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Abstract

Probabilistic databases and temporal databases are a field of interest in recent research. In
this work a temporal probabilistic database schema is suggested that combines both aspects
into one. To query such databases, we present a full relational algebra, which uses lineage as
Boolean formulas to keep track of the origin of derived tuples. Furthermore, we investigate
four algorithms to compute the confidence value of derived tuples by using lineage. We imple-
mented all concepts of this work in the PostgreSQL database system and experiments show the
performance of the lineage computation and of the four confidence computation algorithms.



Zusammenfassung

Probabilistische und temporale Datenbanken sind grosse Interessengebiete in der heutigen
Forschung. In dieser Arbeit wird ein temporales probabilistisches Datenbankschema vorgeschla-
gen, welches die Aspekte beider Bereiche vereint. Wir präsentieren eine komplette Relationale
Algebra, die es erlaubt Abfragen in solchen Datenbanken durchzuführen. Dazu verwenden
wir boolesche Formeln, die sogenannte Lineage, welche die Herkunft von abgeleiteten Tupeln
repräsentieren. Zudem untersuchten wir vier Algorithmen, welche es erlauben den probabilis-
tischen Wert eines abgeleiteten Tupels mit Hilfe der Lineage zu berechnen. Alle Konzepte von
dieser Arbeit wurden in das PostgreSQL Datenbanksystem integriert und Experimente zeigen
die Performanz der Lineageberechnung und der vier Algorithmen zur Wahrscheinlichkeits-
berechnung.
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1. Introduction

In recent years a lot of research has been done in the fields of probabilistic databases and tem-
poral databases. In this work, we now combine state of the art techniques from both fields and
come up with a temporal probabilistic database schema and a full relational algebra that allows
to query temporal probabilistic databases. This algebra uses lineage as Boolean formulas to
keep track of the origin of derived tuples. This lineage is later used to compute the confidence
value of the resulting tuples. Further, the algebra makes sure that time is perceived according
to Sequenced Semantics. To do this we use the primitives suggested by Dignös et al. [2] and
adapt them to our needs.

We also present four algorithms that compute the probability values of derived tuples by
investigating their lineage expression. Three of those algorithms compute an exact probability
value, whereas one only computes an approximation. The basic idea behind three of these
algorithms is to decompose the lineage expression into parts that are easier computable and
have no dependencies. For this, we use techniques which were suggested in [4, 5, 12].

Further, we implement our relational algebra operations and the confidence computation
algorithms into the PostgreSQL database system. This allows us to query real temporal prob-
abilistic data and to compute the probability value for all possibly occurring result tuples in
this system.

In Section 2, we define a schema for temporal probabilistic databases and explain in detail
how relational algebra operations are performed. Then, we present in Section 3 four algo-
rithms that allow us to compute the confidence value of tuples by evaluating their lineage.
Further, we explain how our concept is implemented in PostgreSQL in Section 4. Finally, we
show the evaluation of our experiments in Section 5.
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2. Temporal Probabilistic Databases

In this work we are dealing with Temporal Probabilistic Databases, abbreviated as TPDBs. All
tuples in such databases have some standard attributes, which store any kind of information
about the facts those tuples represent. Every tuple also has a time interval, called the temporal
attribute T , and a probability value, called the probabilistic attribute P , attached. The time
interval indicates the time period during which the tuple is valid and the probability value
defines the probability to which the tuple is valid. Moreover every tuple that is stored in
a TPDB must have a unique identifier x. And we further use a boolean expression, called
lineage λ. This attribute is further explained in the following section.

V (Visits)
x Name Dest T P λ

v1 Ann Zurich [2014-12-04, 2014-12-14) 0.50 v1

W (Weather)
x Loc Weather T P λ

w1 Zurich Snow [2014-12-05, 2014-12-10) 0.70 w1

w2 Zurich Fog [2014-12-08, 2014-12-15) 0.20 w2

Figure 2.1.: Temporal Probabilistic Database

Figure 2.1 shows two example relations from a TPDB. The relation Visits (V ) holds infor-
mation about people, who visit cities and the relation Weather (W ) stores information about
the weather in certain cities. The fact that is stored in the tuple with the unique identifier v1

tells us that Ann will visit Zurich from December 5, 2014 until December 13, 2014 (since De-
cember 14 is excluded) with probability 0.5. On the other hand, in tuple w1 the information is
stored, that with probability 0.7 it will snow in Zurich from December 5, 2014 until December
9, 2014 (since December 10 is excluded).

2.1. Definitions
Base & Derived Tuples: We call tuples that are stored in tables of the database, base tuples.
Whereas derived tuples are tuples that were constructed from operations performed on base
tuples.
Unique Identifier: Each base tuple has a random variable attached, which allows to uniquely
identify the tuple. The identifier x must therefore be unique for every base tuple of the whole
database.
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Temporal Attribute: The time domain ΩT is considered as a linearly ordered, finite sequence
of time points. A time interval, as it is stored in the temporal attribute T of every tuple, con-
sists of a contiguous and finite set of time points over ΩT . We denote it by a half-open interval
[ts, te), where ts, te ∈ ΩT and ts < te. ts is the inclusive start point and te the exclusive end
point of the time interval that represents the tuple’s valid time points.
Probabilistic Attribute: The probabilistic attribute P ∈ R has a value in the interval (0, 1]
and defines the probability with which the corresponding base tuple is valid. For this work,
we consider a tuple-independent database. This means that the validity of one base tuple does
not affect the validity of any other base tuple.
Lineage: Lineage λ is a Boolean expression that relates derived tuples to the base tuples they
were derived from. The lineage is constructed from Boolean variables and the three Boolean
connectives ∧ (logical and), ∨ (logical or) and ¬ (logical not). The Boolean variables refer to
base tuples and are therefore named with the identifier of the corresponding base tuple. We
write φ(x) to refer to the lineage of the tuple with the identifier x. If x is a base tuple we have
φ(x) = x.

A temporal probabilistic relation schema is represented as RTP = (A1, ..., Am, T, P, λ),
where A1, ..., Am are the standard attributes with domain Ωi, T is a temporal attribute, p is
a probabilistic attribute and λ is the lineage. A tuple r over schema RTP is a finite set that
contains for every Ai a value vi ∈ Ωi, for T a time interval [ts, te) ∈ ΩT × ΩT , for P a value
p ∈ (0, 1] and for λ a Boolean expression. A temporal probabilistic relation r over schema
RTP is a finite set of tuples over RTP . For a tuple r and an attribute Ai, r.Ai denotes the value
of the attribute Ai in r. As abbreviation we use A = Ai, ..., Am and r.A = (r.A1, ..., r.Am).

The operators of our temporal probabilistic relational algebra are selection σTP , projection
πTP , high aggregation ϑTP , difference −TP , union ∪TP , intersection ∩TP , Cartesian product
×TP , inner join |><|

TP , left outer join d|><|
TP , right outer join |><|d

TP , full outer join d|><|d
TP , normaliza-

tion NTP and alignment ΦTP . For the set operators, we assume union compatible argument
relations, and for πTP

B (r) and Bϑ
TP
F (r) we require B ⊆ A. The probabilistic attribute P is

ignored during algebra operations, since its value might not be correct for intermediate tuples.
For the result tuples, lineage will be used to compute the correct probability value.

