Master Thesis

April 29, 2014

SQA-Pattern

A Recognition Framework for Violations of
Conventions in Software Engineering

Stefan Hiltebrand

of Zirich, Schweiz (08-713-117)

supervised by
Prof. Dr. Harald C. Gall
Martin Brandtner

University of S.6€6.d. IA
—v@- Z u ric h vzH ‘software evolution & architecture lab

Master Thesis

SQA-Pattern

A Recognition Framework for Violations of
Conventions in Software Engineering

Stefan Hiltebrand

University of S.6.d. IA
Zurich™ ‘ ooooooooooooo Ton & archtecture b

Master Thesis
Author: Stefan Hiltebrand, stefan.hilti@bluewin.ch
Project period: 29.10.2013 - 29.04.2014

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

I would like to thank Prof. Dr. Harald Gall for giving me the opportunity to write this thesis at
the software evolution and architecture lab at the University of Zurich. Many thanks also goes
to Martin Brandtner for his great assistance. Furthermore, I thank Jens Birchler for the smooth
cooperation.

Abstract

In software engineering, different tools have become popular to support the development and
management of software projects such as version control repositories or issue trackers. These
tools are (web-based) approaches that try to offer best possible conditions to develop software,
especially in teams using agile development methods. However, if the tools are not used as in-
tended, it is harder to obtain an overview of the project. To avoid this problem, conventions on
the usage of these tools can be defined, as in the source code development, where it is generally
accepted that defining conventions on how to structure the code and complying them leads to
better results. Thus, there are many applications to analyse the code and find violations of these
conventions. Similar analyses are possible to find violations of the conventions on the usage of
the above mentioned tools, but there are no applications that provide this data. This gap is tried to
be filled by the SQA-Pattern approach presented in this thesis. SQA-Pattern mines the data from
the different tools and analyses it for certain patterns that describe violations of the tool usage
conventions. The goal thereby is to provide the data as fast as possible such that the approach
has the potential to be used in agile software development. The conducted evaluation has proved
that the data can be analysed in less then ten minutes even for large-scale software projects.

Zusammenfassung

Im Software-Engineering sind verschiedene Tools zur Unterstiitzung der Entwicklung und Ver-
waltung von Software-Projekten populdr geworden, wie Version-Control-Repositories oder Bug-
Tracker. Diese Tools sind (web-basierte) Ansétze, die versuchen bestmogliche Bedingungen fiir
Software-Entwicklung zu bieten, vor allem fiir Teams die agile Entwicklungsmethoden verwen-
den. Werden die Tools allerdings nicht bestimmungsgemaéss verwendet, ist es schwieriger das
Projekt zu tiberblicken. Um dieses Problem zu vermeiden konnen Konventionen fiir die Ver-
wendung dieser Tools definiert werden. Dies ist dhnlich wie in der Quellcode-Entwicklung, wo
es allgemein anerkannt ist, dass das Festlegen und Einhalten von Konventionen tiber die Struk-
turierung des Codes zu besseren Ergebnissen fiihrt. Deshalb existieren in diesem Bereich viele
Anwendungen, die den Code analysieren und Verstisse gegen die Konventionen aufzeigen. Ahn-
liche Analysen waren moglich zur Suche nach Verstossen gegen Konventionen, wie die Tools
zu benutzen sind. Allerdings existieren keine Anwendungen, die diese durchfithren. Die vor-
liegende Arbeit versucht diese Liicke mit dem SQA-Pattern-Ansatz zu fiillen. SQA-Pattern ruft
die Daten der verschiedenen Tools ab und analysiert sie auf bestimmte Muster, welche Verletzun-
gen der Toolbenutzungs-Konventionen beschreiben. Das Ziel dabei ist, die Resultate so schnell
wie moglich zu erhalten, damit der Ansatz potenziell in der agilen Software-Entwicklung be-
nutzt werden kann. Die durchgefiihrte Evaluation hat bewiesen, dass die Daten selbst bei grossen
Software-Projekten in weniger als 10 Minuten analysiert werden konnen.

Contents

1 Introduction 1
1.1 Motivation e e e e e 1

1.2 Goal. . . .o e 2

2 Related Work 3
2.1 InformationNeeds e e e 3
2.2 Large-Scale DataProvision. 4
2.3 Violations of Code Conventions 5
2.4 Link of SQA-Pattern to the Literature 5

3 Background 7
3.1 ResourceTools e e e e 7
3.1.1 Git- A Version Control Repository 7

3.12 JIRA-ABugTrackingSystem 8

3.1.3 Jenkins - A Continuous Integration Server 8

3.14 SonarQube - A Software Quality Measurement Tool 8

32 SQA-Mashup 8
3.21 Implementation Details 9

322 Impact e 9

3.23 KnownRestrictions e 9

4 SQA-Pattern 11
41 Approach. 11
4.2 Software Architecture 12
421 Mining 13

422 Analysis 14

423 DataProvision e 14

43 Important Libraries L 15
431 Play Framework 15

432 JGIt o v oo, 15

433 SVNKIit. . . . e 15

44 MINET o o e e 16
441 ProjectConfiguration 16

442 Databasestructure e 17

443 TheMining 18

45 Recognizer e 21

451 Pattern DefinitionFormat 21

viii Contents
452 Pattern Configuration 24

453 DatabaseStructure 25

454 TheAnalyses 25

455 Adding Pattern Categories 28

4.6 Service e e e e e e 29
461 Summary 29

462 PatternResults e 30

463 Developers 31

4.6.4 Detailed Information 31

465 SourceCode e e 31

4.6.6 OtherServices o i v i i i e e 31

47 Security e 32

5 Evaluation of SQA-Pattern 33
51 StudySetting 33
511 SourceProjects 33

512 Pattern Analysis 35

513 Configuration 37

514 Hardware e e e 38

52 Results e e 38
521 GitResults e 38

522 JIRAResults e 39

523 JenkinsResults 41

524 SonarQubeResults 42

525 AnalysisResults o o 43

52.6 Combined Results 45

53 DiscuSsion e 46

6 Final Remarks 49
6.1 Conclusion e e 49
6.2 Future Work e e 49
6.21 Improvementof SQA-Pattern, 50

6.2.2 Additional Evaluation 50

A Web Services 51
Evaluation Results 53

Contents of the CD-ROM

Contents ix

List of Figures

4.1

5.1
5.2
5.3
54

5.5
5.6
5.7
5.8
59

5.10

Software architecture L L 13
The execution times of the Git minings in relation to the linesof code. 39
The execution times of the Git minings in relation to the number of commits. . .. 40
The execution times of the JIRA minings in relation to the number of issues. 41
The execution times of the Jenkins minings in relation to the number of available

builds. 42
The execution times of the SonarQube minings in relation to the number of data

points. . ..o e 43
The execution times of the analyses for the single patterns in relation to the lines of

code. ... 45
The execution times of the combined analyses in relation to the lines of code. . .. 45
The percentage execution times of the operations. 46
The percentage execution times of the analysis versus the connection times for each

TESOUICE. . . v v v v v vt it it e e e e e e e e 47
The execution times of the whole minings in relation to the lines of code. 47

List of Tables

4.1

51
52
5.3
54
5.5
5.6
57
5.8

Al
A2
A3

The keys for the different events used in the pattern description. 23
The projects used for the evaluation sorted by their size (lines of code). 34
The execution times of the Git minings. 39
The execution times of the JIRA minings. 40
The execution times of the Jenkins minings. 41
The durations of the SonarQube minings. 43
The execution times of the pattern and developer analyses. 44
The number of violations for every pattern and project. 44
The execution times of the complete minings and analyses. 46
The web services paths of the minerpart. 51
The web services paths of the recognizer part. 52
The web services paths of the servicepart. 52

List of Listings

4.1
4.2
4.3
44

4.5
4.6

4.7
4.8

Example project configuration. L L oo 16
Example resource status information. 0 0L 18
Example pattern definition. o L L oo 21
A regular expression pattern to search for commit messages not containing CAMEL-

orMerge. 22
A time pattern searching for commits to an issue one day after its resolve. 22
A pattern of the category cluster searching for more than 4 closures of issues in 5

minutes. 23

An issue contribution pattern finding every issue with more than one linked commit. 24
An event pattern for all reopenings ofissues. 24

Contents

49 A Metric pattern searching for a rules compliance below 80%. 24
410 An example status information document for the pattern analysis. 25
411 Anexample patternresultinterval. L o000 26
4.12 The structure of a stored developer information. 28
4.13 The structure of the summary of themined data. 29
4.14 The structure of the one pattern result of the returned array. 30
415 Theloginformat. 32
5.1 The regular expression pattern for the project Doxia. 35
5.2 The issue contribution pattern of the evaluation. 36

5.3 The time pattern of the evaluation. 36

Chapter 1

Introduction

In modern software engineering, continuous integration tools are an important component in the
development of software projects. Version control systems allow teams to combine their work
on the source code. Through bug tracking systems, the different issues on a project are written
down on a centralized platform such that all stakeholders can view them and interact with. Con-
tinuous integration servers facilitate the deployment of the source code already in early states
of the project and provide information on not properly running unit tests. Source code analy-
sis platforms supply information on code smells. All these tools specially support projects that
are built in teams and development processes with short cycles, such as Scrum [R]00], an agile
development method.

1.1 Motivation

In software development, conventions on designing the source code became accepted to have less
bug prone code, a better architecture, easier overview of the code, and simplified maintainability.
Best practice patterns are one example of code conventions to reach these goals [Bec97] design
pattern another [GHJV94]. There are even various tools such as Checkstyle! that analyse the
current state of a project and deliver information on violations of these conventions.

It is possible to define similar ones for the use of the above presented development supporting
tools. In the same way that violations of source code conventions indicate wrong usage of the
programming language, these violations indicate misuse of the tools. However, this misuse does
not directly imply a bug in the code, but highlights behaviour that can be the reason for upcoming
bugs. For example in issue trackers, a resolved issue can be stated as closed, which signals that
the code is changed and the tests are running, indicating no more work is needed on this issue.
If now a developer commits a source change to the closed issue without reopening it, there is no
guarantee that the code is tested properly, and it is therefore bug prone. Another example are
commits not linked to an issue. These commits tend to be missed by quality reviews that focus on
the issue tracker and thus lead to not reviewed code changes. One can think of building various
other conventions. They can be very project specific, or rather general, similar to the source code
conventions.

These violations of conventions in the usage of the development tools can not be tracked. They
are easily missed, possibly leading to gaps in the code quality. They also can not be technically
prevented since multiple tools are involved and because the conventions differ for every project.

Thttp:/ /checkstyle.sourceforge.net/

2 Chapter 1. Introduction

1.2 Goal

The main goal of this master thesis is to provide an efficient way of analysing the data of a version
control system, a bug tracking platform, and continuous integration tools for violations of project
conventions. The vision is to combine the data of the different tools, to analyse it for violations
of the project specific conventions, and to provide the resulting violations. Therefore, a proof-of-
concept implementation of a software quality assurance (SQA) framework called SQA-Pattern is
presented, which allows for an automatic analysis of project conventions violations. SQA-Pattern,
first of all, has to handle the gathering of the data from the different resource tools. This data the
adherence to the conventions is analysed. The focus thereby does not lay on the current state of a
software project, but on the detection of violations in its history. To define which violations have
to be found, different categories of work patterns are supported that allow for the definition of
project specific violations. As a last part, the resulting data is provided via RESTful web services
allowing other tools, such as SQA-Timeline [Bir14] to display the information.

Since violations have to be detected as fast as possible to prevent increasing costs of a project
and because agile software development processes often include a daily meeting, up-to-date in-
formation is highly important. Therefore, the analysis duration has a great impact on the benefit,
of the SQA-Pattern approach. Thus in the evaluation of this thesis, the following research ques-
tion is investigated: How efficiently can violations of project conventions, such as missing issue keys in
commit messages, be automatically detected in software projects?

The structure of this thesis is as follows: After this introduction the related work is presented.
Next, the used resource data is explained, as well as a the insights of a previously implemented
project that analyses comparable data. In Chapter 4, the concrete implementation of SQA-Pattern
and the considerations behind it are presented. Chapter 5 describes the evaluation to determine
the efficiency of the approach. Finally, the conclusions of the thesis as well as the thoughts on
future work are located in Chapter 6.

Chapter 2

Related Work

In this chapter, work related to the SQA-Pattern approach is presented. It is divided in three main
parts: information needs, large-scale data provision, and violations of code conventions. Liter-
ature on information needs covers the stakeholders and their lack of suitable data in software
projects. Large scale data provision illustrates what tools are already available to mine data from
projects or repositories and provide it to the stakeholders. The studies on code convention vio-
lations investigate similar approaches as SQA-Pattern but concentrate on code based violations.
Last but not least the connection of the literature to this master thesis is explained.

2.1 Information Needs

Fritz and Murphy [FM10] collected 78 frequently asked questions of developers working on a
software project. Many of these questions are code specific but there are also questions about the
co-workers, broken builds, test cases, and some other groups of questions. These questions were
collected by interviewing eleven professional software developers. Fritz and Murphy found that
some of these questions are easy to answer because they focus on one kind of information. On
the other hand, questions that require the integration of multiple kinds of information are harder
to answer because the information has to be linked. An example is What have my coworkers been
doing? In this paper an information fragment model is presented. It integrates chosen information
automatically and allows to express a large variety of questions. First, the developer chooses
the information he is interested in. Then, the prototype links these information fragments and
presents a visual graph that can be ordered by the fragments. In the evaluation, 18 developers
had to try answering eight sample questions. The participants were able to answer 135 of 144
questions successfully, most of them in less than five minutes.

Another catalogue of questions was collected by the study of Breu et al. [BPSZ10]. They
analysed the questions that were asked to different bug reports to identify which information
is needed. For every question, meta-information is stored. This indicates to whom the question
is addressed or what the focus of the question is. The collected question were grouped in eight
different categories. Based on this categories, statistical analyses were executed e.g. on the time
these questions were asked in relation to the creation of the bug report or if an answer was pro-
vided. As a conclusion, they came up with some ideas for improving bug tracking systems to
support the answering of frequently asked questions.

