
Investigating the
Lambda Architecture

Nicolas Bär
of Zürich ZH, Switzerland

Student-ID: 08-857-195
nicolas.baer@gmail.com

Master Thesis August 19, 2014

Advisor: Dr. Thomas
Scharrenbach

Prof. Abraham Bernstein, PhD
Institut für Informatik
Universität Zürich
http://www.ifi.uzh.ch/ddis

Acknowledgements

I would like to thank Prof. Abraham Bernstein for giving me the opportunity to write
this thesis at the Dynamic and Distributed Information Systems group and for providing
the necessary resources to conduct the experiments. Special thanks go to Dr. Thomas
Scharrenbach for the valuable feedback and great discussions throughout the course of
this thesis. I would like to thank the S3IT group for providing me resources to conduct
pre-studies. And special thanks go to Dr. Jakob Bär for proofreading this thesis.

Zusammenfassung

Die fortschreitende Integration von Informationssystemen stellt Systeme zur Echtzeit-
analyse grosser Datenmengen zunehmend vor Herausforderungen: Einerseits sollen die
Ergebnisse möglichst präzise sein, andererseits sollen die Daten rasch verarbeitet werden
und zur Verfügung stehen. Einen neuen Lösungsansatz zur Bewältigung der entste-
henden Probleme stellt die von Marz skizzierte Lambda-Architektur dar, zu der bisher
allerdings noch keine Referenzimplementierung publiziert wurde.

Die vorliegende Arbeit stellt eine mögliche Umsetzung dieser Architektur auf der Basis
von Open-Source-Software Komponenten vor. Die Grundlage des Batch-Layers bildet
dabei ein skalierbarer inkrementeller Mechanismus, der eingehende Nachrichten repliziert
ablegt und Operationen wiederholen kann, falls Fehler auftreten. Der verteilte Speed-
Layer hingegen verwirft unverarbeitete Nachrichten, falls unerwartete Fehler auftreten,
damit neue Nachrichten schneller verarbeiteten werden können. Die Architektur ver-
spricht ”eventual accuracy“: Die allenfalls fehlerhaften Echtzeit-Resultate des Speed-
Layers können durch die präzisen Ergebnisse des Batch-Layers ersetzt werden.

Die vorliegende Arbeit präsentiert auch die Ergebnisse der Evaluation des vorgeschla-
genen Designs mit den Datensätzen des SRBench Benchmarks und der DEBS Grand
Challenge 2014. Aufgezeigt wird das Verhalten der Architektur und deren Leistungsfähigkeit
bei Instabilität der Infrastruktur und unter variierenden Datenfrequenzen.

Abstract

Information systems become increasingly integrated and cause new challenges to pro-
vide real-time analytics based on a high volume of data. The concept of the lambda
architecture proposed by Marz provides a new solution to this problem, but the lack of
a reference implementation limits its analysis.

This thesis presents a possible implementation of the lambda architecture based on
open source software components. The design of the batch layer is based on a scalable
incremental mechanism that stores incoming data in a distributed and highly available
storage engine, which provides replay functionality in case of failures. The speed layer
does not provide recovery mechanisms and in case of machine failures the speed layer
drops messages and continues with the most recent data available. The architecture
guarantees eventual accuracy, which provides the possibly inaccurate results of the speed
layer in real-time and replaces these values with the accurate results of the batch layer.

The evaluation of the designed architecture measured its capabilities based on the
SRBench Benchmark and DEBS Grand Challenge 2014 task and stressed its behavior
with varying data frequency rates on an unreliable infrastructure.

Table of Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Outline . 2

2 Preliminaries 3
2.1 Stream Processing . 3

2.2 Batch Processing . 5

3 Related Work 7

4 Architecture 9
4.1 Frameworks and Services . 9

4.1.1 Coordination and Provisioning . 9

4.1.2 Stream Processing . 13

4.1.3 Event Processing . 18

4.1.4 Persistent Storage . 19

4.2 Coordination . 20

4.2.1 Implementaton Design . 21

4.2.2 Persistent Messaging . 22

4.2.3 In-Memory Messaging . 23

4.3 Batch Layer . 23

4.3.1 Implementation Design . 24

4.3.2 Micro-Batch Processing . 26

4.3.3 Replay Mechanism . 27

4.3.4 Precise Recovery . 29

4.4 Speed Layer . 30

4.4.1 Implementation Design . 30

4.4.2 Node Failures . 32

4.4.3 Scalability . 33

4.5 Orchestration . 33

4.5.1 Resource Management and Cluster Health 34

4.5.2 Node Failure Simulation . 35

x Table of Contents

4.6 Service Layer . 36
4.6.1 Logging Infrastructure . 36
4.6.2 Process Monitoring . 36

5 Design of Experiments 39
5.1 Infrastructure . 39

5.1.1 Automatic Deployment . 39
5.2 Experimental Setup . 40
5.3 Data Sets and Queries . 40

5.3.1 SRBench Data Set . 40
5.3.2 DEBS Grand Challenge 2014 Data Set 41
5.3.3 Data Set Statistics . 42
5.3.4 Baseline . 42
5.3.5 Partitioning . 42

5.4 Node Failure Simulation . 42

6 Results 45
6.1 Key Performance Indicators . 45
6.2 SRBench Data Set . 46

6.2.1 Rainfall Observed once an Hour 46
6.2.2 Broken Station Detection . 53

6.3 DEBS Grand Challenge 2014 Data Set . 58
6.3.1 Load Prediction . 58
6.3.2 Average Load . 64
6.3.3 Eventual Accuracy . 69

7 Discussion 71
7.1 Batch Layer . 71

7.1.1 Message Delivery Guarantee . 71
7.1.2 Micro Batch Processing . 72
7.1.3 Node Failure Recovery . 72

7.2 Speed Layer . 73
7.2.1 Quality of Service . 73
7.2.2 Node Failure Recovery . 75

7.3 Data Partitioning . 75

8 Limitations 77
8.1 Single Point of Failure . 77
8.2 Concurrent Node Failures . 78
8.3 Partitioning . 78
8.4 Stream Imperfections . 79

9 Future Work 81

10 Conclusions 83

x

1

Introduction

There is a wide range of applications in which data is consumed via streams. In most
cases this involves an external environment to generate data and push this data asyn-
chronously to stream processing systems. These systems compute results based on the
continuous data streams in a time-discrete manner. Stream processing requirements are
found in the business and scientific domain. Examples include financial markets, surveil-
lance, manufacturing, healthcare, infrastructure monitoring, radio astronomy, etc. [5].

The data frequency of streams depends on the problem an application solves and may
range from a few to millions of data items per second. Use cases enforce different quality
of service constraints regarding the response time of stream-based applications. For
example a reactive use case with high-volume data streams may require an answer in a
timely fashion. In such a scenario, complex computation processes have to be distributed
and in case of data loss, for example through communication or hardware failures, the
QoS constraints allow for very limited fault recovery due to response time restrictions.
Other use cases involve QoS constraints regarding the precision of the results. In such a
scenario data loss is not acceptable and response time is traded for the sake of obtaining
precise and complete results.

The lambda architecture introduced by Marz [44] is an interesting proposal to the
latency challenges in real-time stream processing. The architecture proposal decomposes
the problem into three layers: (i) the batch layer focuses on fault tolerance and optimizes
for precise results (ii) the speed layer is optimized for short response-times and only takes
into account the most recent data and (iii) the serving layer provides low latency views
to the results of the batch layer.

The reason to divide the architecture into three layers is the flexibility it offers to the
potential applications. The fast but possibly inaccurate results of the speed layer are
eventually replaced by the precise results of the batch layer.

1.1 Motivation

The purpose of this thesis is to investigate the lambda architecture in the context of
purely stream-based applications and measure its effect regarding different QoS met-
rics. The batch and the speed layer consume from the same stream, but vary in their
requirements towards response times and fault-tolerance.

2 CHAPTER 1. INTRODUCTION

Very limited related work to the lambda architecture is available and a reference
implementation has not been published yet. This thesis includes a design based on open
source software of the batch layer following an incremental approach and of the speed
layer with reduced fault-recovery guarantees. It is then used to generate key performance
indicators in order to measure the behavior of the system with different use cases such
as the SRBench benchmark and DEBS Grand Challenge 2014 task.

A proof of concept includes the simulation of failures in the underlying system to check
its fault-recovery behavior. Different frequencies and bursts in the data are simulated
to evaluate the key performance indicators of the architecture.

1.2 Outline

Chapter 2 introduces the concepts of stream and batch processing and highlights the
recent research in these areas with regard to the lambda architecture. Chapter 3 discusses
the related work and further positions the research question of this thesis within its field.
The designed architecture is presented in Chapter 4 that includes an introduction of
frameworks that forms the basis of the design and presents the proposed solution for the
speed and batch layer. The setup of the experiments conducted to qualify and quantify
the performance of the architecture design is described in Chapter 5. The results of
the experiments are then reported in Chapter 6 and discussed in Chapter 7. Chapter 8
highlights the limitation of the designed architecture and in Chapter 9 possible future
work is listed. Finally, the conclusion of this work is presented in Chapter 10.

2

2

Preliminaries

The lambda architecture is a new concept and very limited related work is available. It
includes techniques and methods from the stream and batch processing area that are
described as follows. First, a brief introduction in stream processing systems is provided
and the relevant work regarding the batch and speed layer is highlighted. Second, the
recent work in the area of batch processing is introduced.

2.1 Stream Processing

Andrade et al. [5] describe the development of stream processing systems as the result of
continuous evolution in the technology of managing high volumes of data. In particular
advances in data warehousing and scalable data processing solutions lead to a higher
degree of system interconnections and the emerging need for strongly integrated and
fast data analysis. Distributed systems and their possibility to scale horizontally are the
building blocks for stream processing and provide integration with other technologies and
systems to combine data sources from a heterogeneous landscape of software components.
The synergies of an interconnected software landscape and the progress in the area of
data mining and business intelligence ultimately contributed to the needs to process
information in a real-time, stream based manner. Cugola and Margara [22] further
describe stream processing systems as an evolution of database oriented data processing
methods. Traditional database management systems require data to be persistently
stored and indexed before it can be processed. The processing of data is asynchronous
to its arrival and is only processed on request. However, stream processing systems
show similarities with database systems e.g. data streams are consumed in sequences
and events are processed with common SQL operators such as aggregates, joins and
filters.

The proposed architecture of this thesis primarily focuses on two classes of stream
processing systems: (i) micro-batch based processing systems with strong fault-recovery
mechanism and (ii) real-time processing systems providing high throughput or low la-
tency capabilities. The first class is applied to the batch layer where incoming data is
processed incrementally using micro batches and where the fault-recovery mechanism
ensures precise results. The latter class empowers the speed layer to compute results in
a timely fashion.

4 CHAPTER 2. PRELIMINARIES

Comet [33] and Spark Streaming [61] are stream processing systems that collect data
from continuous data streams into batches. They then periodically process these batches
using batch computations similar to MapReduce [24]. For example a producer sends data
to a queue in a sequential order. The queue then combines the data into multiple batches.
Both systems accept either a time based batching mechanism e.g. one batch keeps the
data from the last 1 second or a data size based batch e.g. one batch includes 10 MB of
data. Das et al. [23] further enhance this model to adaptively adjust the batch size to
decrease the end-to-end latency. However, the focus of the batch layer is not primarily to
reduce latency, but to generate precise results and provide the necessary mechanisms to
recover from node failure. Such goals are strongly bound to the batching mechanisms and
the corresponding technique to checkpoint and recover in case of failures. Kwon et al. [38]
present a stream processing model to checkpoint the state of the processing components
periodically and in case of failure resume from the most recent checkpoint. Their model
shows a lower impact of performance by checkpointing in an asynchronous fashion. The
asynchronous aspect of the checkpointing mechanism introduces new challenges to the
batch layer where global or local state may reflect the last checkpoint and therefore could
cause inaccurate results.

The recent work towards batch based stream processing systems with fault recov-
ery highlighted above, lacks the following properties that are necessary to provide a
fault tolerant incremental algorithm for the batch layer: (i) only allowing for periodical
checkpoints based on time or data size does not provide enough granularity to recover
to a precise moment in time, which may cause inaccurate results for time window based
computations and (ii) the checkpointing mechanism has to be bound to the computa-
tion process in which the recovery of data and the corresponding state is synchronized.
A solution based on the open source stream processing system Samza is introduced in
Section 4.3.

A second class of stream processing systems is based on a continuous operator model
where the streaming process includes perpetual operators that form a graph and ex-
change messages with each other based on the specifically designed processing layout.
The stream processing systems Aurora [2], Borealis [1], TimeStream [49], Naiad [46],
TeleGraphCQ [18], and Storm [9] are recent examples of this class. Although these
systems use batching models in input or output buffers to improve throughput, their
main concept does not evolve around batch based communication and the batches have
no influence on the client API. Lohrmann et al. [41] provide a broad analysis of this
class of stream processing systems and recognize that the QoS requirements of potential
applications have been disregarded. In order to fill this gap they introduced a stream
processing system that optimizes the computation layout and communication channels
regarding user specified latency and throughput constraints. The speed layer of the
lambda architecture has to keep up with the ever-increasing volume of data that stresses
the data flow of the system. At a certain point trading latency for throughput may not
lead to the desired response time and dramatic measures have to be executed such as
dropping messages. The implementation design proposed for the speed layer in Section
4.4 uses Storm [9] to achieve such requirements and the results of the experiments in
Chapter 6 highlight the impact of these measures.

4

2.2. BATCH PROCESSING 5

2.2 Batch Processing

The publication of the MapReduce [24] programming model and the Google File System
[31] brought new attention to the research of batch processing systems. The Hadoop dis-
tributed file system [51] is an open source implementation of the concepts of MapReduce
and Google File System. Many ideas evolved leveraging the possibilities of the newly
introduced concept and due to broad adaption of Hadoop in the industry, different tech-
nologies were built on top of Hadoop: (i) high level languages to fill the gap between
low-level procedural MapReduce and declarative SQL based programming methods and
(ii) distributed storage systems to organize structured data and provide low latency
queries.

Pig [47] is a high-level data flow language for MapReduce that supports ad-hoc analysis
of very large data sets. Pig creates a logical query plan for a specified task and then
compiles the high-level language into a series of MapReduce tasks. Pig does not include
a storage system to optimize access to data and latency. Hive [55], Jaql [11] and Impala
[57] offer integrated solutions to manage an indexed file structure in HDFS and provide
query languages to analyze the data. Impala promises real-time data analytics, while
Hive and Jaql make no promises in this regard.

Cattell [16] summarizes current SQL and NoSQL storage systems and highlights
the following systems that support or that are based on Hadoop: HBase [30], Hyper-
table [Hypertable Inc.] and Cassandra [39]. HBase and Hypertable follow the design of
BigTable [19], while Cassandra is a distributed storage engine that supports the Hadoop
data file system.

Marz [44, chap. 2, 3 and 5] discusses possible solutions to store data on the batch
layer and dismisses the above mentioned methods with the following reasons: (i) custom
languages introduce a barrier between parts of codes (ii) modularization of code becomes
increasingly difficult and (iii) the general purpose programming language and the data
processing language are not tightly coupled and complicate the workflow. Marz [44]
implemented a class of framework that integrates with Clojure. However, the coupling
of these tool sets to a specific programming language discourages broad adaption.

5

3

Related Work

The lambda architecture proposed by Marz [44] starts from the problem to query
petabytes of data. Such a query is unreasonably expensive and imposes high latency.
This problem is divided into three layers. The batch layer precomputes the query func-
tion based on the full data set and updates the serving layer. This operation involves
high latency and by the time the view of the precomputed query is finished it is already
outdated. The speed layer only operates on the most recent data in order to provide
views for the missing time span of the batch layer.

The batch layer holds the master data set that includes all data to precompute the
necessary results. Marz [44] suggests storing all data as immutable and eternally true
facts in order to iterate the preprocessing in replay. This also implies the data is stored
only once in the data storage in order to produce precise results. The data storage
system has to provide the following requirements: (i) efficient writes for new data (ii)
scalability to cope with the increasing need to store more data and (iii) support for
parallel processing and the ability to partition the data. Since the data set is continuously
growing the latency to precompute the batch views on the whole data set becomes
increasingly expensive and the time span to catch up with the speed layer will go up.
The batch layer designed in this thesis therefore processes new incoming data using an
incremental algorithm. Depending on the use case an incremental algorithm may be
able to update the batch view faster, but could involve a higher complexity to store the
necessary data required for incrementally update results.

The serving layer provides fast access to the precomputed results of the batch layer.
These results are out-dated because of the high latency of the batch layer. Therefore the
write speed to the serving layer is less important than the read performance. The serving
layer has to provide low latency random reads in order to answer queries efficiently.

The speed layer is responsible for providing results to the most recent data and has
to fulfill certain latency constraints based on the use case. This implies that it is not
possible to compute results based on the full master data set. Instead incremental
computation is applied to the most recent data in combination with persistent state if
necessary. The speed layer is more complex and error prone than the batch layer, but
any error is eventually compensated by the batch layer.

Fan and Bifet [28] suggest the lambda architecture as one solution to the future chal-
lenges of big data with regard to data mining. Robak et al. [50] explored the application
of big data and linked data concepts in supply chain management and listed the lambda

8 CHAPTER 3. RELATED WORK

architecture as one possible solution to deal with high volume of data in this field. They
argue that such an architecture could provide lower latency to react in critical situations.
However, the possibility that the real-time results may be inaccurate and therefore could
bias the decision-making process is not discussed. Ye et al. [58] present a cloud based
big data mining and analyzing service platform with integration of the R programming
language consisting of four layers. They list the lambda architecture as related work,
although no comparison is provided due to the lack of information about the lambda
architecture and a missing reference implementation.

Google announced a new data processing service provided on top of their cloud plat-
form called Google Cloud Dataflow.1 It shows similarities to the lambda architecture
by allowing clients to process data with stream and batch processing methods. The
framework abstracts the burden of managing the underlying services and their configu-
ration. Google Cloud Dataflow evolved from MapReduce [24] and successor technologies
published by Google such as Flume [17] and MillWheel [4]. No technical report has been
published yet, but the announcement of Google Cloud Dataflow indicates similarities to
Spark [60]. Both frameworks rely on parallel collections of any size that are distributed
across multiple machines in order to provide scalability. It is not possible to compare
the Google Cloud Dataflow framework to the work of this thesis, due to very limited
information.

Amazon maintains a set of loosely coupled, but well integrated tools that provide the
means to apply the lambda architecture. Kinesis is a fully managed real-time stream
processing service that uses a messaging concept similar to Kafka [37]. 2 Both systems
enforce a partitioning scheme that defines the maximum parallelism of the computation
and provide retention policies. While Kafka allows the user to define the retention
policy Kinesis only supports storage for 24 hours. Kinesis integrates the storage engine
of Amazon called S3 and its MapReduce service Elastic MapReduce. 3. Amazon provides
the necessary tools to build a batch and speed layer, but the integration of both layers
and its challenges are not solved.

