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Chapter 1

Introduction

In the past years there has been a rapid growth of the hedge fund industry

in terms of size and assets under management. According to Annual Hedge

Fund Investor Survey by Credit Suisse in the first quarter of 2010 the esti-

mations of the hedge fund industry size were expected to grow from USD

$1.64 trillion as of the end of 2009 to USD $1.97 trillion as of the end of 2010,

which is even above the pre-crisis peak. At the same time hedge fund invest-

ments became accessible for the broad public: from institutional investors

and wealthy individuals to retail investors.

Hedge funds are flexible and quite unregulated which is among the reasons

why they are successful in attracting investors’ money. Hedge funds also seek

to achieve absolute returns. Therefore, they have no traditional benchmark

such as stock or bond index, which makes them less exposed to bearish

market conditions.

Hedge fund industry growth is accompanied with an increasing interest

in hedge fund managers’ abilities to achieve their profits as well as in dis-

tinguishing between the skills and simple luck of managers for the success.

The topics of performance persistence and sources of hedge fund returns have

been often addressed in the studies and are now of a great interest.
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CHAPTER 1. INTRODUCTION 4

All studies, also the current research, rely on hedge fund returns data

which is usually difficult to get. Even though there are different providers

offering hedge fund databases, no database provides full coverage. For ex-

ample, according to the research done by Fung and Hsieh [11], only 3% of

hedge funds appeared in all five major hedge fund databases. The results of

their findings are presented on the figure 1.1, which reports the differences

among five major databases in the form of a Venn diagram.
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Figure 1.1: The Hedge Fund Universe: TASS, HFR, CISDM, Eureka Hedge,
and MSCI.

With the industry grow, hedge fund fraud recently has become an in-

creasing problem which brings lots of attention. Johnson [14] published the

first comprehensive survey of hedge fund fraud including 100 chronologi-

cal fraud cases. The most shocking event happened in March 2009, when
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Bernard Madoff admitted to have turned his wealth management business

into a massive Ponzi scheme that defrauded thousands of investors of billions

of dollars. “The court-appointed trustee estimated actual losses to investors

of 18 billion, and the has been described as the largest Ponzi scheme in his-

tory”1.

The requirement to register a hedge fund with the U.S. Securities and

Exchange Commission (SEC) has long been touted as one of the best ways

to increase transparency. But as for the time being SEC registration remains

voluntary, it can happen the only funds that register are those which have

nothing to hide.

Current research is the result of an increasing interest in improving risk

management in the investment process to protect from investing in poten-

tially fraudulent funds.

The goal of this thesis is to check the hypothesis whether hedge funds

with a heightened risk of fraud can be identified ex-ante using performance

flags and specific continuous variables. We use two categories of performance

flags: quantitative and qualitative as indicators of potential fraud. The ideas

for the performance flags in the current study are gathered from different

sources, for example, Straumann [19] and Bollen et al. [3]. On the other side,

we extend their studies and apply different classification algorithms to some

continuous variables and performance flags.

In the current study we use the Morningstar hedge fund database. We

construct sample of funds that have been subject to SEC enforcement actions

or investor lawsuits, which we mark as fraudulent funds.

This master thesis is organized in the following way. In the second chapter

we describe two categories of performance flags: quantitative and qualitative.

The third chapter is addressed to the description of classification algorithms.

1http://www.cbsnews.com/stories/2009/09/24/60minutes/main5339719.shtml

http://www.cbsnews.com/stories/2009/09/24/60minutes/main5339719.shtml
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The fourth chapter is devoted to the description of the data and the data

sources used for the analysis. In the fifth chapter we compare the results of

presented classification algorithms applied to our data. At the end, in the

last chapter, some concluding remarks are made and improvement ideas are

provided.



Chapter 2

Performance Flags

In this chapter we describe two categories of performance flags: quantitative

and data quality. These flags are suggested to be used to detect a heightened

risk of fraud. Each of the flags is motivated by some previous research.

We also provide the description of the tests to determine when the flag is

triggered.

2.1 Quantitative Flags

In this section, we devote the paragraph for each of the following quantitative

flags: (1) discontinuity at zero, (2) low correlation with other assets, (3)

unconditional serial correlation, and (4) conditional serial correlation.

2.1.1 Discontinuity at zero

Counting the number of losses is often considered to be a reasonable way to

identify the ability of hedge fund manager to deliver positive returns through

skills. Therefore, many hedge fund investors tend to direct the capital to-

wards those managers who have reported a higher number of positive monthly

7
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returns and lower number of negative monthly returns. This, in turn, gives

the incentive to fund managers to misreport funds’ returns to avoid losses.

Studies support this idea. For example, Bollen et al. [4] show a robust

feature of the pooled cross-sectional time series distribution of hedge fund re-

turns: a discontinuity exists at zero (graphically presented on the Figure 2.1).

This discontinuity disappears if returns are computed at the bimonthly fre-

quency. These results confirm the suggestion that some managers distort

returns when possible, for example, when returns are at their discretion and

are not closely monitored.
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Figure 2.1: Histogram of monthly hedge fund returns using 101 bins centered
on the first bin to the right of zero and labeled 0. Bold vertical bars indicate
the two bins bracketing zero.
Source: Bollen & Pool, “Predicting Hedge Fund Fraud with Performance
Flags”, 2010.

It is also shown, that the discontinuity is present in both live and de-

funct funds, indicating that it does not depend on survivorship. Thus, the

discontinuity performance flag is triggered when the distribution of reported

returns features a significant discontinuity at zero.

Bollen et al. [4] developed a statistical test for discontinuity in the dis-

tribution of hedge fund returns adopting the approach from Burgstahler [7].
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For each fund, a histogram of reported returns should be created. The his-

togram is built using an optimal bin size which is uniquely calculated for

every fund by the following formula:

α1.364σn−1/5, (2.1)

where α = 0.776 is a constant corresponding to a normal distribution, σ is a

monthly return standard deviation, and n is the number of observations.

After the optimal bin size is calculated, the number of return observations

that fall into three bins: two to the left of zero and one to the right, should

be counted. The test for the smooth distribution has the following form:

H0: a2 ≈ 1
2
(a1 + a3),

Ha: otherwise,

where a1 = number of observations in the right bin, (2.2)

a2 = number of observations in the middle bin, (2.3)

a3 = number of observations in the left bin. (2.4)

Critical values for this test are obtained for each fund using simulations.

Returns are simulated under the normality assumption with mean and stan-

dard deviation equal to the corresponding mean and standard deviation of

fund returns time series. Since hedge fund managers have an incentive to

round small negative returns to zero, we are interested in the case when

a2 < 1
2
(a1 + a3), i.e. the difference between a2 and 1

2
(a1 + a3) is negative.

The flag is triggered if this value is smaller than the 90th percentile using the

randomly generated data.



CHAPTER 2. PERFORMANCE FLAGS 10

2.1.2 Low correlation with other assets

Investments in hedge funds are known to provide diversification benefit due

to a low correlation with standard asset classes. For example, Fung and Hsieh

[10] applied factor model regressions with eight factors capturing exposure

to equities, bonds, and commodities. They found out that about 50% of the

funds in their sample feature an R-squared below 25%. Such a low correlation

can be explained by engagement in dynamic trading that generates nonlinear

and time-varying correlation to systematic risks or by hedging exposure to

systematic risks.

Additionally, Titman et al. [20] found that hedge funds exhibiting lower

R-squared with respect to systematic factors have higher Sharpe ratios and

higher information ratios. However, if a manager misreports returns, his

fund may also feature low correlation with standard asset classes and hedge

fund style factors. As a result, low correlation with a set of style factors can

be used as an indicator of potential fraud. For example, Madoff’s returns

had a correlation of only 0.06 with the S&P 500, whereas Madoff’s supposed

split-strike conversion strategy should have featured a correlation close to

0.50 [3].

We repeat the procedure from Bollen et al. [3]. The authors suggest

to regress fund returns on the subset of style factors that maximizes the

regression’s adjusted R-squared. Out of several factors we limit ourselves to

use only three factors in a regression model. These three factors correspond to

the most prominent strategies a fund follows and they deliver the maximal

adjusted R-squared out of all possible 3-factors subset combinations. The

delivered adjusted R-squared is labeled by ”Maxrsq”.