De Alvis and Murphy [DAMO8] also focused on the support a developer obtains by combining
information from different sources. A software exploration tool named Ferret is presented. It
uses a model to support the integration of different sources for software information. The focus
of Ferret is to provide support to answer 36 questions (conceptual queries) about the code of
a software project. These questions were chosen from the literature, from blogs, or from the

4 Chapter 2. Related Work

experience of the authors of the paper. In the evaluation some professional software developers
used Ferret for two days. The developers used the given conceptual queries and stated the tool
as qualified to support their software development.

Ko, DeLine and Venolia [KDV07] observed software developers at their work to see what kind
of information they need. 21 types of information needs were identified. Most of these refer to
the source code but also information about the work of the co-workers and bug (re-)production
are needed. The observation showed that some of these questions can only be answered in un-
satisfying way and/or require a long search time. The study discovered that the co-workers are
mostly able to provide most of the information the developers needed.

Aranda and Venolia [AV09] analysed bug histories to identify common bug fixing coordina-
tion patterns. They arranged a case study on closed bugs from three major product divisions at
Microsoft. They analysed the development history of the bugs and the different interactions of ac-
tors with the bugs. In total ten bugs and their history where analysed. In addition, a survey with
1500 Microsoft employees (response rate 7.9%) evenly divided between developers, testers and
program managers was arranged. They were asked about their last bug, its history and actors,
the same data as analysed in the case study. Both studies produced very similar results. These
results lead to a list of 28 coordination patterns in the bug histories. Out of these patterns, eight
goals for bug fixing were derived as a framework for future work.

2.2 Large-Scale Data Provision

Dyer et al. [DNRN13] focused on the analysis of ultra large-scale code repositories for similarities
and differences by creating a domain-specific language called Boa. Boa is focused on retrieving
data from ultra large-scale code repositories, especially SourceForge! projects, that use SVN, and
automatically analyses this data. As the language is focused on this task it only needs some lines
of code and is much faster than common programming languages. For example the task How
many revisions are there in all Java projects using SVN? only requires 5 lines of code and 59 seconds
to execute. In Java, the same task needs 60 lines of code and the run time is 4636 seconds.

Another approach focused on projects using a repository is MetricMiner, a web based appli-
cation described by Sokol et al. [SAG13]. MetricMiner analyses the git or SVN repository of a
project to provide code metrics, an interface to analyse the data and statistical tests. It has some
predefined metrics that are added on every project but the user can also create specific metrics
and tasks for the data to personalize the results. The data is only gathered directly from the ver-
sion control system and therefore the platform is limited to this data. For example, information
on the compiled code is not accessible.

There is another web based approach, called Ohloh?. Ohloh does not investigate deeply into
a project but rather provides some statistical data. For example the application shows for each
project the number of lines of code, the used programming languages, and its activity (commits)
on a project and their influence.

A web tool that provides more statistics, even down to code level, is SonarQube3. It analyses
the source code and the continuous integration data to provide information in so called metrics.
For every metric, the actual source code can be viewed to see which impact it has. Additionally,
the evolution of the metrics is shown to visualise how the project evolves.

SOFAS (SOFtware Analysis Services) by Ghezzi [Ghel0] and by Ghezzi and Gall [GG11] pro-
vides a RESTful web service to run remotely some predefined analysis on a project and fetch the
results. The data for the analysis is gathered from version control systems (CVS, SVN and GIT

Thttp:/ /sourceforge.net/
2www.ohloh.net
3htt—p: / /www.sonarqube.org/

2.3 Violations of Code Conventions 5

repositories) and issue tracking history services (Bugzilla, Google Code, Trac and SourceForge).
A stakeholder can chose the specific analysis (e.g. code metrics) he wants to run depending on his
needs.

Troxler implemented an application called MiningHub [Tro14] that allows to mine data from
different social coding sites like GitHub, JIRA or Stack Overflow. Using mining scripts, the infor-
mation how the different resources have to be handled can be edited by a user. This allows him
to add new resources or change the exact information that is mined. Therefore, the application
can support different studies on gathering the desired data and avoid the implementation of mul-
tiple tools by different researchers for the same purpose. Since the scripts can be shared among
different users, an easy replication of data used for studies is provided.

2.3 Violations of Code Conventions

PR-Miner [LZ05], an approach by Li et al., analyses large-scale software code written in C to ex-
tract automatically undocumented general programming rules. Afterwards, the code is searched
for violations of these rules. The PR-Miner is evaluated with different large-scale software with
up to 3 millions lines of code such as Linux. The approach is extremely fast, only needing up to
two minutes for the analysis. Additionally, it has been shown that of the top 60 violations found,
at least 33 were bugs that had to be fixed in the evaluated code.

Mens et al. [MMWO02] developed a similar tool to find code smells. However, instead of cre-
ating the rules out of the code, it searches for programming pattern, such as design patterns, in
the source code of software projects written in Smalltalk. These pattern are used to develop clean
code that benefits from the experience of other software developers that already faced similar
tasks. The approach finds violations of these patterns to support software developers in improv-
ing their source code.

With SemmleCode, an Eclipse Plugin by Verbaere et al. [VHDMO07], not only given violations
of predefined patterns can be searched. Using a query language called .QL, own project specific
conventions can be implemented based on design patterns, Java style rules, or even own rules for
a source code of a project. The tool automatically searches for violations of these conventions and
displays a warning if any violation is found.

There are various other tools such as Checkstyle*, FindBugs® or Jtest® as examples for Java
source code to statically analyse the code directly in the development environment and find pre-
defined patterns that indicate violations of code conventions or concrete bugs. The already men-
tioned SonarQube finds violations of the Java style rules running remotely.

2.4 Link of SQA-Pattern to the Literature

Many different source code conventions are defined for software projects depending on the lan-
guage of their code. Various tools available in literature support developers in finding violations
of these code conventions. These tools are well-engineered and are used by many developers to
create cleaner code. For the usage of version control systems, bug tracker, and continuous inte-
gration platforms similar conventions exist already or can be formulated. For example, a commit
to an already resolved issue is disencouraged. Studies reported in literature, have shown that
there are many questions that are hard to answer. They concern continuous integration tools and
the general map a stakeholder has on the usage of these tools by the developers. For example

“http:/ /checkstyle.sourceforge.net/
Shttp:/ /findbugs.sourceforge.net/
6http: //www.parasoft.com/jtest

6 Chapter 2. Related Work

to know what has caused a change of the build result and why that source code was committed.
Even though the different tools have some conventions to simplify the handling of a software
project, it is not guaranteed that this conventions are met by the developers. SQA-Pattern makes
a connection between these two subjects by providing information on violations of conventions
for the use of the tools and not the source code itself. To provide this informations, first of all the
different resource tools are mined to get the information needed. On mining continuous integra-
tion tools, there are also various studies and even though the focus of the analysis in this studies
is not the same, some findings can still support the approach of SQA-Pattern.

Chapter 3

Background

In this chapter the background of SQA-Pattern is explained to give insights on the data that is
analysed by the application. First, the different kind of tools SQA-Pattern uses as resources are
introduced and it is shown which data they provide. Additionally, SQA-Mashup' is presented,
an already implemented prototype for the combination of project information from different plat-
forms. The experience gained thereby, builds the base for structural decisions in SQA-Pattern.

3.1 Resource Tools

There are multiple tools to support the development process of a software project, often providing
the same data. To keep the effort feasible for the SQA-Pattern approach, the number of supported
resource tools for the data gathering is limited. Many open source projects of the Apache Software
Foundation? actively use the same tools, generating a huge amount of development history data.
Therefore, these tools are chosen as resources in the approach. However, SQA-Pattern is designed
to allow adding further resources that provide the same or similar data.

3.1.1 Git - A Version Control Repository

Git is a "free and open source distributed version control system"3. A version control system is
a repository of content that provides access to historical editions and records all the changes in
a log [LM12]. Thereby distributed means that the entire data of the repository is cloned to every
users hard drive. An example of a not distributed version control system is SVN* where only a
checkout of the current tip of the repository is downloaded to the users computer. In Git every
change event (commit) in a repository is logged and the whole project can be reverted to exactly
the same status. This allows to see all the added, modified or deleted lines and/or files of every
change event in a project. A commit contains a hash code for identification, the author of the
change, the timestamp, and the differences in every file.

1h’r’tp: / /www.ifi.uzh.ch/seal/research/tools/sqa-mashup.html
Zhttp:/ /www.apache.org/

Shttp:/ /git-scm.com/

4http: / /subversion.apache.org/

8 Chapter 3. Background

3.1.2 JIRA - A Bug Tracking System

JIRA?® is a platform to collect all the changes (issues) in a project that need to be conducted (e.g.
bug fixing or adding new features). It is a web application to allow multiple users to track a
project, add/change an issue, or comment on an issue. Every issue has to contain a summary,
an exact description, a priority, an assigned developer who is responsible for the task, and the
reporter of the issue. There are also some optional values e.g. the date an issue has to be resolved
on. To follow the evolution of a project, every issue has one of five statuses. When an issue is
created the status is set automatically to open to show that some work is needed. A developer
then can change the status to in progress to indicate that he is working on it. When he added
his code changes to the repository and thinks the issue is fulfilled he can change the status to
resolved. To close an issue all the tests have to run through successfully. The last status is reopened.
A reopened issue indicates that the issue was once resolved or even closed but the solution was
not correct or the bug occurred again in a later phase of the project and therefore code changes
are needed again. Every change to an issue is stored in the change log with the exact timestamp.
All this data can be accessed via a web application or RESTful web services.

3.1.3 Jenkins - A Continuous Integration Server

Continuous integration (CI) allows to build the software for quality assurance after small changes
even early in the project instead of waiting for fully produced software [Ber12]. This helps to find
not only code errors but also errors in the build scripts or in the deploying to the server. Jenkins®
is a Java based open source CI server. In Jenkins, builds are typically initiated by a user or after
a given time period. As with JIRA, the information can be accessed by a web application or
RESTful web services. Some important information Jenkins provides is for every build a number
to identify, the result (e.g. SUCCESS or FAILURE), the timestamp, the duration and other build
specific information.

3.1.4 SonarQube - A Software Quality Measurement Tool

SonarQube is a web-based open source tool to analyse the code quality. It covers "the seven
axes of code quality"’, that are dublications, unit tests, complexity, potential bugs, coding rules,
comments, and architecture & design. SonarQube provides its information as metrics, which are
for example lines of code, rules compliance, unit test coverage, and many more. Normally, the
shown data is focused on the current state of the development. For the metrics it is possible to drill
down into the code view to see exactly which line affects a metric. SonarQube takes the source
code of the project and the CI as source for its metrics. Additionally to the current view, there is
the time machine to view the history of all metrics and its development. All this information can
also be accessed by RESTful web services.

3.2 SQA-Mashup

The SQA-Mashup is a platform to integrate the information of different data sources into one tool.
As SQA-Pattern, the SQA-Mashup approach uses a version control repository, a bug tracker and
continuous integration platforms as data resources. In addition to just combining the data, some
smart filters are implemented to highlight possible error sources, e.g. often reopened issues.

Shttps:/ /www.atlassian.com/de/software/jira
Ohttp:/ /jenkins-ci.org/
7htt—p: / /www.sonarqube.org/

3.2 SQA-Mashup 9

3.2.1 Implementation Details

In the backend, the tool is built on so called pipes. To simplify the structure, these pipes can be
seen as a row of actions to receive the desired information from the different RESTful services,
transform them into the target format and if required (especially for the filters) perform some
calculations to decide which information has to be shown. Every pipe leads to a Widget in the
overview and is called every time the user wants to see the project details. This composition
ensures flexibility, adaptability and always up-to-date data.

3.2.2 Impact

An evaluation of the SQA-Mashup platform [BGG14] has shown that if information is needed
from different CI tools a user needs significantly less time to find it using the SQA-Mashup tool
instead of the different CI tools used as resources by SQA-Mashup. Also the correctness of the
received results is higher.

3.2.3 Known Restrictions

However, the approach of the SQA-Mashup has some known restrictions. First of all, the tool
is not constructed for large-scale projects. With thousands of commits and issues the calculation
needs too much time to use it in a reasonable way especially of the smart filters. A user does
not want to wait several minutes on actualized results every time he uses the tool. Even though
there is a cache to save already loaded results, active projects need a frequent update to provide
information on the newest evolution. With large-scale projects also the other widgets need too
much time to gather all the data even though they are not as critical as the filters. Secondly, even
tough the platform is built to be flexible in the presented data, the smart filters can not be changed
much. If a new information has to be filtered, a software change is needed. Another disadvantage
is that a developer concentrated view is not supported. This is informative to see which developer
is responsible for which action.

Chapter 4

SQA-Pattern

This chapter describes the implementation of SQA-Pattern. First, the approach is explained. Sec-
ondly, the software architecture is shown. Then, the important libraries and their use in the ap-
plication are introduced. As last part, the three sub projects and their contribution to the project
and concrete implementation are presented.

4.1 Approach

The vision of SQA-Pattern is an application that supports software managers and developers in
their daily work by finding violations of project conventions and providing this information. The
stakeholder therefore can focus on the resulting data and does not need to analyse the whole
project history.

The resource tools used are predefined to allow a reliable evaluation and to stay in a feasible
size for the prototype. However SQA-Pattern allows the future integration of additional resources
without many changes in the existing code. The important condition is that the tools provide
similar information: the revisions of a version control repository, the issues of a bug tracking
system, the builds of a continuous integration platform and some source code metrics.

The previous work on SQA-Mashup and in the literature (e.g. [Tro14]) indicates that the min-
ing and the analysis can not be performed in real-time when it is needed, if large-scale software
projects have to be supported. The information has to be extracted before because it takes too
much time especially for the mining. This is implemented by separating SQA-Pattern in three
parts and is explained in detail in Section 4.2.

Work Pattern

The different chosen resources and known projects using them are examined for conventions or
principles on how the tools have to be used. Based on this conventions and principles different
work pattern are built to describe the violations. To fully understand how they are extracted the
linking feature of JIRA has to be explained:

JIRA supports an interlinking of commit messages with their issues. Adding some predefined
codes to the message allows to illustrate that a change is committed for a specific issue. It is even
possible to directly record the time that is used for the work on a commit. Additionally, a new
comment to an issue or a status change of an issue can be placed in the commit message. JIRA
then parses the message and performs the desired operation.

The implementation of these pattern has to be as generic as possible to allow different use cases
without code changes. However, a fully generic identification is not possible in this approach, the
work patterns are therefore divided into the following categories by the way the data is analysed:

12 Chapter 4. SQA-Pattern

» Regular Expression
On a chosen sort of text (e.g. commit messages) a search for regular expressions is executed.
Therefore, a violation of the convention how commit messages have to be built (e.g. the
inclusion of a link to an issue) can easily be found.