1http://googlecloudplatform.blogspot.ch/2014/06/sneak-peek-google-cloud-dataflow-a-cloud-native-
data-processing-service.html

2http://docs.aws.amazon.com/kinesis/latest/dev/key-concepts.html
3http://aws.amazon.com/s3/, http://aws.amazon.com/elasticmapreduce/

8

4

Architecture

The architecture is divided into five components: (i) orchestration (ii) coordination (iii)
batch layer (iv) speed layer and (v) service layer. Figure 4.1 illustrates the components
of the lambda architecture and the data flow through the system. The orchestration
component manages resource allocation, provides scheduling functionality to the batch,
service and speed layer and allows the simulation of node or process failures within the
system. The coordination component facilitates the entry point for data and offers high-
level services to synchronize processes within different components. The batch layer
facilitates a micro-batch processing system with high reliability and fault tolerance. The
speed layer embeds a real-time stream processing system with a focus on fast response
times. The service layer collects results and performance data from both the batch and
the speed layer in order to measure the key performance indicators of this architecture.

4.1 Frameworks and Services

4.1.1 Coordination and Provisioning

Apache Hadoop YARN

YARN (Yet Another Resource Negotiator) [56] evolved from the urge to leverage Hadoop
computational clusters to run heterogeneous tasks in a multi-tenant environment. Hadoop
was designed to run MapReduce jobs on large datasets in a distributed fashion. It of-
fers a simple API to its clients and abstracts the common challenges of provisioning
distributed systems such as scheduling, replication, failover and input partitioning [51].
Hadoop has been widely researched and its limitations and benefits are well understood.
YARN addresses the resource management and scheduling limitations of Hadoop. It
separates the resource management functionality from the programming model and its
API allows clients to specify fine-grained scheduling and resource allocation policies.
This allows a broad range of heterogeneous tasks to run on a Hadoop infrastructure
such as stream-based applications that enforce a new programming model different from
MapReduce.

The architecture of YARN is based on one master node (resource manager) and mul-
tiple worker nodes (node manager). The resource manager acts as the central authority

10 CHAPTER 4. ARCHITECTURE

Batch Layer

Speed Layer

Service Layer

Sensor

Sensor

Sensor

Sensor

Sensor

Coordination

Lambda Architecture

Data Flow

Orchestration

System

Figure 4.1: Components of the lambda architecture: External sensors send data contin-
uously to the coordination component. The batch and speed layer provide
the computational facilities to compute results and send those results to the
service layer. The orchestration component manages the provisioning and
orchestration and it embeds a node failure simulation mechanism.

responsible for resource scheduling and job submission. The node managers report infor-
mation about resource availability, faults and job lifecycle management to the resource
manager in a heartbeat fashion. From these heartbeats the resource manager acquires
a global view of available resources and the status of jobs. Based on the available re-
sources the resource manager can provision leaves (containers) on the node manager to
run client applications.

The API enables clients to submit an application master to the resource manager,
which encapsulates the logic to negotiate resources and start jobs in form of containers.
The resource manager’s responsibility does not include the proper management of node
failures or status changes of client applications, but it offers a communication channel
for the application master to handle such events. Figure 4.2 illustrates the architecture
of YARN.

10

4.1. FRAMEWORKS AND SERVICES 11

Figure 4.2: YARN architecture overview [56]: The resource manager orchestrates the
YARN cluster and manages task provisioning. The node managers are worker
nodes that provide resources for computation tasks. The client registers an
application with the resource manager. Then the application master (AM)
is started as a container on one of the node managers. It then negotiates
resources with the resource manager to start containers.

Apache Zookeeper

Apache Zookeeper is a wait-free coordination service for distributed systems with the
goal to provide a coordination-kernel with relaxed consistency guarantees [34]. Zookeeper
does not implement specific primitives, but it offers high flexibility through its API
and enables clients to build their own coordination logic such as rendezvous, group
membership, configuration management, simple locks, simple locks without herd effect,
read/write locks and double barrier.

The power of Zookeeper evolves around its simple design based on hierarchical names-
paces with a strong similarity to file systems. Clients can write and read nodes within
the namespace and watch for changes on specific nodes. A node stored on the ZooKeeper
namespace is either defined as regular or ephemeral. The first allows clients to manip-
ulate the node explicitly. The latter allows deleting nodes based on the heartbeat of a
specific client. A node will be deleted when the client fails to send its heartbeat within
a defined timeout.

ZooKeeper enforces two ordering guarantees: (i) linearizable writes guarantee that all
updates to the state of ZooKeeper are serializable and respect precedence and (ii) all
requests from one client are executed in FIFO order.

11

12 CHAPTER 4. ARCHITECTURE

Apache Kafka

Apache Kafka [37] is a distributed and scalable messaging system. It combines the
benefits of traditional log aggregators and provides an API to consume events in real
time.

A topic defines a stream of messages of one particular type. Producers can publish
messages to a topic and these messages are stored on nodes called brokers. Consumers
subscribe to one or more topics and pull messages from the brokers. A consumer utilizes
the iterator interface from one particular message stream in order to consume the mes-
sages being produced in a continual stream. The iterator is designed to block if no new
messages are available and continues upon arrival of new messages. A topic is further
divided into multiple partitions. Partitions are the smallest unit of parallelism and en-
able load balancing by dividing the partitions among the brokers. Consumer groups can
divide and distribute the load according to the partitioning scheme of Kafka. This eases
the common state management and locking challenges of traditional messaging systems.

A message stored in Kafka is identified by its logical offset. A consumer gets messages
from one partition sequentially and acknowledges the offset of the read messages. A
broker in Kafka is stateless and holds no information about the progress of the consumers.
A consumer is responsible to manage the last consumed offset. This not only reduces
the complexity and overhead of a broker but also allows consumers to rewind the stream
and consume already read messages again. This is a powerful feature in case of node or
application failures, since the application can replay messages from a stored offset after
the application recovers.

Brokers and consumers coordinate among themselves in a decentralized fashion using
the functionality of ZooKeeper. In particular, ZooKeeper is used to solve two major chal-
lenges main tasks: (i) detecting new or removed brokers and consumers, and rebalance
each of them according to the current topic and partitioning scheme, and (ii) consumer
groups can store and manage the offset of partitions in a highly available fashion.

Kafka provides two distinct interfaces to consume messages from partitions: (i) a
consumer group implementation that leverages the functionality of ZooKeeper to syn-
chronize different consumers and their respective offset and (ii) a simple consumer that
enables developers to implement their logic to consume messages in a distributed fash-
ion. The first choice abstracts many low level functionality and therefore lowers the risk
of faulty code. It makes two assumptions about the consuming applications: (i) at-least-
once message delivery guarantee and its possibility to send duplicate messages is not in
focus and (ii) the order of messages consumed from different partitions is irrelevant.

Kafka producers can either send messages in a synchronous or asynchronous fashion.
Producing messages synchronously means sending one message at the time. The thread
is stopped in order to deliver each message to Kafka and returns after the broker ac-
knowledges the message. An asynchronous producer holds a batch size of n messages
in memory and whenever the batch is full it starts a new thread to deliver all messages
of the current batch to Kafka. Figure 4.3 illustrates the performance implications of
the batch size on the producer. While using the synchronous mode shows the lowest
performance, an asynchronous producer implies further problems with regard to fault

12

4.1. FRAMEWORKS AND SERVICES 13

tolerance. In case an asynchronous producer fails and is restarted, determining the
precise restore point is only possible by inspecting the corresponding topic.

Figure 4.3: Kafka producer batch-size performance comparison [8]: The x-axis shows the
batch size used by the producer to send messages to Kafka. The left y-axis
shows the amount of data (MB) produced and the right y-axis shows the
corresponding number of messages.

4.1.2 Stream Processing

Apache Samza

Apache Samza is a distributed stream-processing framework that leverages the capa-
bilities of YARN to provide fault tolerance, resource management services and process
isolation. Its design of task distribution and messaging strongly relies on Kafka. Samza
provides a simple API to process messages and abstracts low-level operations, such as
state management, processor isolation and fault recovery. A client implements the pro-
cessing method to process one or multiple continuous streams and Samza manages the
incoming messages and provides interfaces for outgoing messages. Figure 4.4 illustrates
an example data flow within a Samza topology. The processing layout of Samza allows
clients to define computational graphs and enables jobs to consume from and write to
one or many streams. Samza makes no assumptions about the graph and therefore cyclic
and acyclic topologies are possible. A Samza job can either write to a Kafka stream or
provide its implementation to write to an external data store.

Task Distribution
A Samza job is a logical unit that processes a set of input streams and outputs messages
to a set of output streams. In order to distribute the load of a set of input streams Samza

13

14 CHAPTER 4. ARCHITECTURE

Stream A Stream B Stream C Stream D

Samza Job 1 Samza Job 2 Samza Job 3

Stream E Stream F

Samza Job 4

Figure 4.4: Samza stream processing topology: Every Samza job can consume messages
from one or many data streams and emit messages to many streams. The
processing layout may be designed as a directed cyclic or acyclic graph.

splits one job into multiple tasks based on the Kafka partitioning scheme. Therefore a
task that consumes one Kafka partition is the smallest unit of parallelism. Messages are
consumed sequentially in order of their offset. If a task joins two streams the messages
are processed in round robin. Alternatively the client may specify a custom method
through the defined interfaces.

Tasks are distributed according to the available resources on YARN. Figure 4.5 shows
the distribution of stream tasks with respect to the Kafka topic partitioning and the
available resources on YARN. In this example two available containers on YARN are
available and Samza runs two tasks on each container in order to process the four par-
titions of each topic. The distribution of partitions to tasks is based on the partitioning
scheme of Kafka. This mapping is negotiated the first time Samza starts and will not
rebalance in case partitions are added or removed.

Two factors influence the load balancing mechanism of Samza: (i) the number of
partitions and (ii) the number of containers to start on YARN. The number of containers
Samza will start is configurable per job. In case the number of containers is lower than
the number of partitions Samza starts multiple threads on each container as illustrated
in figure 4.5. The number of total threads a Samza job starts is always bound to the
number of partitions. If a job consumes from multiple topics with an unequal number of
partitions, some tasks will only consume messages from one topic. For example topic A
holds two partitions and topic B holds four partitions. Samza would start four tasks in
order to consume from both topics. Tasks one and two would consume from both topics,
but tasks three and four would only consume from topic B, since topic A only manages

14

4.1. FRAMEWORKS AND SERVICES 15

two partitions. Therefore the number of tasks is defined as the maximum number of
partitions in all topics a job consumes from.

YARNKafka

Topic 1

Partition 1
Partition 2
Partition 3
Partition 4

Topic 2

Partition 1
Partition 2
Partition 3
Partition 4

Samza Container

Samza Stream Task

Samza Stream Task

Samza Stream Task

Samza Stream Task

Samza Container

Figure 4.5: Samza task distribution: The task distribution of Samza is constrained by the
maximum amount of partitions in a Kafka topic and the number of available
YARN containers. A task can consume multiple Kafka topics and it will
always receive messages from the same partition number in both topics.

Checkpointing and Fault Recovery
Samza promises fault recovery in case of node failure or YARN containers are deprovi-
sioned. For each task Samza creates a checkpointing topic on Kafka. On a configurable
time interval Samza writes the most recent processed offset to the checkpointing topic.
In case a task fails Samza will restart a container on YARN and the task will restore to
the last written offset in the checkpointing topic. The checkpointing interval is specified
in milliseconds and is bound to the system time. A client can enforce the checkpointing
behavior within its processing implementation. Currently an enforced checkpoint will
commit not only the offset of the current task, but also all other tasks running within
the same container.

State Management
Samza provides a configurable key-value store based on LevelDB [25] to manage per-

sistent state. The key-value store is isolated on a task level. Therefore each task holds
a reference to its key-value store and queries that join state from different tasks are not
possible. But local storage offers the benefits of fast performance that is only limited by
local resources and not bandwidth or latency.

15

16 CHAPTER 4. ARCHITECTURE

Samza creates a separate checkpointing topic for every persistent store of one task
in order to recover the persistent state after task failure. The checkpointing interval is
bound to the checkpointing interval of the task. Therefore Samza guarantees synchro-
nization of the persistent store with the task checkpoint.

Apache Storm

Apache Storm [9] is an open source distributed real-time stream processing system. The
main concept of Storm is a model to represent the entire streaming application as a
graph of computation. This graph is built using the Storm API and then deployed to
the Storm cluster. The Storm cluster takes care of the distribution of tasks within the
given infrastructure and the API is designed to handle message passing, task discovery
and fault-tolerance.

Storm enables clients to run topologies consisting of streams, spouts and bolts. Figure
4.6 highlights a processing graph consisting of two spouts and five bolts. A stream is
an unbounded sequence of tuples that is processed in parallel and distributed among
multiple worker nodes. The source of a stream is called a spout and the processing units
are called bolts. Streams are defined as tuples with a corresponding schema that names
its the fields.

Spouts read data from an external input source and emit the data in form of tuples
to the topology. A spout is either reliable or unreliable. A reliable spout handles
communication failures and replays tuples in case it failed to be transferred or processed
by the topology, while an unreliable spout does not keep any buffer of the emitted tuples
and in case of failure the tuple is lost. A spout might emit tuples to multiple streams and
therefore allows partitioning of data and enables scalable processing of multiple streams.
The Storm framework defines basic abstractions for spouts in order to match arbitrary
use cases.

Bolts are the processing units of a Storm topology and may fulfill a wide variety of
use cases such as filtering, aggregations, joins, talking to external persistence layers, etc.
In order to build a computational graph with multiple processing vertices the topology
needs to define at least one input stream for each bolt. Bolts may emit tuples to one or
multiple streams after processing the input stream.

Storm allows for parallelization of spouts and bolts using different tuple grouping
strategies to pass message streams. The grouping strategy defines the partitioning of a
stream and controls the number of parallelism of the next computational unit. Storm
offers seven built-in grouping strategies:

Shuffle grouping
Distributes tuples randomly across the bolts tasks and guarantees that each bolt
receives an equal number of tuples.

Fields grouping
The stream is partitioned by one or multiple values of the emitted tuple. Tuples
with the same grouping field value will always be handled by the same bolt, but
different values may go to different bolts.

16

4.1. FRAMEWORKS AND SERVICES 17

Global grouping
The entire stream is emitted to the bolt task with the lowest id.

None grouping
None grouping indicates no preference regarding the grouping of the stream and
currently this will default to the shuffle grouping.

Direct grouping
Direct grouping allows the producer to directly specify which consumer will receive
the data for each tuple independently.

Local or shuffle grouping
In case the consuming bolt has multiple tasks in the same worker process the
emitted tuples will be shuffled to the in-process tasks only. Otherwise shuffle
grouping is applied.

All grouping
The stream is replicated to all receiving bolts.

An interface specifies the necessary behavior of a grouping strategy and it is possible
for clients to create a grouping strategy to fit the parallelization needs of their use case.

Reliability
The Storm reliability features guarantee that every tuple emitted by a spout will be

fully processed by the corresponding topology. Storm tracks the tree of tuples emitted
by every spout in order to enable at least once processing of tuples. In case a spout
tuple is not completed within a certain message timeout the tuple is failed and may
be replayed later. Acknowledgment messages are sent on a separate stream to indicate
a tuple has been completely processed by a bolt. The reliability features of storm are
customizable and enable clients to adapt these features to the requirements of the use
case.

Streams

Streams [12] is a framework to define topologies and their respective data flow in XML
notation. Its functionality was briefly assessed as a possible module in the speed layer,
but due to the lack of flexibility regarding the stream grouping mechanisms of Storm,
streams could not be applied in this architecture. Currently Streams only allows shuffled
grouping to pass messages between tasks.

Spark Streaming

Spark Streaming [61] was briefly evaluated as a possible module of the batch layer,
since it combines the event-driven aspects of stream-based applications and the batch
processing programming model of MapReduce. The basic concept of Spark Streaming

17

18 CHAPTER 4. ARCHITECTURE

Figure 4.6: Storm topology [44]: A Storm topology consists of bolts and spouts. Data
enters the topology through spouts and is then emitted to an acyclic graph
consisting of bolts.

is to split the input stream into a series of deterministic batch computations. Each split
is stored reliably across the cluster as a resilient distributed dataset (RDD) [60] and is
then further processed using stateless and stateful operators, such as map or aggregates.

An interface allows reading messages from Kafka on multiple nodes and then further
process these messages using RDDs. A test scenario proofed Spark Streaming to be
inefficient and not able to recover from node failures regarding its Kafka interface. The
scenario included two Spark Streaming nodes and two Kafka broker nodes. The appli-
cation written for this test periodically generated six random numbers form zero to ten
and published each number to one partition of a Kafka topic. In order to leverage the
distributed aspects of spark streaming, the parallelization factor of spark was chosen to
match the number of partitions. Although six Spark Streaming tasks were started on
the cluster only one task was consuming messages from Kafka. The task consuming from
Kafka started six threads in order to consume from the six partitions and added up the
data from each thread without locking or synchronization. The missing synchronization
of these tasks caused data loss. However, Spark Streaming allows repartitioning the
tasks on the nodes during runtime. Using this functionality Spark Streaming was able
to consume from one topic on different nodes, but the implementation uses the high-
level consumer API of Kafka on each node, leading to random behavior regarding offset
management. In some cases messages were skipped or were consumed multiple times.
Furthermore in case a node running the Spark Streaming Kafka consumer fails the task
is marked as finished and does not recover.

4.1.3 Event Processing

Event processing systems or frameworks perform operations on incoming events. The
most common subset of operations includes creating, reading, transforming and deleting
events [27]. An event processing framework abstracts the underlying complexity to
perform these operations and allows to further process events using a specific domain

18

4.1. FRAMEWORKS AND SERVICES 19

language.

Esper

Esper [26] is a complex event processing framework with capabilities to analyze large
volumes of incoming messages or events. It targets event driven architectures with
either real-time or historical data. Esper offers a domain specific language (DSL) for
event processing. The processing language follows a declarative syntax for dealing with
large volumes of high frequency time based messages. Esper enables clients to build the
business logic on top of its DSL and supports various ways to filter and analyze incoming
data streams and respond to certain conditions of interest.

Esper is a lightweight kernel written in Java and provides a highly scalable way to
compute metrics in-memory with minimal latency [10]. It is capable of handling histor-
ical data or medium to high-velocity data and high variety data. Esper considers every
source of input an event streams and clients build logic on top of these streams. It’s
architecture focuses on low-latency queries where events are processed in-memory with
additional possibilities to access persistent storage. The domain specific language allows
expressing rich event conditions such as correlations, aggregations with the possibility
to span time windows.

4.1.4 Persistent Storage

The architecture has to provide persistent or temporary storage facilities to store results
or store global state across different streams. Redis and MongoDB are introduced in the
following sections.