Y
A T P λ

y1 a [4, 14) 0.50 y1

Z
B T P λ

z1 a [5, 10) 0.70 z1

z2 a [8, 15) 0.20 z2

Figure 2.2.: Example Database
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2.2. Timestamp Adjustment
In order to execute queries we perceive time according to Sequenced Semantics. This means
that we consider the database to be composed of a sequence of non-temporal database snap-
shots during execution time. A snapshot can be seen as the data that is valid at a specific point
in time. In order to support Sequenced Semantics, the three properties snapshot reducibil-
ity, extended snapshot reducibility and change preservation must be satisfied. We propose two
primitives, based on the ones defined by Dignös et al. [2], that transform tuples within a TPDB
into a set of new ones with adjusted time intervals. The basic idea behind the primitives is to
align the time intervals of the tuples in such a way that intervals that have to be compared
during an algebra operation, are either identical or disjoint.

Depending on how the operation that a query consists of produces its result tuples, either
the Temporal Splitter or the Temporal Aligner must be applied. For group based operators
π, ϑ,−,∪,∩ multiple tuples of the argument relations contribute to a single result tuple. In
this case the Temporal Splitter is used to adjust the time intervals. For tuple based operators
σ,×, |><|, d|><|, |><|d, d|><|d only one tuple of each argument relation contributes to a single result tuple.
In this case the Temporal Aligner is used to adjust the time intervals.

During temporal adjustments we keep lineage unmodified. This is the case, because we
defined the probabilistic value of a tuple to be the probability, to which the corresponding
tuple is valid. This means, that when the tuple is split into tuples with sub-time intervals,
the probability of the resulting tuples is the same as of the initial tuple. For simplicity of the
lineage expressions we do not care about the tuples, which caused the splitting of tuples, since
they have no influence on the final confidence computation.

2.2.1. Temporal Splitter and Normalization
For group based operators Dignös et al. [2] propose a Temporal Splitter to adjust the time
intervals. It is necessary that the time intervals of the tuples of the argument relations are split
at every start and end point of all other tuples that satisfy the same conditions. This means
that a tuple is split into tuples with identical non-temporal attributes but with disjoint adjusted
time intervals, where the union of all adjusted time intervals equals the initial one.

Definition 1 (Temporal Splitter [2]) Let r be a tuple and g a set of tuples. A temporal splitter
produces a set of tuples with the non-temporal attributes (A, P and λ) of r over the following
adjusted intervals:

T ∈ split(r, g)⇐⇒
T ⊆ r.T ∧ ∀g ∈ g(g.T ∩ T = ∅ ∨ T ⊆ g.T )∧
∀T ′ ⊃ T (∃g ∈ g(T ′ ∩ g.T 6= ∅ ∧ T ′ 6⊆ g.T ) ∨ T ′ 6⊆ r.T ).

The first condition requires that each adjusted time interval is a subinterval of the initial time
interval of r and that it is either contained in or disjoint from all time intervals of g. Secondly,
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each new time interval must be maximal, meaning that it cannot be enlarged without violating
the first condition.

y1

z1

z2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
T1

T2

T3

T4

Figure 2.3.: Temporal Splitter

Example 1 Figure 2.3 illustrates the temporal splitter applied on the tuples from Figure 2.2.
We set r = y1 and g = z1, z2. The result are four disjoint time intervals T1 to T4, whose union
builds the time interval of r. The time intervals T2 and T4 are both completely contained in
the time interval of one of the tuples in g. T3 is completely contained in the time intervals of
both tuples in g, whereas T1 is completely disjoint from the time intervals of all tuples of g.
In addition, all resulting time intervals are a subinterval of the time interval of tuple y1 and
cannot be enlarged without violating the first condition.

The normalization function is a function that satisfies the properties of a Temporal Splitter.
The following definition is an adaptation of the normalization function of Toman [15] cited in
[2] to our TPDB.

Definition 2 (Normalization) Let r and s be temporal probabilistic relations. The normaliza-
tion NTP

B (r; s) of r with respect to s and attributes B ⊆ r.A is defined as follows:

r̃ ∈ NTP
B (r; s)⇐⇒

∃r ∈ r(r̃.A = r.A ∧ r̃.λ = r.λ ∧ r̃.T ∈ split(r, s ∈ s|s.B = r.B)).

The normalization function aims to adjust the time intervals of tuples of two relations in a
way that they match with all tuples with the same standard attributes. The following proposi-
tions are adapted from Dignös et al. [2] and explain this feature.

Proposition 1 [2] Assume temporal probabilistic relations r and the temporal probabilistic
normalization r̃ = NTP

B (r; r). All tuples r̃ ∈ r̃ with the sameB-values have time intervals that
are either equal or disjoint.

Proposition 2 [2] Assume temporal probabilistic relations r and s over schema RTP and the
temporal probabilistic normalizations r̃ = NTP

A (r; s) and s̃ = NTP
A (s; r). Any two tuples

r̃ ∈ r̃ and s̃ ∈ s̃ with matching standard attributes A have time intervals that are either equal
or disjoint.

Example 2 Figure 2.4 presents the result of the temporal probabilistic normalization applied
on the relations from Figure 2.2.
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NTP
A (Y; Z)

A T P λ

a [4, 5) 0.50 y1

a [5, 8) 0.50 y1

a [8, 10) 0.50 y1

a [10, 14) 0.50 y1

NTP
A (Z; Y)

A T P λ

a [5, 10) 0.70 z1

a [8, 14) 0.20 z2

a [14, 15) 0.20 z2

NTP
A (Z; Z)

A T P λ

a [5, 8) 0.70 z1

a [8, 10) 0.70 z1

a [8, 10) 0.20 z2

a [10, 15) 0.20 z2

Figure 2.4.: Normalization

2.2.2. Temporal Aligner and Alignment
For tuple based operators Dignös et al. [2] propose a Temporal Aligner to adjust the time
intervals. It is necessary that the time intervals of the tuples of the argument relations are
aligned to all other tuples that satisfy the same conditions. This means that a tuple is split into
tuples with identical non-temporal attributes but with adjusted not necessarily disjoint time
intervals, where the union of all adjusted time intervals equals the initial one.

Definition 3 (Temporal Aligner [2]) Let r be a tuple and g a set of tuples. A temporal aligner
produces a set of tuples with the non-temporal attributes (A, P and λ) of r over the following
adjusted intervals:

T ∈ align(r, g)⇐⇒
∃g ∈ g(T = r.T ∩ g.T ) ∧ T 6= ∅∨
T ⊆ r.T ∧ ∀g ∈ g(g.T ∩ T = ∅)∧
∀T ′ ⊃ T (∃g ∈ g(T ′ ∩ g.T 6= ∅) ∨ T ′ 6⊆ r.T ).

The second line requires that each time interval in a tuple in g that intersects with the time
interval of r is part of the adjusted time intervals. And the last two lines handle time intervals
in r that are disjoint to the time intervals of all tuples in g, and they are also required to be
maximal.

y1

z1

z2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
T1

T2

T3

Figure 2.5.: Temporal Aligner

Example 3 Figure 2.5 illustrates the temporal aligner applied on the tuples from Figure 2.2.
We set r = y1 and g = z1, z2. The result are three time intervals T1 to T3. The time intervals
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T2 and T3 are the intersections of the time interval of tuple y1 with z1 respectively z2. T1 is a
subinterval of the time interval of tuple y1, which is maximal and disjoint to all time intervals
of the tuples in g.