» Time
With the time pattern a timespan before and/or after an event can be analysed to find spe-
cific other events. A possible usage is to find violations of the convention to commit only on
issues that are not resolved.

+ Cluster
The cluster pattern searches for accumulations of defined events. For example the closure
of multiple issues in a short time span indicates duplicated issues and therefore, a violation
of the convention on how to use JIRA.

+ Issue Contribution
The issue contribution pattern is a special case of the cluster pattern only searching for com-
mits on the same issue in a given time span. That is a hint on a violation of the convention
that only one developer is allowed to work on an issue or that a commit is only performed
when the change is complete.

+ Event
Special events, for example reopening of issues, can be searched through the event pattern.
A reopened issue is a violation of the convention to close only bug-free issues.

* Metric
The metrics pattern allows to find specific values in metrics. A decrease of defined metrics
can therefore be highlighted easily. This pattern is a special case since source code conven-
tions have an influence, but the general convention violated is focusing not on the code
itself but on the developers committing. For example, test unit success is not allowed to fall
beneath a given threshold.

These categories all have defined structures on how they are described. This allows to create
patterns for specific tasks not knowing the structure of the data that is used. Hence, it is not
possible to create generic patterns, only the different variables can be replaced. For every new
pattern a code change is needed. This forces to structure the code in a way that new pattern
categories at least need only few code changes.

For every pattern a severity rating can be defined. A high value indicates a strong violation
whereas a low value is used for rather insignificant violations. A severity of zero stands for
neutral pattern only used to fulfil information needs. For every developer, the severity rating of
a pattern is multiplied with the number of instances of this pattern he is involved in. This allows
to see which developer does not adhere to the conventions.

4.2 Software Architecture

To meet the main goal of the SQA-Pattern framework, the analysis of the continuous integration
data on specific patterns, first of all the data must be collected. Then, the data is analysed and as
last step, the application has to provide the data using RESTful services. This set-up allows to split
the project directly into these three parts as it can be seen in Figure 4.1. The advantage of creating
three independent subprojects is that the whole project is much more flexible and adaptable. One
part can be changed or even replaced without disrupting the other two parts. It is only important
that the format of the resulting data of one subproject is not changed. To protect the data a user

4.2 Software Architecture 13

4 sackend)

|

REST

Jira APl

It

REST
APl

read and write

Jenkins

Data
MongoDB

It

REST

Sonar API

Pattern Recognizer ——— RESTful Services

Ut

9]
=

IGit

Pattern
Mongo DB

UL

SVN

SVN Kit

read Service

_ /

Figure 4.1: Software architecture

|

login is supported. Through the splitting of the project, it is possible to create users having only
access to some parts of the project, e.g. the resulting data. This allows to protect a project for
changes but to still provide the data.

4.2.1 Mining

The mining includes the collection of the data for all the predefined resources for one project,
convert it to the desired format and store it in the database. The mining of the data has to be as
fast as possible. The faster it is, the more often the data can be updated. To guarantee current
data that can be used by a software manager, at least an update every day has to be supported.
Software developers perhaps prefer even more actualized data to see directly new events without
using other tools.

The data for the chosen resource tools is either fetched through RESTful web services or a Java
framework that organises the import of the data. After mining the data, it has to be changed to
a suitable format to store it in the database. Also the database has to be organized such that the
up-to-date data can be provided to the other parts of SQA-Pattern.

14 Chapter 4. SQA-Pattern

To guarantee access to the data all day, the miner is built in a way that the link to the data is
only overridden after the successful mining. The process also blocks other attempts to mine the
same data to prevent duplicated data, useless computation and connection effort. To minimize
unneeded costs a version number is stored to every data that allows to stop the mining process if
no new data is available.

The mining process can be started by calling a web service for every resource in a project.

4.2.2 Analysis

To analyse a project on its predefined pattern the data of the mining process is read out and sorted.
Afterwards, the data is analysed for every pattern and the resulting violations stored in another
database. This split of the databases allows to give the analyser only read access to the mining
database. The version control and the bug tracking data as well as the generated pattern results
are then analysed to find all the corresponding events for a developer and combine it. This allows
to collect a severity rating for every developer to analyse how much he is involved in negative
patterns. It also shows if a developer is active in a project or not. This information is generated
for the whole duration of the project but also for the recent time span (one week). The resulting
developer data is also stored in the second database.

This analysis for pattern and developers always has to be executed after mining the data of a
project to have suitable results. Therefore, it is also necessary to have a fast search to allow the
data to be updated as much as possible, at least once a day.

Again the data is accessible all the time in the same way as the mining data. Attempts to
analyse data an analysis is already running on are blocked. A determination to only analyse if
new resource data is available was discussed but too complex, because the pattern can be changed
and therefore generate other results. Although this change of a pattern can be stored, it results
in the current database structure in the possibility of two services changing the same file and
therefore was omitted.

The analysis can be started using a web service and an automated start is possible. In addition,
there are web services for saving, deleting and getting the pattern definition to allow project
specific patterns.

4.2.3 Data Provision

The last part of the application is the provision of the previously stored data. It only needs read
access to the database as the data is not changed any more. The data is fetched out of the database
and provided as directly as possible to enable fast web services. Naturally the data still needs
some filtering, preparation or combination to be convenient. The individual services are:

* Summary
All the events of the different resources are combined, sorted by date and provided. To
prevent an overflow the data is filtered for the important information.

« Pattern results overview
The number of intervals of every pattern over the whole project period as well as for the last
week.

« Pattern results
All the resulting intervals of the pattern analysis.

» Developers
The developers and their commits and issues as well as their involvement in analysed pat-
terns.

4.3 Important Libraries 15

+ Last commits
A list of given number of the last commits.

« Info
This service expects an id of an element and returns all the stored information.

 Source
Expecting a commit-id and a file path, the source file before and after the commit is returned.

4.3 Important Libraries

The SQA-Pattern framework is written in Java. In addition to some well-known Java libraries,
there are other frameworks used in the prototype to simplify the tasks and make use of already
implemented functions.

4.3.1 Play Framework

The Play Framework! is a Java and Scala web application framework that has integrated support
of (RESTful) web services. The focus lies on minimal resource consumption to facilitate highly-
scalable web applications. Play is highly supporting asynchronous programming for web calls
as well as for the actual programming. It supports the actor-based model to handle concurrent
systems and long running tasks by integrating AkkaZ. Play also handles the build system using
sbt®. This allows an easy and flexible way of compiling and deploying the code on a server,
integrating other libraries, and package a project as JAR file.

Play is therefore the ideal choice to build SQA-Pattern on. The framework provides a way of
doing large-scale web operations already checked by various other developers. The easy way of
implementing asynchronous calls allows to use them often and without thinking of the operations
that have to be handled in the background. Since all the mining and analysis operations work
with asynchronous calls, this is an important point. Using the build script of Play a continuous
integration using Jenkins is set up providing all the RESTful web services already during the
development period.

4.3.2 JGit

JGit * is a Java library that implements the Git version control system. It allows to execute the
same calls as with Git on the command line plus direct handling of the resulting information in
Java. In SQA-Pattern it is used to clone the Git repositories and analyse all the commits and their
corresponding data. With JGit it is possible to perform many other actions such as commit new
code but this functionality is not needed in the application.

4.3.3 SVNKit

SVNKit® provides the functionality to use SVN in a Java application . Basically SVNKit provides
the same functionality for SVN as JGit for Git but due to the different composition of the reposi-
tories in a varied way. In SVN the whole project can not be cloned but a checkout of the current

1ht’tp: / /www.playframework.com/
thtpz //akka.io/

Shttp:/ /www.scala-sbt.org/

4ht’cp: / /eclipse.org/jgit/

5http: / /svnkit.com/

16 Chapter 4. SQA-Pattern

state is performed. Therefore for every commit, a new connection to the repository has to be
established to obtain the files at this state of the development history.

4.4 Miner

The main part of the miner is, naturally, the mining of the different resources. But before the data
can be gathered, a project configuration has to be uploaded. This can be performed through a PUT
request on the web services. The body must include the JSON formatted project configuration.

4.4.1 Project Configuration

As an example the document for Apache Camel® is shown in Listing 4.1. The key value can be
set at will, the only restriction is that using an already existing key with case insensitivity, will
overwrite the existing project configuration. The name has no influence on the data, it is just for
human recognition of the project. Setting the startdate in milliseconds since 1970 allows to ignore
all the data before this timestamp. The vcsSources array includes all the relevant information for
the version control repository. Theoretically, it is possible to add more than one repository but in
the current state of the prototype additional repositories will be ignored. In the fype is stored if it
is a Git or a SVN repository and the url links to it. For protected repositories a user name and a
password can be set. To specify which branch has to be analysed it can be set in the name variable.
In the wsSource array all the tools can be specified that are accessible through a web service. Again
the type value defines what sort of resource it is. In the current project state it can be Jenkins, JIRA
or SonarQube. The url links to the home directory of the resource specific RESTful service and
the name value has to be the specific key that is used to identify the project. For every resource
a user name and password for authentication can be set if needed. Additionally, for SonarQube,
the metrics to mine have to be set in the resource configuration.

{

"key": "CML12",
"name": "Apache Camel 01.01.2012",
"startdate": 1325376000000,
"vcsSources": [
{
"name": "master",
"password": "",
"type": "git",
"url": "git://git.apache.org/camel.git",
"username": ""
}
1,
"wsSources": [
{
"name": "Camel.trunk.fulltest",
"password": "",
"type": "Jjenkins",
"url": "https://builds.apache.org/job",
"username": ""

6htt—ps: / /camel.apache.org/

4.4 Miner 17

"metrics": "violations_density,violations,ncloc,test_errors,tests,

coverage, test_success_density,test_failures",

"name": "org.apache.camel:camel",
"password": "",
"type": "sonar",
"url": "https://analysis.apache.org",
"username": ""
by
{
"name": "CAMEL",
"password": "",
"type": "jira",
"url": "https://issues.apache.org/jira/rest/api",
"username": ""

Listing 4.1: Example project configuration.

When the web service is called, first of all the request body is analysed to determine if the JSON
syntax is correct. As a next step it is inspected if the main values (key, name, startdate, vcsSources
and wsSources) in the JSON exist. Further analyses are not executed. If an incorrect document is
uploaded either an error will be thrown during the PUT request or the mining just won’t work.
The same happens, when the data in the document is not linking to a correct resource API. If
there was no exception in the inspection the document is stored in the database in a collection of
all the configuration files. Thereby, the key is changed to upper case letters and a possibly already
stored file with the same key is overridden. Using a lower case key in any part of SQA-Pattern
will always result in the upper case key. If everything worked correct a HTTP status 201 - created
will be returned.

A project can also be deleted through a web service. If this service is called the configura-
tion file gets removed from the database. Also all the collections of the project will be dropped,
deleting all the stored data.

To get an already existing project configuration a web service can be called using the prede-
fined key of the project. There exists also a web service to receive the key and name of all the
stored projects. The detailed links to the services can be seen in the Appendix A.

4.4.2 Database structure

Every project has a collection in the database that stores the status information of the data for
all resources and some collections that store the mined data. An example of a status information
document can be seen in Listing 4.2. The type value is to identify the correct document for a
resource. In the version field the actual version number is stored. This has two purposes, first
it allows to compare the stored number with the actual version of the resource and second the
number is used to find the collection with the resource data. These collections are named with
the key of the project, the resource of the data, and the actual version number. If new data is
mined, it is always stored in a new collection allowing to provide the old data until the new one
is fully uploaded. Since the old data is not deleted directly another part of SQA-Pattern that is

18 Chapter 4. SQA-Pattern

perhaps using the old collection can still continue working. If new data is ready to be used the
version number in the status information just has to be updated and the actualised data can be
accessed. Starting the first mining the version is set to null until the operation is finished. In
timeOfVersion the timestamp when this version was uploaded is stored. To prevent more than one
running mining operations on the same resource of a project the inlse value exists. At the start
of the mining it has to be set to true and at the end back to false. Since it is always possible that a
mining operation is interrupted, for example because of a server crash, the start timestamp of the
mining is stored in startOfUse. This allows to check if the mining takes to much time and release
the data even though the inlse value is still set to true. In the example in Listing 4.2 the value is
null because no mining is active and therefore no start time can be set.

{
"type": "Jenkins",
"version": 1768,
"timeOfVersion": 1396621302312,
"inUse": false,
"startOfUse": O

Listing 4.2: Example resource status information.

4.4.3 The Mining

To mine some data a resource specific web service has to be called. As input the key of the project
is needed. All the web services have in common that first of all it has to be checked if the project
configuration for the given key exists. If this is not the case a HTTP status 404 - not found is
returned. If the project configuration exists the status information is checked to detect if there is
already running a mining operation on the specific resource of the project. If the inlUse value of
the status document is set to false or the startOflUse timestamp is older than an hour the resource
is taken as unused. In this case the inllse variable is directly set to true and the actual timestamp
is stored as the beginning of the usage. Having set the usage information the actual mining can
begin. This is different for every resource but it is always one or more asynchronous calls running
in the background. The user who called the web service already gets a HTTP status 202 - accepted
to indicate that the mining is now running but a correct result can not already be guaranteed.
A HTTP status 423 - locked indicates that the resource is not free for mining. Since other parts
of SQA-Pattern have to access the data stored in the database collections the old data gets not
directly deleted because it can interrupt a running program using the data. Therefore every time
a new mining starts it is analysed if the old version was older than a day. If this is the case all
other existing versions of the data are deleted to reduce the space that is needed.

Git Mining

To gather the data of a git repository, first of all a project specific directory is set up, where the
repository will be cloned to. If the directory is not already empty, it has to be cleaned up. Having
an empty directory, the clone operation can be started. This is performed by getting all the infor-
mation of the project configuration such as the URL of the repository. The clone is only executed
on the predefined branch to save time by skipping all the irrelevant commits. When this opera-
tion is finished, the local repository can be analysed. First, the application takes the timestamp of
the newest commit as version number and compares it with the stored one. If the version is the
same, the whole operation is aborted and resource set to unused. Otherwise, the miner searches

4.4 Miner 19

through all the commits and writes out the commit identification of the secure hash algorithm
(SHA), the author, the email of the author, the date and the changed files if the commit is newer
than the defined start date in the configuration, otherwise ignoring the commit. To directly get
the exact change of a file in a revision without analysing the commits before, the diff file and the
exact version of the resource file after the change have to be stored. Since a large-scale project can
have 10000 and more commits every commit has to be stored directly in the database. Not storing
them, sooner or later leads to an overflow in the Java heap space. When all the commits are stored
in the database the directory of the local Git clone is deleted. Then, the status information of the
resource is updated storing the new version and setting the resource to not in use.

