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Abstract

We model bank bailout decisions by a state that looks beyond a
bailout, taking into account future cost of rescuing or liquidating the
bank. Using a repeated game we find that a long-term perspective makes
both, the state and banks, more cautious. Yet, a looming “fiscal cliff”
putting an end to bailouts, may make the state more aggressive. The
expectation that a bank will never again need to be rescued in the future
makes it an attractive bailout candidate in the present. Running out of
money therefore is not an ideal commitment strategy. Political resolu-
tions like “never again” are not only unrealistic but misdirected. Bailouts
of systemically relevant banks are efficient not only ex post; they may
also reduce moral hazard ex ante. Policy measure should focus on banks’
systemic importance, not on bailouts.
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“Two watchwords guided us as we undertook to solve this prob-
lem: Never Again.” (Nicholas Brady,1 1989)

“This legislation... [will] safeguard and stabilize Americas finan-
cial system and put in place permanent reforms so these problems
will never happen again.” (George Bush,2 1989).

“ If we achieve nothing else in the wake of the crisis, we must
ensure that we never again face such a situation.” (Ben Bernanke,3

2010)

“[B]ecause of this law, the American people will never again be
asked to foot the bill for Wall Street’s mistakes.” (Barack Obama,4

2010)

1 Introduction

Never again! From crisis to crisis, the adage remains the same: Bank bailouts
with taxpayer money, though unavoidable this very time, are not to be repeated.
But then they are. The recent financial crisis of 2007-08 is hardly an exception.
After bank bailout programmes in several countries, most notably TARP5 in
the U.S., politicians asserted that “it” should happen never again. A number of
countries enacted heavy legislation designed not only to prevent future crises,
but also to avoid the use of taxpayer money should a crisis occur.6 Yet, gov-
ernment abstention in the face of the failure of a systemically relevant financial
institution is still a rare exception.7 Even governments that are running out of
funds try their best to prevent weak banks from collapsing.

Governments do not even adhere to the resolution “never again” as far as indi-
vidual banks are concerned. A number of banks have received state assistance
more than once during the recent crisis.8 A rescued bank continues to exist and
may collapse or need a bailout in the future.

1“Statement by the Secretary of the Treasury Nicholas F. Brady regarding the Presidents
Savings and Loan Reform Program,” News Release, Department of the Treasury, February 6,
1989, quoted from Shull (1993).

2President of the U.S., signing the FIRREA act, August 9, 1989
3Chairman of the Board of Governors, Federal Reserve System, March 20, 2010);

http://www.federalreserve.gov/newsevents/speech/bernanke20100320a.htm
4President of the U.S., signing the Dodd-Frank Wall Street Reform and Consumer Pro-

tection Act, July 21, 2010), http://www.whitehouse.gov/the-press-office/remarks-president-
signing-dodd-frank-wall-street-reform-and-consumer-protection-act

5Under the Troubled Asset Relief Program of October 3, 2008, the U.S. government pur-
chased assets and equity from financial institutions to strengthen its financial sector.

6One example is the 2010 Dodd-Frank-Act in the U.S.
7One example is the fall of Lehman Brothers in 2008.
8European banks have benefited from repeated assistance programmes; so have the U.S.

banks if quantitative easying is included. Some banks have received repeated financial or legal
assistance on an individual basis (Northern Rock, Dexia, UBS).
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The present model therefore takes into account that after a bailout a bank
does not disappear. We use a repeated game between a bank and the state in
which both players take present decisions with a view to potential future bailout
decisions. The model is driven by two simple but realistic key assumptions.
Both the bank and the state are blind on one eye: The bank neglects the
systemic cost of its potential failure, while the state neglects that the money
used to rescue a bank is transferred but not lost from a social point of view. We
develop the model in three steps: In the basic scenario we introduce the main
features of the model within a static or “one-shot” framework. We then look
at the other extreme, an infinitely repeated game with rational forward looking
players. Finally we analyze a finitely repeated game: We allow for an early
termination of the game when the state runs out of money and cannot rescue a
failing bank any longer.

Using a dynamic approach our model is most closely related to DeYoung et al.
(2012). Theirs is one of the few papers that analyze the relation between the
state and a bank as a repeated game. Their focus is on complexity (systemic
cost of failure), while our key decision parameter is the bank’s risk choice. While
both approaches are complementary, our seems to yield somewhat richer results.

Contrary to a large part of existing research, we model agents as rationally
forward looking and focus on subgame-perfect equilibria. The state’s behavior
is predictable; there is no signaling and reputation building or policy ambiguity,
features of many models (see, e.g., Dam and Koetter, 2012), as these are the
very features never observed in the real world of implicit state guarantee. If
anything, letting a bank fail in order to signal a tough stance is likely to achieve
the opposite: Hett and Schmidt (2013) find that the after the fall of Lehman
Brothers in 2008 market discipline in the banking system all but disappeared.
The systemic cost of the failure became so obvious, that it hardened the case
for bailouts rather than market discipline.

Our model offers a fresh perspective on the problem of implicit state guarantee,
putting into perspective some findings from the existing literature. First, it
identifies the very systemic relevance of banks, rather than state guarantee, as
the root of implicit subsidies (Baker and McArthur, 2009; Ueda and Weder di
Mauro, 2013) and of banks’ moral hazard and related distortions (Kacperczyk
and Schnabl, 2011; Rose and Wieladek, 2012; Hakenes and Schnabel, 2012;
Brandao-Marques et al., 2013; Elijah Brewer and Jagtiani, 2007; Davis and
Tracey, 2012). Second, it casts doubt on state discipline: With a longer horizon
the state becomes more picky in rescuing banks. Yet, as the state runs out
of money, banks rather than the state become more prudent. These aspects,
particularly the behavior of banks and states close to the “fiscal cliff”, have
hardly been discussed in the existing literature.