The alignment function is a function that satisfies the properties of a Temporal Aligner. The
following definition is an adaptation of the Temporal Alignment function of Dignös et al. [2]
to our TPDB.

Definition 4 (Alignment) Let r and s be temporal probabilistic relations and θ be a predicate
over the standard attributes of a tuple in r and a tuple in s. The alignment operator rΦTP

θ s of r
with respect to s and condition θ is defined as follows:

r̃ ∈ rΦTP
θ s⇐⇒

∃r ∈ r(r̃.A = r.A ∧ r̃.λ = r.λ ∧ r̃.T ∈ align(r, s ∈ s|θ(r, s))).

The alignment function aims to adjust the time intervals of tuples of two relations in a way
that they can be matched. The following proposition is adapted from Dignös et al. [2] and
explains this feature.

Proposition 3 [2] Assume temporal probabilistic relations r and s with temporal probabilistic
alignments r̃ = rΦTP

θ s and s̃ = sΦTP
θ r. For any two tuples r ∈ r and s ∈ s that satisfy θ and

r.T ∩ s.T 6= ∅, there are two tuples r̃ ∈ r̃ and s̃ ∈ s̃ with matching standard attributes for r
and s, respectively, and with identical timestamps r̃.T = s̃.T = r.T ∩ s.T .

Example 4 Figure 2.6 presents the result of the temporal probabilistic alignment applied on
the relations from Figure 2.2.

YΦTP
trueZ

A T P λ

a [4, 5) 0.50 y1

a [5, 10) 0.50 y1

a [8, 14) 0.50 y1

ZΦTP
trueY

A T P λ

a [5, 10) 0.70 z1

a [8, 14) 0.20 z2

a [14, 15) 0.20 z2

Figure 2.6.: Alignment

2.3. Reduction Rules
The probability value of tuples cannot simply be computed for every operation and then be
propagated to the next operator. This is because dependencies might occur in operations that
are applied later on. Therefore, we compute lineage during algebra operations, so that we can
later elicit the base tuples, from which the result tuples were derived from. This allows us to
compute the correct probability value for each result tuple.
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Operator Reduction
Selection σTP

θ (r) = σθ(r)

Projection πTP
B (r) = B,TϑOR(λ)(NTP

B (r; r))

Normalization NTP
B (r; s) = πr.A,r.T,r.λ(NB(r; s))

Alignment r ΦTP
θ s = πr.A,r.T,r.λ(rΦθs)

High Aggregation Bϑ
TP
F (r) = B,TϑF,AND(λ)(NTP

B (r; r))

Difference r−TP s = r.A,r.TϑOR(AND(r.λ,NOT (s.λ)))((NTP
A (r;NTP

A (r; s))) d|><| r.A=s.A∧r.T=s.T (NTP
A (s;NTP

A (s; r))))

Union r ∪TP s = r.A,r.TϑOR(r.λ)(NTP
A (r;NTP

A (r; s)) ∪NTP
A (s;NTP

A (s; r)))

Intersection r ∩TP s = r.A,r.TϑOR(AND(r.λ,s.λ))((NTP
A (r;NTP

A (r; s))) |><| r.A=s.A∧r.T=s.T (NTP
A (s;NTP

A (s; r))))

Cartesian Product r×TP s = πr.A,r.T,s.A,s.T,AND(r.λ,s.λ)((rΦTP
trues) |><| r.T=s.T (sΦTP

truer))

Join r |><|
TP
θ s = πr.A,r.T,s.A,s.T,AND(r.λ,s.λ)((rΦTP

θ s) |><| θ∧r.T=s.T (sΦTP
θ r))

Figure 2.7.: Reduction Rules

Lineage is computed along with the query operations as also proposed by Sarma et al. [13].
During each algebra operation, the lineage of the input tuples is combined using the following
connectives:

• ∧-connective: The ∧-connective is used when two tuples are combined and both need
to be valid, so that the resulting tuple is valid, too.

• ∨-connective: The ∨-connective is used when two tuples are combined and only one of
both needs to be valid, so that the resulting tuple is valid, too.

• ¬-connective: The ¬-connective is applied when the resulting tuple is only valid, if the
input tuple is invalid.

Using those rules, we define reduction rules for a temporal probabilistic algebra with se-
quenced semantics, which show how temporal probabilistic algebra operations can be per-
formed by using standard algebra operations. These rules take care of a correct lineage com-
putation during algebra operations. Please note that we ignore the probability values during
algebra operations, since the values might not be correct for intermediate tuples.

Theorem 1 Let r and s be temporal probabilistic relations over schemaRTP , θ be a predicate,
F be a set of aggregation functions over r.A, B ⊆ A be a set of attributes and OR, AND and
NOT functions respectively aggregation functions that combine the given lineage expressions
with the defined connective. The reduction rules in Figure 2.7 define a temporal probabilistic
algebra with sequenced semantics.

The complete set of reduction rules is shown in Appendix A. This set includes the rules for
outer joins and additional rules for set operations, which do not eliminate duplicates. Those
are important for the implementation, since both types are available in SQL.
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We now present an example of a query that uses the temporal probabilistic normalization
to adjust the time intervals of tuples. Normalization is required when groups of tuples with
matching arguments need to be combined. In this example we also see that the outcome of
a temporal probabilistic difference operation can include more tuples than the initial input
relation. This has two reasons. The first is that by applying normalization the tuples get split
into multiple pieces, which all are part of the resulting tuples. The second is, that no tuples
from the left input relation can be for sure removed, because the validity of the matching tuple
from the right relation is not certain, since every tuple has a probability value attached. Note
that we illustrate the examples on a timeline, which shows the time intervals during which the
presented tuples might be valid.

NTP
A (Y;NTP

A (Y; Z)):
(a, [4, 5), ω, y1)

(a, [5, 8), ω, y1)

(a, [8, 10), ω, y1)

(a, [10, 14), ω, y1)

NTP
A (Z;NTP

A (Z; Y)):
(a, [5, 8), ω, z1)

(a, [8, 10), ω, z1)

(a, [8, 10), ω, z2)

(a, [10, 14), ω, z2)

(a, [14, 15), ω, z2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
(a, [4, 5), ω, y1)

(a, [5, 8), ω, y1 ∧ ¬(z1))

(a[8, 10), ω, (y1 ∧ ¬z1) ∨ (y1 ∧ ¬z2))

(a[10, 14), ω, y1 ∧ ¬(z2))

NTP
A (Y;NTP

A (Y; Z))

A T P λ

a [4, 5) ω y1

a [5, 8) ω y1

a [8, 10) ω y1

a [10, 14) ω y1

NTP
A (Z;NTP

A (Z; Y))

A T P λ

a [5, 8) ω z1

a [8, 10) ω z1

a [8, 10) ω z2

a [10, 14) ω z2

a [14, 15) ω z2

Y−TP Z
A T P λ

a [4, 5) ω y1

a [5, 8) ω y1 ∧ ¬(z1)

a [8, 10) ω (y1 ∧ ¬z1) ∨ (y1 ∧ ¬z2)

a [10, 14) ω y1 ∧ ¬(z2)

Figure 2.8.: Y−TP Z

Example 5 Figure 2.8 illustrates the reduction of the temporal probabilistic difference query
Y −TP Z. As a first step the tuples of both relations need to be split, in such a way that time
intervals are either the same or disjoint. For this two normalizations are necessary. First both
relations are normalized with respect to the other relation, which results in the tuples shown
in Figure 2.4. And then the relations are again normalized with respect to the results from
before. The resulting tuples are shown in the tables in Figure 2.8.