Using a bootstrap simulation, it should be then assessed if the Maxrsq is

significantly different from zero. For that, the following procedure should be

repeated 100 times for each fund:
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1. Generate a random vector of standard normal values with mean, stan-

dard deviation and length equal to those values of the fund,

2. Choose the optimal subset of factors to define the Maxrsq for the gen-

erated data.

The percentiles of the resulting 100 Maxrsq serve as critical values for the

actual fund: Maxrsq flag is triggered if a fund’s Maxrsq is smaller than the

90th percentile using the randomly generated data.

2.1.3 Unconditional serial correlation

Comparing to the returns of traditional investments, the returns of hedge

funds are often highly serially correlated. Getmansky et al. [12] explored the

sources of such serial correlation and showed that the most likely explanation

for this is illiquidity exposure, i.e. investments in securities that are not

actively traded and for which market prices are not always readily available.

In such cases, the reported returns of funds containing illiquid securities

will appear to be smoother than the returns that fully reflect all available

market information concerning those securities. This, in turn, will impart

a downward bias on the estimated return variance and yield positive serial

return correlation.

To test for unconditional serial correlation, fund returns should be re-

gressed on their first lag:

RO
t = a+ bRO

t−1 + ϵt, (2.5)

where RO
t represents observed return for a fund at date t to indicate that it

is potentially different from the actual fund return.

The unconditional serial correlation flag is triggered if the b coefficient is

positive and significant at the 10% level.
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2.1.4 Conditional serial correlation

The ability for managers to misreport returns by smoothing increases with

the grow in the illiquidity of the assets they hold. This is a result of the op-

portunity to exercise discretion only when recent trade prices are not avail-

able. But since marking-to-model and smoothing produce identical time

series properties, as shown by Getmansky et al. [12], it is difficult to state a

manager’s intent without additional information.

Additional econometric technique which attempt to distinguish innocuous

behavior from purposeful misreporting is suggested by Bollen et al. [5]. The

technique is based on the assumption that managers have an incentive to

delay reporting poor performance, therefore, smoothing losses, and to fully

report gains in the competition for investor’s capital.

As with testing for unconditional serial correlation, it is important to

distinguish between a fund’s observed return RO
t on date t and the actual

return of the fund’s portfolio Rt. The test is designed under the assumption

that the degree of smoothing, and, therefore, serial correlation, is a function

of the actual lagged return Rt−1. Since the actual return of a fund is unob-

servable, the fitted value of the optimal factor model constructed before in

the Maxrsq test is used to proxy for it. The fitted values can be interpreted

as the part of fund returns generated by exposure to liquid assets. A down

month is defined as the one in which the fitted value is below its mean.

To test for conditional serial correlation, observed fund returns should be

regressed on their lag with an interaction term:

RO
t = a+ b+RO

t−1 + b−(1− It−1)R
O
t−1 + ϵt, (2.6)

where It−1 = 1 if the fitted value of observed returns in month t−1 is greater

than its mean and zero, otherwise.
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The coefficient b− measures the incremental serial correlation following

poor returns. A positive value of this coefficient is the result of higher serial

correlation which is consistent with an avoidance of reporting losses.

The conditional serial correlation flag is triggered if the b− coefficient is

positive and significant at the 10% level.

2.2 Data quality Flags

In the section we gather different data quality flags suggested in various

sources to be used as indicators of poor data quality. For example, Straumann

[19] examined hedge fund databases and recognized the following patterns in

the data: (1) too many returns equal to zero, (2) too few unique returns, (3)

too long string of identical returns, (4) too many recurring blocks of length

two, (5) a distribution of the last digit that rejects the null of uniform.

While Straumann did not take into account any incentives behind ”man-

made” patterns recognized by his analysis, the data quality score he devised

for rating hedge funds suggests that poor data quality is indicative of an

attempt to make a fund’s time series more appealing to investors.

In addition to the five patterns recognized by Straumann, Bollen et al

[3] suggest to include the number of fund returns that are negative as an

additional indicator of poor data quality. This pattern is motivated by the

fact that managers have the incentive to round returns up to above zero when

possible. This results in a relatively low number of returns just below zero

and a high number just above zero. In the current study, we also include

another data quality indicator - compliance of first digit distribution with

Benford’s law.

We analyze the described seven patters in the data. For each pattern the
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test has the following form:

H0 : return data does not exhibit the pattern,

Ha : return data exhibits the pattern.

and the tests have the following description [19]:

1. Test T1 is based on the number z1 of returns exactly equal to zero in

the time series. If z1 is ”too large”, the null hypothesis is rejected.

2. Test T2 is based on the inverse z2 of the proportion of negative values

in the time series. If z2 is ”too large”, the null hypothesis is rejected.

3. Test T3 is based on the inverse z3 of the proportion of unique values in

the time series. If z3 is ”too large”, the null hypothesis is rejected.

4. Test T4 looks at runs of the time series. A run is a sequence of consecu-

tive observations that are identical. For example, (1.76, 1.76) would be

a run of length two. If the length z4 of the longest run is ”too large”,

the null hypothesis is rejected.

5. Test T5 is based on the number z5 of different recurring non-overlapping

blocks of length two in the time series. The null hypothesis is rejected

if z5 is ”too large”.

6. Test T6 is based on the sample distribution of the last digit. If this

distribution is ”unlikely”, the null hypothesis is rejected.

7. Test T7 is based on the distribution of the first digit (Benford’s law).

If this distribution is ”unlikely”, the null hypothesis is rejected.

It is obvious that there are overlaps between some of these seven tests.

For example, T4 and T5 check for repetitions in the data.
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In setting up the threshold for rejecting the null hypothesis, such pa-

rameters as length of time series and volatility play an important role. For

example, the longer the time series, the more likely patterns (e.g. recurring

blocks) occur by chance. Also funds with a very low volatility will feature a

high concentration in certain return values because the range of the data is

limited. Therefore, the thresholds are set for each fund separately.

We suppose that monthly returns are independent, identically distributed

normal random variables rounded to two digits after the decimal:

rt i.i.d. ∼ N(µ, σ2), t = 1, n, (2.7)

where n denotes the length of the return time series, µ, σ2 sample mean and

sample variance of the returns, correspondingly.

Under the distributional assumption 2.7, we compute the probability that

the corresponding test statistic Zi is equal or larger than the actually ob-

served zi:

pi = Pµ,σ2;n(Zi ≥ zi). (2.8)

This probability is a p-value of the test Ti under the null hypothesis. If

this pi is small, that means that observed event is unlikely, and the pattern

can be considered as significant.

We also calculate bias ratio, a metric that deliberates price manipulation

of portfolio assets by a manager of a hedge fund, and use it as a continuous

variable for fraud prediction. The bias ratio, as well as the mentioned above

quality indicators are described in the following sections of this chapter.

2.2.1 Number of returns equal to zero

To compute the probability 2.8 for the test T1, first, the probability of a zero

return should be calculated.
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The probability pz that a given return is reported as 0.00 for a fund that

rounds to the nearest basis point is given by:

pz =

∫ 0.005

−0.005

1√
2πσ

e−
1
2
(x−µ

σ
)2 dx. (2.9)

Then, the probability pzk,n of observing k zeroes in a series n observations

long is equal to:

pzk,n =

(
n

k

)
(1− pz)n−k(pz)k, (2.10)

where k = 0, n.

Using cumulative distribution function based on the probabilities in 2.10,

we can compute 2.8:

pi = Pµ,σ2;n(Zi ≥ zi) = 1− Pµ,σ2;n(Zi < zi)

= 1−
zi−1∑
k=0

Pµ,σ2;n(Zi = k) = 1−
zi−1∑
k=0

pzk,n. (2.11)

A fund triggers this flag when the probability of generating the observed

k zero returns or more is less than 10%.