The findings of our model are but a piece of a larger puzzle. Banks and states are
inter-locked in a complex relationship. On one hand, banks hold large amounts
of government debt, and big banks even increase such exposure during periods
of government default (Gennaioli et al., 2013). On the other hand, governments
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rescue systemically important banks at their own peril. Our model suggests
that governments may even become more bailout-prone in the face of a “fiscal
cliff”. It therefore may contribute to our understanding of the “doom loop”
between weak banks and weak states.

2 The model

2.1 Overview

We model the bailout problem as a game between a bank and the state. The
bank’s balance sheet is lumped into one asset called the “project”. In the first
move of the game the bank chooses the risk-return combination of this project.
If the project succeeds the game ends. If the project fails the state decides
whether to liquidate9 or to rescue the bank (by a transfer payment). The game
and all its parameters are common knowledge, with the exception of the project
success probability chosen by the bank.

In a static setting (our first scenario), the game is just played once. In the
repeated setting (our second scenario), the game is repeated after a each suc-
cessful project or bank bailout. The game only ends once the bank’s project
fails and the state decides not to rescue the bank. In a finitely repeated setting
(our third scenario) the game may end even though the state would be willing
to rescue the bank but has run out of the funds required to do so.

2.2 The bank

The bank’s only asset is the access to a project (the size of which we normalize
to $1) with expected return E(R) = πR(π). In the first move of the game, the
bank chooses the project’s risk and return. The bank’s choice is observable by
the state, but not verifiable. In the second move, nature decides about project
success or failure. In case of success the project has a positive return R; in
case of failure the project yields nothing. Ex ante, there is a trade-off between
the project’s probability of success, π ∈ [0, 1], and its return in case of success,
R(π). We denote the return on a safe project by R = R(1). We try not to
restrict the risk-return trade-off unnecessarily and only assume:

• a tradeoff between safety and project return in case of success: dR/dπ < 0,

• an interior maximum for expected return E(R) = πR(π): d2E(R)/dπ2 <
0.

We assume that the bank has limited liability; it has no funds it could commit
in case of project failure. The return to a successful project cannot be taxed

9Liquidation is used as shorthand for any resolution that does not involve taxpayer money.
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Figure 1: The game tree

and is fully distributed to (and consumed by) the bank’s stakeholders. We do
not distinguish between different stakeholders like depositors and shareholders
(or management), though. Thus, on the liability side, just as on the asset side,
we model the bank as a “monolith”.

2.3 The state

The state is called into action when the bank’s project has failed. The state
can either liquidate the bank or rescue it. We denote the state’s action with
a variable θ ∈ {0, 1}. Liquidation (θ = 0) leads to a deadweight cost to the
state of c (“collateral damage”).10 The state can avoid this cost by organizing
a bailout (θ = 1), i.e., by transferring the amount b (“bailout cost”) to the
bank. We assume that b < R, i.e., the bank does better in case of success than
in a bailout. The game tree in Figure 1 summarizes the game (in the static
scenario).

We assume that the state cannot take any action with which it would hurt itself
ex post. (This limits the analysis to subgame-perfect equilibria and excludes
revenge, threat, or “grim trigger” strategies by the state in a repeated game.)

10In practice, collateral damage has many components ranging from disturbances to the
payments system to job losses in the economy.
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2.4 The players’ objectives

The bank and the state are both risk-neutral. They maximize expected income
or, in the case of the state, minimize expected loss. In the repeated game
scenario they discount the future with the same rate δ.

Both players behave opportunistically as regards bailout transfers:

• The state counts a bailout transfer payment to the bank as a cost (but
not as an income to the bank).11

• The bank counts a bailout transfers payment from the state as an income
(but not as a cost to the state).

In addition, players have an asymmetric perception of liquidation cost:

• The state counts the potential collateral damage caused by the bank’s
liquidation as a cost.

• The bank ignores the potential collateral damage caused by its liquidation.

The state, minimizing its own cost, does not maximize aggregate welfare. There-
fore it ignores returns from the bank’s project. It also ignores the loss in return
due to a liquidation of the bank, as if a disappearing bank were immediately
replaced by not systemically relevant banks with the same (aggregate) project
size.

3 The static game

We first analyze the game in a static scenario represented in Figure 1. The static
game corresponds to the myopic view that a bailout decision will occur only once
in one’s (political) lifetime: “when politicians are faced with catastrophe, long-
term concerns tend to take a back seat to the immediate crisis.” (Hart and
Zingales, 2010)

3.1 The social optimum

As a benchmark we examine the social optimum that would be implemented by
a social planner who could set both project risk π and bailout policy θ in order
to maximize aggregate wealth. Aggregate wealth is equal to expected project
return minus expected collateral damage from liquidation. The planner would
thus solve:

max
π,θ

V = πR(π)− (1− π)[(1− θ)c+ θ · 0]. (1)

11Even among economists it is common to look at bailout payments as a cost (see, e.g.,
Veronesi and Zingales, 2009).
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The optimal value of θ obviously is θ∗ = 1, i.e., a bailout whenever the project
has failed. As the bank is not liquidated in any case, the optimal value for π(θ)
maximizes expected project return for θ = 1. The first order condition shows
that the elasticity of project return in case of success with respect to success
probability at π∗ is minus one:

ηR,π =
dR · π
dπR

= −1. (2)

A planner who can set both π (success probability) and θ (bailout decision)
would maximize aggregate project return net of collateral damage from liquida-
tion (c). This would mean (i) choosing the success probability π∗ that maximizes
expected project return and (ii) following a strict bailout policy, θ∗ = 1. The
aggregate (= social) return is represented by the solid line in Figure 2. Its
maximum is indicated by Point S.

The planner’s ability to disentangle risk choice from the bailout decision permits
both, maximization of project return and elimination of liquidation cost. We
will show that this is not the case once project choice and liquidation decision
are “decentralized”, i.e., left to the bank and the state, respectively.