Redis

Redis is a fast non-relational database that is widely used as a key-value cache or store
[15]. It allows storing a mapping of keys to five different types of values. It supports
in-memory or persistent disk storage, replication to scale read performance and sharding
to scale write performance. Redis allows data to be stored persistent based on different
conditions: (i) based on the number of writes in a given period of time or (ii) when
the user manually calls the corresponding command. In addition redis can store every
operation on disk as it happens.

MongoDB

MongoDB is a document oriented database that provides high-performance, high-availability
and automatic scaling [20]. A record in MongoDB is a document that is composed of field
and value pairs. A value may include documents, arrays or arrays of documents. Mon-
goDB provides high performance data persistency and supports embedded data models
to reduce I/O activity and indexes to reduce the latency of queries. MongoDB provides
horizontal scalability in form of automatic sharding of data across a cluster of machines.

19

20 CHAPTER 4. ARCHITECTURE

In addition a cluster may be configured to replicate data among multiple nodes in the
cluster.

4.2 Coordination

The coordination layer is the entry point of data into the system. A typical scenario
involves reading from an input source and delivering the messages to either the batch
or speed layer. Figure 4.7 highlights the main components of the coordination layer
and the data flow between the components and the interfaces to the batch and speed
layer. An input reader fetches messages from an external data source (e.g. file, database
or socket) and sends these messages to the time synchronizer. The time synchronizer
has two main responsibilities: (i) incoming data has to be forwarded in order of the
timestamp of the data and (ii) events might be delayed based on a data frequency rate.
The delay is defined relative to the system time e.g. the data of one minute is processed
in one second system time. The detailed design of the coordination layer is described
as follows. First, the implementation design of the coordination layer is introduced.
Second, persistent messaging and the interface to the batch layer are described. Third,
in-memory messaging and the respective interface to the speed layer are addressed.

Coordination Layer

Data Flow

Input Reader Time Syncrhonizer

Kafka Producer

In-Memory Producer

Batch Layer

Speed Layer

Figure 4.7: Coordination layer data flow: The coordination layer encapsulates three
steps. First, the data is received from an external storage. Second, the
time synchronizer enables throttling of events. Third, a producer (kafka pro-
ducer or im-memory producer) enables the batch and speed layer to consume
data.

20

4.2. COORDINATION 21

4.2.1 Implementaton Design

Different setups are possible to run the coordinator in a distributed environment. The
most basic setup is to run one instance of the coordinator on one machine reading from
only one input source and produce messages either in-memory or in a persistent fashion
to the batch and speed layer. The coordinator is designed to run in multiple scenarios
e.g. on multiple machines and reading from multiple input sources. The coordinator
operates in pipelines (see figure 4.8), where one pipeline corresponds to one input source.
Each pipeline starts separate threads for the input reader, time synchronizer and message
producer. Messaging between these threads is based on a ring buffer implementation
[LMAX Trading].1 The potential bottlenecks of the coordinator are the reader and the
producer. Therefore each element of the pipeline keeps a buffer of messages pending to
process e.g. the input reader will read up to 2,048 messages until it waits for the time
synchronizer to free up space in the buffer.

It is assumed each input source corresponds to a separate partition of the data and
therefore the order of messages is only guaranteed within a pipeline and not over all
pipelines. Depending on the number and type of input sources the coordinator achieves
better throughput distributed to multiple nodes e.g. in case of a file based input source
the reader achieves better performance by only reading one file on one disk at the time
in order to leverage the performance benefits of sequential reads. Each pipeline can be
started on a separate machine with different levels of data throughput throttling in order
to simulate bursts from selected input sources.

Pipeline 1

Data Flow

Input Reader Time Synchronizer Producer
Input

Source

Batch Layer

Speed Layer
Pipeline 2

Input Reader Time Synchronizer Producer
Input

Source

buffer

buffer

ring buffer ring buffer

ring buffer ring buffer

Figure 4.8: Coordination pipelines: The coordination component starts a pipeline con-
sisting of an input reader, a time synchronizer and a producer for each input
source. Pipelines are fully decoupled and may reside on different nodes or
processes.

1Using the SRBench dataset the ring buffer achieves a throughput of 500,000 messages/s in contrast
to a blocking array queue implementation with a throughput of 200,000 messages/s

21

22 CHAPTER 4. ARCHITECTURE

4.2.2 Persistent Messaging

Apache Kafka (see 4.1.1) is used to deliver messages from the coordination layer to the
batch layer. Kafka provides a producer interface to send messages to Kafka and stores the
received messages first on the disk of the partition leader and second on the replication
nodes. Different options are available to fine-tune the behavior of the producer and
the Kafka brokers. The most important configuration options are first listed and then
discussed with respect to the specific use case [6]:

request.required.acks
This is the most important configuration option to control the reliability. It allows
for three different modes: (i) the producer never waits for an acknowledgment by
the broker (ii) the producer waits for an acknowledgment from the lead broker, but
not from the replication broker and (iii) the producer waits for acknowledgment of
the leader and from all possible replication brokers.

producer.type
The Kafka producer can either operate in synchronous or asynchronous mode.
While the asynchronous mode allows for higher throughput, the synchronous mode
enables higher reliability in case of producer failure. Higher throughput is achieved
by batching multiple requests together and sending the data as a bundle instead
of sending each message in one request.

batch.size
The number of messages a producer might cache before dispatching all messages
to a Kafka broker.

queue.buffering.max.ms
The maximum number messages are kept in the producer queue. After the specifc
time interval is elapsed the data is produced to Kafka. Messages are either send
when the batch size is reached or the specified time is elapsed.

queue.buffering.max.messages
The maximum number of unsent messages that can be queued by the producer
when using async mode before either the producer must be blocked or data must
be dropped.

The coordinator will send messages to Kafka in an asynchronous mode waiting for all
replication brokers to receive and persist the data. It is assumed that the coordination
layer does not fail and therefore implications from using an asynchronous producer are
not applicable. In case of a broker or network failure, the producer will wait for the leader
election to select a new partition leader and resend an unacknowledged batch. Only at
least once delivery semantics are supported. An open proposal [Kreps] suggests design
changes in the implementation of the Kafka producer and the behavior of brokers in
such a scenario in order to support only once message delivery. The proposed solution
builds on the idea of a unique identifier for each message a producer sends and on a

22

4.3. BATCH LAYER 23

catalog of received messages on the broker. To circumvent the inefficiency implicated
by maintaining a database of O(number of messages) the design proposal suggests to
leverage the sequential ordering of messages on the Kafka broker to keep the last state
as a PID of the broker.

4.2.3 In-Memory Messaging

The communication between coordination and speed layer has to provide high through-
put capabilities. To avoid the latency disadvantage of a persistent message queue, the
coordinator provides an in-memory messaging service. The in-memory messaging ser-
vice uses the buffer of the producer within the coordination pipeline to store messages
for retrieval. A socket is opened to receive requests from clients. The management
of open sockets is handled through the asynchronous event-driven network application
framework Netty [Project Netty]. The asynchronous aspects of Netty are especially im-
portant to handle connection failures or read timeouts. In general client timeouts on
the server side are detected using a timeout threshold and in case of failure the channel
is re-opened. Netty allows for asynchronous connection handling. In case of failure the
client establishes a new connection and the server will asynchronously span a new thread
to deliver messages to the client, while the broken connection stays alive until a timeout
is reached. Messages are stored in a thread-safe queue.

The in-memory message producer implements a simple pull based protocol on top
of TCP as highlighted in fig. 4.9. After establishing a connection between the server
and client, the client initiates a data transfer with the control command ”fetch”. After
receiving the fetch command on the server side, the server will send a batch of messages
to the client using the same connection. The data is lost in case the connection is closed
during this transfer and the protocol is not designed to replay messages.

A push-based model is an alternative design to the pull based model described above,
where the server starts sending messages to the client after a connection is successfully
established and stops on connection loss. But a push based model would cause a sig-
nificant amount of data loss due to the lack of fast and reliable detection of connection
errors. Hence, the pull based protocol is better suited.

4.3 Batch Layer

The goal of the batch layer is to compute precise results that eventually replace the
possible inaccurate results of the speed layer. In case of node failures the processing
may be delayed in order to guarantee this promise. There are two possible strategies
to implement the batch layer: (i) a recomputation algorithm that periodically computes
the results over the full master set or (ii) an incremental algorithm that processes new
data when it is introduced into the system. The design of the batch layer follows the
latter approach. It is designed for stream based data that continuously flows into the
system. In comparison with the recomputation approach the incremental method has
to be designed more thoroughly, but may result in lower latency. The incoming stream

23

24 CHAPTER 4. ARCHITECTURE

Server Client

Open Socket

TCP Connection Establishement

“fetch”

message batch

“fetch”

message batch

“fetch”

“finish”

Figure 4.9: In-Memory messaging protocol: The in-memory message queue implements
a pull-based model that clients use to pull data from the queue. After the
connection is established between client and server the client sends a control
command to the server to receive a batch of messages.

of data has to be stored persistently to provide the possibilities to recover from node
failures.

The detailed description of the batch layer is structured as follows. First, the imple-
mentation design of the batch layer and its interfaces to the coordination and service
layer are discussed. Second, the micro-batch processing mechanism is analyzed and com-
pared to a recomputation approach. Third, the replay mechanism that is designed for
recovery is described. Fourth, the recovery mechanism in case of node failures is further
explained with regard to failures on different levels e.g. the messaging service is not
available or the underlying provisioning system is unreliable.

4.3.1 Implementation Design

The batch layer has two main components: (i) a stream processing system to compute
results based on micro batches and (ii) a persistent message queue to communicate
between different nodes and processes, as well with the coordination layer. Figure 4.10
illustrates the components of the batch layer, its interfaces to other layers and the data

24

4.3. BATCH LAYER 25

flow through the system.

Data Flow

Batch Layer

Coordination
Layer

Persistent Message
Queue

Stream Processing
System Service Layer

Figure 4.10: Batch layer components: The batch layer receives data from the coordi-
nation layer and stores these messages into a persistent message queue.
The stream processing system of the batch layer interacts with the message
queue and may consume or produce messages. The results of the computa-
tion are then send to the service layer.

The persistent message queue Kafka is the entry point of data into the batch layer. A
persistent message queue offers the benefits of recovery in case of node failures compared
to an in-memory queue which will loose data on node failures. Another important aspect
of the message queue is its retention policy. A message queue may for example delete
a message after a peer consumes it. Kafka not only stores messages persistent, but also
allows for data replication on different Kafka broker nodes and the message retention
policy is configurable in terms of time spent in the queue.

The components of the batch layer may be distributed on multiple compute nodes.
Kafka’s capability of splitting message streams into multiple partitions sets the maximum
number of parallelism of the stream processing system. Therefore a stream with ten
partitions may be processed by a maximum of 10 processes on a maximum of 10 nodes.
Each Kafka partition may reside on a different Kafka broker node. Figure 4.11 illustrates
a possible setup of the batch layer components on four nodes. In this example two
Kafka brokers are managing the two partitions with a replication factor of two and
two nodes run the components of the stream processing system. The loose coupling of
the persistent message queue and the stream processing service ensures flexibility for
different use cases. The batch layer is not designed to identify the physical distance
between these components. As a result it is not guaranteed that a stream processing
unit will consume messages from the Kafka broker that resides on the same node.

The stream processing system is the computing element of the batch layer. It consumes
messages from the persistent message queue and computes the results based on the task
of the compute job. The batch layer leverages the Samza stream processing framework
to distribute the computation and communicate with Kafka. The stream processing
system operates in micro-batches and not on the full batch of the data. The benefits of
micro-batches are discussed in Section 4.3.2. Samza offers no high level API to compute
analytics on the data. Therefore the batch layer uses Esper to provide an SQL like

25

26 CHAPTER 4. ARCHITECTURE

Node 1

Node 2

Node 3

Node 4

Kafka Partition 1

Kafka Partition 2

Kafka Partition 1 Replication

Kafka Partition 2 Replication

Stream Processing System

Stream Processing System

Figure 4.11: Batch layer node layout: The node layout with 4 different nodes shows
an example distribution of message queue partitions and compute jobs. It
shows a simple setup with 2 partitions and the corresponding 2 compute
jobs. One node may be responsible for more than one partition, but the
replication has to reside on a different node. The compute jobs on the other
hand can all reside on the same node if necessary.

querying mechanism over a micro-batch of data. The integration of Esper enables a
client to formulate computing problems in a high-level language. In addition Esper
features a strong support for data analysis based on time windows. As a result the
micro-batch of data is sent to Esper, which in turn provides a result after each micro-
batch is finished. The result of a successfully computed micro-batch is then send to the
service layer to store and further analyze the results. Figure 4.12 illustrates the batch
layer components with Samza as the stream processing system. Samza uses the Apache
YARN resource scheduling system to distribute processing containers on multiple nodes.
The maximum number of processing containers is defined by the number of partitions
in one Kafka topic.

4.3.2 Micro-Batch Processing

Micro-batch processing is a method to process data in small batches in a time discrete
manner [44]. Figure 4.13 illustrates multiple batches in a continuous stream of data.

A time window or an indication within the data itself usually determines the batch
size. A micro-batch based on time windows is either bound to the system time or to
a timestamp of the data. The consuming of messages in batches enables for greater
throughput than processing messages one by one. Although high throughput is not the
primary goal of the batch layer it is necessary to optimize the access to persistent storage
to improve the imposed latency. Kafka is capable of receiving and sending messages in
batches defined by the number of messages. A consumer may consume messages in
batches or one at a time and the same holds for the producer. It is highly important
to understand the implications of consuming and writing in batches from the stream
processing system with regard to reliability. This sensitivity can be illustrated as follows:

26

4.3. BATCH LAYER 27

Data Flow

Batch Layer

Coordination
Layer

Kafka Broker

Service Layer
Kafka Broker

Kafka Broker

YARN

Samza Container

Samza Container

Samza Container

Samza Container

Samza Container

Figure 4.12: Batch layer partitioning: The data from the coordination layer is partitioned
to 3 different Kafka brokers. In this example the Kafka brokers hold 5
data partitions and 5 Samza containers consume from the corresponding
partition.

figure 4.14 illustrates a stream processing system with two jobs and two Kafka topics.
Job1 consumes from topic1 (consumer1), computes analytics based on micro-batches and
stores the results to topic2 for further processing (producer1). The second job consumes
messages from topic2 and processes it (consumer2). Assuming consumer1 consumes
messages in batches and commits an offset each time a time window is completed. Let’s
further assume producer1 produces messages in batches (asynchronous) and therefore
keeps all messages in memory until a time or number based threshold is reached. In
case job1 fails the messages in memory are lost, since the last committed offset reflects
the last fully processed message from job1, but not the fully transferred messages of
producer1. In such a scenario producer1 has to send messages in synchronous mode.

Micro-batch processing can be applied to two use cases [44]: (i) computation that only
occurs within one batch and no global state is managed and (ii) computation tasks that
involve state management over multiple batches. The latter use case requires users to
carefully design the state management mechanism. Samza for example is designed to
handle state management according to the offset management of the consumed streams
and therefore has built-in support for data integrity based on the processing state. In
comparison with typical batch processing systems (one at a time processing) such as
Hadoop [51] the micro-batch processing method may have a shorter latency of one mes-
sage completing the processing cycle [44].

4.3.3 Replay Mechanism

The checkpointing system of Samza is optimized for stream processing applications that
process live data. Offline processing would imply the ability to commit an offset based
on the timestamp included in the data rather then the system time. The possibility to

27

28 CHAPTER 4. ARCHITECTURE

Figure 4.13: Micro-batches [44]: A continuous stream of data holds many incoming tu-
ples. These tuples are organized in batches.

Data Flow

Kafka topic1 Processing job1 Kafka topic2 Processing job2

consumer1
(batch mode)

producer1
(batch mode)

consumer2
(batch mode)

Memory Buffer

Figure 4.14: Memory buffers of batch based consumers and producers: Job 1 and job
2 consume messages in batches. Job 1 also produces messages in batches.
The memory buffers store full batches and are not resilient to node fail-
ure. Therefore job 1 has to synchronize the outgoing messages with the
checkpoint of the consumed batches.

enforce checkpoints within a task implementation is not suited, since it enforces check-
pointing on all tasks and these tasks may not be synchronized regarding the incoming
data.

The flowchart illustrated in figure 4.15 shows a hypothetical solution to this problem
within the task logic itself. Each time a new time window is initialized based on the
timestamp of the data, the offset is written to the persistent key-value store of Samza.
In case of task recovery the offset is read from the persistent store and all messages
between the current offset and the last time window offset are reread from Kafka.

This approach is inefficient, because it mirrors the built-in functionality of Kafka.
Based on this reflection the Samza project has been modified to support offset commits
from within the task logic that do not populate to other tasks. A task can therefore
control the offset itself and only commit the checkpoint if a new time window is started.
This drastically reduces the overhead to manage an additional recovery strategy.

28

4.3. BATCH LAYER 29

input
stream

Esper

task
recovery?

first offset
of current

time
window

store offset

No

read first offset

read message
from Kafka

Yes

current
offset

reached?

yes

new
window?

no

yes

window
complete

publish result result
yes

no

Figure 4.15: The flow chart shows the missing checkpointing mechanism of Samza to
recover a full time-window of data and process it with Esper. Samza only
provides checkpoints based on system time.

4.3.4 Precise Recovery

The batch layer has to be able to recover from node or processing failures on different
levels in order to guarantee precise results. The recovery of a failed Samza job is handled
by the offset commit management and its replay mechanism described in Section 4.3.3.
But possible failures may also involve the YARN resource manager or Kafka brokers.
Both systems are further analyzed with regard to node failures and their impact on the
batch layer.

Two different scenarios are considered in case a YARN node fails during processing:
(i) a Samza task is destroyed and (ii) the application manager is stopped. The first
case results in a message to the application manager that in turn starts a new Samza
task. Due to the offset committing and checkpointing mechanisms of Samza the task
can resume from the last known state. In the latter case YARN starts a new application
manager for Samza. The new application manager destroys all running tasks from the
old application manager and starts corresponding new tasks.

Samza stores the offset commits and the checkpointing data into separate Kafka top-
ics. Although Kafka allows topic replication to guarantee a certain degree of fault redun-
dancy, the live data and the replication might be lost at a certain level of node failures.
Potential risks are illustrated by the following three examples. Lets first consider a
scenario where the offset topic is available, but the data of the state management was
lost because the live broker and the replication broker failed. This will cause a corrupt
state and therefore local state that needs to be kept over multiple micro-batches is lost.

29

30 CHAPTER 4. ARCHITECTURE

Lets then consider an example where one or multiple partitions of the topic that a job
is consuming from is not recoverable due to broker failures. In this case unconsumed
messages are lost and Samza will continue processing the new incoming data from the
new leader. A special scenario is the loss of all offset commits. If in the same time the
corresponding Samza task fails, then Samza will restart the task and due to the lack of
offset commits it will start again either from the beginning of the corresponding topic
or from the top of the partitions. This option is configurable for each Samza job.

