 2 node setup [Fig.
13], and distributing the load over more machines won’t increase
the intra-work as dramatically.

The main reason for the superior performance of the dictionary
over individual queries, compared to the lookup table is the reduc-
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all queries) vs. Dataset size, 4 Nodes
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Fig. 9. Reductions of Inter-Node Edges vs. Dataset size, 4 Nodes

tion of the query graph. By aggregating multiple triple pattern ver-
tices into a single significant ID vertex, removes many edges from
the graph. This on one hand limits the abilities of the partitioning,
as less vertices can be moved or edges cut, but on the other hand en-
sures that some edges are guaranteed to be intra-node edges. Find-
ing a subject for a given P O combination would traverse significant
ID borders and can be optimized by using the reduced query graph
partitioning but further restricting the found subjects by varying
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P O is guaranteed to be handled intra-node and will never traverse
a node boundary. Partitioning this query on the raw query graph
might introduce additional node boundary traversals. This suggests
that queries where many subqueries only add restrictions to a given
set of data (mostly in the form of a fixed subject) would yield bigger
improvements in query execution times when using the generated
dictionary than queries which contain more sub-queries which tra-
verse significant ID boundaries.
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LUBM160

Optimizing inter-node communication results in decreased load
balancing. Examining the standard deviation of the distribution of
index vertices over the nodes [Fig. 15] (L12 excluded) reveals that
locality was measurably increased for some queries, leading to
worse load balancing. This was expected an is acceptable as long
as the deviations are not too large. On average, these deviations
are no more than 3.77% of the involved vertices per query for the
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Fig. 16. Total execution times vs. Mapper strategy, LUBM160, 4 Nodes

LUBM160 dataset on 4 nodes. Half of the deviations are below 1%.
Different node and dataset combinations present a similar situation.

Closer inspection of L12 [Fig. 14] shows that using the lookup
table approach leads to disproportionate locality on Node 0. This is
also explains the superior improvements in query execution times
for L12 when using a lookup table. Such an unbalanced distribu-
tion can be considered suboptimal due to the greatly reduced load
balancing.

4.3.3 Worker Distribution. Triple Rush offers multiple intra-
node load balancing strategies (see 2.1.4). By default, the Dis-
tributed mapper is chosen. This mapper does not produce a very
good distribution of work over worker threads. Generating a better
intra-node distribution presents itself as a sensible approach to in-
crease performance for intra-node processing. This is an important
factor for the proposed dictionary approach as it increases locality
and, therefore, creates more work for an individual node. Contrary
to what one might expect, using a different worker assignment strat-
egy introduced significant regressions in query execution times,
both in total execution times [Fig. 16] and for individual queries
[Fig. 17]. The Hashing strategy was first introduced and led to im-
proved execution performance in a single node setup. However it
performed very poorly in a distributed setting. The hypothesis was
that increased worker locality appears to perform better than intra-
node messaging. The Alternative mapping strategy would push this
even further by assigning workers only based on the significant ID.
Benchmarking these mappers clearly shows that the hypothesis on
worker locality can be rejected, as even the alternative mapper per-
forms rather poorly in a distributed setting.

The bad performance of these intra-node work distribution
strategies is, therefore, unlikely to be found in a model property.
It is entirely possible that these differences stem from implementa-
tion, library or configuration anomalies.

5. COST MODEL

Initial measurements using the Hashing strategy for worker thread
distribution (see 4.3.3) suggested a strong link between intra-node
communication and query execution performance. After gathering
worker distribution statistics, it was attempted to fit a simple cost
model to the data:

t = 0.1 + x ∗ (selfmw ∗ y + othermw ∗ z + nodemw ∗ w)

with t as the expected execution time in ms, x, y, z as the fit param-
eters, selfmw the number of messages of the busiest worker set to
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itself, othermw the number of messages of the busiest worker sent
to another worker on the same node and nodemw the number of
messages of the busiest worker set to a worker on another node.

No satisfactory fit could be produced by using this model. Mea-
surements using the alternative triple mapping strategy suggest
that the link between intra-node work distribution is not deci-
sive enough to warrant a cost model to be based on the assumed
strong connection, as the wild performance deviations with differ-
ent strategies does not appear to be inherent to the model.

To re-partition the query graph and evaluating the approach of
using the raw or reduced graph could identify multiple factors that
are relevant to the query execution performance in regard to reduc-
ing inter-node communication.

Reduction of Inter-Node edges The results could clearly estab-
lish that reducing network communication can significantly in-
crease query performance. It could also show that the relative
amount of the reduction appears to be bounded around 50%.

Worker Load Relative reduction in inter-node communication
does not scale with dataset size. This increases the workload on
individual worker threads, which shifts the dominant factor for net-
work latency to processing latency.