2.2.2 Number of negative returns

Similarly, for the test T2 the probability that a given return is negative for a

fund that rounds to the nearest basis point is given by:

p =

∫ 0.005

−∞

1√
2πσ

e−
1
2
(x−µ

σ
)2 dx. (2.12)

Then, the probability pk,n of observing k negative returns in a series n

observations long is equal to:



CHAPTER 2. PERFORMANCE FLAGS 17

pk,n =

(
n

k

)
(1− p)n−k(p)k. (2.13)

Using cumulative distribution function based on the probabilities in 2.13,

we can compute 2.8:

pi = Pµ,σ2;n(Zi ≥ zi) = 1− Pµ,σ2;n(Zi < zi)

= 1−
zi−1∑
k=0

Pµ,σ2;n(Zi = k) = 1−
zi−1∑
k=0

pk,n. (2.14)

A fund triggers this flag when the probability of generating the observed

k negative returns or fewer is less than 10%.

2.2.3 Number of unique returns, length of string of

identical returns, number of recurring blocks of

length two

For the tests T3, T4, T5, instead of working with the thresholds, we use levels

of significance, in other words:

reject H0 ⇐⇒ pi < α. (2.15)

The numerical values of pi 2.8 are obtained by Monte Carlo simulation

using sample mean µ̂ and sample variance σ̂2 instead of unknown parameters

µ and σ. Value for the level of significance, α, is chosen to be common 10%.

This makes all tests comparable.
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2.2.4 Sample distribution of the last digit, Benford’s

law

Beside the pattern recognized by Straumann [19] that last digit distribution is

uniform (test T6), we use compliance of first digit distribution with Benford’s

law (test T7) as a fraud indicator. The latter is reasonable since financial

and other auditors routinely check data sets against this law in order to

investigate for frauds.

The Benford’s law is also called the first-digit law. It states that in lists

of numbers from many (but not all) real-life sources of data, the leading digit

is distributed in a specific, non-uniform way [17]. More precisely, Benford’s

law states that the leading digit k (k ∈ 1, ..., 9) occurs with probability:

P (k) = log10(1 +
1

k
). (2.16)

The probabilities of occurrence for every digit are shown in table 2.1 and

graphically on the picture 2.2.
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Figure 2.2: Benford’s distribution.

We compare the distribution of the last digit of return time series with

the uniform distribution and the distribution of the first digit of return time
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k P (k)
1 0.3010
2 0.1761
3 0.1249
4 0.0969
5 0.0792
6 0.0669
7 0.0580
8 0.0512
9 0.0458

Sum 1.0000

Table 2.1: First digits and corresponding probabilities.

series with Benford’s law. To test for these compliances the Pearson’s chi-

square goodness-of-fit test will be used.

Goodness-of-fit test statistic for the distribution of the last digit:

Z6 = N
9∑

k=0

(nk − nqk)
2

nqk
, (2.17)

goodness-of-fit test statistic for the distribution of the first digit:

Z7 = N

9∑
k=1

(nk − nqk)
2

nqk
, (2.18)

where nk is the number of occurrences of k as the last/first digit, qk is the

probability that the last/first digit is equal to k, and n is the length of return

time series.

Statistics Z6 and Z7 are the distances between the sample distribution

of the last/first digit, correspondingly. They follow chi-squared distribution

with 9 and 8 degrees of freedom under the assumption 2.7.

A fund triggers each of these flags when the p-value for the corresponding

test is less than the level of significance (10%).
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2.2.5 Bias Ratio

Illiquid securities, which are heavily invested in by hedge funds are often

hard to price as objective measuring of performance of such investments is

difficult due to the lack of price transparency. To calculate monthly returns,

managers employ pricing schemes based on the last available traded price,

the average of prices received from dealers, or their own best estimates. This

allows the return distribution of a fund to take the shape desired by the

manager, rather than one dictated by an unbiased market.

Abdulahi [1] defines a simple return-based formula for the bias ratio,

which gives a measure of valuation bias for illiquid hedge fund assets. By

measuring the shape of return histograms around the critical area surround-

ing a zero percent return, the bias ratio flags the funds that might smooth

returns. One of the most spectacular example of using bias ratio to spot sus-

picious funds was reported in the Financial Times in January 2009 named

“Bias ratio seen to unmask Madoff”.

1. Let [0, σ] be the closed interval from zero to +1 standard deviation of

returns (including zero),

2. let [−σ, 0) be the half open interval from -1 standard deviation of re-

turns to zero (including −σ and excluding zero),

3. let ri be return in month i, 1 ≤ i ≤ n, where n is the length of return

time series,

then Bias Ratio is defined by the formula:

Bias Ratio = BR =
Count(ri|ri ∈ [0, σ])

1 + Count(ri|ri ∈ [−σ, 0))
. (2.19)

The Bias Ratio roughly approximates the ratio between the area under

the return histogram near zero in the first quadrant and the similar area in
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the second quadrant. It must be noted that this concept is similar to the

discontinuity at zero (described in the Section 2.1.1) which arises due to the

fact that hedge fund managers have an incentive to round negative returns

to zero. The Bias Ratio holds the following properties:

1. 0 ≤ BR ≤ n,

2. if ri ≤ 0 ∀i, then BR = 0,

3. if ∀ri s.t. ri > 0, ri > σ, then BR = 0,

4. if the distribution ri is normal withmean = 0, then BR → 1 as n → ∞.
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Figure 2.3: Distribution of Bias Ratio of L/S Equity Hedge Funds in the
HFR database.
Source: A. Abdulahi, “The Madoff Case: Quantitative Beats Qualitative”,
2009.

To conclude, the Bias Ratio gives a strong indication of the presence of:

(a) illiquid assets in a portfolio combined with (b) a subjective pricing policy.
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As it is shown in the studies [2], most of the valuation-related hedge fund

downfalls have exhibited high Bias Ratios. This result is graphically shown

on the figure 2.3. However, the converse is not necessarily true as managers

often have legitimate reasons for subjective pricing, for example, with deeply

distressed securities or restricted securities.

On the other side, the coincidence of historical blow-ups with high Bias

Ratios encourages investors to use this measure as a warning flag to inves-

tigate the implementation of a managers pricing policies. Nonetheless, the

Bias Ratio should not be used as a stand alone due diligence tool. We will

use the Bias Ratio in the prediction models as a continuous variable.



Chapter 3

Classification Methods

In this chapter we describe several classification methods used in the current

research to predict if the fund is potentially fraudulent based on the input

data. Each paragraph of this chapter is devoted one of the following method:

(1) naive Bayes classifier, (2) logistic regression, (3) linear discriminant anal-

ysis, (4) classification trees, and (5) random forests.

3.1 Naive Bayes Classifier

A Bayes classifier is a simple probabilistic classifier based on applying Bayes’

theorem with strong independence assumptions [18].

First, we construct the naive Bayes probability model. Let Y be a de-

pendent class variable, in our case, it can take two values ”Fraud” and ”No

fraud”. The outcome for Y depends on the set of independent variables

X1, X2,..., Xn. These are continuous and binary variables described in the

Chapter 2, i.e. performance flags.

A conditional model p(Y |X1, X2, ..., Xn) is the probability model for a

23
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classifier. Using Bayes’ theorem:

p(Y |X1, X2, ..., Xn) =
p(Y )× p(X1, X2, ..., Xn|Y )

p(X1, X2, ..., Xn)
, (3.1)

where p(Y ) is the prior probability of hypothesis Y , p(X1, X2, ..., Xn) is the

prior probability of training data X.

The numerator in 3.1 is equivalent to the joint probability model

p(Y,X1, ..., Xn), which after repeated application of the definition of condi-

tional probability, can be rewritten as follows:

p(Y,X1, ..., Xn) = p(Y )× p(X1, X2, ..., Xn|Y )

= p(Y )× p(X1|Y )× p(X2, ..., Xn|Y,X1)

= ...

= p(Y )× p(X1|Y )× p(X2|Y,X1)× p(X3|Y,X1, X2)× ...

...× p(Xn|Y,X1, X2, ..., Xn−1) (3.2)

Under the conditional independence assumptions: each independent vari-

able Fi is conditionally independent of every other independent variable Xj

for i ̸= j. Mathematically speaking:

p(Xi|Y,Xj) = p(Xi|Y ), for i ̸= j (3.3)

and the joint model can be expressed as:

p(Y,X1, ..., Xn) = p(Y )× p(X1|Y )× p(X2|Y )...