As next step, a left outer join is performed. Since all tuples have the same standard at-
tributes, all four tuples that were derived from y1 are joined with the tuples that were derived
from relation Z. This operation results in five tuples. The first tuple with the time interval [4, 5)
did not join with any tuple from Z, therefore the lineage is still the same as for the initial tuple.
The tuples with time intervals [5, 8) and [10, 14) both joined with one tuple and the tuple with
the time interval [8, 10) matched with two tuples from Z. For those four resulting tuples the
lineage is combined with the ∧-connective while the lineage of the tuple from the right rela-
tion is negated first. By definition of the difference operator, a tuple is only part of the result
if it occurs in the left relation but not in the right relation. But in a temporal probabilistic
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database, a tuple can also be in the result tuple if it occurs in the left and in the right relation,
but only if the tuple in the left relation evaluates to valid and the tuple in the right relation
evaluates to invalid.

Finally, duplicates need to be eliminated, since the difference operator in relational algebra
is defined to be duplicate eliminating. Therefore, the tuples are grouped according to their
standard attributes and their time interval. In this example there are two tuples with standard
attribute a and time interval [8, 10), those are therefore combined into one tuple and their
lineages are combined with the ∨-connective. Because only one of the tuples needs to be valid
in order for the resulting tuple to be valid too. The complete query results in four result tuples.
They are shown in Figure 2.8 beyond the timeline and in the table aside.

As a second example, we show a query that uses the temporal probabilistic alignment oper-
ator to adjust the time intervals of the input tuples. Alignment is needed when a tuple of one
relation needs to be combined with only one tuple from another relation.

YΦTP
trueZ:

(a, [4, 5), ω, y1)

(a, [5, 10), ω, y1)

(a, [8, 14), ω, y1)

ZΦTP
trueY:

(a, [5, 10), ω, z1)

(a, [8, 14), ω, z2)

(a, [14, 15), ω, z2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
(a, a, [5, 10), ω, y1 ∧ z1)

(a, a, [8, 14), ω, y1 ∧ z2)

A B T P λ

a a [5, 10) ω y1 ∧ z1

a a [8, 14) ω y1 ∧ z2

Figure 2.9.: Y |><|
TP
true Z

Example 6 Figure 2.9 illustrates the reduction of the temporal probabilistic join Y |><|
TP
true Z.

As first step, the temporal probabilistic alignment operator is applied on both relations with
respect to the other relation. This results in the tuples shown in Figure 2.6.

Afterwards the join over these new tuples is performed. One tuple from YΦTP
trueZ does not

match with any tuple from ZΦTP
trueY. Since a inner join is performed, this tuple is ignored.

The other two tuples have matching counterparts. Therefore the standard attributes are both
copied and the lineages of both sides are combined with the ∧-operator. This is because for
the tuple to be true both base tuples from which it was derived, need to be true as well. In
Figure 2.9, the resulting tuples are shown beyond the timeline and in the table aside.
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3. Confidence Computation

One might think that confidence can just be calculated by computing it within each operator
and then propagating the resulting confidence to the next operator in the query. However,
this does not work for all queries. Let us consider an example of two relationally equivalent
queries Q1 and Q2, applied on the relations from Figure 2.2. For simplification we ignore the
temporal attributes here. First consider:

Q1 = πTP
Name(V |><|

TP
V.Dest=W.Loc W)

V |><|
TP
V.Dest=W.Loc W produces two intermediate tuples (Ann, Zurich, Zurich, Snow) and

(Ann, Zurich, Zurich, Fog), where the confidence value of the first tuple is 0.5 ∗ 0.7 = 0.35
and of the second tuple is 0.5 ∗ 0.2 = 0.1. When also considering lineage, we have v1∧w1 for
the first and v1 ∧ w2 for the second tuple. On these two intermediate tuples the projection on
Name is performed. This results in one tuple (Ann) and its confidence value is computed as
1− ((1− 0.35) ∗ (1− 0.1)) = 0.415 and its lineage as (v1 ∧ w1) ∨ (v1 ∧ w2).

Now we consider the relationally equivalent query:

Q2 = πTP
Name(V |><|

TP
V.Dest=W.Loc (πTP

Loc(W)))

πTP
Loc(W) produces one intermediate tuple (Zurich) with a confidence value of 1 − ((1 −

0.7)∗(1−0.2)) = 0.76 and a lineage of w1∨w2. Joining this tuple with the tuple from relation
V results in the tuple (Ann, Zurich, Zurich) with lineage v1 ∧ (w1 ∨ w2), whose confidence
value can be computed as 0.5 ∗ 0.76 = 0.38. Finally, we project onto Name to produce the
result tuple (Ann) with a confidence value of 0.38 and lineage v1 ∧ (w1 ∨ w2).

We can see that the confidence value of the resulting tuple is not the same for both queries.
Since we do not want to restrict the choice of queries, we need another method to compute the
confidence value. As seen above, do both queries result in a tuple with a logically equivalent
lineage expression. We therefore use lineage to compute the confidence value in the approach
we present here.

3.1. Preliminaries
Base variable: We call the random variables in a lineage expression, which are used to
uniquely identify a base tuple, base variables. Please note that the same base variable might
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appear multiple times in a lineage expression. We define F (λ) to deliver the set of base vari-
ables that are contained in the lineage expression λ.
Negation Normal Form: A lineage expression is in negation normal form (NNF) if negation
is only applied on base variables.
One-Occurrence Form: A lineage expression is in one-occurrence form (1OF) if each base
variable only occurs once in the whole lineage expression.
Independence: Two lineage expressions are told to be independent of each other if none of
their base variables occurs in both lineage expressions. With λ1 and λ2 as lineage expressions
we define independence as F (λ1) ∩ F (λ2) = ∅.
Unate and Positive Form: A lineage expression in NNF is unate, if each base variable either
occurs only positive or only negative. And a lineage expression in NNF is positive, if each
base variable appears positive at least once. Lineage expressions in one of those forms can
trivially be converted into an equivalent expression in the other form [5].

The table in Figure 3.1 shows different lineage expressions and in which form these are.

NNF 1OF independenct to λ = C unate positive
A ∨B ∨ C

√ √
×

√ √

A ∨ ¬A ∨B
√

×
√

×
√

A ∨ ¬B ∨ C
√ √

×
√

×
¬(A ∨B) ×

√ √
× ×

Figure 3.1.: Lineage expressions in different forms

All algorithms presented in the following sections compute the confidence value out of a
lineage expression. In order to get the probability value of all tuples in the relation computed,
one of the algorithms needs to be executed for every single result tuple. All of the algorithms
take as their argument a lineage expression and they return either the exact confidence value
that is represented by the given lineage or they return a small interval in which the exact con-
fidence value must lie.