Distribution Distributing TripleRush over more nodes, makes it
more susceptible to network related performance variations.

Aggregation Suboptimal distribution of vertices over nodes can
yield better improvements for individual queries while preserving
much of the parallel nature of TripleRush.

Exploring a more complex cost model using these factors might al-
low for a more accurate prediction of query execution performance.

6. LIMITATIONS

The measurements were only conducted on small dataset sizes
compared to what TripleRush is able to handle. Increasing the
dataset size would allow to gather more concrete data on scala-
bility and interactions between the identified factors. It was shown
that inter-node communication is an important factor in query exe-
cution performance but other factors like intra-node workload and
balancing can’t be neglected.

The distributed setup is limited to 2 and 4 node setups. The
design of Signal/Collect and TripleRush is highly distributed and
would favor setups with even higher number of nodes. Using more
nodes would also increase the sensitivity to network latency and
therefore inter-node connectivity.

Partitioning using METIS limits the control over how vertices
are distributed over the nodes. Using a multi-constrained partition-
ing can favor a very small subset of the measured queries, leading to
good overall improvements but bad execution times when analyzed
on a per query basis. Employing a custom partitioning algorithm to
tune the parameters to the specifics of TripleRush and query execu-
tion might produce better overall results, especially for the lookup
table approach.

All measurements were only done on the LUBM dataset. Evalu-
ation the optimization approaches on different datasets could lead
to further insights.

Using multi-constrained partitioning makes the crucial partition-
ing step highly dependent on the traced queries. Using different sets
of queries could yield different results. Some combinations might
not be suitable for this approach whereas others are better suited.
A comparison between query sets would show the limits of this ap-
proach. Using queries with similar execution times (no dominating
query) could yield in very different results.

The evaluations were done using a fixed set of queries that were
also part of the optimization. The created optimizations were not
tested with similar queries which were not part of the optimization
step.

7. FUTURE WORK

The discussed approach of reducing inter-node communication has
shown promise. Extending this to study messaging on a worker
thread level might reveal a more detailed picture of which factors
are involved and how to influence them to a greater degree.

TripleRush already gathers many statistics. It would increase the
feasibility of generating a dictionary if it could be based on the
statistics already present in TripleRush. This would allow for a self-
tuning feature.

8. CONCLUSIONS

TripleRush has already proven to be one of the fastest triple stores.
Reducing intra-node communication to improve query execution
performance has shown further performance gains of up to 35% for
a specific set of queries, dataset and node configuration. These re-
sults show that index vertex placement can influence query execu-
tion with significant impact and proves the hypothesis that network
latency is a considerable part of query execution.

Especially the approach of using a reduced query graph to gen-
erate an optimized dictionary has shown promise. Not only did it
allow for a general improvement in query execution over many
dataset sizes and node configurations but it also strikes a good bal-
ance between load balancing and increased locality, yielding good
optimizations over a wide variety of queries without over optimiz-
ing one in favor of another or by diminishing vertex distribution.

It also became evident that fast queries which don’t access a lot
of data can’t be optimized while maintaining good load balanc-
ing over different nodes. It might be favorable to situate data ac-
cessed by such queries on only one node and distribute the load
over worker threads instead of nodes.

The used tooling and infrastructure is not a viable approach
to implement a re-partitioning optimization approach directly into
TripleRush.

Devising a an feasible implementation directly in TripleRush or
optimizing default vertex placement based on heuristics is left for
future work.
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APPENDIX

A. APPENDIX

A.1 Queries

LUBM evaluation queries. L1-L7 were originally from [Atre et al.
2010]. L8-L13 were created by the author of this thesis. L14-L16
were taken from the Semplore evaluation6.

PREFIX ub : <h t t p : / / swat . c s e . l e h i g h . edu / on to /
univ−bench . owl#>

PREFIX r d f : <h t t p : / / www. w3 . org /1999/02 /22−
r d f−syn t ax−ns#>

L1 : SELECT ?X ?Y ?Z WHERE {
?X r d f : t y p e ub : G r a d u a t e S t u d e n t .
?X ub : u n d e r g r a d u a t e D e g r e e F r o m ?Y .
?X ub : memberOf ?Z .
?Z r d f : t y p e ub : Depar tment .
?Z ub : s u b O r g a n i z a t i o n O f ?Y .
?Y r d f : t y p e ub : U n i v e r s i t y . }

L2 : SELECT ?X ?Y WHERE {
?X r d f : t y p e ub : Course .
?X ub : name ?Y . }

L3 : SELECT ?X ?Y ?Z WHERE {
?X ub : u n d e r g r a d u a t e D e g r e e F r o m ?Y .
?X r d f : t y p e ub : U n d e r g r a d u a t e S t u d e n t .
?X ub : memberOf ?Z .
?Z ub : s u b O r g a n i z a t i o n O f ?Y .
?Z r d f : t y p e ub : Depar tment .
?Y r d f : t y p e ub : U n i v e r s i t y . }

L4 : SELECT ?X ?Y1 ?Y2 ?Y3 WHERE {
?X ub : worksFor <h t t p : / / www. Depar tment0 .