= p(Y )Πn
i=1p(Xi|Y ) (3.4)

Therefore, the conditional distribution over the class variable Y can be
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expressed as:

p(Y,X1, ..., Xn) =
1

Z
p(Y )Πn

i=1p(Xi|Y ), (3.5)

where Z is a scaling factor dependent only on X1,...,Xn, i.e., a constant if

the values of the feature variables are known.

The naive Bayes classifier combines the naive Bayes probability model

with a decision rule: pick the hypothesis that is most probable. The corre-

sponding classifier for this model is the function classify defined as follows:

classify (x1, ..., xn) = argmaxkP (Y = k)Πn
i=1p(Xi = xi|Y = k). (3.6)

3.2 Logistic Regression

Logistic regression is a variation of ordinary regression, it can be used when

the dependent variable is a dichotomous variable (i.e. it takes only two values,

which usually represent the occurrence or non-occurrence of some outcome

event, ”Fraud” and ”No Fraud”, in the current study) and the independent

variables are continuous, categorical, or both.

Logistic regression makes use of the logistic function. A graph of this

function is shown on the Fig. 3.1 and the function itself has the following

form:

π(z) =
ez

ez + 1
=

1

1 + e−z
(3.7)

The logistic function can take as an input any value from negative infinity

to positive infinity, and give as an output values between 0 and 1. The

variable z represents the exposure to the set of independent variables, while
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Figure 3.1: Logit function.

π(z) represents the probability of a particular outcome, given that set of

explanatory variables.

The variable z measures the total contribution of all the independent

variables used in the model and is defined as:

z = β0 + β1y1 + β2y2 + ...+ βnyn, (3.8)

where y1, y2, ..., yn are the independent variables, β0, β1, ..., βn are regression

coefficients, which have to be estimated from the data.

The logits of the unknown binomial probabilities are modeled as a linear

function of independent variables. Applying this to our data:

logit(π) = log(
π

1− π
) = β0 + β1X1 + β2X2 + ...+ βnXn. (3.9)

We make an assumption that

Yi ∼ B(ni, pi), for i = 1, ...,m, (3.10)

where ni are the known numbers of Bernoulli trials and pi are the unknown
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probabilities of success.

The model proposes for each trial i a set of explanatory variables that

might inform the final probability. These explanatory variables can be thought

of as being in a vector Xi and the model then takes the form:

pi = E(
Yi

ni

|Xi). (3.11)

Further, we estimate πi by the observed proportion pi and apply the logit

transformation:

logit(pi) = ln(
pi

1− pi
), (3.12)

The logits of the unknown binomial probabilities are modeled as a linear

function of the Xi:

log(
pi

1− pi
) = β0 + β1X1 + β2X2 + ...+ βnXn, (3.13)

By back transformations we find the unknown probabilities:

π̂ =
eβ0+β1X1+β2X2+...+βnXn

eβ0+β1X1+β2X2+...+βnXn + 1
. (3.14)

3.3 Linear Discriminant Analysis

Linear discriminant analysis is another method used in statistics to find a

linear combination of features which characterize or separate two or more

classes of events. In the linear discriminant analysis method the dependent

variable is a categorical variable. Fundamental assumption of the linear

discriminant analysis method is the normal distribution of the independent

variables.
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Suppose fk(x) is the class-conditional density of X = (X1, ..., Xn) in class

Y = k, and let πk be the prior probability of class k, in our case with∑K
k=1 πk = 1.

A simple application of Bayes theorem gives:

Pr(Y = k|X = x) =
fk(x)πk∑K
l=1 fl(x)πl

. (3.15)

Therefore, in terms of ability to classify, having the fk(x) is almost equiv-

alent to having the quantity Pr(Y = k|X = x).

Many techniques are based on models for the class densities [13]:

• linear and quadratic discriminant analysis use Gaussian densities;

• more flexible mixtures of Gaussian allow for nonlinear decision bound-

aries;

• general nonparametric density estimates for each class density allow

the most flexibility;

• Naive Bayes models are a variant of the previous case, and assume

that each of the class densities are products of marginal densities; that

is they assume that the inputs are conditionally independent in each

class.

Suppose that each class density is modeled as multivariate Gaussian:

fk(x) =
1

(2π)p/2|Σk|1/2
e−

1
2
(x−µk)

TΣ−1
k (x−µk). (3.16)

Linear discriminant analysis arises in the special case with the assumption

that the classes have a common covariance matrix Σk = Σ ∀ k. If comparing

two classes k and l, it is sufficient to look at the log-ratio, then:
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log
Pr(Y = k|X = x)

Pr(Y = l|X = x)
= log

fk(x)

fl(x)
+ log

πk

πl

= log
πk

πl

− 1

2
(µk + µl)

TΣ−1(µk − µl)+

+ xTΣ−1(µk − µl), (3.17)

is an equation linear in x.

The equal covariance matrices cause the normalization factors to cancel,

as well as the quadratic part in the exponents. This linear log-odds function

implies that the decision boundary between classes k and l - the set where

Pr(Y = k|X = x) = Pr(Y = l|X = x) is linear in x; in p dimensions a

hyperplane.

From the equation 3.17 we see that the linear discriminant functions

δk(x) = xTΣ−1µk −
1

2
µT
kΣ

−1µk + log πk (3.18)

are an equivalent description of the decision rule with Y (x) = argmaxkδk(x).

In practice we do not know the parameters of the Gaussian distributions,

and we need to estimate them using our training data:

• π̂k = Nk/N , where Nk is the number of class-k observations;

• µ̂k =
∑

;

•
∑̂

=
∑K

k=1

∑
(xi − µ̂k)(xi − µ̂k)

T/(N −K).

The linear discriminant analysis rule classifies to class 2 (which is ”No

fraud” in our case) if:

xT Σ̂−1(µ̂2 − µ̂1) >
1

2
µ̂2 −

1

2
µ̂T
1 Σ̂

−1µ̂1 + log(N1/N)− log(N2/N) (3.19)
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and class 1 (”Fraud” in our case) otherwise.

3.4 Classification and Regression Trees

Quite different from the previous methods are the so-called tree models.

In decision analysis, a decision tree can be used to visually and explicitly

represent decisions and decision making.

The standard approach to building a class probability tree consists of

several stages: growing, pruning, and sometimes smoothing or averaging.

A tree is first grown to completion so that the tree partitions the training

sample into terminal regions of all one class. This is usually done from the

root down using a recursive partitioning algorithm.

This method is of nonparametric nature making structural assumptions.

In this section we denote a regression function E[Y |X = x] by

g(.) : Rp → R. (3.20)

The underlying model function 3.20 for classification and regression trees

(CART) is

gtree(x) =
R∑

r=1

βr1x∈Rr , (3.21)

where P = {R1, ...,RR} is a partition of Rp. So that the function g(.) is

modeled as piecewise constant.

3.4.1 Tree structured estimation and tree presentation

If the partition P = {R1, ...,RR} is given then it would be easy to estimate

parameters β̂1, ..., β̂R. For binary classification which we do in the current
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study (classifying objects into two classes), we use

β̂r =
n∑

i=1

Yi1[xi∈Rr]/
n∑

i=1

1xi∈Rr . (3.22)

Therefore, the task reduces to search of a data-driven estimate for the

partition P . The process of obtaining a computationally feasible algorithm

will be discussed in the next paragraph.

3.4.2 Tree structured search algorithm and tree inter-

pretation

As described in Bühlmann et al. [8], the search for a partition P is done

by partitioning cells R into axes parallel rectangles. The algorithm for tree-

structuring is the following:

1. start with R = 1, i.e. P = R = Rp,

2. refine R into the union Rleft

∪
Rright, where:

Rleft = R× R× ...× (−∞, d]× R...× R, (3.23)

Rright = R× R× ...× (d,∞)× R...× R, (3.24)

so that one of the axes is split at the point d, where d belongs to the

finite set of mid-points between observed values. The decision which

axe to split and at which split point are determined so that the negative

log-likelihood is maximally reduced with the refinement (i.e. search

over j ∈ 1, ..., p and d ∈ mid-point of observed values). Thus, the new

partition is built

P = {R1,R2} with R1 = Rleft, R2 = Rright. (3.25)
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3. the resulting partition P is refined as in step 2 by refining one of the

partition cells from the current partition P . Therefore, as in the pre-

vious step we search for the best axes to split and the best split point

to find the best partition cell to refine. So, the up-dated partition is

defined as:

P =Pold \ partition cell selected to be refined
∪

∪
refinement cells Rleft,Rright, (3.26)

4. iterate step 3 for a large number of partitions cells.