4.4 Speed Layer

The main goal of the speed layer is to deliver results in real-time and therefore optimize
the latency and throughput to process incoming data. In comparison to the batch layer,
the speed layer does not guarantee the same high availability and fault tolerance as
the batch layer. In case of node or processing failures the speed layer drops messages
to rapidly process the new incoming data instead of replaying all messages to the last
processed state. This design leads to inaccurate results in case of node failure, but these
results are eventually replaced by the results of the batch layer.

The detailed design of the speed layer is described as follows. First, the implementation
design of the speed layer is discussed. Second, the impact of node failures and its
implication of data loss is analyzed. Third, the scalability of the speed layer is addressed.

4.4.1 Implementation Design

The in-memory queue of the coordination layer is the data source of the speed layer.
Messages are transferred using the protocol described in Section 4.2.3. The consumed
messages are then sent into a Storm topology. Figure 4.16 illustrates the main compo-
nents of the speed layer. A spout called ‘NettySpout‘ communicates with the coordina-
tion layer to fetch messages from the in-memory queue. These messages are then sent to
the bolts for processing. The persistent distributed caching system is deployed in order
to keep a global state which is not bound to the runtime of one bolt.

The NettySpout is the entry point of data into the system. It communicates with
the coordinator using the Netty framework [Project Netty]. Storm requires a Spout
to be non-blocking and in case no data is available nothing is emitted. Therefore the
NettySpout starts a new thread to communicate with the coordinator. This thread
implements the pull based protocol of the coordinator and keeps a buffer of 5,000 mes-
sages. This buffer is responsible for steadily providing the spout with new messages.
If the spout pulled data from the coordinator only when Storm periodically calls for a
new tuple the network latency would slow down processing. To detect failures in the
socket connection to the in-memory message queue of the coordinator a heartbeat is
implemented. The heartbeat checks periodically for connection failures and possibly
reestablishes a connection. In case of worker failure the buffer of the NettySpout is
lost and not recoverable, since the in-memory message queue of the coordination layer
discards messages after delivery.

30

4.4. SPEED LAYER 31

Data Flow

Speed Layer

Coordination
Layer NettySpout Processing Bolt Service Layer

Distributed
Persistent Cache

Figure 4.16: The speed layer consumes data from the coordination layer through the
NettySpout. The NettySput then forwards the messages to the processing
bolt. The processing bolt uses a distributed persistent cache to store tem-
porary data and it stores the results of the computation task in the service
layer. All components within the speed layer are highly scalable.

The grouping scheme that defines destination bolts is based on the partitioning of the
data. The built-in functionality ‘field grouping‘ (see Section 4.1.2) was first evaluated
as a possible grouping scheme. But field grouping only guarantees messages with the
same key to be transferred to the same bolt, but one bolt might receive messages with
different keys. In order to guarantee that one bolt is responsible for one partition of the
data a custom partitioning scheme was implemented. The custom partitioning scheme
provides compatibility with the unified partitioning method of this architecture described
in Section 5.3.5.

Storm can either operate a topology in a reliable fashion with acknowledgments or in
an unreliable way. Acknowledgments are activated, but do not provide any reliability
guarantees in this setup. The spout does not hold a list of pending messages to possibly
reemit in case of failure. Also the spout is not capable of replaying message from the
in-memory message queue. The acknowledgment mechanism provides the sole purpose
to control the message throughput of data. In case acknowledgments are completely
disabled in a Storm topology, the spout would emit messages until the memory is full,
with the possible consequence of a huge risk of data loss in case of failures.

Redis is used as a persistent caching system to store global or local state and is further
described in Section 4.1.4. Global state management might be used for two purposes:
(i) to keep local state in a more reliable destination than memory and (ii) to share state
across multiple processing units. The second purpose may need further consideration
to guarantee ACID transactions and is not further analyzed in this thesis, because the
evaluated use cases do not manage global state.

31

32 CHAPTER 4. ARCHITECTURE

4.4.2 Node Failures

In order to fully understand the impact of node failures it is important to analyze the
internal messaging service of Storm. The following configuration options control the
buffering of messages within a Storm topology [7]. The values for this architecture are
stated in brackets.

topology.max.spout.pending (30,000)
The maximum number of unprocessed tuples emitted by a spout. In case this value
is not set Storm will fill all emitted messages from the spout into memory.

topology.message.timeout.secs
The maximum time a message emitted by the spout has to be fully processed and
acknowledged before it is failed.

topology.transer.buffer.size (32)
The size of the transfer queue of one worker to buffer messages before sending to
another worker.

topology.receiver.buffer.size (8)
The maximum number of messages to receive from network and store as a batch
before sending to the executor.

topology.executor.receive.buffer.size (16,384)
The size of the executor queue to receive messages from the receiver of the worker.

topology.executor.send.buffer.size (16,384)
The size of the executor queue to send messages to the sender of the worker

Figure 4.17 highlights the messaging components of a worker. Each worker has a
single receiver thread that stores incoming tuples in a list. The tuple is then send to
the ring buffer of the bolt or spout. After processing the message the bolt or spout can
emit a tuple to its corresponding sender thread. The sender thread stores the message
in a ring buffer and the transfer thread consumes it and stores the data into a list. The
buffer of the transfer thread is then flushed within a certain time span or when the
buffer reaches a certain queue size. The speed layer of this architecture does not replay
messages in case of failure. Therefore any message stored in these buffers is lost in case
of failure. To reduce the impact of a node failure these buffers should be kept small, but
these buffers also control the throughput and latency. A desirable property to increase
the throughput of the system is to only send messages in batches over network, but the
longer a message resides in a buffer the higher is its latency. On the other hand does a
buffer size of 1 not reduce the latency, because the system will spend more time waiting
for available slots in the buffers. Fine-tuning these properties is dependent on the use
case of the application. The above described values are optimized for the data sets used
to test this architecture.

32

4.5. ORCHESTRATION 33

Data Flow

Worker Process

Executor

Receiver Thread

Buffer

Bolt / Spout

Buffer

Sender

Buffer

Transfer Thread

Buffer

Figure 4.17: The storm worker process manages multiple queues at different levels. One
worker has a single receiver thread that keeps an internal (list) buffer of
received tuples. The spouts or bolts managed by this worker receive data
through their ring buffer. The sender buffer of the executor keeps the outgo-
ing data in a ring buffer and forwards it to the transfer thread. The transfer
thread keeps a list of tuples and flushes it periodically to the network.

4.4.3 Scalability

Storm provides its own resource management system consisting of one master node
called nimbus and one or more worker nodes called supervisors. Nimbus is responsible
for controlling a topology and the worker nodes that execute spouts and bolts. In general
a topology may start as many spouts and bolt as possible regarding the given resources
of the cluster. Two factors of this architecture constrain the number of parallelism
of spouts and bolts: (i) the number of pipelines in the coordination layer and their
in-memory queues determine the maximum number of spouts and (ii) the maximum
number of bolts are constrained by the number of partitions of the dataset. For example
one pipeline would constrain the maximum number of spouts to one, but if the data
consumed from the pipeline is divided into 10 partitions the processing bolts could scale
up to 10 processes. Figure 4.18 shows a possible setup of pipelines, spouts and bolts.
This example setup could cause a possible performance bottleneck in the coordination
layer.

4.5 Orchestration

The lambda architecture embeds highly distributed services on each layer with the dis-
advantage of difficult synchronization and resource management challenges. In order to
mitigate these challenges an orchestration layer is introduced. This layer leverages the
Apache Hadoop YARN framework and the built-in Storm service for resource allocation
and Apache ZooKeeper and Kafka for coordination.

33

34 CHAPTER 4. ARCHITECTURE

Data Flow

Pipeline 1

Input
Source

Coordination Layer

Pipeline 2

Input
Source

Input
Source

Input
Source

NettySpout 1

Speed Layer

NettySpout 2

Bolt 1

Bolt 2

Bolt 3

Bolt 4

Figure 4.18: The scalability of the speed layer is partially defined by the coordination
layer. One spout of the speed layer can consume data from one pipeline of
the coordination layer. The spout can then further partition the data and
emit it to multiple bolts.

First, the challenges of the orchestration and coordination with regard to resource
management and cluster health are discussed. Second, the details of node failure simu-
lations are explained.

4.5.1 Resource Management and Cluster Health

Each machine within a compute cluster serves a certain purpose which is defined by
the services running on the node and the available hardware resources. YARN and
Storm’s nimbus service use two different strategies for the resource utilization. The
first distributes processes according to the resource request of the client. Currently the
amount of memory and cpu cores are supported. The latter distributes all tasks in an
even or almost even way on the available resources. Both resource managers employ a
heartbeat mechanism to detect unresponsive nodes. A node failure may not be detected
unless the heartbeat fails. Therefore the detection of node failures is delayed by at least
the minimum heartbeat frequency.

Apache Kafka is the persistent messaging system of the batch layer. Kafka follows
a master-less cluster setup and supports for replication and fault tolerance. However,
it does not provide a solution to the CAP theorem. The CAP theorem highlights the
trade-off between being correct and being always available in distributed systems [14].
Gilbert and Lynch [32] proved the CAP theorem to be unsolvable. As a consequence it
is impossible to implement a read-write storage in an asynchronous network that would
always guarantee availability, consistency and partition tolerance. One of the design
goals of Kafka is to allow n-1 node failures, where n is the total amount of nodes in
a cluster setup [37]. Each partition is managed by one leader and may have multiple

34

4.5. ORCHESTRATION 35

replication brokers. If n-1 nodes fail, the remaining node becomes the partition leader.
At this point Kafka trades availability against consistency and allows clients to read
and write to the managed topic, even though replication hosts are not available. But
in case the last remaining node fails before any replication node becomes available, the
messages received during the failure are lost. When a replication node recovers it will
resume operations from its last known state. This scenario not only depends on the
number of brokers in the cluster, but also the replication factor defined for each topic.
In case the replication factor r is not set to n-1, where n is the number of nodes in the
cluster, the failure of r+1 nodes may already result in data loss.

4.5.2 Node Failure Simulation

The goal of the node failure simulation is to gather information on the behavior of services
and the impact on the outcome of a computational task e.g. decrease in precision, recall
and throughput. A node failure is defined as the stop of each service of this architecture
on the selected machine. To simulate a machine failure the SIGKILL signal is sent to
each running process and its sub processes. The SIGKILL signal does not allow the
process to perform clean-up actions and therefore produces similar results to a complete
machine failure with regard to the running process [42].

Node failure simulation not only involves the shutdown of processes and services but
a node may also restart services. Two different scenarios are possible for the restart of
a machine and its services: (i) a machine may experience unrecoverable hardware issues
resulting in the complete loss of data or (ii) a node may fail on the operating system
level and its state is recoverable after a hard boot.

The node failure simulation component embeds a coin flipping mechanism to determine
which machine to fail at what time. The following arguments are considered:

Probability
The probability of a node failure that occurs within the given interval. Each
interval a pseudo-random number between 0 and 1 is generated using the Mersenne
Twister [45] pseudo-random number generator. In case the pseudo-random number
is below the given probability a node failure will be initiated.

Interval
The interval of possible node failures in seconds. This represents a floating value,
where each interval may be enlarged or reduced in a pseudo-random fashion in
order decrease the regularity of a node failure possibly leading to more diverse
insights.

Concurrent Number of Nodes
The maximum number of concurrent node failures that will occur in the same
interval.

Re-alive Timeout
The time to wait until the services on the failed nodes are restarted.

35

36 CHAPTER 4. ARCHITECTURE

4.6 Service Layer

The service layer provides a set of tools to support near real-time process monitoring,
localized performance measurements and result collection. The service layer does not
compare to the serving layer of the lambda architecture as defined by Marz [44]. Marz
[44] defines the serving layer by its ability to access the results of the batch layer com-
putations with low latency. The serving layer would index views of the batch layer and
provide the necessary interfaces to access the precomputed data with low latency queries.

This thesis does not analyze the possible solutions for the serving layer and merge
layer. It focuses on the effects of the batch and speed layer. The service layer provides
a toolset to further analyze and understand these effects. The description of this layer
is structured as follows: First, the corresponding infrastructure in terms of services and
dependencies is discussed. Second, the process monitoring component and its visual
output is explained.

4.6.1 Logging Infrastructure

Figure 4.19 illustrates the log collection and aggregation architecture and its dependen-
cies to external processes. A process uses the Log4j2 framework to emit log messages
regarding performance and operations.2 Log4j2 will start an asynchronous process to
emit them to the flume appender.3 The flume appender opens a socket connection to the
flume agent. The internal pipeline of flume receives messages from a flume source, sends
them to a channel and finally the flume sink will redirect the messages to the configured
output. At each step arbitrary log transformation are possible. After transformation
the flume sink sends the data to the elasticsearch database.4 Elasticsearch indexes the
received log messages on every accessible field and provides a real-time view to the user
in form of the Kibana web interface.5

4.6.2 Process Monitoring

The logging infrastructure described in Section 4.6.1 enables a user to gain insights into
the running processes in near real-time in form of a web service. Due to the different
steps of log collection, transformation and aggregation a delay of approximately 10s is
anticipated. While the architecture allows for a very diverse set of analysis based on
the data ingested into the log collection and aggregation framework, the following two
points are focused to monitor the architecture: (i) show the progress of the computation
in terms of messages processed on each level of the architecture (see figure 4.22) and (ii)
show the throughput over time for each component of the architecture (see figure 4.20
and 4.21).

2http://logging.apache.org/log4j/2.x/
3http://flume.apache.org/
4http://www.elasticsearch.org/
5http://www.elasticsearch.org/overview/kibana/

36

4.6. SERVICE LAYER 37

Process 1

Client
Logic

Log4j2
Async
Logger

Log4j2
Flume

Appender

Flume Source

Flume Channel Flume Sink

Flume Agent Elasticsearch

Flume Agent

Flume Agent

Process 2

Client
Logic

Log4j2
Async
Logger

Log4j2
Flume

Appender

Client
Logic

Log4j2
Async
Logger

Log4j2
Flume

Appender

Process 3

Log Collection and Aggregation

Kibana

user

Data Flow

System

Figure 4.19: Log collection and aggregation: The client logic can send log messages
through the Log4j2 interface to an asynchronous logger. This logger trans-
fers the received messages to Flume. Flume opens multiple agents to receive
log messages and after internally processing sends these messages to elas-
ticsearch. Elasticsearch is fully indexed and can be accessed from the web
interface Kibana.

Figure 4.20: Batch layer monitoring: The graphs show histograms of the average time it
takes to process messages at different components of the architecture. From
top left to bottom right: (i) input reader (ii) time synchronizer (iii) Kafka
producer and (iv) Samza job

37

38 CHAPTER 4. ARCHITECTURE

Figure 4.21: Speed layer monitoring: The graphs show histograms of the average time
it takes to process messages at different components of the architecture.
From top left to bottom right: (i) input reader (ii) time synchronizer (iii)
NettySpout and (iv) Bolt.

Figure 4.22: Progress monitor: Shows the total number of events processes by the com-
ponents of this architecture.

38

5

Design of Experiments

The design of the experiments and the setup of the experiments is described as follows:
First, the infrastructure where the experiments are conducted is introduced. Second, the
deployment of the services and components is described and the automatic deployment
scripts are briefly explained. Third, the dataset and corresponding queries to test the
architecture are highlighted. Fourth, the node failure scenarios of the experiments is
explained.

5.1 Infrastructure

The experiments were run on a 8 nodes cluster provided by the Dynamic and Distributed
Information Systems Group at the Department of Informatics of the University of Zurich.
Table 5.1 highlights the hardware information of the nodes in the cluster.

Memory 128 GB

CPU 40 CPUs, 2 threads per core, 10 cores per socket, 64-bit, 1200.000 Mhz

Ethernet 1 Gbit

Table 5.1: Shows the resource information for each node of the cluster the experiments
were run on.

5.1.1 Automatic Deployment

The cluster used to run the experiments is controlled by the SLURM [59] resource
management system. SLURM allows to specify the amount of resources needed for a
task and handles the task provisioning of multiple tasks depending on the available
resources. The automatic deployment is started as a SLURM job with parameters for
the following options: dataset, speed or batch layer, number of nodes, query to analyze
the data, speed of the coordination layer, node failure probability, node failure interval,
node failure re-alive timeout and number of concurrent node failures.

The automatic deployment is responsible for starting all services of the architecture,
starting the experiment and collecting the results. The cluster layout is defined in a

40 CHAPTER 5. DESIGN OF EXPERIMENTS

JSON based configuration file. The starting procedure includes the following four steps.
First, the master daemons of the orchestration layer are started e.g. Storm nimbus,
YARN resource manager, ZooKeeper. Second, the worker nodes are connected to the
master daemons e.g. Storm supervisor, YARN node manager, Kafka broker. Third, the
batch or speed layer is started and prepared to receive data. The distribution of tasks
to worker nodes is managed through the corresponding mechanism in YARN or Storm.
Fourth, the coordination layer is started on each node and the flow of the input data is
delayed until the node failure simulation is started. After a successful experiment the
results are stored for further analysis as a database dump.

5.2 Experimental Setup

Figure 5.1 highlights the cluster setup for the experiments. The master node provides
all master daemons of the batch and speed layer. The worker nodes are responsible
for processing and therefore hold all worker daemons and processing layers. The batch
and speed layer are not processes by themselves, but represent components managed
by the respective orchestration services. The coordination layer is a standalone process
and started through the automatic deployment script as described in 5.1.1. Kafka is
configured with a replication factor of three for each partition. A higher replication
factor leads to more network traffic within the cluster, but would increase fault-tolerance.

5.3 Data Sets and Queries

In order to gain insights of the designed architecture and generate key performance
indicators such as throughput, precision and recall two distinct data sets and their
respective queries were implemented complementary to this architecture. The DEBS
Grand Challenge 2014 data set [3] and the SRBench data set [62] were used to generate
key performance indicators. For each data set two distinct queries were selected to
measure the systems behavior. The results of the SRBench queries are either true or
false without further granularity. The queries selected for the DEBS data set produce
floating point values and enable further discussion of their difference to the baseline.

5.3.1 SRBench Data Set

The SRBench benchmark is a general-purpose data set primarily designed for streaming
applications such as RDF/SPARQL engines. It is based on real-world data from the
Linked Open Data Cloud [62]. The data set contains a subset of the US weather data
collected since 2002 by MesoWest7. This includes sensor measure phenomena such as
temperature, visibility, precipitation, pressure, wind speed and humidity during time
periods that several major storms were active including Hurricane Katrina, Bill, Bertha,
Ike, Wilma etc. Due to time and resource constraints only the Bertha data set from the
SRBench benchmark is used for the experiments. The data set was chosen randomly.