3.2 The state’s problem

The state is called upon to act when the bank’s project has failed (after success
the game ends). The state can bailout the bank (θ = 1) or liquidate it (θ = 0)).
We have assumed that the state strictly minimizes its loss (without, e.g., taking
revenge on the bank). The state minimizes its loss by solving:

min
θ

V S = (1− θ)c+ θb. (3)

It will bailout a bank if:

c ≥ b (4)

and liquidate it otherwise. (We assume as a tie-breaker that the state will choose
a bailout if it is indifferent.)

Counting b as a cost, rather than as a transfer (with no loss of aggregate wealth),
the state is subject to moral hazard. Whenever b > c the state does not bailout
a bank after project failure, neglecting systemic cost c > 0.
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3.3 The bank’s private optimum

The bank chooses:

• the first best risk level if there is no prospect of bailout,

• a project with a lower success probability (as well as lower project return)
if it expects a bailout.

This follows directly from the bank’s objective function. The bank chooses π
such as to maximize expected profit V B :

max
π

V B = πR(π) + (1− π)[(1− θ)0 + θb], (5)

where the optimal choice, denoted by πB(θ), solves the first order condition:

dV B

dπB
= (

dR · πB

dπB ·R
+ 1)R− θb = 0, (6)

or, in terms of the elasticity of R with respect to π at πB :

ηR,π = −1 +
θb

R
. (7)

If the bank does not expect a bailout (θ = 0), then at the optimal π the elasticity
is ηR,π(0) = −1. The bank thus maximizes expected project return. If the bank
expects a bailout (θ = 1) the elasticity at the optimal value of π is ηR,π(1) =
−1 + b/R > −1. This implies that the bank chooses a lower πB , i.e., a more
risky project (ηR,π > −1) than in the absence of bailouts, i.e., πB(1) < πB(0).
(Proof: Since dR/dπ < 0, the elasticity ηR,π increases, and its absolute value
decreases, in π; further, by assumption b/R < 1, i.e., the bailout “insurance
ratio” is less than hundred percent.).

The bank’s optimal decisions are illustrated in Figure 2.

• In the no bailout case the bank maximizes expected project return. Its
optimal choice is πB(0). Aggregate social return (project return minus
expected systemic damage) would be maximized at π∗∗, though.

• In the bailout case the bank maximizes expected project return plus bailout
subsidy. Its optimal choice is πB(1). Aggregate social return (project re-
turn) would be maximized at π∗ = πB(0).

The figure illustrates that the bank commits moral hazard in either case. In
the no bailout case the bank neglects c, the systemic damage of its failure.
In the bailout case the bank counts transfer b as an income. Moral hazard,
therefore, is not a consequence of implicit state guarantee, but a consequence of
banks’ systemic importance, irrespective of whether such importance leads or
does not lead to bailouts. The degree of moral hazard may somewhat differ in
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Figure 2: Expected returns: (i) project return (solid line), (ii) project return mi-
nus expected liquidation cost (dotted line), and (iii) project return plus bailout
transfer. The bank’s expected return is given by (i) in the bailout case and by
(iii) in the no bailout case. Aggregate social return is given by (i) in the bailout
case and by (ii) in the no bailout case.

between the two cases depending on the parameters of the model, and so may
the respective levels of agency cost (the losses of expected return V from not
maximizing along the dotted solid or the solid line, respectively).

3.4 Equilibria of the static game

Under separate private decisions (the bank chooses π, the state chooses θ) the
social optimum as defined above is not an equilibrium of the game. Conversely,
no equilibrium implements the (unconstrained) social optimum. Solving the
game backwards stars from the state’s decision, we can identify a non-bailout
equilibrium (for b > c) and a bailout equilibrium (for b ≤ c). We refer again to
Figure 2.
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• In the no-bailout case (θ = 0) the bank’s expected profit, V B(0) (the
solid line), is maximized at success probability πB(0) = π∗. The bank
thus chooses the same project risk a social planner (controlling both θ
and π) would. Yet, the no-bailout case is not a social optimum as long as
c > 0: The state, failing to rescue the bank, burdens society with positive
expected systemic cost (1 − π∗)c. The bank (ignoring such cost) gets
expected profit equal to aggregate return in the social optimum: V B(0) =
V S .

• In the bailout mode (θ = 0) the bank’s expected profit, V B(1) (the dashed
line), is equal to the sum of the expected social return plus the expected
bailout transfer payment (1 − π)b. Its maximum lies to the left of pi∗

and is related to a lower success probability πB(1) < πB(0) = π∗. Again,
the equilibrium is not first best: The state rescues a bank with a failed
project (thus avoiding systemic cost), but the bank takes more risk than
the social planner would choose.

3.5 The root of moral hazard

In 2013 the Chairman of the Financial Stability Board observed: “[t]he expec-
tation that systemically important institutions can privatise gains and social-
ize losses encourages excessive private sector risk-taking”.12 Similar views are
widely held (see, e.g., Stern and Feldman, 2004). With respect to not system-
ically relevant banks (c small), they may not be problematic. Yet, as we have
shown, the view that state guarantee for systemically relevant banks c >> 0
creates moral hazard may be misleading. Given a bank’s systemic relevance
moral hazard arises with or without state guarantee.

Our results differ from widely held views not because of the stylized assumptions
behind our model. Rather, the standard view neglects the fact that state guar-
antee for systemically important banks does not only induce banks to take more
risk, but (by removing the systemic cost of failure) also increases the socially
optimal level of risk. Bank bailouts may subsidize risk taking, but they are also
a way to minimize the negative externality of systemic relevance. This identifies
systemic relevance as the true root of moral hazard and of public subsidization
of banks.13 We will not address the chicken-and-egg-question, whether the ex-
istence of systemically relevant banks itself is a consequence of the existence
of a state, or whether the state and its institutions have been shaped by the
increasing systemic importance of banks.