5. backward deletion: prune the tree until a reasonable model size, typi-

cally determined via cross-validation, is achieved.

The described above tree structuring algorithm has a useful presentation.

Figures 3.2 and 3.2 show an example of classification tree applied for our

hedge fund dataset (2 class problem with 23 predictor variables).

n= 6572 

node), split, n, loss, yval, (yprob)
      * denotes terminal node

 1) root 6572 84 No (0.98721850 0.01278150)
   2) Conditional_Serial_Corr< 0.4272753 6001 66 No (0.98900183 0.01099817) *
   3) Conditional_Serial_Corr>=0.4272753 571 18 No (0.96847636 0.03152364)
     6) Inverse_proportion_Unique_values>=1.015 329  5 No (0.98480243 0.01519757) *
     7) Inverse_proportion_Unique_values< 1.015 242 13 No (0.94628099 0.05371901)
      14) Zero_returns_Flag=1 207  6 No (0.97101449 0.02898551) *
      15) Zero_returns_Flag=0 35  7 No (0.80000000 0.20000000)
        30) Bias_Ratio>=1.545625 25  0 No (1.00000000 0.00000000) *
        31) Bias_Ratio< 1.545625 10  3 Yes (0.30000000 0.70000000) *

Figure 3.2: Fitting Recursive partitioning and regression tree to our data in
R.

Steps 1− 4 result in a large tree TM (M = R − 1). Tree pruning deletes

successively the terminal node in the tree with the smallest increase of neg-
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Conditional_Serial_Corr <> 0.4272753165
No; 6572 obs; 98.7%

No
6001 obs

1 Inverse_proportion_Unique_values >< 1.015
No; 571 obs; 96.8%

No
329 obs

2 ,1 = Zero_returns_Flag = ,0
No; 242 obs; 94.6%

No
207 obs

3 Bias_Ratio >< 1.545625
No; 35 obs; 80%

No
25 obs

4

Yes
10 obs

5

Total classified correct = 98.8 %

Figure 3.3: Fitting Recursive partitioning and regression tree to our data in
R, graphical presentation.
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ative log-likelihood. This will produce a sequence of trees

TM ⊃ TM−1 ⊃ ... ⊃ T1 = T∅ := R0, (3.27)

R0 = root tree = Rp,

and the best tree is then selected in the way described below.

The relevant measure is a penalized goodness of fit, so called ”cost com-

plexity pruning”, is defined by the formula:

Rα(T ) = R(T ) + α× size(T ), α ≥ 0, (3.28)

where the size of a tree is the number of its leaves and R(.) is a quality of

fit measure such a misclassification rate.

Then pruning is done so that for every α an optimally pruned tree is

chosen

T (α) = argminT Rα(T ). (3.29)

The set {T (α)|α ∈ [0,∞)} is nested, and is the same as the pruned

trees in 3.27. To determine the amount of pruning, i.e. for model selection,

the best α should be chosen. For this, K-fold cross-validation is applied to

compute CV error rates for each α. As a result, the smallest tree such that

its error is at most one standard error larger than minimal one is chosen.

Even though trees possess as a nice property their interpretation and

displaying information in terms of a tree structure is very useful there is a

disadvantage. The probability estimate in classification is piecewise constant,

which is not usually the form of underlying ”true” function. Thus, this

also implies that the prediction accuracy for the probability estimation in

classification is often not among the best. Also the greedy tree-type algorithm

produces fairly unstable splits: for example, if one of the first splits is not

correct, everything below this split will not be correct.
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3.5 Random Forests

The algorithm for inducing a random forest was developed by L. Breiman

and A. Cutler. Random forests is a classifier that consists of many decision

trees. Beside that each tree is constructed using a different bootstrap sample

of data, random forests change the way of the classification and regression

trees construction.

While in standard trees each node is split using the best split among all

variables, in random forests, split is done using the best among a subset of

predictors randomly chosen at that node. Due to this, the strategy turns

out to perform very well compared to many other classifiers [6]. It also has

only two parameters: the number of variables in the random subset at each

node and the number of trees in the forest, and is usually not very sensitive

to their values.

For the classification of a new object the input vector should be put down

each of the trees in the forest. Each tree gives a classification and the forest

chooses the classification having the most votes over all the trees in the forest.

Each tree is constructed using the following algorithm:

1. Let the number of training cases be N , and the number of variables in

the classifier be M ,

2. m is the number of input variables to be used to make the decision at

a node of the tree; m ≪ M ,

3. choose a training set for this tree by choosing N times with replacement

from all available training cases (i.e. take a bootstrap sample), use the

rest of the cases to estimate the error of the tree, by predicting their

classes.

4. For each node of the tree, randomly choose m variables on which to

base the decision at that node. Calculate the best split based on these

m variables in the training set.
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5. Each tree is fully grown and not pruned (as may be done while con-

structing a normal tree classifier).

Among the advantages of random forests are:

• produces a classifier, unexcelled in accuracy among current algorithms,

• works efficiently for a very large number of input variables without

variable deletion,

• estimates the importance of variables in classification,

• generates an internal unbiased estimate of the generalization error as

the forest building progresses,

• has an effective method for estimating missing data and maintains ac-

curacy when a large proportion of the data are missing,

• has methods for balancing error in class population unbalanced data

sets,

• offers an experimental method for detecting variable interactions,

• computes proximities between pairs of cases that can be used for clus-

tering, locating outliers, and (by scaling) visualizing the data.

When the training set for the tree is drawn by sampling with replacement,

approximately one-third of the cases are left out of the sample. This is out-

of-bag data (oob) which is used to get a running unbiased estimate of the

classification error as trees are added to the forest. It is also used to get

estimates of variable importance described in the following paragraph.
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3.5.1 Variable Importance and Gini Importance

In every tree in the forest, put down the oob cases and count the number

of votes for the correct class. Then randomly permute the values of variable

m in the oob cases and put these cases down the tree. Subtracting the

number of votes for the correct class in the variable-m-permuted oob data

from the number of votes for the correct class in the untouched oob data and

averaging this number over all trees in the forest give the raw importance

score for variable m.

Every time a split of a node is made on variable m, the Gini impurity

criterion for the two descendent nodes is less that the parent node. Adding up

the Gini decreases for each individual variable over all trees in the forest gives

a fast variable importance that is usually consistent with the permutation

importance measure.

We provide the results for Variable Importance and Gini Importance ap-

plied to the hedge fund dataset in the Chapter 5, Performance flags analysis,

table 5.2.



Chapter 4

Data

In this chapter we provide the description of the data used for the current

research. The first paragraph describes the hedge funds data source and the

process of identification of fraudulent funds. The second paragraph provides

a description of the factors data used to construct the performance flags

described in Chapter 2.

4.1 Hedge Funds Data

In the current study we use hedge funds time series from Morningstar hedge

fund database. The initial sample consists of 14′576 hedge funds. The sample

period is from January 1994 through May 2010, and the database includes

both live and defunct hedge funds. Only those funds which have at least

24 contiguous monthly observations of returns are included in the analysis.

This reduces the initial sample to the resulting one consisting of 6′572 funds

with 542′188 observations.

One primary question we try to answer in the current research is whether

hedge funds with return series that trigger performance flags described in

38
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Chapter 2 are more likely to be prosecuted by the SEC. Therefore, we need

to distinguish between fraudulent and non-fraudulent funds in our sample.

The process of identification of hedge funds prosecuted by SEC is based

on the idea proposed in the study of Bollen et al. [3]. We manually search

the litigation section of the SEC website1 using the keyword ”hedge fund”.

The search uncovers 742 SEC documents which are manually checked to

identify the unique prosecution cases. As a result, a list of 422 unique names

is created.