For the ease of the algorithms we represent lineage expressions in a tree structure. All leaf
nodes are base variables, which are connected via the internal nodes. Those internal nodes
represent the Boolean connectives ∧, ∨ and ¬. Each ∧-node and ∨-node has two children,

∧

∨

∧

x1 x2

∨

¬x3 x2

∨

∨

¬x4 x5

∧

x6 ¬x3

Figure 3.2.: B = (x1 ∧ x2 ∨ ¬x3 ∨ x2) ∧ (¬x4 ∨ x5 ∨ x6 ∧ ¬x3)

17



which are either other internal nodes or leaf nodes. On the other hand, the ¬-nodes only have
one child, which again can be either a internal node or a leaf node.

Figure 3.2 shows an example lineage expression B that is in NNF and it will be used in
the following to analyse the four algorithms. With xi.P we access the probability value that
is stored in the tuple with the identifier xi. For numerical calculations we use the following
probabilities: x1.P = 0.1, x2.P = 0.2, x3.P = 0.3, x4.P = 0.4, x5.P = 0.5 and x6.P =
0.6. Please note that for simplification all ¬-nodes, which are followed by a leaf node, are
represented as one node in all figures.

3.2. Exact Probability Computation
This section shows three algorithms for computing the exact probability of result tuples. The
first algorithm that is presented takes a naive approach. It simply evaluates each possible world
in which the tuple might be valid and computes the probability of those worlds being valid.
The other two algorithms decompose the parts of the lineage expressions that are too complex
into an equivalent and easy computable lineage expressions.

3.2.1. Brute Force Algorithm
As each base variable represents a tuple, which has a probability of being true, we can com-
pute the final confidence by evaluating for which allocations of the base variables the lineage
expression evaluates to true. An allocation assigns each base variable in a lineage expression
either the value true or false.

Example 7 For simplicity reasons, we will illustrate this process on a part of the lineage
expression in Figure 3.2. Suppose we take the left part of the lineage expression B→left =
x1 ∧x2 ∨¬x3 ∨x2, and check if the allocation {x1 = true, x2 = true, x3 = false} evaluates
to true. We therefore replace every occurrence of xi in B→ left with its allocation true ∧
true ∨ ¬false ∨ true ≡ true, which evaluates to true. But the allocation {x1 = true, x2 =
false, x3 = true} evaluates to false: true ∧ false ∨ ¬true ∨ false ≡ false.

x1 x2 x3 Eval(B→left)
false false false true

false false true false

false true false true

false true true true

true false false true

true false true false

true true false true

true true true true

Figure 3.3.: Evaluated truth table for B→left = x1 ∧ x2 ∨ ¬x3 ∨ x2
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Figure 3.3 shows the truth table that is formed by all possible allocations for the base vari-
ables of B→left. To compute the final confidence we only need to consider those allocations
for which the lineage evaluates to true, since for all other combinations the tuple with the lin-
eage B→left would not be valid.

For further calculations we need to be able to compute how likely it is that an allocation
occurs. This can be calculated by multiplying the probability of every base variable to be
either true or false depending on the allocation. The probability of a base variable xi to be
true can be retrieved by accessing the probability value xi.P of the tuple that is identified by
the given base variable. On the other hand, we have 1 − xi.P indicating the probability of
the base variable xi to be false. For every allocation that evaluates to true we thus compute
the probability of this combination happening, by multiplying the corresponding probability
values.

If we sum up all those probabilities we finally get the probability of the tuple with lineage
B→left to be valid. Figure 3.4 shows the table that is used to compute the final confidence
value. Please note that ’−’ relates to rows for which we did not compute the confidence, as
the evaluation of the corresponding allocation resulted in false.

The set-up of the truth table assures that the final confidence will be zero in case that the
lineage evaluates to false for all possible allocations. On the other hand, the probability will
be one if lineage evaluates to true for all possible allocations. As no outcome can exceed this
boundaries, the computed confidence will always be between 0 and 1.

x1 x2 x3 P (B→left)
0.9 0.8 0.7 0.504

− − − −
0.9 0.2 0.7 0.126

0.9 0.2 0.3 0.054

0.1 0.8 0.7 0.056

− − − −
0.1 0.2 0.7 0.014

0.1 0.2 0.3 0.006

Sum: 0.76

Figure 3.4.: Confidence computation for B→left = x1 ∧ x2 ∨ ¬x3 ∨ x2

Example 8 Since the lineage expression B→left from Figure 3.2 with the allocation {x1 =
true, x2 = true, x3 = false} evaluates to true, we compute the probability of this allocation
to be valid by: 0.1 ∗ 0.2 ∗ 0.7 = 0.014. For the variable x3, which is set to false, 1 − x3.P is
taken and for all other variables, which are set to true, xi.P is taken. By summing up all the
probabilities of allocations that evaluate to true, we get a probability of 0.76 for the tuple with
lineage expression B→left.
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We define f to be the number of different base variables of a lineage λ. Formally we have
f = |F (λ)|. The complexity of this algorithm is O(2f ), because all possible combinations,
where the f distinct base variables are either set to true or false, must be evaluated. This
gives a total number of 2f combinations. For a relation with n tuples this results in a total
complexity of O(n ∗ 2f ).

3.2.2. Decomposition Algorithm
Fink et al. [4] suggest an algorithm to compute confidence without unfolding the lineage ex-
pression into disjunctive normal form. This algorithm is able to compute confidence from all
lineage expressions that are possible with our temporal probabilistic algebra. The basic idea of
this algorithm is to decompose complex parts of the lineage expression into easily computable
but equivalent lineage expressions. We adapted their algorithm in such a way that it works
with lineage expressions in tree structure as we have them in out system.

∧

∨

∨

x1 x2

¬

∧

x3 ¬x2

¬

∧

∧

x4 ¬x5

∨

¬x6 x3

(a) Lineage expression not in NNF

∧

∨

∧

x1 x2

∨

¬x3 x2

∨

∨

¬x4 x5

∧

x6 ¬x3

(b) The same lineage expression in NNF

Figure 3.5.: Negation Normal Form (NNF)

As a precondition of our algorithm the lineage expression must be brought into NNF. The
lineage expressions that are constructed by our temporal probabilistic algebra do not neces-
sarily fulfil this condition. Therefore a algorithm was created that solves this problem. This
algorithm recursively pushes negations down, until ¬-nodes only have a leaf nodes as their
child. Figure 3.5 shows a lineage expression, which is not in NNF and how it is changed to be
in NNF. Algorithm 6 in Appendix B shows an algorithm that performs this transformation.
Let P (λ) be a function that maps the lineage expression to the probability value of the tuple

that is represented by the lineage expression. Olteanu et al. [12] suggest three decompositions,
which are adapted to our needs:

1. Independent-and: If we are at a ∧-node and we have F (λ→left) ∩ F (λ→right) = ∅,
we can compute P (λ) = P (λ→left) ∗ P (λ→right).

2. Independent-or: If we are at a ∨-node and we have F (λ→left) ∩ F (λ→right) = ∅, we
can compute P (λ) = 1− (1− P (λ→left)) ∗ (1− P (λ→right)).