12Mark Carney, Statement to the International Monetary and Financial Committee, Octo-
ber 12, 2013, p. 2; www.imf.org/External/AM/2013/imfc/statement/eng/FSB.pdf

13Of course, any third party guarantee for not systemically relevant banks and their depos-
itors, as often found within deposit insurance systems, constitutes a subsidy and an incentive
for moral hazard.
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4 The infinitely repeated game

As a second benchmark case we analyze an infinitely repeated game in which a
successful or rescued bank continues to exist and may pose a bailout problem
in a future period. The repeated game is not entirely unrealistic; several banks
have been rescued more than once.14 It turns out that the long-term view makes
both the bank and the state more cautious. The state does not bailout banks
perceived as too risky. Banks, in turn, choose safer projects than in the static
game if they do not expect a bailout. Above, a bank may choose a safer project
in order to keep to bailout prospects. Bailout expectations may even lead banks
to choose a safer project than under laissez-faire.

4.1 Additional assumptions

In each period t the bank chooses the success probability of its project, πt. If
the project succeeds or the bank gets a bailout (θt = 1), the game is repeated.
The game ends once the bank’s project fails and the state abstains from a
bailout (θt = 0). We “reset” the game after each period by assuming that the
bank’s return from one period (R or, in case of a bailout, b) is consumed by
its stakeholders and that the bank starts with a new project of the same size
in the following period.15 Symmetrically, we assume that the state’s vault is
automatically replenished, so that the state can always afford a further bailout
(an assumption to be relaxed below).

The difference to the static model is the availability of a history. In the repeated
game, the state knows the success probabilities the bank has chosen in the past,
and the bank knows if it has received any bailouts yet. Potentially this opens a
space for communication. The state may announce to let a bank fail unless it
chooses some specific success probability. According to the Folk Theorem, any
choice of the bank between πB(0) and πB(1) combined with any 0 ≤ θ ≤ 1 can
be supported as an equilibrium. This would include the first best with π∗ and
θ = 1. However, existence of such equilibria presupposes that agents can use
“punishment” strategies if the opponent deviates. This is not the case under our
strict assumption that the state can never hurt itself. The state has to choose
the smaller of the two evils; it cannot let a bank fail for having chosen, say, πB(1)
instead of πB(1) if such failure is more expensive than bailout and continuation

14With some banks, like Barings, e.g., a decades may between a rescue and the next failure.
Other banks were rescued more than once within a few years of financial crisis after 2007.
Examples include Northern Rock, Dexia, and UBS. UBS benefited from a rescue operation
by Swiss authorities in Oct. 2008, later on from an official violation of Swiss bank secrecy law
sparing the bank from US prosecution, and finally from a mild settlement in the Libor case
(2012) with US authorities weary of the risks of a severe UBS problem to the international
financial system. That settlement and similar ones with other banks led some commentators
conjecture that some banks were “too big to jail”.

15The alternative, keeping net return from one period as additional bank capital in the next
period would lead to a richer if more complex model.

11



(even though the threat of bailout was part of an ex ante strategy).16The state
therefore cannot make its decisions depend on history. It follows that the state’s
decisions can be anticipated and that history is not relevant for the bank either.

Under our assumptions, therefore, the repeated game is a potentially infinite
repetition of the static game (Figure 1). Playing the Nash equilibrium strategies
of the static game in each period is a subgame perfect equilibrium in the repeated
game (Fudenberg and Tirole, 1991, p. 149). As all periods are identical in all
relevant respects, and we can drop the time subscripts.

4.2 The state’s problem

With decisions constant over time we can solve the game backwards like the
static game, starting from the state’s decision. For any given project success
probability π the state solves the infinite version of (3):

min
θ

V S = (1− θ)c+ θb
1

1− δ(1− π)
. (8)

The state weighs liquidation of the bank (θ = 0) against the present value of an
infinite sequence of potential bailouts (θ = 1). A bailout policy is chosen if:

c ≥ b
1− δπ

1− δ
. (9)

There is a critical project success probability π̄ that satisfies (9) with equality
and makes the state indifferent between liquidation and bailout:

π̄ =
b− (1− δ)c

δb
(10)

The government will bailout (liquidate) the bank if the probability of project
success π exceeds (falls short of) a threshold value π̄. The comparative statics
of the bailout threshold (10) are intuitive: π̄ decreases in the collateral cost of
liquidation c, and increases in bailout cost b and in the weight of the future, δ.
When δ = 1, π̄ = 1, i.e., when the state weighs the future like the present, it
never bails out a bank.17

There are two extreme values of π̄ (deriving directly from (10)) beyond which the
bank will always or never be bailed out – irrespective of the success probability
π the bank chooses for its project.

• The bank will always be rescued if c ≥ b/(1− δ)

16This excludes so-called “grim trigger” strategies, e.g.
17A bailout would never be necessary either, as with δ = 1 a bank would hold the safe asset.
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• The bank will never be rescued if c ≤ b.

In the first case, the “crash-cost” exceeds the present value of the cost of a
bailout in every single period; in the latter case, the “crash-cost” is even smaller
than the cost of one single bailout. Between those two borders bailout or liqui-
dation depend on whether the bank’s chosen π is above or below the threshold
value.

4.3 The bank’s problem

The bank is more cautious in a repeated game, compared to the static game, as
long as it does not expect a bailout. If it expects a bailout policy it chooses the
same risk level as in the static game. The fact that bailouts are only available
at a minimum success probability may lead the bank to sacrifice same expected
return in order to keep the bailout subsidy.

In the no-bailout scenario (θ = 0) the bank solves:

max
π

V B(0) =
1

1− δπ
πR(π) (11)

s.t. π̄ ≥ πB(0) (12)

As the constraint never binds (the bank does not forego expected return in order
to avoid a bailout), the solution is given by the F.O.C.:

ηR,π(0) =
dR(π)π

dπ ·R(π)
= −1− δπ

(1− δπ)
< −1. (13)

This means that the bank chooses a safer project than in the static game (7).
Consideration of future returns leads the bank to behave more prudently, as it
cannot rely on state assistance. Note that, as in the static game, the bank’s
choice (but not θ = 0) is first best.