Afterwards, we try to match the resulting list with the Morningstar

database. On this step a problem with the identification fraudulent funds ap-

pears. As, for example, in many SEC cases only the name of the company to

be sued is mentioned. At the same time, the company can potentially man-

age several funds. Therefore, to avoid false classification of non-fraudulent

funds as fraudulent it is decided to consider the funds which names are not

explicitly specified in SEC documents as non-fraudulent.

Overall, among 422 names from our list of fraudulent funds/companies

involved in frauds we are able to identify 189 funds in the Morningstar

database. Nonetheless, only 84 of them have sufficient data to be included in

the final sample. Those hedge funds are labeled as fraudulent, the remaining

6488 funds in our return database are labeled as non-fraudulent funds.

To conclude, the final sample of hedge funds we are working with consists

of 6572 funds: 84 (1.3%) of them are fraudulent, and 6488 are non-fraudulent.

4.2 Factors Data

In this paragraph we describe the factors used to define the Maxrsq and the

conditional serial correlation performance flags described in Chapter 2: this

1www.sec.gov/

www.sec.gov/
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is a set of 14 factors that are used in the existing hedge fund literature to

proxy for the trading strategies employed by hedge fund managers [3]. And

the factors are taken from four different sources:

I. Fama-French factors, taken from Kenneth French’s website 1:

1. The excess return of the market,

2. SMB (the average return on the three small portfolios minus the

average return on the three big portfolios),

3. HML (the average return on the two value portfolios minus the

average return on the two growth portfolios),

4. Momentum factor,

II. factors proposed by Bollen et al. [3] to capture nonlinearities in exposure

generated by dynamic trading or derivatives:

5. SMB2,

6. HML2,

7. Momentum factor2,

III. trend-following factors taken from David Hsieh’s website 2, which are

the returns of portfolios of options on:

8. bonds,

9. foreign currencies,

10. commodities,

11. short− term interest rates,

12. stock indexes,

1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.

html
2http://faculty.fuqua.duke.edu/~dah$7$/HFData.htm

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://faculty.fuqua.duke.edu/~dah$7$/HFData.htm
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IV. factors taken from the U.S. Federal Reserve’s website 3:

13. the change in the yield of a ten-year Treasury note,

14. the change in the credit spread (equals to the difference between

the yield on ten-year BAA corporate bonds and the yield of a

ten-year Treasury note).

3http://www.federalreserve.gov/econresdata/default.htm

http://www.federalreserve.gov/econresdata/default.htm


Chapter 5

Results

Many practical classification problems are imbalanced, i.e. one of the classes

constitutes only a small part of the data. In such cases the interest usually

leans towards correct classification of the “rare” class (which we will refer to

as the “positive” class). Clearly, in our study we also deal with an imbalanced

classification problem, as the class of fraudulent funds represents a small

minority of the data (only 1.3% of all funds in our sample are fraudulent).

In this chapter we aim to compare the performance of different classifiers.

5.1 Summary of the input data

We apply the classification methods discussed in Chapter 3 to the data of

the following form:

• the dependent variable is dichotomous, taking two values “Fraud” and

“No Fraud”,

• the set of independent variables consists of both factor and continuous

variables described in Chapter 2. The independent variables are:

1. the discontinuity difference described in paragraph 2.1.1,
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2. the corresponding performance flag,

3. Maxrsq (adjusted R-squared) described in paragraph 2.1.2,

4. the corresponding performance flag,

5. the unconditional serial correlation coefficient b described in para-

graph 2.1.3,

6. the corresponding performance flag,

7. the conditional serial correlation coefficient b− described in para-

graph 2.1.4,

8. the corresponding performance flag,

9. the percentage of returns equal to zero,

10. the corresponding performance flag,

11. the percentage of negative returns,

12. the corresponding performance flag,

13. the percentage of unique returns,

14. the corresponding performance flag,

15. the length of the longest string of identical returns,

16. the corresponding performance flag,

17. the number of recurring blocks of length two,

18. the corresponding performance flag,

19. the p-value for the Benford’s distribution test described in para-

graph 2.2.4,

20. the corresponding performance flag,

21. the p-value for the uniform distribution test described in para-

graph 2.2.4,

22. the corresponding performance flag,

23. the Bias ratio described in paragraph 2.2.5.
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5.2 Performance flags analysis

In the table 5.1 we display the percentage of hedge funds from our sample

(for fraudulent and non-fraudulent funds separately) that trigger each of 11

performance flags at the 10% significance level. Also we present p-values

of tests for a difference between the rejection proportions of non-fraudulent

and fraudulent funds. Ideally, we would like a flag to be triggered for a

high percentage of fraudulent funds and a low percentage of non-fraudulent

funds, so that Type I and Type II errors are minimized. As it is described

in Chapter 2 performance flags are triggered at a 10% significance level.

Therefore, we expect the rejection rate for a sample of funds which report

returns accurately is 10%.

Looking at the non-fraudulent funds in the table 5.1, we see that 8 out

of 11 performance flags are triggered at a rate substantially higher than 10%,

and 4 at a rate over 30%. For example, one possible innocent explanation for

that a test rejects at a frequency above the significance level (as in case with

unconditional serial correlation flag) is because illiquid assets in the portfolio

are revalued conservatively by the manager.

Alternatively, a large number of funds that have not been charged with a

violation may be engaging in doubtful reporting behavior. From the research

by Bollen et al. [4] it is evident that the practice of rounding up returns from

negative to positive is used by some hedge fund managers. This result is

consistent with our rejection rates of 21.69% for the “Discontinuity at zero”

flag and 37.15% for the “# Negative” flag. In other words, the performance

flags in the table 5.1 may indicate that some of the non-fraudulent funds,

even though have not yet been charged for violations, might be at risk of

fraud.

Turning next to fraudulent funds, the rejection rates are at least as high

as for the non-fraudulent funds only for 6 out of 11 performance flags. For ex-

ample, the difference in rejection rates between the non-fraudulent funds and
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fraudulent funds in “Uniform” flag (triggered in 36.9% of fraudulent funds

versus 32.23% of non-fraudulent funds) and “Benford’s law” flag (triggered

in 23.81% of fraudulent funds versus 19.27% of non-fraudulent funds) can be

explained by manipulation of returns so that the resulting time series are not

likely random. Even though not significantly different from rejection rates

for the non-fraudulent funds, we suggest that performance flags may be used

to identify funds with higher risk of fraud.

Table 5.1: Flag Frequencies.
Listed is the percentage of hedge funds from our sample that trigger each of 11 performance
flags at the 10% significance level. The results are presented for 6488 non-fraudulent funds
and 84 fraudulent funds. “Discontinuity at zero” is triggered by an unusually small num-
ber of returns slightly below zero. “Low correlation” is triggered by an adjusted R-squared
that is not significantly different from zero. “Unconditional serial correlation” is triggered
by a statistically significant and positive first-order serial correlation coefficient. “Condi-
tional serial correlation” is triggered by a statistically significant larger serial correlation
conditioned on a negative lagged fitted value from a regression involving an optimal set
of style factors. “# Zero” is triggered by an unusually high number of returns exactly
equal to zero. “# Negative” is triggered by an unusually low number of returns less than
zero. “# Unique” is triggered by an unusually small number of unique returns. “String
of identical” is triggered by an unusually long string of identical returns. “# Recurring
blocks” is triggered by an unusually high number of pairs of repeated returns. “Uniform”
is triggered by a distribution of the last digit of returns that is significantly different from
a uniform distribution. “Benford’s law” is triggered by a distribution of the first digit of
returns that is significantly different from Benford’s distribution. The p-values are from
tests for a difference between the rejection proportions of non-fraudulent and fraudulent
funds. “**” and “*” indicate significance at the 1% and 5% level, respectively.