SVN Mining

Since a project in SVN can not be cloned, a local repository is not needed for the SVN mining. In-
stead the connection to the repository is established and the number of the latest revision fetched.
This is than used as version number to compare with the already stored data and decide if a new
mining is needed. In this case all the log entries of the project are fetched and handled one after
the other. This log entry includes the number of the revision, the author, the message and the
timestamp. The email of the author can not be retrieved. Unfortunately also the changed files are
not directly included in the log entry, only the path of the file before and after the revision. There-
fore, two request to the remote repository have to be executed for every changed file. Having all
the information needed, the data is stored in the database and the next log entry gets analysed.
After the last one, the status information of the resource is updated. Naturally, the revision is only
analysed if the date is newer than the start date in the configuration.

Because this analysis needs many independent connections to the remote repository the min-
ing of the data takes much more time than using a Git repository. SVN offers the possibility to
first copy the whole repository to a local path and then analyse it locally. This version is probably
faster if only one project is stored in the SVN repository. But unfortunately, more than one project
can be stored in a SVN repository and a copy operation can only be executed on all of them to-
gether. The Apache Software Foundation for example stores all their projects in one repository
and therefore, a huge amount of data has to be transferred. Hence, this approach is even worse.

Nevertheless, there is a possible solution. If all the additional requests for the files are sepa-
rated and performed using asynchronous calls, the time consumption is probably reduced signif-
icantly. But since the Git mining was already working pretty fast and all the needed repositories
are available using Git, the focus was not laid on this task. However, if in the future SVN data is
needed, this approach is definitely worth trying.

JIRA Mining

The mining of the JIRA data works through RESTful web service calls that return JSON formatted
information. The needed data are all the issues with their change log. There is a web service to
get all this data, but the maximal number of issues in one call is restricted to 100. Therefore for
large-scale projects 30 calls or more is no rarity which shows the importance of asynchronous
calls. At the beginning the first 100 issues are fetched. With the results also the number of existing
issues is delivered. The total number of issues serves as version number and is compared the
same way as the Git and SVN version. If a new version of the data is available, it is calculated
how many calls are needed and a counter is set. Additionally a method that buffers the first 100
results in an array and decrements the counter by one is called. Only the issues that are updated
in the timespan between the start date in the configuration and the actual time are buffered, the
rest is dropped. This leads to possible issues in the list that are created before the start date, but
ignoring them does not make sense because events in the timespan after the start date then also

20 Chapter 4. SQA-Pattern

lack. As a next step, the asynchronous calls to receive all the issues are performed. All of this calls
buffer their result in the same way as the first one. When the response of the last call is handled
the counter is reaches zero and indicates completion of the task.

As a next step the linking of the commits with the issues is performed. Therefore, it is nec-
essary to have the mining of the version control repository finished before the start of the JIRA
mining to use actualized data. For every issue all the commits fetched from the database are in-
vestigated to see if the issue specific regular expression is true. For the first issue of the Apache
Camel project the regular expression is .*CAMEL-1["0-9].*. In this case CAMEL is the JIRA key of
the project and 1 is the number of the issue, combined by a hyphen building the key of the issue.
.* at the beginning and the end of the expression means that every character irrelevant how many
times used (also no character at all) can be there. ["0-9] implies that after the number of the issue
no digit is allowed, what protects to find for example CAMEL-12 as a result of the regular ex-
pression of CAMEL-1. This analysis however needs much time and is only needed to avoid false
positive results. Therefore every commit is first checked if the issue key is contained in the mes-
sage to filter most of the commits in a fast way. Then only the positive values are really checked
on the complete regular expression. Having thousands of commits that all have to be checked
for every issue, this approach saves much time. All the resulting linked commits are stored in an
array and added to the specific issue.

Beside the commits no data is added to the issues. Also no information is deleted to allow
the use in the other parts of SQA-Pattern even though in the current approach most of it is not
needed. The issues are then stored in the JIRA database collection creating a document for every
issue. As a last part, the status information of the project for JIRA is updated which finishes the
mining.

Jenkins Mining

Mining the Jenkins data is also performed through RESTful web services returning JSON format-
ted documents. The information of every build has to be gathered. For this reason first of all, a
web service on the overview of the project has to be called, getting the number of the first build
that is not deleted and the number of the next build that is used as version number. Unfortunately
when a build is deleted, also all the information associated are cleared and can not be fetched any
more. All the build numbers from the first not deleted to the next build number minus one are
used for asynchronous calls on this builds. To analyse if all service calls have responded a counter
is created. When these calls get a response they call a method to buffer the result and decrement
the counter. All the deleted builds in between will return a HTTP status 404 - not found indicating
that they have to be ignored but still decrement of the counter is needed. Unfortunately there is a
bug in the Play Framework not permitting to have a longer idle time than 120 seconds. Normally
this is not a problem but the Jenkins server of Apache is badly slow and therefore this limit can
sometimes be reached. As a workaround, the builds that use more than 120 seconds to response
are also ignored. However, in the next version of Play this bug will be fixed and the workaround
will not be needed any more.

The responded builds are analysed for their timestamp as the data of the other resources and
only the desired data is buffered. Since the data of the builds needs no adjustment, it is stored
in the database as soon as all the build responses are fetched. Finally, the status information for
Jenkins is updated and the mining ends.

SonarQube Mining

Only three RESTful service calls of SonarQube are needed to gather the relevant data for SQA-
Pattern. The resources service provides some general information on the project, the time machine

4.5 Recognizer 21

service returns the different metrics over time and the metrics service offers information about
these metrics. First of all, the resources service has to be called for a JSON response with the
SonarQube project key. Analysing the responded JSON document the date of the actual version
can be gathered and is then used as version number. The whole operation is aborted if the date is
the same as the one stored in the database.

The next step is the fetching of the time machine data. As additional parameters to the ones
already used for the resource, the metrics and the start date that are defined in the project config-
uration are assigned. For some reason SonarQube, sometimes does not deliver the newest values
if the end date is not defined and therefore the current date is transferred. As soon as a response
is received the data is buffered for further revision. The metrics are fetched asynchronously at the
same time and and the result also buffered.

When both requests are returned successfully, the data of the two calls is combined. The time
machine data only has the SonarQube specific identifier of a metric and the list of values. The
metrics data includes additionally the correct name of the metric and some information if the
number is a percentage or a concrete value. Combining these datasets allows to interpret the data
correctly.

In the end the combined data is stored in the database and as for every other resource the
status information is updated.

4.5 Recognizer

In the recognition part of SQA-Pattern, the patterns for searching violations can be defined, mod-
ified or removed. With these patterns the stored data of the miner is analysed. Last, the developer
data is generated.

4.5.1 Pattern Definition Format

To analyse a project for violations, first of all some patterns have to be defined. The JSON format
is used to transfer these pattern definitions. Therefore, the structure of the JSON document has to
be defined to parse the data. In Listing 4.3, an example pattern definition is shown. The values
name and description thereby only have informative character. The severity sets how fatal a found
violation is and the id is used to clearly identify every pattern. The type is used to set the pattern
category. This has an influence on the object in definition. The format of the definition for every
category is different since the information needed depends on the category. An example for every
category is shown in Listing 4.4 to 4.9.

{

"name": "Example Name",

"severity": "5",

"description": "This is an example description",
"type": "time",

"definition": {

}y
"id": "pat5335ad20e4b0£f6e907£8de23"

Listing 4.3: Example pattern definition.

22 Chapter 4. SQA-Pattern

Regular Expression Pattern. The specific structure of a regular expression pattern is shown in
Listing 4.4. The type inside the definition object defines which sort of events it is searched for. The
value can either be commit or issue. The variable field is used to concretise in which text the search
has to be performed. It can be message or author in a commit event or summary or description in
an issue. The regular expression searched for, is stored under regex. The field ruletype specifies if
a violation occurs when the expression is found or the very reverse, by setting the value to regex
or complementregex. It is possible to have multiple objects in the rules array. That allows to search
in different fields by adding another rule, the event then must meet both of the rules to count
as violation. The pattern in Listing 4.4, for example, searches for all the commits not containing
CAMEL- or Merge in their message.

"type": "regex",
"definition": {
"type": "commit",
"rules": [
{
"field": "message",
"ruletype": "complementregex",
"regex": ".xCAMEL-.x|.xMerge.x"

}

Listing 4.4: A regular expression pattern to search for commit messages not containing CAMEL-
or Merge.

Time Pattern. The pattern of the category time in Listing 4.5 searches for a resolved issue and
all its linked commits 86400000 ms (1 day) after. Thereby the value in type is the anchor event.
Supported are all the keys in Table 4.1 expect commit_sameauthor, commit_sameissue, and com-
mit_sameauthorandissue since they make no sense as origin. The two interval variables define the
timespan in ms from the anchor event in which the events listed in the filters array is searched.
The value of negativelnterval thereby refers to the time before the event and positivelnterval stands
for the time afterwards. All the keys in Table 4.1 can be chosen in the filters list. The only con-
straint is that if commit_sameauthor is used the anchor event has to be an issue or a commit and if
commit_sameissue or commit_sameauthorandissue is used the anchor has to be an issue.

"type": "time",

"definition": {
"type": "issue_resolved",
"negativeInterval": 0,
"positiveInterval": 86400000,
"filters": [

"commit_sameissue"

Listing 4.5: A time pattern searching for commits to an issue one day after its resolve.

Cluster Pattern. A maximal interval in ms the events have to be in is defined in a cluster pattern
definition. Every rule in the rules array sets for one event type the minimal number of occurrences

4.5 Recognizer 23

Table 4.1: The keys for the different events used in the pattern description.

Key Event-type Explanation

commit Commit Any commit.

commit_sameauthor Commit Commits of the same author.
commit_sameissue Commit Commits that are linked to the same issue.
commit_sameauthorandissue | Commit The combination of sameauthor and sameissue.
build Build Any build.

build_successful Build A successful build.

build_failure Build A failed build.

issue_created Issue The creation of an issue.

issue_resolved Issue The resolve of an issue.

issue_closed Issue The closure of an issue.

issue_reopened Issue The reopening of an issue.

issue_updated Issue Any update of an issue that is no status update

to be marked as a violation. The individual rules are linked using an AND operation. In the
example of Listing 4.6, the pattern hits if there are more than 4 issue closures in 5 minutes (300000
ms). The type of the rule has to be a value of the Table 4.1. However, the keys commit_sameissue and
commit_sameauthorandissue are not supported since for this purpose a different analysis is needed
that is offered in the issue contribution pattern. In the current version of SQA-Pattern only the
greater than operator represented by the string more is provided. Last the operand defines the limit
of events.

"type": "cluster",
"definition": {
"interval": 300000,
"rules": [
{
"type": "issue_closed",
"operator": "more",
"operand": 4

}

Listing 4.6: A pattern of the category cluster searching for more than 4 closures of issues in 5
minutes.

Issue Contribution Pattern. Specifying an issue contribution pattern includes the definition of
an interval timespan in milliseconds that is the maximal time that can lay in between the single
events to still count as violation. To ignore the value, it can be set to -1. Under the key sameAuthor
a boolean is expected to mark if only commits of one author count for the pattern. As for the

24 Chapter 4. SQA-Pattern

cluster pattern only more is supported as operator, meaning greater than related to the limit in the
variable operand. In Listing 4.7, an example issue contribution pattern is presented that searches
for all issues that have more than one commit linked to it.

"type": "issue contributions",
"definition": {
"interval": -1,
"sameAuthor": false,
"operator": "more",
"operand": 1

}

Listing 4.7: An issue contribution pattern finding every issue with more than one linked commit.

Event Pattern. To define an event pattern only the value of the variable type has to be set.
Possible are all the keys of the Table 4.1 expect commit_sameauthor, commit_sameissue and com-
mit_sameauthorandissue. An example definition is shown in Listing 4.8.

"type": "event",
"definition": {

"type": "issue_reopened"

Listing 4.8: An event pattern for all reopenings of issues.

Metric Pattern. A metric pattern is specified by setting an arbitrary number of rules. In Listing
4.9 an example is shown with the only rule that if the metric Rules Compliance falls below 80% the
pattern hits. The value of metric thereby has to be the key of a SonarQube metric with the term
met in front. The meaning of this additional term will be explained in Section 4.6.4. The operator
is set using less, equal or more to define how the number of operand has to be interpreted.

"type": "metric",
"definition": {
"rules": [
{
"metric": "metviolations_density",
"operator": "less",

"operand": 80

Listing 4.9: A Metric pattern searching for a rules compliance below 80%.

4.5.2 Pattern Configuration

These pattern definitions are uploaded in the body of a PUT web service call. Since every pattern
is project specific the call needs the key of the project as a parameter. On uploading the pattern,
it is only checked if the JSON document includes the values name, description, defintion, type and
severity. If the provided data is really in the correct format, is checked during the analysis (Section

4.5 Recognizer 25

4.5.4). An id does not need to be included in the JSON document, it is generated. However, the id
must be provided to update an already existing pattern. In this case the existing pattern with the
same id is overridden.

There are also RESTful web services to return the existing pattern definitions. All pattern of
a project can be requested by only handing over the project key. By also including the id of a
pattern, only this specific pattern will be returned. In the same way an existing pattern can be
deleted with the only difference of setting the HTTP method to DELETE.

4.5.3 Database Structure

The database of the recognizer is structured in the same way as the database of the miner. There
is a collection to store the status information for the patterns and the developers of a project.
The collections storing the resulting data can be reached with this documents. In Listing 4.10, an
example pattern status information is shown. Thereby, the different versionOf variables show the
versions of the resources that was used for the analysis. All the pattern ids that were checked
during the last run are stored in the array checkedPatterns. The remaining variables are used in
the same way as in the mining part explained in Section 4.4.2. This guarantees access to the up-
to-date data without directly deleting the old one and prevents running two analyses at the same
time. The structure of the status information for the developers looks the same except that there is
no checkedPatterns array. Also, the versions of Jenkins and SonarQube are not stored because that
information is not used for the developers, instead the version of the pattern analyses is stored.