In the bailout scenario (θ = 1) the bank solves:

max
π

V B(1) =
1

1− δ
[πR(π) + (1− π)b] (14)

s.t. πB(1) ≥ π̄ (15)

As long as the constraint does not bind, the F.O.C. yields:

ηR,π(1) =
dR(π)π

dπ ·R(π)
= −1 +

b

R
> −1. (16)
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This is the identical elasticity as in the static game (7) for θ = 1. In other words:
In the repeated game the bank would like to choose the same project as in the
static game. In the presence of bailouts the long-run perspective has no impact
on the bank’s decision, as long as the bailout threshold π̄ does not bind. If
the constraint binds the bank chooses a safer project than in the unconstrained
case, in order to keep the bailout option. The project optimal from the bank’s
point of view may even be safer than the project the bank would choose in the
laissez-faire case, in the absence of a bailout option.

The bank’s problem is illustrated in Figure 3. The figure is the repeated-game
counterpart to Figure 2. The main difference between the infinitely repeated
and the static game is that in Figure 3 vertical values are scaled by the factor
1/(1−δ) representing present values in an infinitely repeated game. This scaling
has a different impact on the solid line (project returns) and on the dashed line
(project return plus bailout subsidy). The dashed line shifts upwards, while
the solid line, running through the origin, shifted upwards and to the right.
As a consequence, the maximum of the bank’s expected return cum bailout
subsidy (dashed line), stays the same, while the maximum of the project return
(solid line) moves to the right of its counterpart in the static version of the
game. This reflects the fact that a bank without state guarantee becomes more
cautious under the longer time horizon. With state guarantee, project failure is
never punished, and the time horizon is irrelevant for the bank.

4.4 Equilibria of the infinitely repeated game

The infinitely repeated game may have a bailout equilibrium (constrained or
non-constrained) as well as no-bailout equilibrium. Which equilibrium prevails
depends on the model parameters, in particular on the bailout threshold π̄ (given
by (14)). Figure 3 illustrates the role of π̄. The threshold means that the bank’s
choice of points on the dashed line of aggregate expected return cum bailout
is restricted to points to the right of π̄. A threshold at π̄1, for example, has
no impact on the bank’s decision, as it lies below the bank’s preferred level of
πB(1). To the right of that level, however, the threshold becomes binding, as
illustrated by πB(2). The bank would comply with this threshold and sacrifice
some expected return (accept a point on the dashed line below its peak) for the
purpose of keeping the bailout option (staying on the dashed, rather than on
the solid line).

With a threshold above π̄0 the bank, in order to keep the bailout option, chooses
an even safer project than in a state-less laissez-faire world. The introduction of
state guarantee, therefor, can make banks safer. This result confirms a similar
finding by (Cordella and Yeyati, 2003) in a rather simple way. There is, however,
a maximum success probability, indicated by π

′
= π̄3, the bank would accept.

For any π̄ beyond that value the reduction in expected return would hurt the
bank more than the loss of implicit state guarantee. The bank would sacrifice
the bailout option; it would choose πB(0) with an expected return exceeding
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Figure 3: Expected returns: The banks’ expected return with bailout (solid line)
and and without bailout (dashed line). In the grey area the bailout threshold π̄
constrains the bank’s choice of success probability π̄

.

the one at π̄3. At π
B(0) the bank gets a “reservation” level of expected return

limiting concessions in favor of the bailout option.

The cliff effect is illustrated in Figure 4, plotting the bank’s choice of π as a
function of the bailout threshold π̄. At low values of π̄ the bailout constraint
π ≥ π̄ does not bind. It only binds at levels above πB(1). Here, the bank is still
safe enough to get a bailout, but it has to choose a safer project than it would
in the absence of a constraint. To the right of π̄3 the constraint becomes too
expensive. The bank ignores it and lives without state support.
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Figure 4: Equilibria of the infinitely repeated game: The bank’s choice of project
success probability (π) as a function of the bailout threshold π̄ and the bailout
region (shaded area). To the left of Point B, the bailout threshold does not bind
(π̄ < πB(0)). At B the constraint starts to bind. At Point A, π jumps down
to πB(0) as the bank ignores the bailout option at higher values of π̄ (the cliff
effect).

5 The finitely repeated game

Implicit state guarantee for banks may come to a natural end when the state runs
out of funds. Empty pockets may even be the only credible strategy to commit to
“never again” bail out a bank. We therefore analyze a repeated game in which
the state is subject to a financial constraint allowing only a finite number of
bailouts. We denote the remaining number of potential bailouts at any time by
n and call nb the “bailout fund”.18 With the state variable n individual rounds of
the game are no longer identical. Neither the state’s choice of bailout policy nor

18Note that n is not a time subscript; the game may have several consecutive rounds with
project success and n constant.
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the bank’s project choice are likely to remain constant as n decreases over time.
Indeed, as the bailout fund decreases, the bank becomes more cautious, trying
to use the remaining bailout options parsimoniously. Conversely, increasing
caution by the bank may lead the state to become more bailout-friendly, as it
is cheaper to rescue a relatively safe bank.

In the finite game it is no longer the state who has the last word, but the bank
(chooses the final π after the last bailout). The finite game therefore structurally
differs from both the static and the infinitely repeated game. In order to keep the
games comparable we modify one of our informational assumptions: We assume
that the bank credibly announces the success probability π it will choose in the
next period. This assumption gives the last word back to the state and keeps
the finitely repeated game comparable to the static and the infinitely repeated
game.

5.1 The state’s problem

The state may become more cautious or more reckless when the bailout fund
gets smaller. The state’s decisions are still summarized by the bailout thresh-
old π̄; only, this threshold now has a subscript n for the (decreasing) number
of “bullets” available to ward off a bank collapse. We will show under what
conditions the threshold π̄n increases or decreases in n.

With n+ 1 possible bailouts left the state solves:

min
θn+1

V S
n+1 = (1− θn+1)c+ θn+1(b+ δvSn )

= min(c, b+ δvSn ), (17)

where V S denotes the expected cost at the state’s decision node, i.e., after
the bank’s project has failed. By contrast, vS is the expected cost of optimal
bailout/liquidation policy (with n potential bailouts left) prior to project suc-
cess/failure. In Figure (1), V S is expected cost at Node (2), while vS is expected
cost at Node (1). The relation between vSn+1 and V S

n , the pre- and post-bailout
values in the same round of the game is:

vSn+1 =
1− πn

1− δπn
V S
n , (18)

the fraction measuring the probability of one failure (1 − πn) in a potentially
unlimited number of success periods (1− δπn).