3. Exclusive-or: If none of the above decompositions can be applied, we apply so called
Shannon expansion. We choose a base variable x in λ. Then, λ is equivalent to
x∧λ|x=true∨¬x∧λ|x=false, where λ|x=true is obtained from λ by removing all parts that
are redundant when x is set to true. We can then compute P (λ) = P (x)∗P (λ|x=true)+
P (¬x) ∗ P (λ|x=false).
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Algorithm 1 Computing probability of the tuple with lineage expression λ
Require: lineage expression λ in NNF

1: function PROBABILITY(lineage expression λ)
2: if λ is in 1OF then
3: return PROBABILITY1OF(λ)
4: else if λ→left is independent from λ→right then
5: if λ→op = ∧ then
6: return PROBABILITY(λ→left) ∗ PROBABILITY(λ→right)
7: else
8: return 1− ((1− PROBABILITY(λ→left) ) ∗ (1− PROBABILITY(λ→right) ))
9: end if

10: else . Shannon expansion
11: x← base variable that occurs most in λ
12: return x.P∗ PROBABILITY(λ|x=true) +(1− x.P )∗ PROBABILITY(λ|x=false)
13: end if
14: end function

With those decompositions we can incrementally decompose the initial lineage expression
into parts that are in 1OF. This is nice, because for such lineage expressions the probability can
be computed in linear time. To do this we have an function P1OF that computes the probability
represented by the lineage expression by recursively applying those four rules:

• ∧-node: P1OF (λ) = P1OF (λ→left) ∗ P1OF (λ→right).

• ∨-node: P1OF (λ) = 1− ((1− P1OF (λ→left)) ∗ (1− P1OF (λ→right))).

• ¬-node: P1OF (λ) = 1− P1OF (λ→left).

• leaf node: P1OF (λ) = λ.P .

Example 9 Let us take the right sub-tree of B, B→right = (¬x4 ∨ x5) ∨ (x6 ∧ ¬x3), which
is in 1OF, as an example and let us compute P (B→right). At the root node we have a ∨, we
therefore have P1OF (B→right) = 1 − ((1 − P1OF (¬x4 ∨ x5)) ∗ (1 − P1OF (x6 ∧ ¬x3))). We
further compute P1OF (¬x4 ∨ x5) = 1− ((1− P1OF (¬x4)) ∗ (1− P1OF (x5))), since we have
another ∨-node there and P1OF (x6 ∧ ¬x3) = P1OF (x6) ∗ P1OF (¬x3) because we have a ∧-
node there. We are now left with two calls of P1OF on base variables for which we simply take
the probability value P of the corresponding tuples P1OF (x5) = x5.P and P1OF (x6) = x6.P
and two calls of P1OF on a ¬-node which resolve in P1OF (¬x4) = 1− P1OF (x4) = 1− x4.P
and P1OF (¬x3) = 1− P1OF (x3) = 1− x3.P .

The whole expression then results in P1OF (B→right) = 1− ((1− (1− ((1− (1− x4.P )) ∗
(1− x5.P )))) ∗ (1− (x6.P ∗ (1− x3.P )))) = 1− ((1− (1− ((1− (1− 0.4)) ∗ (1− 0.5)))) ∗
(1− (0.6 ∗ (1− 0.3)))) = 0.884.

An algorithm that implements function P1OF is sketched in Appendix B. With the use of
this algorithm and the previously defined decompositions, we come up with an algorithm that
can compute the probability value for every possible lineage expression. This algorithm is
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shown in Algorithm 1. Basically, we first check if the given lineage expression is in 1OF. If
this is the case, we call P1OF with the lineage expression as its argument and otherwise we
apply one of the decompositions. Since Shannon expansion can always be applied and leads
to less base variables in the lineage expression, we never reach a dead end.

∧

∨

∧

x1 x2

∨

¬x3 x2

∨

∨

¬x4 x5

∧

x6 ¬x3

(a) B = (x1 ∧x2 ∨¬x3 ∨x2)∧ (¬x4 ∨
x5 ∨ x6 ∧ ¬x3)

∧

∨

∧

x1 x2

∨

¬x3 x2

∨

∨

¬x4 x5

∧

x6 ¬x3

(b) B|x2=true = (¬x4 ∨ x5) ∨ (x6 ∧
¬x3)

∧

∨

∧

x1 x2

∨

¬x3 x2

∨

∨

¬x4 x5

∧

x6 ¬x3

(c) B|x2=false = (¬x3)∧ (¬x4 ∨x5 ∨
(x6 ∧ ¬x3))

Figure 3.6.: Shannon cofactors

We are left with investigating Shannon expansion, which is a method to decompose the lin-
eage expression into simpler parts by extracting a base variable. Shannon expansion is defined
as x∧ λ|x=true ∨¬x∧ λ|x=false, where x is the base variable according to which the Shannon
cofactors λ|x=true and λ|x=false are built. As first step we need to consider, which base vari-
able should be taken for the Shannon expansion. [5, 12] both suggest to use the base variable
that occurs the most in the whole lineage expression, when considering non-tractable queries.
Since we decoupled query execution and confidence computation in our work, we adapt this
suggestion.

After choosing the decoupling variable x, the positive and negative Shannon cofactors
(λ|x=true, λ|x=false) for the given lineage expression λ with respect to x need to be computed.
The intuition behind the Shannon cofactors is that all occurrences of the base variable x in λ
are set to true or false respectively. Because of this, more parts of the lineage expression
might become redundant. To be exact, if one child of an ∧-node is set to false it does not
matter what the other child is, the expression will always evaluate to false. For ∨-nodes we
have redundancy if one child is set to true, in this case the whole expression will always eval-
uate to true.

Finally, if the Shannon cofactors are computed we combine them in such a way that the
new expression is equal to the original one, which is the solution of the Shannon expansion
λ = x ∧ λ|x=true ∨ ¬x ∧ λ|x=false.

Algorithm 2 sketches an algorithm that creates the Shannon cofactors for a given lineage
expression. The algorithm recursively investigates the nodes of the given lineage expression
and creates a copy of those which are not redundant because of the setting of the base variable
x. The function returns NULL if the underlying lineage expression for sure evaluates to true
or false. If the function returns from recursion returning NULL, it further checks for redun-
dancy (lines 23 and 27). Otherwise it simply returns a copy of the current node.
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Algorithm 2 Computing Shannon cofactors λ|x=true and λ|x=false of a lineage expression λ

Require: lineage expression x needs to be a leaf node in λ and λ needs to be in NNF
1: bool v . global variable
2: λ|x=true ← SHANNONCOFACTOR(λ, x, true)
3: λ|x=false ← SHANNONCOFACTOR(λ, x, false)
4: function SHANNONCOFACTOR(lineage expression λ, lineage expression x, bool vinitial)
5: if λ→op = NONE then . λ is leaf node
6: if λ = x then
7: v ← vinitial
8: return NULL
9: else