40

5.3. DATA SETS AND QUERIES 41

Master Node

ZooKeeper

Storm Nimbus

YARN Resourcemanager

HDFS Namenode

Log Collection

MongoDB

Redis

Worker

YARN Nodemanager

Storm Supervisor

Kafka Broker

MongoDB

Redis

Worker

YARN Nodemanager

Storm Supervisor

Kafka Broker

MongoDB

Redis

Worker

YARN Nodemanager

Storm Supervisor

Kafka Broker

MongoDB

Redis

Batch Layer

Coordination Layer

Speed Layer

Batch Layer

Coordination Layer

Speed Layer

Batch Layer

Coordination Layer

Speed Layer

Coordination Layer

Figure 5.1: Shows the setup of this architecture on the master and worker nodes.

Furthermore, only queries 1 and 7 were run during the experiments. Both queries pro-
duce boolean results. The decision to choose this type of results is explained in Section
5.3 The corresponding key performance indicators produce results that are either true
or false in nature.

5.3.2 DEBS Grand Challenge 2014 Data Set

The DEBS Grand Challenge 2014 data set originates from smart plug recordings of
private households. A smart plug is equipped with a range of sensors in order to measure
power consumption related values. Every smart plug deployed for this challenge collected
data roughly every second for each sensor in each smart plug. The data set is collected
in an uncontrolled environment and therefore possibly includes malformed or missing
measurements. The resulting data set contains over 4 Billion measurements in 2,125
plugs distributed across 40 houses. The measurements cover a one-month period starting
from the 1st of September 2013. The first query of the DEBS Grand Challenge includes
the prediction of the load for each house within a given time window. This query was
implemented according to the baseline prediction given in the query task [3]. A second
query ”average load” measures the average load in batch windows of 15 minutes. The
first query uses global storage, while the second query only operates on the flowing data.

41

42 CHAPTER 5. DESIGN OF EXPERIMENTS

5.3.3 Data Set Statistics

Table 5.2 highlights the key statistics for both data sets. The SRBench data set is further
categorized by the name of the observed storm.

Data set Event Count Avg. Size Max. Min. Variance Std. Deviation

Debs 4,055,508,721 110.473 B 120 B 88 B 23.176 4.814

SRBench Bertha 21,254,512 170.593 B 200 B 152 B 133.449 11.552

Table 5.2: Data set statistics for DEBS Grand Challenge 2014 and SRBench: number of
events, avg. event size, max. event size, min. event size, variance event size,
std. deviation event size.

5.3.4 Baseline

A baseline was calculated for each query on each data set. The baseline was computed
by running the query on the batch layer five consecutive times with the same results.
In addition the baseline was verified by comparing the results with the outcome of the
speed layer.

The baseline includes the results of the query and the start and end time of the
corresponding time window. A particular result is comparable to the exact time window
it originates from.

5.3.5 Partitioning

The partitioning of a data set is depending on the computational task to solve. The
queries implemented for the SRBench data set compute results based on events of the
stations. Every SRBench sub data set includes many hundreds of stations. The queries
implemented for the DEBS data set compute aggregates and predictions either based on
the house or the plug. A hash bucket algorithm (consistent hashing) was applied in order
to define one unified method to partition the data of both data sets. Two constraints
apply to this method: (i) the partitions may differ in size and (ii) adding new partitions
at runtime will cause reshuffling of certain buckets. The number of partitions for the
experiments was set to 8. Section 8.3 explains the source of this decision and the resulting
limitations regarding the evaluation of the experiments.

5.4 Node Failure Simulation

Node failures may occur in different flavors. Two different node failure scenarios were
considered for the two data sets: (i) the scenario of an unstable networking, where node
failures occur frequently and the network may become available again within seconds
and (ii) an elastic setup where node failures may occur frequently and a monitoring
component detects failed nodes and fires up a new node within minutes. The DEBS

42

5.4. NODE FAILURE SIMULATION 43

Grand Challenge 2014 data set is bigger in size and number of events than the SRBench
data set and therefore better suited for the latter use case. Due to the small size of the
SRBench data set only frequent and short node failures are possible to simulate.

A node failure includes the shutdown of the following processes with the method
described in Section 4.5.2: (i) YARN node manager (ii) Storm supervisor and (iii) Kafka
broker.

43

6

Results

This chapter presents the results of the experiments and an in-depth discussion of the
results follows in Chapter 7.

The experiments were conducted by running two distinct queries on each data set
with and without node failure simulation. The node failure simulation is capable of
simulating multiple concurrent node failures, but in order to adequately measure the
impact of node failures only one node at the time was simulated. The failing node
was chosen at random as described in Section 4.5.2. Multiple nodes were not available
throughout the experiment, but no experiment enforced concurrent node failures higher
then 1. However, concurrent node failures caused by system failures were possible and
occurred throughout the experiments.

All results concerning throughput measures were stripped at the beginning and end
by 10 seconds in order to remove the effects of the initial bootstrap and the shutdown
mechanism.

First the relevant key performance indicators (KPIs) are introduced and the corre-
sponding technique or process used to obtain the data is described. Second, the KPIs of
the relatively small SRBench data set are highlighted. Third, the results of the DEBS
Grand Challenge data set are described.

6.1 Key Performance Indicators

The following list compiles the key performance indicators used to elaborate on the
outcome of the experiments:

Throughput
The throughput shows the number of events per second processed by the system
accumulated over all nodes. It is measured in the processing component of batch
or speed layer in steps of 1,000. A node failure may cause incorrect results by a
maximum of 1,000 events per failed node. The unit of the throughput is stated as
events/s and MB/s. The latter is calculated using the average size of one event
(see Section 5.3)

Precision
Precision refers to the fraction of accurate results within the returned result set.

46 CHAPTER 6. RESULTS

A result is only counted as precise if the result exactly matches the result from the
baseline (see Section 5.3.4).

Variance
The variance shows the average variance of the difference to the baseline within a
time frame of results measured in floating points.

Recall
Recall refers to the fraction of accurate results within the possible result set. The
experiments contain two different types of results: (i) a boolean type that is either
accurate or not or (ii) a floating point type whith an additional indication of the
variance of the results. The latter is highlighted in two flavors. First, the recall
of the accurate results is shown and second, the recall of the results below the
variance is stated with a corresponding indication.

Health
Health is measured by the fraction of responsive nodes over time in order to indicate
the health of the cluster within different time frames.

Time-to-precision
Time-to-precision measures the time span it takes to replace an inaccurate result
of the speed layer with the precise result of the batch layer.

Each experiment stores the result of the query. Based on the result the precision,
recall and variance are measured. The health of the cluster is calculated using log files
for each node that provide the current state of the node at time x. The throughput is
measured based on a performance log message send every 1,000 processing steps. Section
4.6.1 shows the process used to collect and aggregate these performance measurements.

6.2 SRBench Data Set

The SRBench Bertha data set was tested using two queries: (i) get the rainfall observed
once an hour and (ii) detect broken stations. Multiple experiments were conducted for
each query. Experiments with node failures were conducted using a throttling mechanism
in the system time synchronizer of the coordination layer (see Section 4.2), because the
node failure simulation implies interval limitations higher than the processing time of
the full data set without throttling.

6.2.1 Rainfall Observed once an Hour

This query tests the engines ability to filter and aggregate events. First, a performance
run of experiments without throttling and node failures is highlighted. Second, experi-
ments with throttling are shown. Third, experiments with throttling and node failures
are described.

46

6.2. SRBENCH DATA SET 47

Performance Run

This experiment measures the systems behavior with the maximum throughput possible
and no node failures. Table 6.1 highlights the overall statistics of this experiment for
the batch and speed layer. Both layers show the maximum precision and recall possible,
while the speed layer finishes the experiment 5.313 times faster than the batch layer.

Layer Time Throughput (events/s) Precision Recall Health

Batch 170.103 s
avg: 117,000 (19.035 MB/s)
max: 220,000 (35.792 MB/s)
min: 17,000 (2.766 MB/s)

1.0 1.0 1.0

Speed 32.012 s
avg: 521,000 (84.762 MB/s)
max: 684,000 (111.280 MB/s)
min: 380,000 (61.822 MB/s)

1.0 1.0 1.0

Table 6.1: Overall statistics of the query ”rainfall observed once an hour” run on the
batch and speed layer without node failure simulation using the SRBench
Bertha data set.

Figure 6.1 highlights the results of the batch layer (a, b) and the speed layer (c, d)
without node failures and throttling. It shows that the throughput of the batch layer
fluctuated dramatically between 10,000 and 210,000 events/s in the first 30 seconds
of the experiment and stabilized around 120,000 events/s. In the last 20 seconds the
throughput declined steadily until the end of the experiment. The throughput of the
speed layer slightly fluttered in the first 23 seconds of the experiment and then fluctuated
dramatically for the last 20 seconds.

Both layers were not subject to any node failures and the precision and recall remained
stable at 1.0. No failures in the results were measured.

Throughput Throttling

This experiment shows the behavior of the batch and speed layer with a throttled data
input speed. Table 6.2 shows the overall statistics of this experiment. Both layers process
events at the same throughput rate of 41,000 events/s on average. No events were lost
during the experiment and therefore the precision and recall of both the batch and speed
layer are 1.0.

47

48 CHAPTER 6. RESULTS

Layer Time Throughput (events/s) Precision Recall Health

Batch 498.470 s
avg: 41,000 (6.670 MB/s)
max: 55,000 (8.947 MB/s)
min: 24000 (3.905 MB/s)

1.0 1.0 1.0

Speed 498.392 s
avg: 41,000 (6.670 MB/s)
max: 56,000 (9.110 MB/s)
min: 33,000 (5.369 MB/s)

1.0 1.0 1.0

Table 6.2: Overall statistics of the query ”rainfall observed once an hour” run on the
batch and speed layer with input speed throttling applied to the SRBench
Bertha data set.

Figure 6.2 highlights the results of the batch layer (a, b) and the speed layer (c, d)
with a throttled input speed. The throughput of the speed and the batch layer gradually
fluctuate between 35,000 and 50,000 events/s. Both layers show similar patterns in the
fluctuation of the throughput. Therefore the speed of the input throttle defines the same
latency for both layers.

Node Failure

This experiment highlights the results of the batch and speed layer with node failures
and input speed throttling (see Section 4.2). The node failure simulation was configured
with an interval of 45 seconds and a re-alive time of 15 seconds. The probability of a
node failure was set to 1 in order to guarantee at least one node failure every interval.

Table 6.3 shows the overall statistic of this experiment. In total both layers show
the same cluster health throughout the experiment. The batch layer finished 1.6 times
faster than the speed layer. The throughput of the batch layer is 1,000 events/s slower
than without node failures. The precision of the batch layer is 1.0 with a recall of
1.284. Therefore all retrieved results are precise, but the result set includes more results
generated than in the baseline e.g. duplicates. The speed layer shows a slow processing
speed of 17,000 events/s that is 2.4 times slower than without node failures. In addition
the precision dropped to 0.987 with an even smaller recall of 0.798.

48

6.2. SRBENCH DATA SET 49

Layer Time Throughput (events/s) Precision Recall Health

Batch 658.817 s
avg: 40,000 (6.508 MB/s)
max: 304,000 (49.457 MB/s)
min: 0

1.0 1.284 0.963

Speed 1,040.746 s
avg: 17,000 (2.766 MB/s)
max: 549,000 (89.316 MB/s)
min: 0

0.987 0.798 0.963

Table 6.3: Overall statistics of the query ”rainfall observed once an hour” run on the
batch and speed layer with a throttled input stream and one node failure
every 45 second interval for 15 seconds applied to the SRBench Bertha data
set.

Figure 6.3 highlights the results of the batch layer (a, b) and the speed layer (c, d)
with node failures. The throughput histogram of the speed layer shows a very irregular
behavior in figure 6.3c. Processing stops at the same time as a node failure occurs and
resumes within a period of no node failures. During the short time the speed layer
processes data, the throughput exceeds the throughput of the experiment without node
failures and throttling. The input speed is throttled with regard to the system time as
described in Section 4.2. Therefore the processing may catch-up with the coordinator and
process at the highest throughput possible. A node failure always affects the throughput
of the computation, but the throughput does not increase every time a node recovers
from its failure. It is possible that multiple periods with a health of 1.0 may pass before
the speed layer continues processing.

The precision of the speed layer slightly zigzagged throughout the experiment with
sudden drops at the beginning of every node failure. The first two node failures had
the biggest impact on the recall. The first node failure caused a steep decrease and the
recall bottomed out at 0.12. The node failure between the 60th and 100th time window
had a lower impact on the recall and a slower throughput.

Node failures in the batch layer cause sudden drops in throughput followed by a steep
increase. The throughput peak is 300,000 events/s and is followed by a relatively long
period of no throughput. This demonstrates the catching-up effect of the batch layer
after a time of low throughput. Figure 6.3a shows two slightly bigger drops in health
in periods with node failures. This is the surprising result of unplanned system failures
during the experiment.

The precision of the recall remains stable at 1.0 during the whole experiment. Figure
6.3b shows different effects caused by node failures. The first two node failures caused
rapid fluctuation in the throughput, but did not affect the precision. The third node
failure leads to a considerable increase of throughput and recall. The increase of recall to
the peak of over 1.6 indicates the appearance of duplicate results. This effect is further
described in Section 7.1.3.

49

5
0

C
H

A
P

T
E

R
6.

R
E

S
U

L
T

S

0 20 40 60 80 100 120 140 160 180
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

h
e
a
lt

h

health

0

50,000

100,000

150,000

200,000

250,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(a) Batch Layer Throughput

0 20 40 60 80 100 120 140 160
time window

0.94

0.96

0.98

1.00

1.02

1.04

1.06

p
re

ci
si

o
n
,
re

ca
ll,

 h
e
a
lt

h

precision
recall
health

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(b) Batch Layer Precision, Recall, Health

0 5 10 15 20 25 30 35
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

h
e
a
lt

h

health

350,000

400,000

450,000

500,000

550,000

600,000

650,000

700,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(c) Speed Layer Throughput

0 20 40 60 80 100 120 140 160
time window

0.94

0.96

0.98

1.00

1.02

1.04

1.06

p
re

ci
si

o
n
,
re

ca
ll,

 h
e
a
lt

h

precision
recall
health

100,000

200,000

300,000

400,000

500,000

600,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(d) Speed Layer Precision, Recall, Health

Figure 6.1: Results of the query ”rainfall observed once an hour” applied to the data set SRBench Bertha without node
failures. Figure (a) and (c) show the throughput/health histogram. Figure (b) and (d) highlight precision, recall,
health and throughput for each time window.

50

6.2.
S

R
B

E
N

C
H

D
A

T
A

S
E

T
51

0 100 200 300 400 500
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

h
e
a
lt

h

health

20,000

25,000

30,000

35,000

40,000

45,000

50,000

55,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(a) Batch Layer Throughput

0 20 40 60 80 100 120 140 160
time window

0.94

0.96

0.98

1.00

1.02

1.04

1.06

p
re

ci
si

o
n
,
re

ca
ll,

 h
e
a
lt

h

precision
recall
health

15,000

20,000

25,000

30,000

35,000

40,000

45,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(b) Batch Layer Precision, Recall, Health

0 100 200 300 400 500
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

h
e
a
lt

h

health

30,000

35,000

40,000

45,000

50,000

55,000

60,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(c) Speed Layer Throughput

0 20 40 60 80 100 120 140 160
time window

0.94

0.96

0.98

1.00

1.02

1.04

1.06

p
re

ci
si

o
n
,
re

ca
ll,

 h
e
a
lt

h

precision
recall
health

35,000

40,000

45,000

50,000

55,000

60,000

65,000

70,000

75,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(d) Speed Layer Precision, Recall, Health

Figure 6.2: Results of the query ”rainfall observed once an hour” applied to the data set SRBench Bertha with a throttled
event input speed. Figure (a) and (c) show the throughput/health histogram. Figure (b) and (d) highlight
precision, recall, health and throughput for each time window.

51

5
2

C
H

A
P

T
E

R
6.

R
E

S
U

L
T

S

0 100 200 300 400 500 600 700
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

h
e
a
lt

h

health

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(a) Batch Layer Throughput

0 20 40 60 80 100 120 140 160
time window

0.8

1.0

1.2

1.4

1.6

p
re

ci
si

o
n
,
re

ca
ll,

 h
e
a
lt

h

precision
recall
health

0

50,000

100,000

150,000

200,000

250,000

300,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(b) Batch Layer Precision, Recall, Health

0 200 400 600 800 1000 1200
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

h
e
a
lt

h

health

0

100,000

200,000

300,000

400,000

500,000

600,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(c) Speed Layer Throughput

0 20 40 60 80 100 120 140
time window

0.0

0.2

0.4

0.6

0.8

1.0

p
re

ci
si

o
n
,
re

ca
ll,

 h
e
a
lt

h

precision
recall
health

0

100,000

200,000

300,000

400,000

500,000

600,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(d) Speed Layer Precision, Recall, Health

Figure 6.3: Results of the query ”rainfall observed once an hour” applied to the data set SRBench Bertha with a throttled
event input speed and node failures. Figure (a) and (c) show the throughput/health histogram. Figure (b) and
(d) highlight precision, recall, health and throughput for each time window.

52

6.2. SRBENCH DATA SET 53

6.2.2 Broken Station Detection

This query tests the engines capability to detect missing data points. A station is defined
as broken when it suddenly stops producing data. Information about the stability of
stations is an important factor that can be inferred from the absent of data.

This query shows results similar to the query ”rainfall observed once an hour”. There-
fore only the performance run and the node failure scenario is further described.

Performance Run

This experiment measures the results with the maximum possible input speed for the
batch and speed layer. Table 6.4 highlights the overall key performance indicators of this
experiment. In comparison with the query ”rainfall observed once an hour” the speed
layer is 1.4 times slower with the same data set. This indicates an increase of complexity
to solve the task. The batch layer shows similar results in both queries. Figure 6.4 shows
the key performance indicators of the performance run.

Layer Time Throughput (events/s) Precision Recall Health

Batch 174.057 s
avg: 115,000 (18.70 MB/s)
max: 141,000 (22.939 MB/s)
min: 14,000 (2.277 MB/s)

1.0 1.0 1.0

Speed 53.505 s
avg: 355,000 (57.76 MB/s)
max: 429,000 (69.794 MB/s)
min: 189,000 (30.748 MB/s)

1.0 1.0 1.0

Table 6.4: Overall statistics of the query ”broken station detection” run on the batch and
speed layer without node failure simulation applied to the SRBench Bertha
data set.

Node Failure

The node failure was tested using a throttled input source. Figure 6.5 highlights the key
performance indicators of a throttled throughput applied to this query. In comparison
with the query ”rainfall observed once an hour” the throughput of the batch layer is
almost twice as fast and the recall over the result set is over 2. Consequently the
batch layer processed the amount of the data set twice during this experiment, while all
generated results are precise. The substantial increase of recall and throughput started
after the second node failure (see figure 6.6a). The first node failure did not cause an
increase of recall, but a slight rise of throughput. This is further analyzed in Section
7.1.3.