U n i v e r s i t y 0 . edu> .
?X r d f : t y p e ub : F u l l P r o f e s s o r .
?X ub : name ?Y1 .
?X ub : e m a i l A d d r e s s ?Y2 .
?X ub : t e l e p h o n e ?Y3 . }

L5 : SELECT ?X WHERE {
?X ub : s u b O r g a n i z a t i o n O f <h t t p : / / www.

Depar tment0 . U n i v e r s i t y 0 . edu> .
?X r d f : t y p e ub : ResearchGroup . }

L6 : SELECT ?X ?Y WHERE {
?Y ub : s u b O r g a n i z a t i o n O f <h t t p : / / www.

U n i v e r s i t y 0 . edu> .
?Y r d f : t y p e ub : Depar tment .
?X ub : worksFor ?Y .
?X r d f : t y p e ub : F u l l P r o f e s s o r . }

L7 : SELECT ?X ?Y ?Z WHERE {
?Y r d f : t y p e ub : F u l l P r o f e s s o r .
?Y ub : t e a c h e r O f ?Z .
?Z r d f : t y p e ub : Course .
?X ub : a d v i s o r ?Y .
?X ub : t a k e s C o u r s e ?Z .

6http://apex.sjtu.edu.cn/apex wiki/Semplore QS

?X r d f : t y p e ub : U n d e r g r a d u a t e S t u d e n t . }

L8 : SELECT ?X ?Y ?Z WHERE {
?X r d f : t y p e ub : G r a d u a t e S t u d e n t .
?Y r d f : t y p e ub : Depar tmen t .
?X ub : memberOf ?Y .
?Y ub : s u b O r g a n i z a t i o n O f <h t t p : / / www.

U n i v e r s i t y 0 . edu> .
?X ub : e m a i l A d d r e s s ?Z . }

L9 : SELECT ?X ?Y ?Z WHERE {
?X r d f : t y p e ub : F u l l P r o f e s s o r .
?Y ub : s u b O r g a n i z a t i o n O f <h t t p : / / www.

U n i v e r s i t y 0 . edu> .
?Y r d f : t y p e ub : Depar tmen t .
?X ?Z ?Y . }

L10 : SELECT ?X ?Y ?Z WHERE {
?Y r d f : t y p e ub : F u l l P r o f e s s o r .
?Y ub : t e a c h e r O f ?Z .
?Z r d f : t y p e ub : Course .
?X ub : t e a c h i n g A s s i s t a n t O f ?Z . }

L11 : SELECT ?X ?Y ?Z ?W WHERE {
?X r d f : t y p e ub : F u l l P r o f e s s o r .
?X ub : d o c t o r a l D e g r e e F r o m ?Y .
?X ub : headOf ?Z .
?Z r d f : t y p e ub : Depar tmen t .
?Z ub : s u b O r g a n i z a t i o n O f ?Y .
?Y r d f : t y p e ub : U n i v e r s i t y .
?W r d f : t y p e ub : U n d e r g r a d u a t e S t u d e n t .
?W ub : a d v i s o r ?X . }

L12 : SELECT ?X ?Y ?Z WHERE {
?X r d f : t y p e ub : Course .
?Y r d f : t y p e ub : G r a d u a t e S t u d e n t .
?Y ?Z ?X . }

L13 : SELECT ?X ?Y ?Z WHERE {
?X r d f : t y p e ub : Course .
?Y r d f : t y p e ub : G r a d u a t e S t u d e n t .
?Y ub : t e a c h i n g A s s i s t a n t O f ?X .
?Y ub : e m a i l A d d r e s s ?Z . }

L14 : SELECT ?X WHERE {
?X ub : memberOf <h t t p : / / www. Depar tment9 .

U n i v e r s i t y 0 . edu> . }

L15 : SELECT ?X ?Y ?Z WHERE {
?X ub : t a k e s C o u r s e ?Y .
?Z ub : t e a c h e r O f ?Y .
?Z r d f : t y p e ub : F u l l P r o f e s s o r . }

L16 : SELECT ?X ?Y ?Z ?W WHERE {
?X ub : t a k e s C o u r s e ?Y .
<h t t p : / / www. Depar tment4 . U n i v e r s i t y 0 . edu /

F u l l P r o f e s s o r 5 > ub : t e a c h e r O f ?Y .
?X ub : memberOf ?Z .
?W ub : memberOf ?Z .
?W ub : t e l e p h o n e ” xxx−xxx−xxxx ” . }
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