10: return COPYNODE(λ)
11: end if
12: else if λ→op = ¬ then
13: l← SHANNONCOFACTOR(λ→left, x, vinitial)
14: if l then
15: return NEWNODE(¬, l,NULL) . Return a new node with op = ¬, left = l

and right = NULL
16: else
17: v ←!v
18: return NULL
19: end if
20: end if
21: l← SHANNONCOFACTOR(λ→left, x, vinitial)
22: if !l ∧ ((v ∧ λ→op = ∨) ∨ (!v ∧ λ→op = ∧)) then
23: return NULL
24: else
25: r ← SHANNONCOFACTOR(λ→right, x, vinitial)
26: if !r ∧ (!l ∨ ((v ∧ λ→op = ∨) ∨ (!v ∧ λ→op = ∧))) then
27: return NULL
28: else
29: if !l then
30: return r
31: else if !r then
32: return l
33: else
34: return NEWNODE(λ→op, l, r)
35: end if
36: end if
37: end if
38: end function
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Example 10 Let us compute the Shannon cofactors for lineage expression B with respect to
base variable x2. We start with the positive Shannon cofactor B|x2=true. See Figure 3.6b for
an illustration. We set all occurrences of x2 to true and see what happens to the rest of the
expression. We start at the left x2-node and go up one level. Since we are at a ∧-node and
v = true, we cannot delete this part. In other words, the evaluation of the expression depends
on the left part. Therefore, we stop there and go to the next x2-node. There we go up one level
and we come to a ∨-node. Since the right side of the ∨-node is true we know that the whole
expression will always be true, no matter what the left part is. We therefore delete this part
and go up one level more. There we have a ∨-node again and the same happens. Then we go
up again. We are now at the root node, which is a ∧-node, and we have to stop there, since
we do not know to what it evaluates for sure. At this point, we have no more x2-nodes left to
check. So we are left with B|x2=true = (¬x4 ∨ x5) ∨ (x6 ∧ ¬x3). All parts in Figure 3.6b that
are marked in green, get redundant because x2 was set to true.

The same procedure is executed for B|x2=false. In this case only the leaf nodes with variable
x2 and the leaf node with variable x1 gets redundant. We are therefore left with B|x2=false =
(¬x3) ∧ (¬x4 ∨ x5 ∨ (x6 ∧ ¬x3)), see Figure 3.6c for an illustration.

Combined this results in P (B) = P (x2)∗P ((¬x4∨x5)∨(x6∧¬x3))+P (¬x2)∗P ((¬x3)∧
(¬x4 ∨ x5 ∨ (x6 ∧ ¬x3))).

Let us now consider en example that shows the usage of the complete probability computa-
tion algorithm:

Example 11 We take the lineage expression B from Figure 3.2 and compute P (B). As a first
step we check ifB is in 1OF. This is not the case, since the base variables x2 and x3 occur twice
in the whole lineage expression. As a second step we check if B→left is independent from B→
right, but since x3 occurs in both parts, this is not true either. Therefore, we will apply Shannon
expansion. Since x2 and x3 both occur twice in B, we are free to choose one of those variables
to calculate the Shannon cofactors. If we chose x2 this results, as we saw in the previous exam-
ple, in P (B) = P (x2)∗P ((¬x4∨x5)∨(x6∧¬x3))+P (¬x2)∗P ((¬x3)∧(¬x4∨x5∨(x6∧¬x3))).

We can now recursively solve all newly occurring calls of P . In three of the four calls the
given lineage expression is in 1OF, for those we therefore can simply compute their proba-
bility by calling P1OF . This results in P1OF (x2) = x2.P = 0.2, P1OF ((¬x4 ∨ x5) ∨ (x6 ∧
¬x3)) = 0.884 (see Example 9) and P1OF (¬x2) = 1 − x2.P = 0.8. The last expression
P ((¬x3)∧(¬x4∨x5∨(x6∧¬x3))) needs to be further decomposed, since it is not in 1OF. We
also do not have independent parts and therefore we need to do another Shannon expansion.

The Shannon expansion with respect to x3 results in P (x3) ∗ P (false) + P (¬x3) ∗ P (x1 ∧
(¬x4 ∨ x5 ∨ x6)). The positive Shannon cofactor results in false since if x3 is set to true,
the whole expression can never evaluate to true. Now we are left only with lineage expres-
sions which are in 1OF. We compute the probability of those as: P (x3) = x3.P = 0.3,
P (false) = 0, P (¬x3) = 1−x3.P = 0.7 and P (x1∧(¬x4∨x5∨x6)) = x1.P ∗(1−((1−(1−
((1−(1−x4.P ))∗(1−x5.P ))))∗(1−x6.P )) = 0.92. The complete second Shannon expansion
resolves in a probability of P ((¬x3)∧ (¬x4∨x5∨ (x6∧¬x3))) = 0.3∗0+0.7∗0.92 = 0.644.

Finally we can insert all values into the formula of the first Shannon expansion, which re-
sults in P (B) = 0.2 ∗ 0.884 + .8 ∗ 0.644 = 0.692.
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We take i as the number of nodes in lineage expression λ. As we already mentioned P1OF

runs in linear time, since every node needs to be visited exactly once for its execution. There-
fore, its complexity is O(i), Checking if the lineage expression is in 1OF is a bit more time
consuming. The algorithm that we implemented checks for every leaf node if the same base
variable already occurred. Base variable that already occurred are stored in a binary search
tree. Since insertion and searching in a binary search tree have complexity O(log(n)) in best
case, we have an overall best case complexity of O(i ∗ log(i)) to check if the lineage expres-
sion is in 1OF. The same is the case for checking for independence and for finding the base
variable for the Shannon expansion. In worst case the complexity is O(i2). The algorithm
to compute the Shannon cofactors runs in O(i) since every node needs to be visited once.
Since all those computations need to be done for every node in the lineage expression, the
complexity of P (λ) is O(i2 ∗ log(i)) respectively O(i3) in the worst case.

3.2.3. Decomposition Algorithm with Theta
Dylla et al. [3] suggest a slightly modified version of the previously explained algorithm.
They empirically found out that eagerly removing all Shannon expansions is not the best
choice. Therefore a threshold θ was introduced. If the number of distinct base variables f
is less or equal to θ no more Shannon expansions are performed. Instead, the Brute Force
Algorithm is used to calculate the probability value for the remaining lineage expression. All
other computations are completely identical to those in the previous section, this means that
if θ = 0 both algorithms are identical. For the evaluation we set θ = 4, since Dylla et al. [3]
achieved the best results with this setting. Algorithm 8 in Appendix B sketches the algorithm
that uses threshold θ.

Example 12 Let us reconsider the Example 11 from the previous section and apply this algo-
rithm with θ = 4. The first Shannon expansion is executed in the same way, since there are
more than 4 variables in the initial lineage expression. But before executing the second Shan-
non expansion, we check again. The lineage expression there is (¬x3)∧(¬x4∨x5∨(x6∧¬x3)),
this expression includes exactly 4 distinct variables, this means that no further Shannon expan-
sion is performed. The probability of this lineage expression is instead computed by applying
the Brute Force Algorithm.

3.3. Approximate Confidence Computation
This algorithm uses parts of the two Decomposition Algorithms. The main difference is that
bounds are computed before any decomposition is performed. The bounds describe in what
range the final probability value must be. We can restrict this range because the lineage struc-
tures delivers a certain knowledge about the composition of the probability. And after each
decomposition we gain some knowledge, what further restricts the range. This range is limited
by a maximal possible value, which is called the upper bound U and by a minimal possible
value, which is called the lower bound L. If L and U are close enough, the evaluation of
the expression is stopped and the interval between the two bounds is returned as result. To
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be exact we guarantee that the approximation bounds are in a range, which is ε small. In
the implementation we set ε = 0.05. This means that the algorithm always returns a interval
[L,U ], with U − L < ε = 0.05, which includes the exact confidence value. The reason for
considering this algorithm is, that decompositions are computationally expensive and often a
good enough approximation can be found very fast.
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(a) B = (x1 ∧x2 ∨¬x3 ∨x2)∧ (¬x4 ∨
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(c) Lower bound: BL = (x1 ∧ x2 ∨
¬x3) ∧ (¬x4 ∨ x5)

Figure 3.7.: Upper and lower bound

Fink et al. [5] suggest a method to compute lineage expressions in 1OF, which are upper
and lower bounds of the initial lineage expression. For this method to work correctly, the
initial lineage expression must be positive (or equivalently, unate). Since the probability value
of lineage expressions in 1OF can be computed in linear time, this is an useful method to
compute bounds U and L.