53

54 CHAPTER 6. RESULTS

Layer Time Throughput (events/s) Precision Recall Health

Batch 527.049 s
avg: 81,000 (13.17 MB/s)
max: 347,000 (56.453 MB/s)
min: 0

1.0 2.178 0.963

Speed 611.320 s
avg: 26,000 (4.23 MB/s)
max: 442,000 (71.909 MB/s)
min: 0

0.999 0.970 0.965

Table 6.5: Overall statistics of the query ”broken station detection” run on the batch
and speed layer with a throttled input stream and one node failure every 45
second interval for 15 seconds applied to the SRBench Bertha data set.

54

6.2.
S

R
B

E
N

C
H

D
A

T
A

S
E

T
55

0 20 40 60 80 100 120 140 160 180
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

h
e
a
lt

h

health

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(a) Batch Layer Throughput

0 20 40 60 80 100 120 140 160
time window

0.94

0.96

0.98

1.00

1.02

1.04

1.06

p
re

ci
si

o
n
,
re

ca
ll,

 h
e
a
lt

h

precision
recall
health

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(b) Batch Layer Precision, Recall, Health

0 10 20 30 40 50 60
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

h
e
a
lt

h

health

150,000

200,000

250,000

300,000

350,000

400,000

450,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(c) Speed Layer Throughput

0 20 40 60 80 100 120 140 160
time window

0.94

0.96

0.98

1.00

1.02

1.04

1.06

p
re

ci
si

o
n
,
re

ca
ll,

 h
e
a
lt

h

precision
recall
health

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(d) Speed Layer Precision, Recall, Health

Figure 6.4: Results of the query ”broken station detection” applied to the data set SRBench Bertha without node failures.
Figure (a) and (c) show the throughput/health histogram. Figure (b) and (d) highlight precision, recall, health
and throughput for each time window.

55

5
6

C
H

A
P

T
E

R
6.

R
E

S
U

L
T

S

0 100 200 300 400 500
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

h
e
a
lt

h

health

30,000

35,000

40,000

45,000

50,000

55,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(a) Batch Layer Throughput

0 20 40 60 80 100 120 140 160
time window

0.94

0.96

0.98

1.00

1.02

1.04

1.06

p
re

ci
si

o
n
,
re

ca
ll,

 h
e
a
lt

h

precision
recall
health

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(b) Batch Layer Precision, Recall, Health

0 100 200 300 400 500
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

h
e
a
lt

h

health

30,000

40,000

50,000

60,000

70,000

80,000

90,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(c) Speed Layer Throughput

0 20 40 60 80 100 120 140 160
time window

0.94

0.96

0.98

1.00

1.02

1.04

1.06

p
re

ci
si

o
n
,
re

ca
ll,

 h
e
a
lt

h

precision
recall
health

20,000

40,000

60,000

80,000

100,000

120,000

140,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(d) Speed Layer Precision, Recall, Health

Figure 6.5: Results of the query ”broken station detection” applied to the data set SRBench Bertha with a throttled event
input speed. Figure (a) and (c) show the throughput/health histogram. Figure (b) and (d) highlight precision,
recall, health and throughput for each time window.

56

6.2.
S

R
B

E
N

C
H

D
A

T
A

S
E

T
57

0 100 200 300 400 500 600
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

h
e
a
lt

h

health

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(a) Batch Layer Throughput

0 20 40 60 80 100 120 140 160
time window

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

p
re

ci
si

o
n
,
re

ca
ll,

 h
e
a
lt

h

precision
recall
health

0

50,000

100,000

150,000

200,000

250,000

300,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(b) Batch Layer Precision, Recall, Health

0 100 200 300 400 500 600 700
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

h
e
a
lt

h

health

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(c) Speed Layer Throughput

0 20 40 60 80 100 120 140
time window

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p
re

ci
si

o
n
,
re

ca
ll,

 h
e
a
lt

h

precision
recall
health

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(d) Speed Layer Precision, Recall, Health

Figure 6.6: Results of the query ”broken station detection” applied to the data set SRBench Bertha with a throttled event
input speed and node failures. Figure (a) and (c) show the throughput/health histogram. Figure (b) and (d)
highlight precision, recall, health and throughput for each time window.

57

58 CHAPTER 6. RESULTS

6.3 DEBS Grand Challenge 2014 Data Set

Two queries were tested on the DEBS Grand Challenge 2014 data set: (i) load prediction
and (ii) average load. The first query uses global storage in order to generate load
predictions based on temporarily stored data. The latter query aggregates the load over
a time window of 15 minutes.

6.3.1 Load Prediction

This query tests the ability of this architecture to aggregate events within time windows
and provide predictions of future load. These predictions rely on temporary data. The
speed layer stores such temporary data in a high performance key-value store described
in Section 4.1.4 and the batch layer uses its internal local storage described in Section
4.1.2.

Two different setups were used for the experiment: (i) a performance run shows the
key performance indicators of this query with the maximum input speed and no node
failures and (ii) the node failure run shows the systems behavior when simulating node
failures every hour for 5 minutes according to the mechanism explained in Section 4.5.2.

Performance Run

This experiment measures the maximum throughput possible with no node failure sim-
ulation. Table 6.6 shows the overall statistics of the batch and speed layer. On average
the speed layer processed more than three times as much events per second as the batch
layer while both layers produced fully accurate results. Also the recall is 1.0 for both
layers. Both layers processed all events and the corresponding results were all precise.

Layer Time Throughput (events/s) Precision Recall Health

Batch 46,901.208 s
avg: 86,000 (9.061 MB/s)
max: 223,000 (23.494 MB/s)
min: 0

1.0 1.0 1.0

Speed 14,534.837 s
avg: 278,000 (29.289 MB/s)
max: 505,000 (53.204 MB/s)
min: 26,000 (2.739 MB/s)

1.0 1.0 1.0

Table 6.6: Overall statistics of the query ”load prediction” run on the batch and speed
layer without node failure simulation using the DEBS data set.

Figure 6.7 illustrates the performance run. The throughput histogram of the batch
and speed layer show a considerable decrease in throughput step by step during the
experiment. Each decrease corresponds to the end of one partition. This is further
analyzed in Chapter 7. The peak of the speed layer throughput is at 505,000 events/s
compared to the peak of the batch layer at 223,000 events/s. The speed layer shows
four sequential decreases in throughput starting after 10,000 seconds and reaches its

58

6.3. DEBS GRAND CHALLENGE 2014 DATA SET 59

lowest point after 12,000 seconds. The batch layer shows a similar throughput curve
after 30,000 seconds with three sequential drops.

Node Failure

The node failure simulation shows the results of the batch and speed layer with one node
failure every hour and a recovery time of 5 minutes. This experiment tests the engines
ability to recover from node failures and shows its influence on the accuracy of the
results. Table 6.7 shows the overall results of this experiment. The average throughput
of the speed layer is similar to the performance run above. However the throughput
of the batch layer is higher than in the performance run. In addition the batch layer
shows a recall of more than 1.0 and a precision of 1.0. Consequently the batch layer
produced more results than the baseline and all results were precise. Figure 6.8a shows
a considerable increase of throughput after certain node failures. Other node failures
cause slight fluctuations. This is further analyzed in Section 7.1.3. Figure 6.8b shows a
sharp increase of recall and throughput after 250 and 2,300 time windows that match
the occurrence of the first node failure. The figure shows a decrease of health only in
the first 10 time windows and then remains stable around 0.998. Therefore almost all
time windows were calculated while at least one node was not available. This effect
occurred due to the partitioning mechanism that does not split the data set into equal
sized buckets as described in Section 5.3.5.

The speed layer finished the experiment 3.4 times faster than the batch layer, but
the precision dropped to 0.411 with a recall of 0.41. Figure 6.7d shows the similarity of
the precision and recall curve. The curves are aligned except for a few fluctuations in
the precision. This experiment tested the engines ability to predict the load of a house.
Therefore it is important to analyze the variance in addition to the precision and recall.
Figure 6.9 shows the average variance as defined in Section 6.1 for each time window
and the recall includes results with a lower difference than the average variance within
the time window. The variance shows only slight fluctuations between 0.0 and 0.05 with
two exceptions. Therefore results were not accurate, but an average variance of 0.0169
highlights a small difference to the baseline.

59

60 CHAPTER 6. RESULTS

Layer Time Throughput (events/s) Precision Recall Variance Health

Batch 51,350.092 s

avg: 117,000
. (12.327 MB/s)
max: 323,000
. (34.029 MB/s)
min: 8,000
. (0.842 MB/s)

1.0 1.619 0.0 0.998

Speed 14,728.679 s

avg: 275.000
. (28.973 MB/s)
max: 527,000
. (55.522 MB/s)
min: 0

0.411 0.41 0.0169 0.998

Table 6.7: Overall statistics of the query ”load prediction” run on the batch and speed
layer without node failure simulation using the DEBS data set.

60

6.3.
D

E
B

S
G

R
A

N
D

C
H

A
L

L
E

N
G

E
2
014

D
A

T
A

S
E

T
61

0 10,000 20,000 30,000 40,000 50,000
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

h
e
a
lt

h

health

0

50,000

100,000

150,000

200,000

250,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(a) Batch Layer Throughput

0 500 1,000 1,500 2,000 2,500 3,000
time window

0.94

0.96

0.98

1.00

1.02

1.04

1.06

p
re

ci
si

o
n
,
re

ca
ll,

 h
e
a
lt

h

precision
recall
health

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(b) Batch Layer Precision, Recall, Health

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

h
e
a
lt

h

health

0

100,000

200,000

300,000

400,000

500,000

600,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(c) Speed Layer Throughput

0 500 1,000 1,500 2,000 2,500 3,000
time window

0.94

0.96

0.98

1.00

1.02

1.04

1.06

p
re

ci
si

o
n
,
re

ca
ll,

 h
e
a
lt

h

precision
recall
health

250,000

300,000

350,000

400,000

450,000

500,000

550,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(d) Speed Layer Precision, Recall, Health

Figure 6.7: Results of the query ”load prediction” applied to the data set DEBS without node failures. Figure (a) and (c)
show the throughput/health histogram. Figure (b) and (d) highlight precision, recall, health and throughput for
each time window.

61

6
2

C
H

A
P

T
E

R
6.

R
E

S
U

L
T

S

0 10,000 20,000 30,000 40,000 50,000 60,000
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

h
e
a
lt

h

health

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(a) Batch Layer Throughput

0 500 1,000 1,500 2,000 2,500 3,000
time window

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

p
re

ci
si

o
n
,
re

ca
ll,

 h
e
a
lt

h

precision
recall
health

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

220,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(b) Batch Layer Precision, Recall, Health

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

h
e
a
lt

h

health

0

100,000

200,000

300,000

400,000

500,000

600,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(c) Speed Layer Throughput

0 500 1,000 1,500 2,000 2,500 3,000
time window

0.0

0.2

0.4

0.6

0.8

1.0

p
re

ci
si

o
n
,
re

ca
ll,

 h
e
a
lt

h

precision
recall
health

200,000

250,000

300,000

350,000

400,000

450,000

500,000

550,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(d) Speed Layer Precision, Recall, Health

Figure 6.8: Results of the query ”load prediction” applied to the data set DEBS with node failures. Figure a and c show
the throughput/health histogram. Figure b and c highlight precision, recall, health and throughput for each time
window.

62

6.3.
D

E
B

S
G

R
A

N
D

C
H

A
L

L
E

N
G

E
2
014

D
A

T
A

S
E

T
63

0 500 1,000 1,500 2,000 2,500 3,000
time window

0.0

0.2

0.4

0.6

0.8

1.0

p
re

ci
si

o
n
,
re

ca
ll,

 h
e
a
lt

h

precision
recall
health

0

2,000

4,000

6,000

8,000

10,000

v
a
ri

a
n
ce

variance

Figure 6.9: KPI of the query ”load prediction” applied to the DEBS data set with node failures. In contrast to figure 6.8d this
graph shows the variance and the recall excludes only values higher than the average variance of a time window
from the result set.

63

64 CHAPTER 6. RESULTS

6.3.2 Average Load

This query tests the engines ability to aggregate events within a time window of 15
minutes. In comparison with the query ”load prediction” described in Section 6.3.1
this query does not rely on global state to calculate results; failures in results caused
by stored data are not possible. In addition this query does not involve lookups to a
key-value store for each time window.

First, the performance run experiment is presented which computes the results at the
maximum possible throughput of this architecture. Second, the results of this query with
node failures are described. The focus of this section lies in highlighting the difference
between the results of query ”load prediction” and ”average load”.

Performance Run

Table 6.8 highlights the overall statistics of this experiment. The performance run shows
results of the batch layer similar to the results of the query ”load prediction”. The speed
layer is slightly faster compared with the query ”load prediction” and shows a higher
average throughput. Figure 6.10 illustrates the KPIs of this experiment. The same
decline in throughput is observable as highlighted in figure 6.7. Precision and recall is
1.0 for both the batch and speed layer. Although this query did not include a lookup of
temporarily stored values the results are similar to the query ”load prediction”.

Layer Time Throughput (events/s) Precision Recall Health

Batch 47,618.753 s
avg: 85,000 (8.955 MB/s)
max: 185,000 (19.490 MB/s)
min: 4,000 (0.421 MB/s)

1.0 1.0 1.0

Speed 13,455.517 s
avg: 301,000 (31.712 MB/s)
max: 518,000 (54.574 MB/s)
min: 45,000 (4.741 MB/s)

1.0 1.0 1.0

Table 6.8: Overall statistics of the query ”average load” run on the batch and speed layer
without node failure simulation using the DEBS data set.

Node Failure

The node failure simulation highlighted in table 6.9 and figure 6.11 show similar results
to the query ”load prediction”. Contrary to the ”load prediction” query this query did
not include temporarily stored data and therefore failures in results are not populated
over multiple windows. However the precision and recall of the speed layer have only
marginally improved. The variance curve in figure 6.12 fluctuates only slightly between
0.0 and 0.01 as compared to figure 6.9.

64

6.3. DEBS GRAND CHALLENGE 2014 DATA SET 65

Layer Time
Throughput
(events/s)

Precision Recall Variance Health

Batch 47,371.585 s

avg: 114,000
. (12.600 MB/s)
max: 291,000
. (30.658 MB/s)
min: 30,000
. (3.161 MB/s)

1.0 1.625 0.0 0.998

Speed 13,615.096 s

avg: 297,000
. (31.290 MB/s)
max: 521,000
. (54.890 MB/s)
min: 0

0.419 0.418 0.0161 0.998

Table 6.9: Overall statistics of the query ”average load” run on the batch and speed layer
with node failure simulation using the DEBS data set.

65

6
6

C
H

A
P

T
E

R
6.

R
E

S
U

L
T

S

0 10,000 20,000 30,000 40,000 50,000
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

h
e
a
lt

h

health

0

50,000

100,000

150,000

200,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(a) Batch Layer Throughput

0 500 1,000 1,500 2,000 2,500 3,000
time window

0.94

0.96

0.98

1.00

1.02

1.04

1.06

p
re

ci
si

o
n
,
re

ca
ll,

 h
e
a
lt

h

precision
recall
health

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(b) Batch Layer Precision, Recall, Health

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

h
e
a
lt

h

health

0

100,000

200,000

300,000

400,000

500,000

600,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(c) Speed Layer Throughput

0 500 1,000 1,500 2,000 2,500 3,000
time window

0.94

0.96

0.98

1.00

1.02

1.04

1.06

p
re

ci
si

o
n
,
re

ca
ll,

 h
e
a
lt

h

precision
recall
health

250,000

300,000

350,000

400,000

450,000

500,000

550,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(d) Speed Layer Precision, Recall, Health

Figure 6.10: Results of the query ”average load” applied to the data set DEBS without node failures. Figure (a) and (c) show
the throughput/health histogram. Figure (b) and (d) highlight precision, recall, health and throughput for each
time window.

66

6.3.
D

E
B

S
G

R
A

N
D

C
H

A
L

L
E

N
G

E
2
014

D
A

T
A

S
E

T
67

0 10,000 20,000 30,000 40,000 50,000
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

h
e
a
lt

h

health

0

50,000

100,000

150,000

200,000

250,000

300,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(a) Batch Layer Throughput

0 500 1,000 1,500 2,000 2,500 3,000
time window

0.5

1.0

1.5

2.0

2.5

3.0

p
re

ci
si

o
n
,
re

ca
ll,

 h
e
a
lt

h

precision
recall
health

100,000

110,000

120,000

130,000

140,000

150,000

160,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(b) Batch Layer Precision, Recall, Health

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

h
e
a
lt

h

health

0

100,000

200,000

300,000

400,000

500,000

600,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(c) Speed Layer Throughput

0 500 1,000 1,500 2,000 2,500 3,000
time window

0.0

0.2

0.4

0.6

0.8

1.0

p
re

ci
si

o
n
,
re

ca
ll,

 h
e
a
lt

h

precision
recall
health

250,000

300,000

350,000

400,000

450,000

500,000

550,000

th
ro

u
g
h
p
u
t

(e
v
e
n
ts

/s
)

throughput

(d) Speed Layer Precision, Recall, Health

Figure 6.11: Results of the query ”average load” applied to the data set DEBS with node failures. Figure (a) and (c) show
the throughput/health histogram. Figure (b) and (d) highlight precision, recall, health and throughput for each
time window.

67

6
8

C
H

A
P

T
E

R
6.

R
E

S
U

L
T

S

0 500 1,000 1,500 2,000 2,500 3,000
time window

0.0

0.2

0.4

0.6

0.8

1.0

p
re

ci
si

o
n
,
re

ca
ll,

 h
e
a
lt

h

precision
recall
health

0

10,000

20,000

30,000

40,000

50,000

60,000

v
a
ri

a
n
ce

variance

Figure 6.12: KPI of the query ”load prediction” applied to the DEBS data set with node failures. In contrast to figure 6.11d
this graph shows the variance and the recall excludes only values higher than the average variance of a time
window from the result set.

68

6.3. DEBS GRAND CHALLENGE 2014 DATA SET 69

6.3.3 Eventual Accuracy

The lambda architecture provides eventual accuracy guarantees. An inaccurate result of
the speed layer will eventually be replaced by the correct result of the batch layer. The
two queries tested with node failure simulation described above are great examples to
analyze this mechanism. Figure 6.13 shows the time it takes the batch layer to replace
the possibly inaccurate results of the speed layer (time-to-precision) for both queries.
Time-to-precision includes all results and makes no distinction between inaccurate and
accurate. The batch layer will eventually replace all results, because there is no exact
way to know which ones are inaccurate before the batch layer starts computing.

The skewed partitions of the DEBS data set do not have an impact on the eventual
accuracy, because the speed layer and the batch layer operate on the same data set
and therefore the same preconditions are imposed to both layers. The steady decrease
in performance described in Section 6.3.1 is reflected in both layers and the time-to-
precision is measured in relative terms.

The time-to-precision linearly increases with the response-time of the speed layer. The
impact of node failures is clearly observable in both queries. The time-to-precision curve
increases slightly faster in scenarios with node failures as highlighted with the linear
regression analysis in figure 6.13.