The bailout criterion with n+ 1 potential bailouts left becomes:

c ≥ b+ δvSn = b+ δ
1− πn

1− δπn
V S
n , (19)
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i.e., the state weighs cost c against the cost of a bailout b plus the present value
of future cost (of bailouts or liquidation), vSn . Take as an example the very last
bailout decision (with n = 1). The state will use its last “bullet” if:

c ≥ b+ δvS0 = b+ δ
1− π0

1− δπ0
c, (20)

where π0 denotes the success probability the bank will choose once the bailout
fund is exhausted. The state weighs the cost of an immediate bank collapse
(c) against the direct cost of a bailout (b) plus the indirect cost in form of the
eventual later collapse of the bank (the last term in (20)). In an analogy to
music we could call that latter term the “coda”, the end of a piece played after
all repetitions. Note that it is the coda that distinguishes the repeated game at
n = 1 from the static game discussed above.

Solving (20) for π̄0, the probability at which (20) holds with equality yields:

π̄0 =
b− (1− δ)c

δb
= π̄ (21)

This is a remarkable result: The bailout threshold at the very last bailout
decision (at n = 1), π̄0, is identical to the bailout threshold in the infinitely
repeated game π̄. The existence of the bailout threshold does not require an
expectation of an infinite series of future bailouts; the same threshold applies if
the state just takes into account that a bank does not disappear with a bailout
but lives on and will fail some day in the infinite future (with or without any
further bailouts).

This benchmark result does not imply that the bailout threshold is independent
of n. The bank is unlikely to choose πn = π̄ (see below). Therefore, we have
to formulate the state’s optimal policy for any path of πn chosen by the bank.
The state’s policy consists of a path of π̄ as a function of n. We denote by
π̄n,n−1 the minimum success probability to be chosen by the bank at n− 1 that
induces the state to bailout the bank, if necessary, at n. For simplicity we drop
the second subscript and define π̄n ≡ π̄n,n−1.

We find π̄n by iterating (18) forward as:

vSn =
(1− πn)

1− δπn
V S
n−1 =

(1− πn)

1− δπn
min(c, b+ δvSn−1), (22)

and solving (19) for equality. This yields:

π̄n =
min (c, b+ δvSn−1)− (c− b)/δ

min (c, b+ δvSn−1)− (c− b)
. (23)

From here, we derive the state’s optimal policy, summarized by dπ̄n/dn, in two
steps. First, we look at dπ̄n/dv

S
n−1, the change in the bailout threshold with

18



a marginal change in the state’s expected future cost. Second, we examine
∆vSn/∆n, the change in expected future cost with a unit change in n.

The first step is the easier of the two. From (23) it follows that dπ̄n/dv
S
n−1 >

0. The higher the state’s future cost, vSn−1, the higher the current bailout
threshold. The nominator in (23), and hence the denominator, are positive
(unless b < (1− δ)c, in which case a bailout is always preferable, independently
of π, see (10)). Taking derivatives yields dπ̄n/dmin (.) ≥ 0 and, if min (.) < c,
dπ̄n/dv

S
n−1 > 0).

The intuition for this result is straightforward. The higher the cost the state
saves by the n-th last bailout compared to liquidation (the lower vSn−1), the
more attractive is a present bailout, and the lower ceteris paribus the required
next period π̄n.

Having shown that π̄n increases with the state’s expected future cost vSn−1, we
need to examine how vSn changes, when n changes, i.e., when the bailout fund is
depleted. Intuition suggests that the influence might go either way. On the one
hand, lower n means that the bitter pill of a bank collapse cannot be postponed
much longer; ceteris paribus the present value of the state’s cost thus tends to
increase as the bailout fund is depleted. The effect is strong when c is high
relative to b. We call this the loss effect. On the other hand, lower n may lead
the bank to become more cautious and choose higher πB . A higher πB

n , i.e.,
a reduction in bank risk, reduces the present value of the state’s cost vSn and
sweetens the bitter pill of the looming bank collapse. We call this the probability
effect.

We illustrate the two effects by example of the last two “periods” with n = 0
and n = 1, respectively. Expected (pre-failure) cost terms vS0 and vS1 are:

vS0 = δ
1− π0

1− δπ0
c, (24)

vS1 = δ
1− π1

1− δπ1
[b+ δ

1− π0

1− δπ0
c]. (25)

The right-hand side of (24) and the last expression in (25) are again the coda,
as defined above. (The cost of any bailout at n > 1 can be found by iterating
(25).)

The loss effect is visible if we hold πn constant, i.e., π1 = π0. Then, the sign
of the difference vS1 − vS0 depends on the very right-hand terms in (24)and(25),
respectively. If a bailout with the last “bullet” is cheaper than an immediate
collapse (c > b+coda), then vS1 −vS0 is negative. In other words: If the loss effect
dominates the expected cost increases when the number of remaining potential
bailouts n falls.

The probability effect is visible if we assume that the state is indifferent with
the last bailout decision, i.e., the very right-hand terms are equal (c = b + c >
b+coda). Then, the sign of the difference vS1 − vS0 depends on the difference
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in the probabilities chosen by the bank. At the limit, a switch by the bank to
total safety, from π1 < 1 to π0 = 1, would lead to vS0 = 0. We will show below
that the bank indeed becomes more cautious as the fiscal cliff approaches, i.e.,
π1 < π0. If π1 < π0, then c.p. vS1 − vS0 is positive. In other words: If the
probability effect dominates the expected cost decreases when the number of
remaining potential bailouts n falls.