Non-fraudulent Funds Fraudulent funds
Flag (N=6488) (N=84) p-value
Discontinuity at zero 21.69% 15.48% 0.1694
Low correlation 15.49% 13.10% 0.5463
Unconditional serial correlation 51.26% 57.14% 0.2841
Conditional serial correlation 7.48% 15.48% 0.0059**
# Zero 67% 66.67% 0.9484
# Negative 37.15% 26.19% 0.0388*
# Unique 19.34% 17.86% 0.7318
String of identical returns 8.94% 10.71% 0.5715
# Recurring blocks 3.44% 4.76% 0.5088
Uniform 32.23% 36.9% 0.3625
Benford’s law 19.27% 23.81% 0.2947

In the table 5.2 we present Variable Importance measures for the perfor-
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mance flags. Values in the first and second columns of the table are mean

raw importance scores for each of performance flags for classes “No Fraud”

and “Fraud”, respectively. The raw importance score measures how much

more helpful than random a particular predictor variable is in successfully

classifying data. A low Gini Importance (i.e. higher Mean Descrease Gini)

means that a particular predictor variable plays a greater role in partitioning

the data into the defined classes. By “**” we marked the highest values,

i.e. variables which are significant for prediction. Comparing the results in

5.1 and 5.2, we see that performance flag “Conditional serial correlation” is

helpful in classifying fraudulent funds.

Flag No Fraud Fraud Mean Decrease Gini
Discontinuity at zero 0.0246 -0.1662 1.0364
Low correlation 0.0831 -0.3866 1.1095
Unconditional serial correlation 0.0436 0.1988** 1.5966**
Conditional serial correlation -0.0523 0.584** 1.1465
# Zero 0.0537 0.1429 1.1627
# Negative 0.2137** -0.164 1.4914**
# Unique 0.148** -0.0459 1.2566
String of identical returns 0.0095 0.3934** 1.1345
# Recurring blocks -0.0137 -0.643 0.6867
Uniform 0.011 -0.9257 1.2239
Benford’s law 0.128 -0.3445 1.2594

Table 5.2: Variable Importance.
Values in the first column of the table are mean raw importance scores for each of per-
formance flags for class “No Fraud”. Values in the second column of the table are mean
raw importance scores for each of performance flags for class “Fraud”. The third column
shows the total decrease in node impurities from splitting on the variable, averaged over
all trees which is measured by the Gini index for classification problems. “**” indicates
the highest values, i.e. variables which are significant for prediction.

5.3 Performance measurement

In learning extremely imbalanced data, the overall classification accuracy

is often not an appropriate measure of performance. We will use metrics
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such as true negative rate, true positive rate, weighted accuracy, G-mean,

precision, recall, and F -measure to evaluate the performance of classification

algorithm on imbalanced data [6]. All these metrics are functions of the

confusion matrix shown in the table 5.3. The columns of the matrix are the

predicted classes, and the rows of the matrix are the actual cases.

Predicted Positive Class Predicted Negative Class
Actual Positive Class TP (True Positive) FN (False Negative)
Actual Negative Class FP (False Positive) TN (True Negative)

Table 5.3: Confusion matrix.

Based on the confusion matrix 5.3, the performance metrics we use in the

current research are defined as:

True Positive Rate (Acc+) =
TP

TP + FN
(5.1a)

True Negative Rate (Acc−) =
TN

TN + FP
(5.1b)

Precision =
TP

TP + FP
(5.1c)

Recall =
TP

TP + FN
= Acc+ (5.1d)

F −measure =
2× Precision× Recall

Precision + Recall
(5.1e)

G−mean = (Acc− × Acc+)1/2 (5.1f)

Weighted Accuracy = βAcc+ + (1− β)Acc− (5.1g)

(5.1h)

For any classifier, there is a trade off between true positive and true nega-

tive rate, as well as between recall and precision. In our case the rare class of

fraudulent funds is of great interest. We would like to have a classifier that

gives high prediction accuracy over the positive class (Acc+), while main-

taining reasonable accuracy for the negative class (Acc−). For this purpose,
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weighted accuracy is often used, where weights can be adjusted. In the cur-

rent work, we use β equal to 0.6, so that a bit more weight is given to the

true positive rate, i.e to the correct prediction of a positive class.

In the table 5.4 we compare the performance of different classifiers. To ob-

tain these performance metrics we carried 1000 leave-d-out cross-validations

(the technique is described in details in the Appendix A.1). Each model is

build using the training set which consists of 70% of initial data, and the

performance is measured using the validation set consisting of the rest 30%

of initial data. In the table the average values of each performance metric

are presented.

While working with such an imbalanced data positive class sometimes

is not predicted at all. This can make some of the performance measures

undefined (for example, division by zero in Precision, which also makes F-

measure undefined). Therefore, we exclude from the calculations those cross-

validation cases for which positive class is not predicted at all, i.e. in the

matrix 5.3 TP = FP = 0. We present in the last column of the table 5.4 the

percentages of cases out of 1000 cross-validation samples which are included

in calculations of performance measures.

Method Acc+ Acc− Prec. F -meas. G-mean Weigh. Acc. % of cases
Naive Bayes Classifier 0.33 0.70 0.02 0.03 0.41 0.48 38.1%
Logistic Regression 0.06 0.98 0.04 0.05 0.24 0.43 74.6%
Linear Discriminant Analysis - - - - - - 0%
Classification Tree 0.05 1 0.42 0.09 0.22 0.43 17%

Table 5.4: Performance comparison.

As it can be noted from the table 5.4, the linear discriminant analysis

(LDA) method provides unreliable results as it never makes correct prediction

for the positive class. The reason for that might be a very strong assumption

which does not hold in reality: it assumes that independent variables are

normally distributed.
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Naive Bayes classifier provides relatively good results compared with

other classification algorithms in the table. It gives high prediction accu-

racy over the positive class while maintaining reasonable accuracy for the

negative class, providing a comparably good estimate for the weighted accu-

racy measure.

Applying random forest in learning extremely imbalanced data, there

is a significant probability that a bootstrap sample contains few or even

none of the minority class, which results in a tree with poor performance for

predicting the minority class. The simplest way to fix this problem is to use

a stratified bootstrap, i.e. sample with replacement from each class. Though

this does not completely solve the imbalanced problem. It is shown in the

works by Kubat et al [15] and Ling et al [16] that artificially making class

priors equal either by down-sampling the majority class or over-sampling the

minority class is usually more effective regarding the particular performance

measurement, and even down-sampling has an advantage over over-sampling.

In the current study we work with R open source software. We use a

special function randomForest which implements Breimans random forest

algorithm (based on Breiman and Cutlers original Fortran code) for clas-

sification and regression. This function has a special argument sampsize

which, if specified, draws cases within each class, with replacement, to grow

each tree. We use this parameter to estimate the sensitivity of prediction to

the sizes of each class in the bootstrap sample. We present these sensitivity

results for random forest classifier in the separate table 5.5.

From the table 5.5 we see that the performance of random forest algo-

rithm is highly sensitive to the proportions of classes in bootstrap samples.