{

"versionOfJenkins": 1758,

"versionOfJira": 7307,

"versionOfSonar": 1394506322000,

"versionOfGit": 1395903889000,

"checkedPatterns": |
"5328902bed4b0e93355709fb9",
"531cf2bcedb099a5856¢c56£9"

1,

"type": "Pattern",

"version": 1396612812891,

"timeOfVersion": 1396612820448,

"inUse": false,

"startOfUse": 0

Listing 4.10: An example status information document for the pattern analysis.

4.5.4 The Analyses

The analyses for the patterns and developers are started through a RESTful web service. As in
the miner first of all it is checked if another instance is running the analysis and in this case a
HTTP status 423 - locked is returned. Otherwise, the data is locked itself and the analysis is started
through an asynchronous method call, a HTTP status 202 accepted is returned. To save space at
this point, also a method is called to delete all the results older than a day except for the current
version.

26 Chapter 4. SQA-Pattern

Pattern Analysis

The firsts step of the analysis consists of caching the data of the different resources and adapting
the format to allow a pattern analysis. The version control and the Jenkins data, does not have
to be adapted because a document is stored for every event. However, the JIRA data is stored
depending on the issue, not the actual event. Therefore, the creation and every event of the
change log have to be stored separately with the corresponding issue information, e.g. the issue
key. Additionally, the author of every event has to be set, which is not necessarily the author of
the whole issue. Since the SonarQube data is sorted according to the metrics, the values of every
timestamp have to be combined to an event.

Having all the data in the correct format, the analysis for every stored pattern can begin. Since
only the structure of the pattern description document is checked, this process can throw an error.
Thus, the errors are caught and a pattern whose analysis has thrown an error is marked in the
description document and not checked any more in further analyses until the mark is removed.

All patterns have in common that the results are stored as intervals having a start and end
timestamp. An example is shown in Listing 4.11. These timestamps are set by analysing the
events contained in a result and taking the first and the last one as the borders. The events of a
pattern result are all the events that are part of the violation. If the pattern result only contains
one event, the start and end timestamps are the same. Results of the same pattern definition with
overlapping borders are combined into one result if the focus is the same. A focus is for example
used in the issue contribution pattern because a combination between results concerning different
issues makes no sense. The weight of a result shows how many different results are combined in it.
Therefore, the weight is first always set to 1 and summed up if the results are combined. The field
patternld contains the id of the pattern definition that is used to find the interval. The id uniquely
identifies the instance over all results and is built by adding ins to the pattern id at the beginning
and a count of all the results of this pattern definition at the end.

{
"endTimestamp": 1203120575000,
"events": [

{

I

"focus": "issDOXIA-56",

"id": "ins5335ad6ce4b0£f6e907£8de241",
"patternId": "5335ad6cedb0f6e907£8de24",
"startTimestamp": 1142211142000,
"weight": 7

Listing 4.11: An example pattern result interval.

In the following the specific analysis for every pattern category is described. Thereby the
pattern definition structures of Section 4.5.1 are referred.

Regular Expression Pattern. To analyse a regular expression pattern, first of all it is checked
in the definition if the type is a commit or an issue. Then, the regular expression is searched on
the defined text for every convenient event and every rule. Since the rules are associated with an
AND operation the analysis for one event is aborted if a rule is not met. If all rules are fulfilled an
interval is created.

4.5 Recognizer 27

Time Pattern. To analyse a time pattern for every event that is matching the anchor type, the
defined interval around it is scanned for the wanted events. If there are any, the interval is built
with all the events, setting the anchor event as the focus.

Cluster Pattern. The cluster pattern results are found by generating for every event an interval
with the given maximal timespan. All the events inside the borders are added. For every rule it
is then checked if the minimal number of specific events fall into the interval. If this is the case,
all the events that are not part of the cluster are removed. If one of the rules is commit_sameauthor,
the author of the first event is used for the analysis and as the focus of the result.

Issue Contribution Pattern. For the issue contribution pattern analysis, all the linked commits
of an issue are searched for clusters exactly in the same way as the cluster pattern. The only reason
these two patterns are not combined is the following: The information which commits are linked
to an issue is stored at a different location, thus making the search differ. The creation event is
stored in the events of the interval. However, it is ignored while setting the borders of the interval
and a field responsible is created, where the assigned developer is set, because the one who created
the issue is not responsible for the violation of this pattern.

Event Pattern. The analysis of an event pattern is relatively easy. The events are just checked
for the defined event type and the matching ones yield the result. The only slightly special case
is the search for reopened issues because there the developer that resolved the issue is taken as
responsible and not the one that actually reopened the issue.

Metric Pattern. For the metric pattern analysis, all the rules of the definition are checked with
the corresponding metrics at one timestamp. If all rules are fulfilled, the event is violating the
convention. Combining all the neighbouring events that matched leads to the resulting interval.

Developer Analysis

The developer analysis connects the authors of commits and issues and calculates the involve-
ment of these developers in the pattern results. The analysis is directly started after the pattern
analysis since an update in the pattern results always needs an update of the developers analysis.
The analysis can also be started using a web service. However, this is mainly for testing purpose
it does not really make sense to use it otherwise.

First of all, the version control data is analysed for all the developers that committed a revision.
For every developer all the ids of his commits are stored. Additionally, the number of recent
commits is saved, referring to all the commits in the week before the last update of the version
control data.

Next, the bug tracker data is analysed to find all the users and the issues they are involved
in. The involvement is counted for every issue a developer created, initiated a change to, or is
assigned to. The keys of these issues are stored in the document of every developer. Additionally
the developers are directly combined with the ones from the version control data by comparing
the names. It was thought of using the email as connection but SVN does not provide an email
address. Also for Git, the name leads to better results because some developers used multiple
email addresses.

As the last part, all the events listed in the patterns are investigated to find the patterns every
developer is involved in. Normally, the author of an event is taken as the involved developer,
however sometimes, e.g. in the issue contribution pattern, the previously as responsible stored
author is the one who counts. For every developer, all the instances of the different patterns plus

28 Chapter 4. SQA-Pattern

the recent ones he is involved in are stored. How often a developer is involved in one instance of a
pattern is ignored. The number of instances for every pattern allows to calculate the summed-up
severity rating as well as the recent severity rating for a developer.

In Listing 4.12, the structure of the resulting information for a developer is shown with some
fake data.

"commits": [

"comcommitsha",

i

"displayName": "Firstname Lastname",
"id": "devfirstnamelastname",
"issues": [

"issEXAMPLE-1"
I
"numberOfRecentCommits": 14,
"overallSeverity": 22,
"patternMatches": [
{
"name": "Patternname",
"numberOfMatches": 11,
"patternId": "pat5335ad6cedb0f6e907£8de24",

"severity": 2

1,
"recentOverallSeverity": 10,

"recentPatternMatches": [

{

I
"usedEmails": [
"example@example.com"

Listing 4.12: The structure of a stored developer information.

4.5.5 Adding Pattern Categories

New pattern categories can be added with only one simple change in the existing code. The key
of the new category has to be added into the if-statements of the class PatternFactory to instantiate
the new class that performs the analysis for the category. This class has to be a subclass of the ab-
stract class PatternChecker and therefore, has to implement the method checkPattern(). Afterwards,
pattern definitions of the new category can be added.

4.6 Service 29

4.6 Service

The service part of SQA-Pattern is responsible for the provision of the resulting data of the min-
ings and analyses. However, it is not just the forwarding of the information stored in the database
since some has to be combined, restructured or filtered to deliver useful information. The data is
delivering through RESTful web services. A summary how the different services can be accessed
is listed in Appendix A.

4.6.1 Summary

The summary service lists all the data mined from the different resources. The data for every
resource is sorted in ascending order depending on their timestamp. The only exception is the
data about the metrics, which is categorised by the different metrics. Since, depending on the
project, there is too much data to deliver, only the really important information is provided. The
commits include only the sha, the author and the timestamp, the builds consist of the number, result,
and timestamp. The filtering is a bit more complicated for the issues, because in addition to the key,
type, priority, and summary also all the timestamps of the changes and the type of every change has
to be summarised. The metric data is already reduced to the important information and therefore
no more filtering is needed. In addition, the defined starttimestamp is provided to show if the data
is cut. Listing 4.13 shows the structure of the summary of the mined data for illustration.

{
"data": {
"builds": [
{
"id": "builb7",
"result": "SUCCESS",
"timestamp": 1388643875000

1,

"commits": [
{
"author": "Firstname Lastname",
"id": "com8138f2fd6£358d973c62be%e57aacdf47927d4541",

"timestamp": 1130808153000

I
"issues": [
{
"id": "issEXAMPLE-1",
"priority": "Blocker",
"summary": "Issue summary",
"timestamps": [
{
"timestamp": 1113525993000,
"type": "Created"

i
thpen . "Bug"

30 Chapter 4. SQA-Pattern

1r

"metrics": [
{
"data": [
{
"timestamp": 1296674161000,
"value": 100
}
I
"id": "mettest_success_density",
"name": "Unit tests success (%)",

"percent": true

s
"options": {
"starttimestamp": O

Listing 4.13: The structure of the summary of the mined data.

4.6.2 Pattern Results

The pattern results provided in this service are a combination of the pattern definition and the
actual results. In Listing 4.14, the structure is illustrated. The information on the pattern definition
is delivered, e.g. name or type. Additionally in the instances array the intervals are shown, without
the events of every instance to save time and space. In lastRun the time of the version is provided
if the pattern is already checked and has no error, else -1 is delivered.

{

"name": "Patternname",

"severity": "5",

"description": "A description",

"type": "time",

"instances": [

{

"endTimestamp": 1132797259000,
"focus": "",
"id": "ins5335ad6ced4b0f6e907£8de250",
"startTimestamp": 1132794164000,
"weight": 1

:| 14
"lastRun": 1397747074034,
"id": "pat5335ad6fed4b0£f6e907£8de25"

Listing 4.14: The structure of the one pattern result of the returned array.

4.6 Service 31

4.6.3 Developers

The service to deliver the results of the developer analysis is relatively simple. The data on the
different developers is just fetched from the database and handed on. Therefore the resulting
information is just an array of the data presented in Listing 4.12.

4.6.4 Detailed Information

Since not all information is provided in the summary and pattern results services, an additional
service is needed to deliver this data. To recognize which information has to be delivered, the id
is needed as a parameter. This id is built of two parts, the first three characters are two determine
what sort of information it is and the rest is the resource specific id. Thereby com stands for a com-
mits, iss for an issue, bui refers to a build, met to a metric, dev to a developer, pat to a pattern, and
ins stands for an instance of a pattern. The id is analysed upon a call to know which information is
needed. Because the metrics data is already fully provided, a request is not supported in this ser-
vice. A developer request, however, is supported even though all information is provided in the
developer service to support requests on the data of just one developer. On a request of build or
developer data, the information is just handed on from the database. If an issue is desired also the
whole data of the database is returned, but the summary of the timestamps is added, generated
in the same way as in the summary service. For a pattern request, the results and descriptions
are combined as in the pattern results service. In the provision of a specific instance of a pattern
result are now all the belonging events. Only the returned information on commits is still not
complete. Since there can be many different rather big files associated, only the paths before the
change and after the change are delivered as Base64 encoded strings. The Source code service is
used to receive these files.

4.6.5 Source Code

The source code service delivers a specific file before and after a commit. Therefore, the id of the
commit and the path of the file (Base64 encoded) have to be given as parameters. Since the file can
be generated or deleted or the path can be modified, additionally the information if the specified
path is the one before or after the commit has to be provided as a boolean, where zero points to
the old path and one to the new one. If the specific file the path links to is found the whole file
before and after the commit is returned. In the database of Git, however, only the new file and a
diff information file are stored. The old file is generated based on this diff file using DiffUtils’, a
Java library to calculate differences between two files.

4.6.6 Other Services

There are two additional small services. The first one just returns a list of the newest commits to a
project. How many commits that are returned maximally, is passed as parameter of the call. The
other service is an overview on the pattern results. It is quite similar to the pattern results services
but instead of the detailed instances just the number of instances as well as the number of recent
instances for every pattern is returned.

7https: / /code.google.com/p/java-diff-utils/

32 Chapter 4. SQA-Pattern

4.7 Security

In SQA-Pattern a security system is implemented. Every service call is accepted only if a correct
session token is delivered in the header. The required header name is X-AUTH-TOKEN with the
session token as value. First of all, the login service has to be called using POST as HTTP method
to get this token. The body of the call has to be a JSON formatted document with the user name
and password such as in Listing 4.15.

{
"username": "ExampleUsername",

"password": "ExamplePassword"

Listing 4.15: The login format.

All three parts of SQA-Pattern store their own login information to give the possibility of
users that can not change anything on a project setup or can change only the pattern definitions.
However using the same database to store the users and their session token, also a common login
is possible.

Chapter 5

Evaluation of SQA-Pattern

In this chapter the evaluation of the SQA-Pattern approach is described. Since there is no compa-
rable data of violations to project conventions and on how much time the analysis takes without
supporting software, a comparison can not be done. However, what can be performed is an anal-
ysis of rather small, medium and large-scale software projects to answer the research question:
How efficiently can violations of project conventions, such as missing issue keys in commit messages, be au-
tomatically detected in software projects? The projects have to be mined and analysed for patterns as
fast as possible. At least a nightly analysis has to be performed to have actualized pattern results
that can support software managers or developers on their daily work. The resource data has to
be updated before the pattern recognition can be executed. This implies that the time used for the
mining and the pattern analysis have to be summed up. The combined duration, especially for
the large-scale projects, must not exceed six hours such that it can be run over night. However,
since developers probably prefer real-time data, it is ideal to have the complete data analysed at
least in around ten minutes.

Additionally, large-scale software projects must not need exponentially more calculation effort
than small scale projects. A maximally linear increase is desired. This is to avoid that growing
projects once gain a size where the analysis cannot be performed in reasonable time any more.

The evaluation chapter includes the set-up of SQA-Pattern including the decisions which re-
sources to evaluate and the technical circumstances. Then, the execution times are presented. The
chapter closes with the discussion on how the results can be interpreted and whether the goals of
the evaluation are met.