These results can be extended to the general case, the value of vSn being found by
expanding (25). As the number of remaining potential bailouts n gets large, its
marginal impact on the state’s bailout threshold π̄n becomes small (As n → ∞,
π̄n − π̂n−1 → 0) (π̄n − π̄n−1 → 0)).

We now have both elements to assess the impact of a decrease in the bailout
fund on the state’s optimal policy. We have shown first, that the state sets a
higher bailout threshold π̄n, the higher the present value of the state’s future
cost (of bailout or bank collapse). Second we have shown that the present value
of the state’s future cost increases or decreases in n depending on which of the
two effects, the loss effect and the probability effect, dominates.

Therefore we can summarize that state’s bailout policy (π̄) as a function of the
number of remaining potential bailouts n as follows:

1. Loss effect dominates: With a reduction in the bailout fund,

• the state becomes more conservative (π̄n−1 > π̄n),

• the state becomes worse off (vSn < vSn−1),

• the state is eager to increase the bailout fund.

2. Probability effect dominates: With a reduction in the bailout fund,

• the state becomes more aggressive (π̄n−1 > π̄n),

• the state becomes better off (vSn < vSn−1),

• the state is eager to decrease the bailout fund.

These results may look paradoxical at first sight. Why would a state, if the loss
effect dominates, become more conservative in its bailout policy, but eager to
increase the bailout fund? The explanations is simple: The state wants to be as
far from the last bailout as possible. Both, becoming conservative and increasing
the bailout fund, serve that same purpose. Conversely, if the probability effect
dominates, the bank becomes more aggressive, while it would want to commit
not to be so. Here the explanation is that the state benefits from an exhaustion
of the bailout fund both, by using it and by reducing it by other means.

5.2 The bank’s problem

The bank tends to become more cautious, as the state’s bailout fund gets ex-
hausted by repeated bailouts. At each value of n, the bank’s optimal response is
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pair of project success probabilities π(θ) for each of the two bailout parameters
θ = 0 (no bailout) and θ = 1 (bailout)

In the no-bailout scenario (θ = 0), when the bank knows (actually: chooses)
that it will not be rescued, the number of potential bailouts is irrelevant for its
decisions. In this case the bank solves:

max
π

V B
n (0) =

1

1− δπn
πnR(πn) (26)

s.t. πB
n < π̄n

which is the same problem as in the no-bailout case of the infinitely repeated
game (11). The constraint never binds, and the solution is the same πB(0) as
in the no-bailout mode of the infinitely repeated game above (13).

The more interesting is the bailout scenario (θ = 1) in which the bank anticipates
(or: chooses) a bailout when n potential bailouts are left. The bank solves:

max
πB
n

V B
n =

1

1− δπn
[πnR(πn) + (1− πn)(b+ δV B

n−1)], (27)

s.t. πB
n ≥ π̄n.

In the unconstrained case, the F.O.C. reads:

dV B
n

dπn
= 0 =

dR(πn)πn

dπnR
+

1

1− δπn
− 1− δ

1− δπn

b+ δV B
n−1

R
. (28)

and the elasticity of period project return R with respect to πn at the optimum,
πB
n , is:

ηR,πn(1) = −1− δπB
n

1− δπB
n

+
(1− δ)πB

n

1− δπB
n

b+ δV B
n−1

R
, (29)

This is equal to the elasticity in the infinite bailout case plus the term on the
right-hand side. That term is positive, but smaller than the second term. That
makes ηR,πn(1) in absolute terms smaller than its counterpart in the infinite
no-bailout mode, but larger than in the infinite bailout mode. A lower elasticity
in absolute terms implies higher π (see explanations to (7) above). Hence, the
bank’s optimal success probability with n remaining bailouts is higher than in
the infinite no-bailout mode (13), but lower than in the infinite bailout mode
(16): πB(1) < πB

n (1) < πB(0). Further, as V B
n > V B

n−1, the bank’s optimal
success probability increases, when n decreases: πB

n (1) < πB
n−1(1).

To sum up: With an increase in the number of remaining potential bailouts the
bank’s optimal (unconstrained) success probability decreases:

21



∆πB
n (1)

∆n
≤ 0. (30)

When the state runs out of funds, the bank knows that soon bailouts may not
be available any more and chooses projects with increasing success probability.
The bank’s optimal success probability moves from the optimum with infinite
bailouts to the optimum in the no-bailout scenario.19 In Figure 3 the bank’s
unconstrained optimal value of πB

n (1) moves from the infinite bailout optimum
πB(1) to the infinite no-bailout optimum πB(0).

In a constrained optimum, where (27) holds with equality, the banks chooses
πB
n = π̄n. However, with decreasing n, the present value of expected bailout

subsidies falls. In Figure 3 the dashed line shrinks toward the solid line. The
bank finds it less and less attractive to satisfy a π̄-constraint that binds above
the no-bailout optimum πB(0). The cliff effect illustrated in Figure 4 therefore
erodes (π′ moving to the left) as the bailout fund is depleted.

5.3 Equilibria of the finitely repeated game

Putting the state’s and the bank’s optimal strategies together yields the equilib-
ria of the finitely repeated games. Optimal strategies of each player are bailout
decisions (state) and success probability choice (bank) at each level of the bailout
fund (n). At any n, each party’s optimal decisions depend on its own and the
counterparty’s future decisions.

We solve the game backwards. The linchpin of equilibrium analysis is therefore
π0, the success probability the bank chooses if no more bailouts are available.

We first look at equilibria where the state would not bailout the bank at n = 1.
This is the case when π̄1 > π0. If the state does not use its last bailout bullet,
the second last bullet (n = 2) automatically becomes the last. Hence, if there
is no bailout at n = 1 there is never a bailout at any level of n > 1. This is
a trivial case, and to some degree it is a well-known artifact of games with a
finite horizon. In the infinitely repeated game, by contrast, we did find a bailout
equilibrium in which the bailout threshold π̄ exceeds the success probability the
bank would choose in the no-bailout case πB(0). There, accepting a safety level
above πB(0) was the price for the bailout option. The bridge between the finite
and infinite models can be bridged by allowing the bank to pre-commit to future
choices of π.20 We did, in fact, assume that in the finite game the bank can
promise π one period ahead. At n = 1, the bank may therefore promise some
π > π0 for the period immediately after the last bailout. If this is sufficient to

19Note that in our model a bailout does not create expectations regarding future bailouts;
players are rationally forward looking and build expectations on the basis not of past but of
future bailouts.