The result is further described with the query ”load prediction”. More than 4 Billion
events were processed within 4.09 hours. The produced results include 59.9% inaccurate
results that show an average variance of 0.0169 and in total only a very small fraction
of the results was missing (recall is 0.001 smaller than precision). It took an additional
10.17 hours to replace all the inaccurate results with the accurate results of the batch
layer and include the results that were not computed by the speed layer.

69

7
0

C
H

A
P

T
E

R
6.

R
E

S
U

L
T

S

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000
response-time speed layer (s)

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

ti
m

e
-t

o
-p

re
ci

si
o
n
 (

s)

y=2.3231x

R2 =0.9963

eventual accuracy

(a) Query ”load prediction” Performance Run

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000
response-time speed layer (s)

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

ti
m

e
-t

o
-p

re
ci

si
o
n
 (

s)

y=2.6461x

R2 =0.9969

eventual accuracy

(b) Query ”load prediction” Node Failure

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000
response-time speed layer (s)

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

ti
m

e
-t

o
-p

re
ci

si
o
n
 (

s)

y=2.5459x

R2 =0.9991

eventual accuracy

(c) Query ”average load” Performance Run

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000
response-time speed layer (s)

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

ti
m

e
-t

o
-p

re
ci

si
o
n
 (

s)

y=2.5490x

R2 =0.9917

eventual accuracy

(d) Query ”average load” Node Failure

Figure 6.13: Highlights the eventual accuracy promise of the lambda architecture measured on the DEBS data set. The x-axis
measures the response-time of the speed layer to produce results. The y-axis shows the time-to-precision e.g. the
time it takes the batch layer to overwrite the possibly inaccurate results of the speed layer.

70

7

Discussion

The discussion interprets the results of the experiments and compares the concepts of the
designed architecture to the proposed lambda architecture of Marz [44]. The speed layer
computes results with high throughput, but these are inaccurate when node failures are
introduced into the system. The batch layer on the other hand provides accurate results
that are not diminished by node failures. The results described in chapter 6 prove that
the combination of these capabilities is efficient and demonstrates the trade-off imposed
by the guarantee of eventual accuracy.

7.1 Batch Layer

The results described in Chapter 6 prove the reliability of the batch layer in processing
different tasks and data sets. Throughout all experiments the precision and recall of
the results of the batch layer did not drop below 1.0. However introducing node failures
into the system caused an increase of recall higher than 1.0. The following discussion
highlights three key aspects. First, the message delivery guarantee of the batch layer
is described and its impact on the recall is analyzed. Second, the micro-batch process-
ing mechanism is analyzed and its shortcomings are compared to the recomputation
approach. Third, the reaction to node failure and its recovery method is discussed.

7.1.1 Message Delivery Guarantee

The batch layer relies on the stream processing system Samza and its deeply integrated
messaging queue Kafka. Both Kafka and Samza only provide at least once message
delivery guarantee. As a consequence duplicate events may be sent to the computing
task. The results described in Chapter 6 show a sudden increase of recall after node
failures, but not every of them caused an increase of recall. This indicates two different
effects of Samza: (i) the application master suffers a timeout or (ii) computing tasks
are destroyed. The latter case will result in a restart of the corresponding tasks and the
recovery to the last committed checkpoint. This causes duplicate results in case the node
fails after the result is stored and before the checkpoint is committed. Samza does not
provide a recovery mechanism for this scenario. Tanenbaum and Van Steen [54, chap.
8.5] propose a three-phase commit mechanism to solve such problems.

72 CHAPTER 7. DISCUSSION

YARN will restart the application master of Samza in case it is destroyed due to node
failures, but YARN only recognizes such a failure after a certain timeout. Therefore each
task that is still alive will continue to produce results. When the application master is
restarted it will stop all running tasks and submit new processing tasks. This goes
back to the problem described above where a task is killed before it commits the latest
checkpoint. In addition Samza will not use the latest committed checkpoint for each
partition to restart a task, but roll back further to make sure no data is lost during a
node failure.

A three-phase commit mechanism can reduce the probability of duplicate results.
However, Samza’s recovery strategy of the application master will always cause duplicate
results and therefore a duplicate result check is required. A distributed storage with
eventual consistency, such as the configuration of MongoDB during the experiments,
does not provide a safe environment to prevent storing duplicate entries.

7.1.2 Micro Batch Processing

This architecture uses micro batch processing in contrast to the proposal of Marz [44]
to use a one-time batch process to compute the results of the batch layer. The latency
to receive the result based on a certain event may decreases by using a micro-batch
processing in comparison with a one-time batch process. Although all results produced
by the batch layer are accurate new problems arise such as duplicate results. The method
to be selected for the batch layer strongly relies on the constraints of the computational
task. If the batch layer relies on data with stream imperfections, such as delayed data,
the micro batch processing method not only has to provide a recovery mechanism in
case of failure, but also has to roll back in order to recalculate results based on delayed
data. Stream imperfections are limitations of this architecture and further described in
Section 8.4.

The experiments showed that the micro batch processing method delivers accurate re-
sults for the applied queries, but the recomputation approach would improve the systems
capability to handle duplicate results and delayed messages.

7.1.3 Node Failure Recovery

YARN manages the discovery and recovery of node failures. A node failure is detected
when no heartbeat is received during a configurable timeout. In case of failure YARN
negotiates new resources with the application master or if the application master failed
YARN restarts the application master. YARN sets such timeouts by default in the
magnitude of minutes and timeouts below 5 minutes cause cluster instability. A system
with low latency constraints has to enforce short timeouts in order to detect node failures.
The batch layer of this architecture does not imply such a constraint and therefore the
timeouts are not optimized.

Every node failure leads to a considerable decrease in throughput (see figure 6.8a,
6.11a, 6.3a and 6.6a). A node failure not only stops the computing tasks running on the
failing node, but also stops the Kafka broker. The impact of node failures to a Kafka

72

7.2. SPEED LAYER 73

cluster is explained in Section 4.5.1. In case a Kafka broker fails the Kafka cluster needs
time to possibly reelect new leaders for partitions or decide to skip a replication broker
until it gets available again. This not only impacts the tasks failed due to node failure,
but also influences the tasks running on healthy nodes. As described in Section 5.2
Kafka was started on 7 nodes and configured with a replication factor of 3. Therefore
one node failure impacts at least two other nodes and leads to a short timeout of over
40 % of the Kafka cluster. All tasks are stopped and restarted if the failing node was
running the application master of Samza.

After a node failure and a corresponding drop in throughput the batch layer may catch
up with the produced data and the throughput increases dramatically. Figure 6.8a shows
node failures followed by an increase of throughput and node failures without any impact
on throughput. In case a message consumer is destroyed, but the producer can still send
messages at the same speed, the consumer lags behind and may catch-up after a restart.

7.2 Speed Layer

The speed layer is optimized for real-time computing and does not impose any message
delivery guarantees. In particular messages lost during node failures or other unexpected
behavior are not recoverable. The results of the experiments show a considerable higher
throughput in the speed layer than in the batch layer. The batch layer relies on persistent
messaging and failure recovery while the speed layer discards messages during failures
and is not subjected to the overhead enforced by storing each message in a persistent
manner and managing recovery points. As a result the occurrence of node failures cause
a loss of accuracy in the results. The damage imposed by the loss of messages depends
strongly on the computational task. This section further analyses the quality of service
and node failure recovery.

7.2.1 Quality of Service

The maximum throughput of the speed layer over all experiments is 684,000 events/s
as illustrated in figure 6.1c and even with this amount of throughput the speed layer
produced accurate results. However the throughput of the speed layer is not constant
over all experiments e.g. the query ”rainfall observed once an hour” shows an average
throughput of 521,000 events/s, while the query ”broken station detection” only reaches
an average of 355,000 events/s during the performance runs. The possible throughput
strongly correlates with the complexity of the computational task. In order to apply QoS
constraints on the speed layer the impact of the computational task has to be deeply
considered. Also, unexpected failures in the computation nodes may lead to different
outcomes regarding the precision and recall of the result. The comparison of these KPIs
from the DEBS data set with the SRBench data set shows that the latter experiments
were less influenced by failures with regard to precision and recall. The precision curve
in figure 6.3d fluctuates between 0.82 and 1.0, while a node failure during the query
”load prediction” applied to the DEBS data set initiates a steady decrease of precision.

73

74 CHAPTER 7. DISCUSSION

The query ”rainfall observed once an hour” generates a boolean result that is either
true or false, while the ”load prediction” query generates a floating point result. The
latter was further analyzed with the variance of the difference to the correct result as
illustrated in figure 6.9. The average variance of the results is 0.0169 and indicates only
very small impreciseness over all time windows. In case the computational task allows for
higher latency the speed layer could be enhanced to provide a certain degree of recovery
guarantees.

The current implementation of the speed layer does limit the QoS constraints to
the maximum throughput possible with no message delivery guarantee. However, this
architecture can be extended to allow fine-grained QoS constraints. To leverage the real-
time computing aspect of the speed layer it is possible to empower the speed layer to only
process events within certain latency constraint and withdraw any event that exceeds
this latency. There are two options for such a behavior: (i) the in-memory queue of
the coordinator can be extended to accept a retention policy for messages similar to the
zeromq implementation or (ii) the spout embeds a mechanism to only forward messages
within an adequate retention policy.1 Such an implementation strongly depends on
the QoS constraint of the computational use case and therefore needs further analysis
regarding its impact on the precision of the results.

The precision and recall of the query ”load prediction” tested under node failures show
a consistent decline (see figure 6.8c). Marz [44] proposal of the lambda architecture
includes a serving layer, which integrates the results from the batch and speed layer.
The serving layer provides a way to access results from the batch layer with low latency.
The serving layer was not implemented in this architecture, but could lead to better
results regarding the query ”load prediction”. This query takes data from the past three
days into account to generate the prediction of the load. Hence the results of both layers
could be accessed in order to generate more precise results. This was not implemented
in the experiments, since they were run in an offline processing fashion with the highest
throughput possible and not according to the actual timestamp of the data. When
dealing with real-time data the introduction of an additional serving layer that allows
for fast access to the results of the batch layer may produce better results. This can be
realized when the batch layer can keep up the pace with the necessary computational
requirements.

Section 6.3.3 shows the effect of eventual accuracy. The inaccurate results from the
speed layer are eventually replaced by the precise results of the batch layer. Throughout
the experiments the time-to-precision increased steadily. A possible hypothesis is that
the time-to-precision increases in the beginning and at a certain point evens out to reflect
the performance difference between the batch and speed layer. However, the time-to-
precision does not even out, but rather linearly increases with the response-time of the
speed layer. The experiments with node failure simulation show a slightly faster increase
in time-to-precision due to the recovery mechanism of the batch layer that first rewinds
back to the last checkpoint and then continues processing.

1http://zeromq.org/

74

7.3. DATA PARTITIONING 75

7.2.2 Node Failure Recovery

Node failure simulations were run in two different flavors as described in Section 5.4.
Experiments run with the SRBench data set show a fast drop in throughput and only
limited capabilities to recover from node failures. Figure 6.6c further illustrates this
behavior and also shows that the speed layer was not able to recover from node failure
for more than 100 seconds. The nimbus service of Storm is responsible for detecting
node failures and possibly starting the task on another machine. It uses a different
implementation than corresponding component of the batch layer. The running topology
freezes after a node failure and within a time range of 10 to 30 seconds the tasks of a
topology are reshuffled to different nodes. Storm not only reshuffles the tasks of the
failed machine, but takes all tasks into account. The same behavior can be observed
when the node becomes available again, which explains the throughput histogram 6.6c
and 6.3c. The speed layer shows a higher processing time than the batch layer in table
6.3 and 6.5 due to the topology freeze after a change in the cluster.

The node failure experiments applied to the DEBS data set show different results than
the SRBench data set. The experiments were run with a higher node failure interval and
therefore the topology freeze did not impact the throughput as severely. But the node
failure causes noticeable lower precision and recall as described in Section 7.2.1.

7.3 Data Partitioning

The data partitioning using a hash bucket algorithm as described in Section 5.3.5 causes
skewed partitions in the DEBS data set. The throughput histograms in Section 6.3.1 and
6.3.2 show a sequential decrease of throughput during the experiment, due to skewed
partitions. The partitioning key of the DEBS data set was defined according to the
query to solve. The partitioning method divided the data set into 8 partitions marked
by the house number ranging from 0 to 40. The SRBench data set shows a better result
regarding the partitioning method. The data set was divided into 8 partitions marked
by the station name. Each data set holds the data of hundreds of different stations.

75

8

Limitations

This chapter describes the limitations of this architecture based on the concepts de-
scribed in Chapter 4 and the results presented in Chapter 6. Each identified limitation
is discussed in the following sections. First, the limitation is identified and its impor-
tance is highlighted. Second, the nature of the limitation is further analyzed and the
choices that caused the limitation are justified. Third, a suggestion to overcome each
limitation is provided.

8.1 Single Point of Failure

The architecture has a single point of failure in the speed layer and batch layer. In both
cases the master node of the orchestration service is concerned, but they show different
reactions to a node failure. The batch layer relies on the YARN resource manager
(see section 4.1.1) and the corresponding master service called resource manager. The
community recently introduced high availability features for the resource manager, but
due to the tight integration within the architecture an update of was not possible during
the time frame this thesis.1 A failure of the node that runs the resource manager would
provoke the complete shutdown of all computing tasks of the batch layer. The speed layer
relies on Storms internal orchestration service called nimbus. Nimbus does currently not
provide high availability features, but it follows a different approach compared with the
YARN resource manager. In case the node running nimbus is unavailable all worker
nodes will resume processing and wait for the nimbus service to become active again.
However, during this time the computing tasks are not managed by the nimbus service
and in case of a second node failure the tasks will not get restarted. The community
currently works on a solution to overcome this limitation.2

Due to the lack of high availability features in YARN and Nimbus the master node of
the experiments was not concerned in node failure simulations. Hence, the ZooKeeper
service was not run in a high availability quorum although it offers these features. Run-
ning ZooKeeper in a high availability setup could further influence the performance
measurements.

1https://issues.apache.org/jira/browse/YARN-149
2https://issues.apache.org/jira/browse/STORM-166

78 CHAPTER 8. LIMITATIONS

8.2 Concurrent Node Failures

The experiments did not include concurrent node failure simulations. The batch layer
for example could produce inaccurate results in case of multiple node failures at the
same time. A theoretical discussion is provided for the batch layer in Section 4.3.4, for
the speed layer in Section 4.4.2 and for the coordination layer in Section 4.5.1. However,
this discussion is based on the promise of the underlying services and is not qualified
with experiments. The design of the node failure simulation discussed in Section 4.5.2
enables clients to specify the amount of concurrent node failures to simulate. Therefore
the architecture provides the capabilities to further investigate concurrent node failures,
but during the time frame of this thesis it was not possible to present such results.

8.3 Partitioning

The following assumptions were made regarding the partitioning of the data as described
in Section 5.3.5: (i) the highest number of parallelism throughout all experiments is 8
(ii) the number of partitions and therefore the number of parallelism can not be changed
during runtime and (iii) the data sets are always partitioned using a constant hashing
algorithm. The number of parallelism noticeably influences possible throughput in the
experiments. In particular the message queue of the batch layer shows a considerable
decrease of performance for each additional partition.3 Due to time restrictions and
resource limitations 8 was chosen as the maximum number of parallelism. However, the
design of the architecture is not bound to a certain number of parallelism.

The number of partitions cannot be changed during runtime, because the underlying
stream processing system Samza distributes tasks according to the partitioning scheme
during bootstrap. An increase of partitions during runtime is desired in order to scale
horizontally when the data volume increases. Currently the only solution to overcome
this problem is to restart the computation job. This will cause higher latency in the
batch layer, but since the batch layer always lags behind the speed layer this problem is
minor.

The data partitioning method does not guarantee equal distribution of data and there-
fore influences the scalability of the computational tasks as described in Section 7.3.
The algorithm to partition the data described in Section 5.3.5 enables clients to specify
a partitioning key and abstracts the partitioning logic throughout the components of
the architecture. The method was tested with the SRBench data set, but not with the
DEBS data set. There is no one-fits-all solution for the problem of data partitioning
and pre-studies are necessary to determine an appropriate method. Hence the partition-
ing component of this architecture should enable clients to provide their data specific

3A pre-study based on the SRBench Bertha data set concluded the following throughput to produce
messages with respect to the number of partitions: 1 Partition 50,000 events/s, 8 partitions 20,000
events/s and 20 partitions 1,000 events/s. Kafka has to keep a file handler open for each partition it
manages. If one Kafka broker manages multiple partitions, the corresponding 8 file handlers will be
always open and only allow sequential writes for certain batch sizes.

78

8.4. STREAM IMPERFECTIONS 79

implementation to use throughout all modules of this architecture.

8.4 Stream Imperfections

Conventional database systems allow queries to span over the full data set, but stream
oriented systems process data as it flows through the system. Events may arrive delayed
or out-of-sequence. The batch layer of this architecture computes results using an incre-
mental algorithm that processes new incoming data in a stream oriented fashion. The
batch layer as described in Section 7.1.2 currently discards delayed events. The data sets
used to run the experiments were sorted by time and did not include any delayed events,
but possible use cases for this architecture may include delayed data. Depending on the
computational task the delayed message may be processed without access to historical
data. For example the query ”rainfall observed once an hour” can include the delayed
message in its result set. The query ”load prediction” on the other hand has to access
the full time window of the delayed message in order to provide accurate predictions.
This involves a book keeping mechanism to roll back to the messages of the correspond-
ing time window. Alternatively, the serving layer may be used to store all relevant data
in order to provide predictions. For example a query that has to calculate an average
value over a 1 hour time window could store the sum and count of events and therefore
allows for updates in case of delayed messages. However, this solution has to be further
assessed with regard to the volume of storage necessary to produce results.

79

9

Future Work

This thesis provides an implementation design of the speed and batch layer for the
lambda architecture and shows its corresponding key performance indicators for a se-
lected set of use cases. Further research is necessary in order to qualify and quantify the
eventual accuracy guarantee of this architecture. A selected list of possible future work
is highlighted.

The experiments in Chapter 5 show the trade-off of the eventual accuracy guarantee
provided by this architecture. It is necessary to further investigate in this promise to
better understand its impact. A desirable outcome includes the time-to-precision for
different levels of accuracy. A possible hypothesis is that with higher accuracy in the
speed layer the time-to-precision would decrease due to the impact of fault-recovery on
the efficiency of the speed layer.

The batch layer is designed to use an incremental algorithm to process new data in
batches. Recent work shows the relation of batch sizes to performance and introduces
a mechanism to dynamically adjust the batch size according to the observed workload
[23]. The model is based on one producer and one consumer communicating through a
messaging queue with batch support. Its adjustment algorithm is based on fixed-point
iteration and overcomes the challenges of changing workload, noise and unpredictable
operational problems. The dynamic adjustment of the batch size proves to reduce latency
in their experimental design. However, it is necessary to further analyze the impact of
the batch size to the latency in a distributed environment with more processing steps and
multiple machines, because such a scenario involves more network activity and impacts
the latency considerably.