5.1 Study Setting

In this section, it is discussed which projects were chosen to mine the data and for which reason.
Furthermore, the analysed work patterns are described and the consideration behind these pat-
terns are explained. Finally, the hardware of the system is described to gain insight on how the
effective results can be classified.

5.1.1 Source Projects

Nine projects of different sizes were chosen for the evaluation (Table 5.1). It is not that simple to
judge whether one project is bigger than another, especially because it depends on the focus of
the analysis. A project with many lines of code does not automatically indicate more functional-
ity than another with less lines. Often the size of a project is calculated in combination with the
cost for a project. However, the crucial point of this evaluation is neither the functionality of the

34 Chapter 5. Evaluation of SQA-Pattern

software nor the development costs. The critical point is that the SQA-Pattern approach still has
to perform with projects having much data. For the Git repository, for example, three variables
influence the performance: the number of commits, the sizes of them, and the size of the reposi-
tory. Also not only the version control repository indicates the amount of analysis but it depends
also on the number of issues, builds, and the size of the time machine data of SonarQube.

Table 5.1: The projects used for the evaluation sorted by their size (lines of code).

Project Lines of Code Lines Commits Issues Builds Metrics Data
Tomcat Maven Plugin 6530 12264 548 259 1 9
Maven Plugin Tools 7372 13765 797 245 5 15
Directmemory 7629 12546 640 137 1 13
Doxia 40037 71748 1527 463 4 29
Empire-db 41775 70479 804 204 15 30
Abdera 49228 79695 1491 299 3 15
Sling 149100 266683 9333 3453 4 26
ActiveMQ 169198 304112 7823 4918 2 64
Jackrabbit 229255 454734 7926 3663 2 42

However, the number of commits and issues is irrelevant for the current size of the project.
Of course, the size of the software project was not chosen to exactly meet the requirements of the
analysis, otherwise the result of the evaluation is already evident. Therefore, the probably most
trivial sizing measurement was chosen: the non commented lines of code. Nevertheless, to avoid
unusable data due to big differences in the data, projects were chosen that have at least a similar
number of commits and issues. Because if, in the extreme example, an already finished project is
committed the history is lacking and therefore the result is falsified due to the strong focus on the
history data. Anyway, if the tools are used during the development, larger projects normally also
have more data in the issue tracker or in the continuous integration platforms.

Another important point is the connection to the different tools. For the evaluation only
projects of the Apache Software Foundation were used to have comparable results. Even though
the connection is relatively slow, it is the same for all the projects. The software at Apache ranges
from projects with only 3000 lines of code to bigger ones with more than 400’000. However, not all
the projects were suitable because sometimes other tools than the ones supported in SQA-Pattern
are used. Nevertheless, three small projects with circa 7000 lines of code were found relatively
easy because there are many projects in this range. The medium sized projects were already
harder to find, three projects were chosen with a range of lines of code from 40’000 to 50’000. The
large-scale projects were the hardest to find. The size of the chosen projects ranges from 150’000
to 2307000 lines of code. In Table 5.1, the different project sizes are shown as well as the size of the
available resource history. It can be seen that mostly at maximum five builds are available. This
is because the Jenkins server always deletes older builds which makes it impossible to get more
results. The Metrics Data shows the number of data points available for the SonarQube metrics.
Another thing that must be pointed out is that although the medium sized projects have six times
more lines of code than the small sized, the number of commits and issues is only two times big-
ger or in the case of Empire-db even in the same range as the small projects. Probably also the

5.1 Study Setting 35

number of lines have more influence on the result than the lines of code because for the mining
and pattern analysis the effective code is not important. Nevertheless, the number of lines are just
listed for information purposes since using this value as project size makes no sense.

5.1.2 Pattern Analysis

In the evaluation, not only the mining of the data from the resources was measured but also
the time that was needed to analyse this data for the work pattern and assign the activities to a
developer. Therefore, some reasonable patterns had to be defined. As shown in section 4.5.4 there
are many possibilities to create specific patterns to find violations in projects. For all the evaluated
projects, three conventions were formed, and violations of this conventions were searched.

Missing Issue Keys

The first convention is: All commits have to be linked to an issue using an issue key. The projects
of Apache all use this linking between JIRA and Git. They do not use further commands in the
commit messages such as directly writing comments or changing the status of an issue through
the commit message, but for this convention the linking using an issue key is sufficient.

{
"name": "Commits without issue key",
"severity": "0O",
"description": "none",
"type": "regex",
"definition": {
"type": "commit",
"rules": [
{
"field": "message",
"ruletype": "complementregex",
"regex": " .xDOXIA-.x"

by
"id": "pat5335ad6fedb0£f6e907£8de25"

Listing 5.1: The regular expression pattern for the project Doxia.

The regular expression pattern was used to find the violations to this convention. Thereby,
the definition had to be configured that the commit messages is searched for every occurrence
of the regular expression .*JIRAID-.* where JIRAID stands for the project specific identification of
JIRA. All the commits where this expression is not found are fulfilling the pattern. As example the
pattern used for the search in the Doxia project is shown in Listing 5.1. For the other projects, the
same pattern was used but the regex value was changed to the JIRA identification of the particular
project. The severity was set to zero because it has no influence on the calculation effort.

Frequent Code Changes

Through this linking of commits to issues, it is also possible to analyse how many commits to an
issue are available. Issues with several commits can be an indicator for complex code problems

36 Chapter 5. Evaluation of SQA-Pattern

that can not be solved easily and for an issue that is probably held to general. Several commits
in a short time period point to possible intersecting code changes. Besides it alludes that a code
change did not really solve the problem.

{

"name": "Issues with frequent code changes",
"severity": "O",
"description": "none",
"type": "issue contributions",
"definition": {
"interval": -1,

"sameAuthor": false,
"operator": "more",
"operand": 1
s
"id": "pat5335ad6cedb0£f6e907£8de24"

Listing 5.2: The issue contribution pattern of the evaluation.

Therefore, the convention was formed: An issue is only allowed to have maximally one linked
commit. This convention is rather extreme, but appropriate for the evaluation, because the longer
the maximal timespan is (in this case infinite) and the more results to a pattern are found the
longer takes the analysis. Therefore, a strict convention guarantees that having much search effort
and many violations is not slowing down the algorithm too much. To find these frequent code
changes the issue contributions pattern was used, as seen in Listing 5.2.

Inappropriate Issue Resolve

In JIRA a resolved issue means that the code changes on this issue are finished and the problem
is resolved or that the new feature is implemented. Therefore, all the commits on this issue have
to be performed before the status changes. However, it is of course possible to commit changes
afterwards and assign them to the issue, for example when one hour later it is noticed that there
is a bug in the new code. When this bug is remarked theoretically the issue had to be reopened,
only then the bug could be fixed and committed and at last, the issue status changed to resolved
again. Independent of whether this reopening was conducted or not the resolve of the issue was
to early, the code has to be controlled first to avoid changes directly after a resolve.

This leaded to the convention: A resolved issue must neither be reopened in the next ten day nor
have a linked commit. Using the time pattern as seen in Listing 5.3 the occurred violations were
found. Again ten days is a quite high value that prevents from underestimating the calculation
effort.

{

"name": "Commits on issues after resolve",
"severity": "0",
"description”: "none",
"type": "time",
"definition": {
"type": "issue_resolved",
"negativeInterval": O,

"positiveInterval": 864000000,
"filters": [

5.1 Study Setting 37

"commit_sameissue"

b
"id": "pat5335ad20e4b0£f6e907£8de23"

Listing 5.3: The time pattern of the evaluation.

5.1.3 Configuration

To obtain adequate results, some configurations for the resources and for the evaluation had to be
set. First of all, Git was used as version control repository for all the evaluated projects. The reason
is that for large-scale projects it was already evident that the SVN mining takes much more time.
The gathering of the data for a large-scale Apache project needed up to six hours where the same
process using the Git repository needed less than ten minutes. The reason for this difference can
be seen in Section 4.4.3. Even though there is a possible solution to reduce the time consumption,
the SVN mining was not needed due all the Apache projects are hosted on both repositories.

To have comparable results, the configuration for all the projects was defined the same way:.
This means the Git data was not filtered for a special branch (the master respectively the trunk
branch with all the commits was used). Also no timestamp to start from was set (meaning all the
available data is gathered for all the resources) and for all projects the same SonarQube metrics
were used.

Unfortunately, the Apache projects do not always have the same servers for their JIRA and
SonarQube instances. Therefore, also the time used for the connections to these tools depends on
the destination server. The JIRA instance is hosted on the Apache Servers for seven projects, the
two others are on the one of Codehaus. For SonarQube, only one project is not hosted by Apache
but by SonarQube in their examples database called Nemo.

The code was separated as much as possible to have details on how much time is consumed
in the application and at the cutting points the timestamps are saved. However, due to the asyn-
chronous composition of the mining it was not possible to fully separate the different actions.
Especially the web service calls cannot be separated from the analysis and buffering of the data.
Therefore an application monitoring tool called New Relic! was installed and loaded within the
Play framework. New Relic monitors the entire application showing response time, error rates,
recent events, information on the Java virtual machine, and much more. The information was
tracked during the evaluation and automatically uploaded to a web user interface where the data
can be interpreted. Unfortunately, this tracking probably slows down the application itself but
since it was the same for different projects it does not falsify the results. For the evaluation, only
the features to analyse the web service calls had to be used. There, it can be seen how much time
was used to get a response for every call.

With this information, it can be calculated exactly how much time was used for which opera-
tion. In detail for the Git repository, the start-up, clone, analysis and saving, deletion, and end-up
time spans were stored. For JIRA the fetch, linking and saving time spans were calculated, ad-
ditionally to the duration of the first and the maximal length of the following connections. Only
the longest duration was stored because the calls were executed asynchronous and therefore the
longest-lasting connection is the one influencing the complete duration. The Jenkins analysis in-
cluded the fetch and saving timespan as well as the duration of the connection to the overview
service and the maximal length for a response of the build details. Also for the last resource,
SonarQube, the execution time of the three service calls was measured. For the second and the

1http: / /newrelic.com/

38 Chapter 5. Evaluation of SQA-Pattern

third type of calls again only the maximal length influences the complete duration. Furthermore,
the fetching, combining, and saving timespan was stored.

These divided time spans did not all have direct influence on the evaluation results because
of the asynchronous composition. However, it can be shown what needs most of the time of the
mining and therefore, perhaps support a conclusion. Also outliers can be identified.

For the pattern analysis only the duration of the different patterns was measured and the time
used to run them all. Even though only the time used for the whole run is important for the com-
plete duration, it is interesting to see which pattern analysis needs which amount of time to run
through. The developer analysis was performed on the results of all three patterns considering
only the combined results are significant.

5.1.4 Hardware

The analysis was computed on a notebook with Windows 7 64-bit operating system. It was
equipped with an Intel Core i7-3520M CPU with 2.9 GHz and 8 GB RAM. As a data storage
device, a HDD was used. This set-up has less computing power than today’s servers, guarantee-
ing that the result is not just reached through high-tech hardware. The internet connection used
had an upload rate of around 75 Mb per second and a download rate of approximately 95 Mb
per second. However this connections were probably not fully used since the Apache servers are
rather slow.

5.2 Results

In this section the results of the evaluation are presented. The detailed outcomes for every part
of the operations can be found in Appendix B. For every resource and pattern a LOESS (LOcal
regrESSion) model [CD88] is added to show if the analysis running time rises linear or exponen-
tially with respect to the number of inputs. LOESS is a locally weighted regression approach
providing information on how data evolves in a scatter plot. Additionally, the combined results
are analysed and it is shown how much each part of the application influences the overall out-
come.

5.2.1 Git Results

The mining of the Git data lasted for the chosen projects maximally 5 minutes and 49 seconds
(349 seconds) as seen in Table 5.2. The fastest mining was finished in only 36 seconds. Most of
the time was used for the clone operations of the repositories, namely 66% in total. The results
are presented in the scatter plots from Figure 5.1a to 5.2b in relation to the lines of code and the
number of commits. The project that needed most time for cloning, Maven Plugin Tools, is one of
the smallest. It took 5 minutes and 42 seconds (342 seconds) to clone its repository. The further
analysis only lasted around 7 seconds which is comparable to the other small projects. Out of the
data there can not be found a reason for this behaviour. The project has neither many commits
nor lines of code. It is possible that Apache uses slower servers for some repositories or the data is
in a difficult format to store and save, e.g. many very small files. Also the smallest project, Tomcat
Maven Plugin, needed nearly as much time as the large-scale repositories due to a very long clone
duration without an obvious reason, but this outlier is not that extreme.

To see the analysis time without possible effects of the server connection in Figure 5.1b and
5.2b the execution time is calculated without the time that is used for cloning. This has also the
advantage that only code that is written as part of SQA-Pattern is taken into account since the

5.2 Results 39

Table 5.2: The execution times of the Git minings.

Project Git Mining (s) Cloning (s)
Tomcat Maven Plugin 172.563 165.198
Maven Plugin Tools 349.490 342.271
Directmemory 35.930 26.698
Doxia 120.876 103.371
Empire-db 76.118 59.847
Abdera 52.136 32.750
Sling 232.411 126.656
ActiveMQ 199.481 54.902
Jackrabbit 238.087 70.470

w § 7 w

§ 8- &

” T : T T T T T T T T T
0 50000 100000 150000 200000 0 50000 100000 150000 200000
Lines of Code Lines of Code
(a) With the clone operations. (b) Without the clone operations.

Figure 5.1: The execution times of the Git minings in relation to the lines of code.

cloning is just a functionality of JGit that is used unchanged. However, the cloning is a part of the
mining, it can thus not be fully ignored.

The LOESS curve for all four diagrams shows that the calculation effort rises mostly linear
compared with the lines of code as well as the number of commits. Since the data with the full
time span has some outliers the curve is more accurate for the data without the cloning.