For example, if the difference between the number of fraudulent and non-

fraudulent funds in a sample is not high (both classes are equally weighted

or close to that), performance measures are quite good (for example, True

Positive Rate is quite high while True Negative Rate is still reliable). When
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c1 c2 Acc+ Acc− Precision F -measure G-mean Weighted Accuracy % of cases
10 20 0.05 0.99 0.09 0.06 0.22 0.43 48%
10 40 - - - - - - 0%
10 60 - - - - - - 0%
10 80 - - - - - - 0%
10 100 - - - - - - 0%
10 120 - - - - - - 0%
10 140 - - - - - - 0%
10 160 - - - - - - 0%
10 180 - - - - - - 0%
10 200 - - - - - - 0%
20 20 0.41 0.75 0.02 0.04 0.55 0.55 100%
20 40 0.1 0.99 0.1 0.09 0.3 0.45 89%
20 60 0.05 1 0.43 0.09 0.23 0.43 56%
20 80 0.04 1 0.8 0.08 0.2 0.43 34%
20 100 0.04 1 1 0.08 0.2 0.42 23%
20 120 0.04 1 1 0.08 0.2 0.42 12%
20 140 0.04 1 1 0.08 0.2 0.42 4%
20 160 0.04 1 1 0.08 0.2 0.42 5%
20 180 0.04 1 1 0.08 0.2 0.42 3%
20 200 0.04 1 1 0.08 0.2 0.42 2%
30 20 0.7 0.43 0.02 0.03 0.55 0.59 100%
30 40 0.22 0.92 0.04 0.06 0.44 0.5 100%
30 60 0.12 0.99 0.11 0.11 0.33 0.47 94%
30 80 0.08 1 0.28 0.12 0.27 0.45 85%
30 100 0.06 1 0.52 0.11 0.25 0.44 74%
30 120 0.05 1 0.77 0.09 0.22 0.43 67%
30 140 0.05 1 0.88 0.08 0.21 0.43 56%
30 160 0.05 1 0.97 0.09 0.21 0.43 49%
30 180 0.04 1 0.97 0.08 0.21 0.43 43%
30 200 0.05 1 1 0.09 0.21 0.43 38%
40 20 0.83 0.26 0.01 0.03 0.46 0.6 100%
40 40 0.34 0.83 0.03 0.05 0.53 0.54 100%
40 60 0.19 0.96 0.06 0.09 0.42 0.5 98%
40 80 0.13 0.99 0.13 0.12 0.35 0.47 96%
40 100 0.1 1 0.25 0.14 0.31 0.46 94%
40 120 0.08 1 0.39 0.13 0.27 0.45 84%
40 140 0.07 1 0.55 0.12 0.26 0.44 83%
40 160 0.06 1 0.68 0.11 0.24 0.44 73%
40 180 0.06 1 0.85 0.11 0.24 0.44 69%
40 200 0.05 1 0.89 0.1 0.23 0.43 66%
50 20 0.88 0.17 0.01 0.03 0.38 0.6 100%
50 40 0.45 0.74 0.02 0.04 0.57 0.57 100%
50 60 0.24 0.92 0.04 0.07 0.46 0.51 100%
50 80 0.18 0.97 0.08 0.11 0.41 0.5 97%
50 100 0.14 0.99 0.15 0.14 0.36 0.48 96%
50 120 0.11 1 0.25 0.15 0.33 0.47 94%
50 140 0.09 1 0.35 0.14 0.3 0.46 93%
50 160 0.08 1 0.49 0.14 0.28 0.45 90%
50 180 0.07 1 0.57 0.12 0.26 0.44 82%
50 200 0.07 1 0.69 0.12 0.25 0.44 79%

Table 5.5: Random Forest Performance measures for different proportions of
each class in the bootstrap samples, c1 cases are drawn from “Fraud” class,
c2 cases are drawn from “No Fraud” class.
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fraudulent class has less weight in a sample performance measures become

less reliable. One can note that in this case the number of cross-validation

samples for which positive class is not predicted at all is increasing (see last

column of the table).

Comparing the results of random forests algorithm with the other meth-

ods from the tables 5.4 and 5.5, one can say that random forest method

provides better results than other 4 classification algorithms.



Chapter 6

Conclusions

In the current research we tried to check the hypothesis whether hedge

funds with a heightened risk of fraud can be identified ex-ante using perfor-

mance flags and specific continuous variables. Using qualitative and quanti-

tative performance flags, we extended previous studies in this area of Strau-

mann [19] and Bollen et al. [3]. We tried to apply 5 different classification

algorithms to predict frauds, these algorithms were presented and compared

empirically.

As it is shown, random forest method (which is the most comprehensive

classification algorithm among the presented) provides better results than

other methods. Linear discriminant analysis (LDA) method provides unre-

liable results and does never predict positive class correctly. The reason for

that might be a very strong assumption which does not hold in reality - it

assumes that independent variables are normally distributed.

The presented classification methods might perform better when applied

to extended hedge fund database. Searching the litigation section of SEC

website, we obtained a list of 422 names. In the database we use in the current

research we could identify only 189 names, and only 84 of them appear to

have sufficient data. As a result, 233 names of funds from our list (involved

in fraudulent behavior) are not found at all. Therefore, an improvement

52
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could be obtained by extending current hedge fund data sample to the one

containing those funds from our SEC list.

The topic of the present research has an important implication for the

investment industry professionals as predicting potentially fraudulent funds

may prevent asset managers from investments in those funds. But though in

the current study the mathematical prediction of frauds in hedge funds shows

some indications, the results are not clear, and, hence, needs to be further

investigated. Nevertheless, a considerable probability of being a potential

fraudulent fund, based on the results of classification algorithms, can be

used as an indication for the need of a more in-depth due diligence.



Appendix A

A.1 Cross-validation

Cross-validation is a technique for assessing how the results of a statistical

analysis will generalize to an independent data set. It is mainly used in

prediction, when the goal it to estimate how accurately a predictive model

will perform in practice.

To apply cross-validation technique, data should be partitioned into com-

plementary subsets. Model estimation is performed on one subset, called the

training set, and then validating analysis is performed on the other subset,

called the validation set. To reduce variability, multiple rounds of cross-

validation are performed using different partitions.

There are different ways to construct training and test sets, such as leave-

one-out cross validation and K-fold cross-validation. While the former is

computationally expensive, the latter is cheaper but has the disadvantage

that it depends on one realized random partition.

K-fold cross-validation is used to construct classification and regression

trees. For the K-fold cross-validation the data set is randomly partitioned

into K equally sized subsets Bk of {1, ..., n} such that
∪K

k=1 Bk = {1, ..., n}
and Bj

∩
Bk = ∅ (j ̸= k). Then a kth test data set including all sample

points whose indices are elements of Bk is set aside.

54
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K-fold cross-validation then uses the sample points with indices not in

Bk as training set to construct an estimator

θ̂
(−|Bk|)
n−|Bk| (A.1)

The cross-validated performance is evaluated in terms of some loss func-

tion ρ and is defined by the formula:

K−1

K∑
k=1

|Bk|−1
∑
i∈Bk

ρ(Yi, θ̂
−(Bk)
n−|Bk|(Xi)). (A.2)

To construct test- and training-data sets in the current study we use ran-

dom division method. It is a generalization of leave-one-out cross-validation

to leave-d-out cross-validation. If n is the size of the initial set, we leave a

set C comprising d observations out (as a training set) and use the remaining

n− d data points as a validation set.

Mathematically, we denote the estimator based on the n sample points

by θ̂n and, when leaving the set C out, the estimator is denoted by

θ̂
(−C)
n−d , for all possible subsets Ck, k = 1, 2, ...,

(
n

d

)
. (A.3)

We then evaluate this estimate on observations from the test set Ci (the
test sample), for every i. As for the K-fold cross-validation ( A.2), the cross-

validated performance is

(
n

d

)−1 (nd)∑
k=1

d−1
∑
i∈Ck

ρ(Yi, θ̂
−(Ck)
n−d (Xi)). (A.4)

As computational burden becomes immense for d ≥ 3, we provide a

computational short-cut by randomization: instead of considering all possible

test sets n!/(d!(n− d)!), we draw 100 random test subsets:
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C∗
1 , ..., C∗

100 i.i.d. ∼ Uniform(1, ...,

(
n

d

)
), (A.5)

where the Uniform distribution assigns probability
(
n
d

)−1
to every possible

subset of size d, such a distribution is constructed by sampling without re-

placement.

In the current study we split the data in a such way that 70% of initial

data goes to the training set and the rest 30% goes to the validation set.

A.2 Hypothesis test for difference between

proportions

Here we explain how we conduct a hypothesis test to determine whether the

difference between two population proportions is significant. It is a two-tailed

test and the hypothesis for it has the following form:

H0 : P1 = P2

Ha : P1 ̸= P2

To find the test statistic and its associated p-value, we do the following

computations:

1. Compute the pooled sample proportion:

P = (P1 ∗ n1 + P2 ∗ n2)/(n1 + n2), (A.6)

where P1 and P2 are the sample proportions from samples 1 and 2,

respectively, n1 and n2 are the sizes of samples 1 and 2, respectively.
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2. Compute the standard error of the sampling distribution difference be-

tween two proportions:

SE =

√
P ∗ (1− P ) ∗ ( 1

n1

+
1

n2

) (A.7)

3. The test statistic is a z-score defined by the following equation:

z =
P1 − P2

SE
(A.8)

4. The p-value is the probability of observing a sample statistics at least

as extreme as the test statistic. Since the test statistic is a z-score, we

use the Normal Distribution tables to assess the probability associated

with the z-score.
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