20An alternative would be stochastical termination, turning the finite game in a de facto
infinite game.
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comply with π̄1, the game has a permanent bailout equilibrium (until the first
failure after reaching n = 0) characterized by πn>0 = π̄1. There is no “never
again” effect at positive levels of n, though.

Second, we look at the more interesting equilibria characterized by a bailout
at n = 1, i.e., by π̄1 < π0. These equilibria are illustrated in Figure 5. The
top Panel (a) illustrates the case where the loss effect dominates, i.e. where
the bank’s moral hazard at higher values of n is weak and the bank’s optimal
success probability π (solid line) increases but slowly as n goes to zero. In this
case, the bank, even at higher levels of n, chooses a safer project than would be
required for a bailout. The state’s bailout threshold π̄n (dashed line) therefore
decreases in n. To put it the other way round: When the loss effect dominates,
the state becomes more cautious as the fiscal cliff (n = 0) approaches. Yet, the
state’s increasing caution is not relevant: The bank voluntarily chooses safer
projects than are required for a bailout.

The bottom Panel (b) illustrates the case where the probability effect dominates,
i.e. where the bank’s moral hazard at higher values of n is strong and the bank’s
optimal success probability π (solid line) increases strongly as n goes to zero.
In this case, the bank would choose levels of π below the bailout threshold π̄n
at values of n > n′. The state’s bailout threshold π̄n (dashed line) therefore
increases as the fiscal cliff (n = 0) approaches. To the left of n′ the bailout
threshold binds, and the bank would choose at values of n > n′. Once, n
drops to n′ the state’s grip becomes lose; the bank voluntarily increases its
success probability above the levels required for a bailout.When the probability
effect dominates, the state becomes more aggressive as the fiscal cliff (n = 0)
approaches, but this is of no consequence.

The state is unlikely to follow a “never again” policy as the fiscal cliff gets
closer. The state only tends to become more cautious when the loss effect
dominates (π̄n increasing as n decreases); but this is the case in which the
bailout threshold probability does not bind as it falls short of the bank’s optimal
success probability. In the opposite case, where the probability effect dominates
(π̄n decreasing as n decreases), the state even becomes more aggressive as the
fiscal cliff gets closer. The faster the bank reduces risk, the more attractive
becomes a further bailout. The expectation that the bank will “never again”
need a bailout in the future makes a present bailout almost irresistible.

6 Conclusions

The model presented above leads to rather sobering conclusions regarding im-
plicit state (taxpayer) guarantee for banks. Governments may have the best
intentions to rescue weak banks “never again”; yet, such intentions are hardly
ever realistic, let alone. The state does not even lose its appetite for bailouts
when it will soon run out of money. To the contrary, bailouts may even become
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Figure 5: The bank’s choice of success probability π (solid curves) and the
resulting state’s bailout threshold π̄ at n+1 (dotted curves), both as a function
remaining bailouts n. In Panel (a) the loss effect dominates; π̄ never binds.
In panel (b) the probability effect dominates; π̄ binds from point S to the left
(along the dotted line).

more attractive: As the state’s “bailout fund” is depleted, banks are getting
more cautious, and a cautious bank is cheaper to rescue than a risky bank.
Only with a sufficiently long horizon (and the respective financial means) the
state’s dislike of bailouts tends to become a binding constraint on a bank’s risk
taking. With an infinite horizon, a bank may even find it optimal to reduce risk
below the social optimum if this is necessary to preserve the bailout option.

A commitment to rescue banks “never again” is neither credible nor necessarily
desirable. Letting a systemically relevant bank fail is not rational ex post. Even
ex ante, implicit state guarantee may be better than its reputation. True, the
prospect of a bailout leads a bank to take higher than socially optimal risk, a
phenomenon usually called moral hazard. Yet, even in the absence of a state,
systemically important banks (ignoring the collateral damage of their failure)
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assume more risk than would be socially optimal. Moral hazard is caused by
banks’ very systemic importance. State guarantee modifies, rather than causes
moral hazard. As it avoids systemic damage from a bank collapse it increases
welfare ex post and, on the bottom line, may even increase it ex ante.

The slogan “never again a bailout” therefore addresses the wrong problem.
The real problem is not implicit state guarantee but banks’ very “systemic
relevance”, the social cost of a bank collapse. For simplicity this cost is assumed
to be exogenous to the above model. Yet, in the real world banks can influence
the degree of their systemic relevance. The distortions created by banks’ desire
to become systemically relevant are an important aspect of the too-big-to-fail
problem. The present paper suggests that fighting systemic relevance is the
most promising strategy to deal with that problem. Rather than vilify bailouts
we better ask: How can we prevent banks from becoming systemically relevant
ever again?

Our findings may be relevant for real world issues like the bailout fund planned
within the European Stability Mechanism (ESM). Such a fund may be less
harmful than the moral hazard argument would suggest; it may even be too
small to be effective (and it may not be financed by the ideal Pigouvian tax
on systemic importance). Another issue are the so-called “living wills”, bank’s
blueprints for resolution without systemic damage. If such blueprints work in
practice they mitigate the problem of systemic cost of failure; yet, our model
would suggest that the banks have an interest in blueprints that look as if they
would work, but in an emergency situation do not. Such “cheating wills” would
preserve systemic relevance and the related subsidies to the banking sector.

Our model cannot reject the pessimistic “doom-loop” view of banking and the
state. If the existence of a protecting state leads banks to become systemically
relevant and if, in turn, the existence of systemically relevant banks leads the
state to become the lender (and loser) of last resort to the banks, then, market
discipline in banking will only come back in financially failed states.
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