5.2.2 JIRA Results

Mining JIRA data is theoretically independent of the project size, however, bigger projects also
tend to have more issues. But a direct analysis to calculate in which way the effort rises only
makes sense based on the number of issues. The scatter plot is shown in Figure 5.3a. Unfortu-
nately there are two servers used to host the JIRA instances. As it can be seen in Table 5.3, the two

40 Chapter 5. Evaluation of SQA-Pattern

=)
w — =
o L]
=)
- 2
=)
2 4
w ™ w
e i) (=) L]
c c o -
S i o -
? ?
© B o
L o |
— uw
o L]
o -
I I I I I T I I
2000 4000 6000 8000 2000 4000 6000 8000
Commits Commits
(a) With the clone operationss (b) Without the clone operationss

Figure 5.2: The execution times of the Git minings in relation to the number of commits.

fastest projects were Doxia and Maven Plugin Tools. They are both hosted by Codehaus, the rest
by Apache itself. The responses from Codehaus lasted approximately half the time of the Apache
responses. In Figure 5.3b the values are shown without the contamination of the server response
time. The difference in the execution times is this big because, for example for ActiveMQ), the
project with the biggest number of issues, 49 calls on the same time were executed resulting in 46
seconds waiting time for the last response.

Table 5.3: The execution times of the JIRA minings.

Project JIRA Mining (s) Waiting for Responses (s)
Tomcat Maven Plugin 22.727 21.60
Maven Plugin Tools 12.774 11.47
Directmemory 16.834 15.54
Doxia 15.055 13.40
Empire-db 24.185 23.00
Abdera 26.178 24.90
Sling 56.424 38.90
ActiveMQ 80.937 58.40
Jackrabbit 57.535 36.14

Again the LOESS curve is provided in both graphs. It can be observed that the curve looks
quite linear, but it is hard to say because the small and the middle sized projects have nearly the
same number of issues and therefore there is a large gap without data in between.

5.2 Results a1

o]
w .
[=3N
— o™
o | .
w © w E]
pe} o
C — cC
(=] o
8 o _| 5 [
w ~ w -
o s ©
™ n -
I I I I I I I I I I I I
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Issues Issues
(a) With the connection times. (b) Without the connection times.

Figure 5.3: The execution times of the JIRA minings in relation to the number of issues.

5.2.3 Jenkins Results

The results of the Jenkins mining are reported in Table 5.4. On average 99.5% of the time used
was just the waiting for a response of the Apache Jenkins Servers because some of them are really
slow. Some servers even needed up to 104 seconds for a response.

Table 5.4: The execution times of the Jenkins minings.

Project Jenkins Mining (s) Waiting for Responses (s)
Tomcat Maven Plugin 2.437 2.414
Maven Plugin Tools 9.447 9.370
Directmemory 2.721 2.694
Doxia 4.120 4.050
Empire-db 104.423 104.300
Abdera 2.943 2.650
Sling 6.770 6.540
ActiveMQ 86.207 86.060
Jackrabbit 10.427 10.300

In Figure 5.4a the complete execution times of the mining for Jenkins data is displayed com-
pared with the number of builds. There are mostly only 1-5 builds for the projects because the
older ones were deleted and are therefore not accessible any more. Empire-db, the project with
15 builds, needed more than 100 seconds to finish the mining. However, this was not influenced
mainly by the number of builds but by the servers, since only one connection needed that long.

42 Chapter 5. Evaluation of SQA-Pattern

Therefore, the value must be treated as an outlier same as the result of ActiveMQ with a connec-
tion time of more than 80 seconds.

To avoid this server problem the duration is also calculated without the connections, illus-
trated in Figure 5.4b. Unfortunately this diagram is also not ideal because some of the projects
with a fast connection to Jenkins are now outliers due to a longer calculation. This is probably
because for the other projects the application can overlap some calculations with the waiting for
the responses, what is not possible with a fast connection.

o = -
g |
- w
L] N —
o _| (=) -
aw
wn w |
o o | bl
s @ s w
bt & o | °
o I %] .
& o .t
. o
o + ° []
T T T T T T T T T T T T T T
2 4 6 8 10 12 14 2 4 5] 8 10 12 14
Builds Builds
(a) With the connection times. (b) Without the connection times.

Figure 5.4: The execution times of the Jenkins minings in relation to the number of available
builds.

The LOESS curve in Figure 5.4a shows some exponential elements but if the highest values is
omitted as outlier the result looks different. The other values raise in a straight line. The running
times without the connections show no indication for a quadratic growth. Due to the few number
of builds, the result has to be interpreted with care.

5.2.4 SonarQube Results

The results of the SonarQube mining are presented in Table 5.5. As it can be seen, the execution
times are all between 3 and 5 seconds except for ActiveMQ. This is also the only project not hosted
by Apache and therefore has a much faster connection. In the scatter plot in Figure 5.5a between
the number of data points in SonarQube and the mining duration it can be seen relatively easy
that it does not fit to the other results. Figure 5.5b depicts the durations without the connection
times. There it is shown that the value is again an outlier this time in the other direction. This has,
as for the JIRA results, nothing to do with a longer calculation, but with the work executed in the
background during the waiting for a response, which can not be performed on a fast connection.

Considering the imprecision, the value of ActiveMQ has to be ignored in the LOESS calcula-
tion. Usually, LOESS tries to eliminate the impact of outliers itself but since the outlier is also the
project with more data points than the others it is not adapted automatically. The other values in
both cases add up to a straight line implying linear calculation effort.

5.2 Results

43

Table 5.5: The durations of the SonarQube minings.

Project SonarQube Mining (s) Waiting for Responses (s)
Tomcat Maven Plugin 3.313 3.250
Maven Plugin Tools 4.567 4.490
Directmemory 3.714 3.660
Doxia 3.486 3.440
Empire-db 3.388 3.370
Abdera 3.477 3.390
Sling 3.808 3.750
ActiveMQ 1.892 1.465
Jackrabbit 3.490 3.420
- . o

£ £

5 3 3 <
10 20 30 40 50 60 10 20 30 40 50 60

Dala Points Data Points

(a) With the connection times.

(b) Without the connection times.

Figure 5.5: The execution times of the SonarQube minings in relation to the number of data points.

5.2.5 Analysis Results

In Table 5.6 the running times of the different pattern analyses and the search for all developers
are presented. The first pattern is the analysis for missing issue keys, the second finds frequent
code changes for an issue, and the third one searches for inappropriate issue resolves. The exact
pattern definitions and their purposes are described in Section 5.1.2. The results under the label
Combined are not the combination of the results for the three patterns, but the result of running
them all in one go. Therefore, the result is lower than just the combination of the other ones since
some commonalities were used. Overall, one can observe that the pattern recognition was much
faster than the mining. Analysing the data for the three pattern and creating the developer data
together maximally needed around 20 seconds whereas just the Git mining already needed up to
5 minutes. In Table 5.7 the resulting violations of the defined conventions are displayed. The table

44 Chapter 5. Evaluation of SQA-Pattern

Table 5.6: The execution times of the pattern and developer analyses.

Project First (s) Second (s) Third (s) Combined (s) Developers (s)
Tomcat Maven Plugin 0.261 0.583 0.165 0.652 0.876
Maven Plugin Tools 0.456 0.752 0.164 1.008 1.163
Directmemory 0.188 0.645 0.113 0.732 0.567
Doxia 0.896 1.613 0.278 1.629 1.396
Empire-db 0.833 0.666 0.370 1.313 0.763
Abdera 0.523 1.628 0.238 1.753 1.321
Sling 7.533 7.849 3.518 11.248 8.955
ActiveMQ 5.226 8.216 4.435 9.857 9.153
Jackrabbit 7.648 5.727 3.577 11.693 8.672

Missing issue keys pattern as First, frequent code changes pattern as Second and inappropri-
ate issue resolve pattern as Third.

Table 5.7: The number of violations for every pattern and project.

Project First Second Third
Tomcat Maven Plugin | 404 23 0
Maven Plugin Tools 561 30 0
Directmemory 514 18 8
Doxia 1183 57 0
Empire-db 386 67 18
Abdera 1322 17 16
Sling 4107 940 367
ActiveMQ 4193 645 468
Jackrabbit 2858 719 454

Missing issue keys pattern as First, frequent code
changes pattern as Second and inappropriate is-
sue resolve pattern as Third.

is provided for information purposes, in the efficiency evaluation these results have only a minor
influence. However, it shows that there are pattern results, otherwise the developer analyses
would be faster.

The LOESS regressions for the specific patterns in Figure 5.6 show quite linear results. The
execution times of the pattern to find missing issue keys evolve linear. The execution times of the
other two pattern even show logarithmic evolution.

5.2 Results 45

Seconds
4
|
Seconds
Seconds

o - o
T T T T T T T T

T T T T T
0 50000 100000 150000 200000 0 50000 100000 150000 200000 0 50000 100000 150000 200000

Lines of Code Lines of Code Lines of Code
(a) Missing issue keys. (b) Frequent code changes. (c) Inappropriate issue resolves.

Figure 5.6: The execution times of the analyses for the single patterns in relation to the lines of
code.

o 2
2 1 ®©
w w w
=l =} w
j - C
[0 w ¥
- -
o~ o
o — o
| | | | | | T | | |
0 50000 100000 150000 200000 0 50000 100000 150000 200000
Lines of Code Lines of Code
(a) For all three patterns. (b) For the developers.

Figure 5.7: The execution times of the combined analyses in relation to the lines of code.

The running times of the combined pattern analysis in Figure 5.7a also tend to rise rather
linear or logarithmic than exponentially. The same can be observed for the scatter plot of the
results from the developers search in Figure 5.7b.

5.2.6 Combined Results

In Table 5.8 the complete execution times and the ones without the connection times and the
cloning of the version control repositories are presented. Tomcat Maven Plugin and the Maven
Plugin Tools still need much more time than expected. This is because the Git mining used
roughly 70% of the whole evaluation time, presented in Figure 5.8. Therefore, the Git mining
has a large impact on the overall results. This relation is not only because the cloning takes this
much time: If the cloning and connection times to the resources are subtracted, only the execution
time of the analysis remains where the Git mining even needed 77%. The bar chart also shows
that the analysis of SonarQube and Jenkins is so fast that it has practically no influence. How-
ever, since the Jenkins results were always deleted and the SonarQube instances were not often

46 Chapter 5. Evaluation of SQA-Pattern

Table 5.8: The execution times of the complete minings and analyses.

Project Complete Duration (s) Without Connections and Clone (s)
Tomcat Maven Plugin 202.568 2.754
Maven Plugin Tools 378.449 3.638
Directmemory 60.498 2.688
Doxia 146.562 4.807
Empire-db 210.190 3.422
Abdera 87.808 4.745
Sling 319.616 38.026
ActiveMQ 387.527 42.139
Jackrabbit 329.904 41.978

Resource
Developers

I Git
. Jenkins
JIRA
I Patterns
) ScnarQube

Dataset

Percent

Figure 5.8: The percentage execution times of the operations.

updated this relation is not fixed. Some projects have 1000 Jenkins builds and more, having them
not deleted results in much more effort.

Figure 5.9 reveals the ratio between the running times of the connections or the cloning to the
running times of the analysis. At least 66% of the time was spent waiting only for the resource
information. This problem can possibly be resolved by running the application on the same server
as the resource information is on. An alternative would be to use at least resources with a faster
connection than the ones of Apache.

Doing the LOESS regression on the resulting datasets shows no indices for an exponential
raise of the durations for the complete mining in Figure 5.10a as well as for the values without the
connections and cloning in Figure 5.10b.

5.3 Discussion

The evaluation has shown that with the SQA-Pattern approach the whole mining and analysis
for patterns needs less than ten minutes even for large-scale projects. This is a quite good result
because it definitely allows nightly updates of the data. It is even possible to provide nearly real-
time data by checking the data, for example, every hour. Since there is no exponential growth in
the running times, as far as it can be said due to the small sample size, it is possible to support
even bigger projects without too much effort. The result is also rather fast compared with other

5.3 Discussion a7

Part of the Mining
Duration of Analysis

Jenkins - Duraticn of Connections

Resource

Percent

Figure 5.9: The percentage execution times of the analysis versus the connection times for each
resource.

=
= (=]
w w 2 n
2 g 2
o =] (=]
@ = =
o o
[an]
27 2
w
7 . e
L]
o e o 4
S T T T T T \ T T T
0 50000 100000 150000 200000 0 50000 100000 150000 200000
Lines of Code Lines of Code
(a) With the time used for connections and cloning. (b) Without the time used for connections and
cloning.

Figure 5.10: The execution times of the whole minings in relation to the lines of code.

data mining in the literature. Troxler [Tro14], for example, needed up to one and a half hour to
gather the data from JIRA or GitHub.

The evaluation has also shown where improvements are possible. Since much time is lost
by waiting for a response, time can be saved by starting all the mining operations at the same
time. This approach was not followed in this evaluation to generate more accurate results for the
single resources. Additionally, in the current state of SQA-Pattern, the JIRA mining can not be
performed before the Git mining is finished because the linking of the issues with the commits
is executed in the same process. If the linking of the JIRA mining is uncoupled and performed
separately afterwards, all the mining operations can be started at the same time, resulting in a
better overall performance.

The Git mining needed approximately 70% of the whole time thus an improvement of the code
is best located there. At the current state, each time the data gathering starts, the whole repository
is cloned and deleted at the end. This eases the implementation of the prototype. Furthermore, at
the beginning of the project, it was unclear which operations require which amount of time. The
evaluation, however, has shown that 66% of the time for obtaining the Git data is only used for
the cloning. Additionally, by deleting the repository after every usage some more time is lost. If
the repository is cloned at the first mining and afterwards only updated much time is saved.

48 Chapter 5. Evaluation of SQA-Pattern

Generally, the approach of always taking the current data and ignoring the already mined
probably has to be reconsidered. In the case of JIRA, the approach is supposedly correct because
every issue can change and therefore have new data. However, the old data provided by Git,
Jenkins, and SonarQube is still valid; it only needs to be supplemented. Therefore, a complete
mining is only needed in the beginning. This also allows to store data of already deleted builds
in Jenkins, which is possibly desirable.

The analysis of the pattern and developer data was rather fast in comparison with the mining
since each of them needed around 1-2% of the whole time. The only concern is that the more pat-
tern are analysed the higher the effort will be. However, the evaluation has shown that analysing
all patterns together needed much less time than the combination of the single analysing runs.
Therefore, the costs do not rise too strongly by adding new patterns.

Summarising, the research question of this thesis asking for the efficiency of a violations anal-
ysis can be answered as follows: The SQA-Pattern approach proofs that the mining and analysis
to find violations of conventions in a project does not need too much time to allow real-time data
even for large-scale projects. Although there is still room for improvements, the running time is
already below ten minutes without indications for exponential growth of the duration in relation
to the project size.

Chapter 6

Final Remarks

This chapter summarizes how the SQA-Pattern approach is integrated in the different fields of
studies and which conclusions can be drawn from the evaluation. Additionally, it is discussed
where still some drawbacks are and which future work can improve the approach.