The batched message processing paradigm also requires further research of scalability.
As highlighted in Section 7.1.3 the batch layer rolls back to the latest recovery point in
case of failure and starts reprocessing. In case of failures in the application master, the
recovery point is set further back than the last checkpoint to ensure precise results. In
such a scenario it would be possible to continue processing from the last known check-
point and to leverage the scalability of the system by starting new tasks to recompute
the data further back than the latest checkpoint.

A theoretical discussion on the scalability of the coordination, batch and speed layer
is provided in Chapter 4, but it is yet unclear how the scalability will affect the through-
put and latency of the system by increasing or decreasing the following properties: (i)
number of machines (ii) number of partitions (iii) number of computational tasks (iv)

82 CHAPTER 9. FUTURE WORK

replication factor and (v) size of the message. For example small messages influences
the performance considerably, due to the operational overhead of the systems and the
replication factor increases the bandwidth used to coordinate between different machines.

The speed layer of this architecture processes messages with the maximum throughput
possible and delivers precise results if no node failures are involved. Certain use cases
and the respective volume of data further constrain the speed layer to guarantee results
within a certain maximum latency. Such a scenario involves further control mechanism in
the speed layer as discussed in Section 7.2.1. This architecture provides the possibilities
to simulate burst in data as described in Section 4.2.1 and controls the data flow of
the incoming messages. However, more control mechanisms are needed in order to set
fine-grained QoS constraints on messages and the corresponding computational result.
Lohrmann et al. [41] analyzed common design patterns of open source stream processing
systems with regard to the QoS goal latency. In particular the output buffers and
thread/process model influence the latency of the studied systems. They introduce a
model to trade throughput in favor of latency by introducing two new techniques: (i)
adaptive output buffer sizing and (ii) dynamic task chaining. It allows clients to specify
upper latency constraints for critical series of vertices and edges within the processing
graph. These constraints are supplied during the bootstrap of the task and do not adapt
to changes of the users needs. Storm for example does not allow the user to define a
maximum latency for a computational task and the user has to fine tune configuration
options that impose these requirements. Work is in progress to automatically adjust
configuration parameters in order to provide lower latency.1 The lambda architecture
imposes further constraints regarding the latency and messages may be dropped in favor
of fast response times. The real-time processing system should be able to react to
changing requirements and allow for more fine-grained control to optimize the trade-off
between latency and accuracy.

Latency is not only influenced by the output buffer size and the thread/process model,
but also by the network layout and the distribution of tasks. The proposed architecture
leverages different services and frameworks with loose coupling. The producer/consumer
pattern is used to synchronize these services, but improvements on the communication
channels between the services are necessary. For example location awareness is a desir-
able property for the distribution of tasks. For example a computing task of the batch
layer should be located physically close to the Kafka leader of the partition it consumes
from. Also communication within services is not optimized. For example a Storm topol-
ogy with multiple computing steps may distribute the tasks of one pipeline on different
machines leading to higher latency through network communication. Fischer et al. [29]
propose a graph-partitioning based method to minimize the total number of messages
sent over network within a Storm topology. To minimize the network layer of the lambda
architecture the task scheduling of the speed layer and the interfaces to other services
are equally important.

1https://issues.apache.org/jira/browse/STORM-31

82

10

Conclusions

The lambda architecture promises a new solution to cope with an ever increasing volume
of data and the need to make decisions based on real-time analytics. Current research in
this field centers around the idea to optimize the horizontal scalability and to lower the
latency of distributed systems in order to fulfill these needs. The lambda architecture
takes a different approach and introduces the idea of eventual accuracy. Only limited
research is available that discusses the impact of the conflict of goals imposed by this
promise and there is no reference implementation that forms the basis for further analy-
sis. The contribution of this thesis is to take a step forward and broaden the discussion
of the lambda architecture.

The designed architecture is based on open source stream-processing, orchestration
and provisioning software and the following implementation is provided for the two
computing layers of the lambda architecture. The batch layer follows an incremental
approach that first persistently stores incoming messages in a high availability message
queue. This queue provides replay capabilities to recover from unexpected behavior. The
computation tasks are bound to the partitioning scheme of the queue and both are highly
scalable. The speed layer consumes messages from an in-memory queue that does not
provide recovery mechanisms. In case of unexpected behavior such as machine failures
the speed layer drops messages and continues with the most recent data available.

The architecture includes components to coordinate, monitor and measure the com-
puting jobs. The coordination component provides the interface to send data into the
system. The orchestration component manages the resources and includes an automatic
deployment of the architecture. The analysis of the results and the monitoring of the
processes is managed in the service layer.

An evaluation of experiments including the SRBench and DEBS Grand Challenge
2014 data set measured the capabilities of the designed architecture and stressed its
behavior on an unreliable infrastructure. The results of the batch layer were throughout
all experiments completely accurate and replaced the inaccurate results from the speed
layer caused by node failure. The speed layer on the other hand generated results up to
five times faster than the batch layer.

The main limitations of the designed architecture are the incapability to handle stream
imperfections such as delayed messages and the partitioning of messages based on con-
sistent hashing does not guarantee equal distribution of data.

84 CHAPTER 10. CONCLUSIONS

The imposed QoS constraints of the designed architecture are currently not config-
urable. Future research is necessary to better understand the impact of timely but
inaccurate results and investigate the possibilities to dynamically adopt QoS constraints
based on the accuracy and latency level.

84

References

[1] Abadi, D. J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang,
J.-H., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., et al. (2005). The design of
the borealis stream processing engine. In CIDR, volume 5, pages 277–289.

[2] Abadi, D. J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stone-
braker, M., Tatbul, N., and Zdonik, S. (2003). Aurora: a new model and architecture
for data stream management. The VLDB Journal—The International Journal on
Very Large Data Bases, 12(2):120–139.

[3] ACM (2014). Debs grand challenge 2014. http:// www.cse.iitb.ac.in/ debs2014/
?page id=42 , Retrieved 2014-08-14.

[4] Akidau, T., Balikov, A., Bekiroğlu, K., Chernyak, S., Haberman, J., Lax, R.,
McVeety, S., Mills, D., Nordstrom, P., and Whittle, S. (2013). Millwheel: fault-
tolerant stream processing at internet scale. Proceedings of the VLDB Endowment,
6(11):1033–1044.

[5] Andrade, H., Gedik, B., and Turaga, D. (2014). Fundamentals of Stream Processing:
Application Design, Systems, and Analytics. Cambridge University Press.

[6] Apache Foundation. Apache kafka configuration table. http:// kafka.apache.org/ 08/
configuration.html , Retrieved 2014-08-14.

[7] Apache Foundation. Config class. https:// storm.incubator.apache.org/ apidocs/
backtype/ storm/ Config.html , Retrieved 2014-08-14.

[8] Apache Foundation. Performance results. http:// kafka.apache.org/ 07/ performance.
html , Retrieved 2014-08-14.

[9] Apache Foundation. Storm, distributed and fault-tolerant realtime computation.
https:// storm.incubator.apache.org , Retrieved 2014-08-14.

[10] Bernhardt, T. and Vasseur, A. (2007). Esper: Event stream processing and corre-
lation. ONJava, in http://www. onjava. com/lpt/a/6955, O’Reilly.

86 References

[11] Beyer, K. S., Ercegovac, V., Gemulla, R., Balmin, A., Eltabakh, M., Kanne, C.-
C., Ozcan, F., and Shekita, E. J. (2011). Jaql: A scripting language for large scale
semistructured data analysis. In Proceedings of VLDB Conference.

[12] Bockermann, C. and Blom, H. (2012a). The streams framework. Technical Report 5,
TU Dortmund University.

[13] Bockermann, C. and Blom, H. (2012b). The streams framework. Technical report,
Technical Report 5, TU Dortmund University, 12 2012.

[14] Brewer, E. A. (2000). Towards robust distributed systems. In PODC, page 7.

[15] Carlson, J. L. (2013). Redis in Action. Manning Publications Co.

[16] Cattell, R. (2011). Scalable sql and nosql data stores. SIGMOD Rec., 39(4):12–27.

[17] Chambers, C., Raniwala, A., Perry, F., Adams, S., Henry, R. R., Bradshaw, R., and
Weizenbaum, N. (2010). Flumejava: easy, efficient data-parallel pipelines. In ACM
Sigplan Notices, volume 45, pages 363–375. ACM.

[18] Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M. J., Hellerstein, J. M.,
Hong, W., Krishnamurthy, S., Madden, S. R., Reiss, F., and Shah, M. A. (2003). Tele-
graphcq: continuous dataflow processing. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, pages 668–668. ACM.

[19] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M.,
Chandra, T., Fikes, A., and Gruber, R. E. (2008). Bigtable: A distributed stor-
age system for structured data. ACM Transactions on Computer Systems (TOCS),
26(2):4.

[20] Chodorow, K. (2013). MongoDB: the definitive guide. ” O’Reilly Media, Inc.”.

[21] Condie, T., Conway, N., Alvaro, P., Hellerstein, J. M., Elmeleegy, K., and Sears, R.
(2010). Mapreduce online. In NSDI, volume 10, page 20.

[22] Cugola, G. and Margara, A. (2012). Processing flows of information: From data
stream to complex event processing. ACM Comput. Surv., 44(3):15:1–15:62.

[23] Das, T., Zhong, Y., Stoica, I., and Shenker, S. (2014). Adaptive stream processing
using dynamic batch sizing.

[24] Dean, J. and Ghemawat, S. (2003). Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113.

[25] Dean, J. and Ghemawat, S. (2011). leveldb–a fast and lightweight key/value
database library by google. https:// code.google.com/ p/ leveldb, Retrieved 2014-08-
14.

[26] EsperTech Inc. (2014). Esper - complex event processing. http:// esper.codehaus.
org , Retrieved 2014-08-14.

86

References 87

[27] Etzion, O. and Niblett, P. (2010). Event processing in action. Manning Publications
Co.

[28] Fan, W. and Bifet, A. (2013). Mining big data: current status, and forecast to the
future. ACM SIGKDD Explorations Newsletter, 14(2):1–5.

[29] Fischer, L., Scharrenbach, T., and Bernstein, A. (2013). Network-aware workload
scheduling for scalable linked data stream processing. In International Semantic Web
Conference (Posters & Demos), pages 281–284.

[30] George, L. (2011). HBase: the definitive guide. ” O’Reilly Media, Inc.”.

[31] Ghemawat, S., Gobioff, H., and Leung, S.-T. (2003). The google file system. In
ACM SIGOPS Operating Systems Review, volume 37, pages 29–43. ACM.

[32] Gilbert, S. and Lynch, N. (2002). Brewer’s conjecture and the feasibility of consis-
tent, available, partition-tolerant web services. ACM SIGACT News, 33(2):51–59.

[33] He, B., Yang, M., Guo, Z., Chen, R., Su, B., Lin, W., and Zhou, L. (2010). Comet:
batched stream processing for data intensive distributed computing. In Proceedings
of the 1st ACM symposium on Cloud computing, pages 63–74. ACM.

[34] Hunt, P., Konar, M., Junqueira, F. P., and Reed, B. (2010). Zookeeper: wait-free
coordination for internet-scale systems. In Proceedings of the 2010 USENIX conference
on USENIX annual technical conference, volume 8, pages 11–11.

[Hypertable Inc.] Hypertable Inc. Hypertable. http:// hypertable.com/ , Retrieved 2014-
08-14.

[Kreps] Kreps, J. Idempotent producer. https:// cwiki.apache.org/ confluence/ display/
KAFKA/ Idempotent+Producer , Retrieved 2014-08-14.

[37] Kreps, J., Narkhede, N., and Rao, J. (2011). Kafka: A distributed messaging system
for log processing. In Proceedings of the NetDB.

[38] Kwon, Y., Balazinska, M., and Greenberg, A. (2008). Fault-tolerant stream process-
ing using a distributed, replicated file system. Proceedings of the VLDB Endowment,
1(1):574–585.

[39] Lakshman, A. and Malik, P. (2010). Cassandra: a decentralized structured storage
system. ACM SIGOPS Operating Systems Review, 44(2):35–40.

[LMAX Trading] LMAX Trading. Disruptor library. https:// github.com/
LMAX-Exchange/ disruptor , Retrieved 2014-08-14.

[41] Lohrmann, B., Warneke, D., and Kao, O. (2014). Nephele streaming: stream pro-
cessing under qos constraints at scale. Cluster computing, 17(1):61–78.

[42] Love, R. (2013). Linux system programming: talking directly to the kernel and C
library. ” O’Reilly Media, Inc.”.

87

88 References

[43] Manning, J. (2004). Apache Storm. Signet.

[44] Marz, N. (2013). Big Data: Principles and best practices of scalable realtime data
systems. O’Reilly Media.

[45] Matsumoto, M. and Nishimura, T. (1998). Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions on
Modeling and Computer Simulation (TOMACS), 8(1):3–30.

[46] Murray, D. G., McSherry, F., Isaacs, R., Isard, M., Barham, P., and Abadi, M.
(2013). Naiad: a timely dataflow system. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages 439–455. ACM.

[47] Olston, C., Reed, B., Srivastava, U., Kumar, R., and Tomkins, A. (2008). Pig
latin: a not-so-foreign language for data processing. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pages 1099–1110. ACM.

[Project Netty] Project Netty. Netty project. http:// netty.io/ index.html , Retrieved
2014-08-14.

[49] Qian, Z., He, Y., Su, C., Wu, Z., Zhu, H., Zhang, T., Zhou, L., Yu, Y., and Zhang,
Z. (2013). Timestream: Reliable stream computation in the cloud. In Proceedings of
the 8th ACM European Conference on Computer Systems, pages 1–14. ACM.

[50] Robak, S., Franczyk, B., and Robak, M. (2013). Applying big data and linked
data concepts in supply chains management. In Computer Science and Information
Systems (FedCSIS), 2013 Federated Conference on, pages 1215–1221. IEEE.

[51] Shvachko, K., Kuang, H., Radia, S., and Chansler, R. (2010). The hadoop dis-
tributed file system. In Mass Storage Systems and Technologies (MSST), 2010 IEEE
26th Symposium on, pages 1–10. IEEE.

[52] Stephens, R. (1997). A survey of stream processing. Acta Informatica, 34(7):491–
541.

[53] Stonebraker, M., Çetintemel, U., and Zdonik, S. (2005). The 8 requirements of
real-time stream processing. ACM SIGMOD Record, 34(4):42–47.

[54] Tanenbaum, A. and Van Steen, M. (2007). Distributed systems. Pearson Prentice
Hall.

[55] Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H.,
Wyckoff, P., and Murthy, R. (2009). Hive: a warehousing solution over a map-reduce
framework. Proceedings of the VLDB Endowment, 2(2):1626–1629.

[56] Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans, R.,
Graves, T., Lowe, J., Shah, H., Seth, S., et al. (2013). Apache hadoop yarn: Yet
another resource negotiator. In Proceedings of the 4th annual Symposium on Cloud
Computing, page 5. ACM.

88

References 89

[57] Wanderman-Milne, S. and Li, N. (2014). Runtime code generation in cloudera
impala. IEEE Data Eng. Bull., 37(1):31–37.

[58] Ye, F., Wang, Z.-J., Zhou, F.-C., Wang, Y.-P., and Zhou, Y.-C. (2013). Cloud-based
big data mining & analyzing services platform integrating r. In Advanced Cloud
and Big Data (CBD), 2013 International Conference on, pages 147–151. IEEE.

[59] Yoo, A. B., Jette, M. A., and Grondona, M. (2003). Slurm: Simple linux utility
for resource management. In Job Scheduling Strategies for Parallel Processing, pages
44–60. Springer.

[60] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. (2010).
Spark: cluster computing with working sets. In Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing, pages 10–10.

[61] Zaharia, M., Das, T., Li, H., Shenker, S., and Stoica, I. (2012). Discretized streams:
an efficient and fault-tolerant model for stream processing on large clusters. In Pro-
ceedings of the 4th USENIX conference on Hot Topics in Cloud Ccomputing, pages
10–10. USENIX Association.

[62] Zhang, Y., Duc, P. M., Corcho, O., and Calbimonte, J.-P. (2012). Srbench: a
streaming rdf/sparql benchmark. In The Semantic Web–ISWC 2012, pages 641–657.
Springer.

89

List of Figures

4.1 Architecture Overview . 10
4.2 YARN architecture . 11
4.3 Kafka producer performance . 13
4.4 Samza stream processing topology . 14
4.5 Samza stream task distribution . 15
4.6 Storm topology . 18
4.7 Coordination layer data flow . 20
4.8 Coordination pipelines . 21
4.9 In-memory messaging protocol . 24
4.10 Batch layer components . 25
4.11 Batch layer node layout . 26
4.12 Batch layer partitioning . 27
4.13 Micro-batches . 28
4.14 Memory buffers of batch based consumers and producers 28
4.15 Samza message recovery . 29
4.16 Speed layer components . 31
4.17 Storm worker messaging buffers . 33
4.18 Speed layer scalability . 34
4.19 Log collection and aggregation . 37
4.20 Batch layer monitoring . 37
4.21 Speed layer monitoring . 38
4.22 Progress monitor . 38

5.1 Infrastructure setup . 41

6.1 KPIs SRBench Query 1 Clean Run . 50
6.2 KPIs SRBench Query 1 Throughput Throttling 51
6.3 KPIs SRBench Query 1 Node Failure . 52
6.4 KPIs SRBench Query 1 Clean Run . 55
6.5 KPIs SRBench Query 1 Throughput Throttling 56
6.6 KPIs SRBench Query 1 Node Failure . 57
6.7 KPIs DEBS Query ”load prediction” Performance Run 61
6.8 KPIs DEBS Query ”load prediction” Node Failure 62

92 List of Figures

6.9 Variance DEBS Query ”load prediction” Node Failure 63
6.10 KPIs DEBS Query ”average load” Performance Run 66
6.11 KPIs DEBS Query ”average load” Node Failure 67
6.12 Variance DEBS Query ”load prediction” Node Failure 68
6.13 Eventual Accuracy DEBS data set . 70

92

List of Tables

5.1 Hardware of the compute nodes . 39
5.2 Data set statistics . 42

6.1 KPIs SRBench Query ”rainfall observed once an hour” Performance Run 47
6.2 KPIs SRBench Query ”rainfall observed once an hour” Throttled Through-

put . 48
6.3 KPIs SRBench Query ”rainfall observed once an hour” Node Failures . . 49
6.4 KPIs SRBench query ”broken station detection” Performance Run 53
6.5 KPIs SRBench Query ”broken station detection” Node Failures 54
6.6 KPIs DEBS Query ”load prediction” Performance Run 58
6.7 KPIs DEBS Query ”load prediction” Node Failure 60
6.8 KPIs DEBS Query ”average load” Performance Run 64
6.9 KPIs DEBS Query ”average load” Node Failure 65