6.1 Conclusion

In this thesis the proof-of-concept implementation SQA-Pattern is presented and evaluated. It is
an application to mine the data of different continuous integration tools used in software projects
and analyse it for violations of conventions about the usage of the tools. Six different pattern cat-
egories are defined in SQA-Pattern to find various types of violations. Additionally, the param-
eters of these patterns can be changed for every project to support project specific conventions.
The challenges of implementing SQA-Pattern were, on the one hand, to allow flexible pattern
adaption to support different conventions. On the other hand, the goal was to mine and analyse
the data as fast as possible to provide up-to-date results even for large-scale software projects.
In the evaluation, it was measured how long the SQA-Pattern approach needs to provide results
for projects of different sizes. The focus was to answer the following research question: How
efficiently can violations of project conventions, such as missing issue keys in commit messages, be auto-
matically detected in software projects? Thereby, it was shown that the whole passage needs less than
ten minutes even for large-scale software projects of more than 200’000 lines of code. Addition-
ally, the evaluation reveals no evidence for an exponential growth of the execution time compared
to the project size. This indicates that the approach delivers the violations also for larger projects
in a comparable time range. Most of the time in the evaluation, namely 95.6%, was spent for the
mining of the different resources. This shows where the focus has to be set for further work on
the efficiency. Summarising, the SQA-Pattern approach has shown that a daily analysis is possible
for violations of project conventions on the usage of different development tools. Even real-time
updates are possible, however, this target can be met more accurate with some improvements of
the algorithms.

6.2 Future Work

There are two directions in which the focus of future work can lay. The first is to improve the SQA-
Pattern approach by speeding up the algorithm, adding new resources, or enabling the search of
other kinds of violations. Secondly, it can be evaluated if the generated information on project
violations improves the development of software projects in teams.

50 Chapter 6. Final Remarks

6.2.1 Improvement of SQA-Pattern

To advance SQA-Pattern, the development best focuses primary on the mining of the Git data,
since this part of the approach needed around 70% of the whole execution time in the evaluation.
Of this 70% of the whole time, the cloning of the repository required approximately 67%. How-
ever, the already stored data of Git stays valid because only additional commits are added. There-
fore, a clone operation is only needed when a new project configuration is added, afterwards an
update of the current state is sufficient to have the complete data. This update is probably much
faster then a whole cloning and therefore a lot of time can be saved. Additionally, the mining of
Jenkins data that takes around 11% of the time can be improved in the same manner. The already
stored builds do not need an actualisation, only the new ones have to be requested. Therefore as
a side effect, the data of builds that are deleted on the Jenkins platform still can be displayed.

Another possible improvement is the separation of the algorithm that links the commits and
the issues. This allows to run all the minings at the same time and afterwards link the data.
Thereby, the execution time is reduced since many threads are just waiting for responses.

Additionally, adding algorithms for the mining of similar resources as the ones already sup-
ported allows to analyse more software projects. With the current version, the combination of
exactly the four supported tools is needed to fully analyse the data but in reality there are various
other tools resulting in multiple different combinations. A first step in this direction can be to
extend the support of SVN. This requires to improve the algorithm of the corresponding mining
by asynchronously requesting the files of the different revisions. This will reduce the time needed
for the SVN mining significantly, especially combined with mining the whole SVN data only on
the addition of a project configuration as mentioned above.

To improve the search for violations, additional pattern categories can be implemented as
explained in Section 4.5.5. For example, a sequence pattern was designed too late to include in
the current approach but is promising to find further violations. It was thought of searching
defined consecutive events to find actions that are performed in a wrong order. An underlying
convention can be, for example, that after an issue is resolved, a build has to run successfully
before the issue is closed. Furthermore, the approach can be improved by allowing to combine
the already existing pattern categories.

6.2.2 Additional Evaluation

In the evaluation of the SQA-Pattern approach, the focus was set on how fast the data can be gath-
ered and analysed. An additional evaluation where developers use the patterns to find violations
can show if the data provided helps the stakeholders in their daily work, for example, with the
SQA-Timeline [Bir14] user interface.

Appendix A

Web Services

Table A.1: The web services paths of the miner part.

Purpose Path HTTP method
User login /login POST
User logout /logout POST
Projects overview /projects GET
Addition of a Project Configuration / projects PUT
Get a project /projects/:key GET
Delete a project /projects/:key DELETE
Get the status information /projects/:key/status GET
Mine the Git data /projects/:key/git/mine GET

Get the unformatted Git data /projects/:key/git/result GET
Mine the SVN data /projects/:key/svn/mine GET

Get the unformatted SVN data /projects/:key/svn/result GET
Mine the JIRA data /projects/:key/jira/mine GET

Get the unformatted JIRA data /projects/:key /jira/result GET
Mine the Jenkins data /projects/:key/jenkins/mine GET

Get the unformatted Jenkins data /projects/:key/jenkins/result GET
Mine the SonarQube data /projects/:key/sonar/mine GET

Get the unformatted SonarQube data | /projects/:key/sonar/result GET

:key has to be replaced by the project key.

52 Chapter A. Web Services
Table A.2: The web services paths of the recognizer part.

Purpose Path HTTP method

User login /login POST

User logout /logout POST

Get the status information /projects/:key/status GET

Update the pattern data /pattern/update/:key GET

Get the unformatted pattern data /pattern/result/:key GET

Update the developer data /developer/update/:key GET

Get the unformatted developer data | /developer/result/:key = GET

Add/modify a pattern definition /key/pattern PUT

Get all the pattern definitions /:key/pattern GET

Get a pattern definition /key/pattern/:id GET

Delete a pattern definition /key/pattern/:id DELETE

:key has to be replaced by the project key, :id by the pattern id.
Table A.3: The web services paths of the service part.

Purpose Path HTTP method
User login /login POST
User logout /logout POST
Get the summary /:key/timeline GET
Get the pattern results /:key/patternresults GET
Get the developers /:key/developers GET
Get the data of an item /:key/info/:id GET
Get a source file /:key/source/:id/ filePath/:searchNewFiles ~GET
Get the newest commits /:key/commits/:numberOfCommits GET
Get a pattern results overview | /:key/overviewpatternresults GET

‘key has to be replaced by the project key, :id by the id of an item, :filePath by the path to the
questioned file (Base64 encoded), :searchNewFiles by 0 for the old path or 1 for the new one, and
numberOfCommits by the maximal number of commits.

Appendix B

Evaluation Results

Chapter B. Evaluation Results

54

Tomcat Maven Plugin Maven Plugin Tools Directmemory Doxia Empire-db Sling ActiveMQ_ Jackrabbit

Data Lines of Code 6530 7372 7629 40037 41775 49228 149100 169198 229255
Lines 12264 13765 12546 71748 70479 79695 266683 304112 454734

Commits 548 797 640 1527 804 1491 9333 7823 7926

Issues 259 245 137 463 204 299 3453 4918 3663

Ids 1 5 1 4 15 3 4 2 2

Metrics datapoints 9 15 13 29 30 15 26 64 42

SonarQube Fetch 3295 4536 3710 3478 3383 3471 3795 1863 3481
Analysis 1 1 0 1 0 0 0 0 1

Saving 17 30 4 7 5 6 13 29 8

Complete 3313 4567 3714 3486 3388 3477 3808 1892 3490

Resource request 1730 2720 1800 1530 1510 1610 1570 465 1550

Timemachine request 888 1540 1370 1480 1660 1090 1570 1000 1290

Metrics request 1520 1770 1860 1910 1860 1780 2180 434 1870

Complete without requests 63 77 54 46 18 87 58 427 70

Jenkins Fetch 2430 9388 2717 4109 104402 2898 6658 86119 10353
Saving 7 59 4 11 21 45 112 88 74

Complete 2437 9447 2721 4120 104423 2943 6770 86207 10427

Overview request 2040 7950 2260 2740 1300 1570 2780 8460 8400

Build request (max) 374 1420 434 1310 103000 1080 3760 77600 1900

Complete without requests 23 77 27 70 123 293 230 147 127

Git Startup 8 10 88 8 79 51 43 63 51
Cloning 165198 342271 26698 103371 59847 32750 126656 54902 70470

Analysis and saving 7158 6898 8837 16992 15727 18257 99412 140102 162282

Deletion 190 300 293 488 453 1051 6200 4327 4052

Endup 9 11 14 17 12 27 100 87 1232

Complete 172563 349490 35930 120876 76118 52136 232411 199481 238087

Complete without cloning 7365 7219 9232 17505 16271 19386 105755 144579 167617

JIRA Fetch 22097 12102 16388 13909 23567 25373 39382 59120 37735
Linking 91 158 107 240 211 266 8816 10376 11269

Saving 539 514 339 906 407 539 8226 11441 8531

Complete 22727 12774 16834 15055 24185 26178 56424 80937 57535

First request 11300 5710 11600 5400 11500 12000 12500 12200 9540

Following requests (max) 10300 5760 3940 8000 11500 12900 26400 46200 26600

Number of following requests 2 2 1 4 2 2 34 49 36

Complete without requests 1127 1304 1294 1655 1185 1278 17524 22537 21395

Analysis Issue contribution pattern 261 456 188 896 833 523 7533 5226 7648
Regular expression pattern 583 752 645 1613 666 1628 7849 8216 5727

Time pattern 165 164 113 278 370 238 3518 4435 3577

Combined patterns 652 1008 732 1629 1313 1753 11248 9857 11693

Developers 876 1163 567 1396 763 1321 8955 9153 8672

Complete Sum 202568 378449 60498 146562 210190 87808 319616 387527 329904
Sum without cloning & requests 10106 10848 11906 22301 19673 24118 143770 186700 209574

Appendix C

Contents of the CD-ROM

The following files are stored on the CD-ROM:

o Abstract.txt
Abstract

+ Zusfsg.txt
German abstract

« Masterarbeit.pdf
Copy of this thesis

« SQA-Pattern.zip
Source code

« Evaluation-Results.xlsx
Evaluation results

56

Chapter C. Contents of the CD-ROM

[AV09]

[Bec97]

[Ber12]
[BGG14]

[Bir14]
[BPSZ10]

[CD88]

[DAMOS]

[DNRN13]

[FM10]

[GG11]

Bibliography

Jorge Aranda and Gina Venolia. The secret life of bugs: Going past the errors and
omissions in software repositories. In Proceedings of the 31st International Conference on
Software Engineering, pages 298-308. IEEE Computer Society, 2009.

Kent Beck. Smalltalk Best Practice Patterns. Volume 1: Coding. Prentice Hall, Englewood
Cliffs, NJ, 1997.

Alan Berg. Jenkins Continuous Integration Cookbook. Packt Publishing Ltd, 2012.

Martin Brandtner, Emanuel Giger, and Harald Gall. Supporting continuous inte-
gration by mashing-up software quality information. In I[EEE CSMR-WCRE 2014
Software Evolution Week (CSMR-WCRE), pages 109-118, Antwerp, Belgium, FEB 2014.
IEEE.

Jens Birchler. Sqa-timeline. Master’s thesis, University of Zurich, 2014.

Silvia Breu, Rahul Premraj, Jonathan Sillito, and Thomas Zimmermann. Informa-
tion needs in bug reports: improving cooperation between developers and users. In
Proceedings of the 2010 ACM conference on Computer supported cooperative work, pages
301-310. ACM, 2010.

William S Cleveland and Susan] Devlin. Locally weighted regression: an approach
to regression analysis by local fitting. Journal of the American Statistical Association,
83(403):596-610, 1988.

Brian De Alwis and Gail C Murphy. Answering conceptual queries with ferret. In
Software Engineering, 2008. ICSE’08. ACM/IEEE 30th International Conference on, pages
21-30. IEEE, 2008.

Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N Nguyen. Boa: A lan-
guage and infrastructure for analyzing ultra-large-scale software repositories. In Pro-
ceedings of the 2013 International Conference on Software Engineering, pages 422-431.
IEEE Press, 2013.

Thomas Fritz and Gail C Murphy. Using information fragments to answer the ques-
tions developers ask. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1, pages 175-184. ACM, 2010.

Giacomo Ghezzi and Harald C Gall. Sofas: A lightweight architecture for software
analysis as a service. In Software Architecture (WICSA), 2011 9th Working IEEE/IFIP
Conference on, pages 93-102. IEEE, 2011.

58

BIBLIOGRAPHY

[Ghel0]

[GHJV94]

[KDV07]

[LM12]

[LZ05]

[MMWO02]

[RJ0O]

[SAG13]

[Tro14]

[VHDMO7]

Giacomo Ghezzi. Sofas: software analysis services. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume 2, pages 381-384.
ACM, 2010.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Pearson Education, 1994.

Andrew] Ko, Robert DeLine, and Gina Venolia. Information needs in collocated soft-
ware development teams. In Proceedings of the 29th international conference on Software
Engineering, pages 344-353. IEEE Computer Society, 2007.

Jon Loeliger and Matthew McCullough. Version Control with Git: Powerful tools and
techniques for collaborative software development. " O’Reilly Media, Inc.", 2012.

Zhenmin Li and Yuanyuan Zhou. Pr-miner: automatically extracting implicit pro-
gramming rules and detecting violations in large software code. In ACM SIGSOFT
Software Engineering Notes, volume 30, pages 306-315. ACM, 2005.

Kim Mens, Isabel Michiels, and Roel Wuyts. Supporting software development
through declaratively codified programming patterns. Expert Systems with Applica-
tions, 23(4):405-413, 2002.

Linda Rising and Norman S Janoff. The scrum software development process for
small teams. IEEE software, 17(4):26-32, 2000.

Francisco Zigmund Sokol, Mauricio Finavaro Aniche, and Marco Aurelio Gerosa.
Metricminer: Supporting researchers in mining software repositories. In Source Code
Analysis and Manipulation (SCAM), 2013 IEEE 13th International Working Conference on,
pages 142-146. IEEE, 2013.

Silvan Troxler. Mininghub - a social mining and data sharing platform. Master’s
thesis, University of Zurich, 2014.

Mathieu Verbaere, Elnar Hajiyev, and Oege De Moor. Improve software quality with
semmlecode: an eclipse plugin for semantic code search. In Companion to the 22nd
ACM SIGPLAN conference on Object-oriented programming systems and applications com-
panion, pages 880-881. ACM, 2007.