Proposition 4 [5] Let λ be a positive (or equivalently, unate) lineage expression. By setting
all but one occurrence of each base variable, including a possible negation, to true, a lineage
expression λU , which is in 1OF and is an upper bound of λ, is obtained. By setting all but one
occurrence of each base variable, including a possible negation, to false, a lineage expression
λL, which is in 1OF and is an lower bound of λ, is obtained. Depending on which occurrences
of the base variable are chosen, different bounds may be obtained.

Example 13 Let us compute the bounds of the tuple with lineage expression B from Fig-
ure 3.7a, which is unate. We start by checking which variables occur more than once. In this
case these are variables x2 and x3. We then set all but one occurrence of those variables to
true or false respectively. The choice of occurrences does not affect the result. For this exam-
ple we will leave the first occurrences of both variables unchanged. Thus we compute the up-
per bound BU by setting the second base variable from x2 and x3 to true. See Figure 3.7b for
an illustration. When setting the second x2 to true the whole left part of the tree gets redundant.
We also set the second ¬x3 to true. This results in the upper bound of BU = ¬x4 ∨ x5 ∨ x6.
The probability value of this upper bound is computed as U = P1OF (BU) = 0.92. The lower
bound is then computed by setting the second base variable from x2 and x3 to false. This
results in BL = (x1 ∧ x2 ∨¬x3)∧ (¬x4 ∨ x5) (See Figure 3.7c), which results in a probability
value of L = P1OF (BL) = 0.5792.

The main method of this algorithm, which is sketched in Algorithm 3, uses a decomposition
tree T to keep track of nodes that already have been evaluated. At the beginning this tree is a
simple leaf node, which includes the complete lineage expression λ. As first step, the bounds
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(b) decomposition tree after one decomposition

Figure 3.8.: Decomposition tree

of the lineage expression λ are computed by applying the procedure described before. If the
bounds satisfy the defined error guarantee ε, those are returned and otherwise T is decom-
posed by applying one of the decompositions explained in Section 3.2.2. The algorithm then
recursively is called with the newly created decomposition tree as its argument. After every
new decomposition, the bounds need to be computed. Since we keep track of all already com-
puted bounds, we only need to do it for the newly created nodes. To have the bounds moving
together as fast as possible, we apply the decomposition always on the node with the largest
difference between the bounds.

The bounds of the complete decomposition tree T are computed by applying the following
rules (Note we do not have ¬-nodes here, since no decomposition produces negations. But we
do have ⊕-nodes, which represent the exclusive-or decomposition):

• ∧-node: U(T ) = U(T→left) ∗ U(T→right) and L(T ) = L(T→left) ∗ L(T→right).

• ∨-node: U(T ) = 1−((1−U(T→left))∗(1−U(T→right)) and L(T ) = 1−((1−L(T→
left)) ∗ (1− L(T→right))).

• ⊕-node: U(T ) = U(T→left) + U(T→right) and L(T ) = L(T→left) + L(T→right).

• leaf node: U(T ) = P1OF (λU) and L(T ) = P1OF (λL) where λ is the lineage expression
at this leaf node.

Example 14 Let us proceed this algorithm with the lineage expression B from Figure 3.2 with
an error guarantee of ε = 0.1. At the beginning we have a decomposition tree T , which con-
tains the whole lineage expression B. We start with computing the bounds of this expression,
which results as we saw in Example 13 in a lower bound L = 0.5792 and a upper bound
U = 0.92. This state is illustrated in Figure 3.8a. Since U − L = 0.3408 > 0.1 = ε, we can
not stop at this point and we need to decompose the tree.

We have no independence between the left and the right part of the lineage expression B,
therefore we compute the Shannon factors as we saw in Example 10 and add those new nodes
to the decomposition tree T . This results in the tree, which is shown in Figure 3.8b.

The algorithm is then again executed with the new decomposition tree. This means, we
start again with computing the bounds of T . Therefore the bounds of all leaf nodes need
to be evaluated. Three of the leaf nodes include lineage expressions that are in 1OF, for
which the exact probability value can easily be computed. Therefore the bounds of those
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Algorithm 3 Computing approximate probability of the tuple with lineage expression λ and
error guarantee ε
Require: lineage expression λ in NNF

1: new decomposition tree T
2: T→λ← λ, T→op← NONE, T→bounds← NULL
3: P ← PROBABILITYAPPROXIMATE(T )
4: function PROBABILITYAPPROXIMATE(decomposition tree T )
5: (BoundL, BoundU)← BOUND(T )
6: if BoundU −BoundL <= ε then
7: return (BoundL, BoundU)
8: end if
9: t← lineage expression of node with largest difference between bounds in T

10: if t→left is independent from t→right then
11: if t→op = ∧ then
12: Replace t in T by t→left ∧ t→right
13: else if t→op = ∨ then
14: Replace t in T by t→left ∨ t→right
15: end if
16: else . Shannon expansion
17: x← base variable that occurs most in t
18: Replace t in T by (x ∧ t|x=true)⊕ (¬x ∧ t|x=false)
19: end if
20: return PROBABILITYAPPROXIMATE(T )
21: end function

nodes are set to these values. The last leaf node includes a more complex lineage expression
λ = ¬x3 ∧ (¬x4 ∨ x5 ∨ (x6 ∧ ¬x3)), for which the bounds need to be evaluated by applying
the procedure that was explained in Example 13. This results in bounds of L = 0.56 and
U = 0.644 for this node.

By applying the rules for computing the bounds for decomposition trees, we get the follow-
ing bounds L(T ) = 0.2∗0.884 + 0.8∗0.56 = 0.6248 and U(T ) = 0.2∗0.884 + 0.8∗0.644 =
0.692 for T . Since U − L = 0.0672 < 0.1 = ε the algorithm stops here and returns those
bounds as the interval, in which the exact probability must lie. The exact probability is 0.692
as we saw in Example 11.
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4. Implementation

We use PostgreSQL server in version 9.3.1 in which we include the concepts described in this
thesis. Postgres, an more often used alternative name of PostgreSQL, is an object-relational
database management system, which is distributed under an open source licence. Besides
SQL and C, it allows also for other languages, so called procedural languages, like PL/pgSQL,
PL/Tcl, PL/Perl and PL/Python.

4.1. PostgreSQL
Internally, a query that is executed on a Postgres server will run through different stages, be-
fore either a result or an error will be returned.

At first, the parser transforms the query according to its grammar into a parse-tree. This is
done by generating corresponding nodes for each keyword in the query, e.g. SELECT will gen-
erate a SelectStmt-Node, whereas * will generate an A_Star-Node and so on. While generating
nodes, those nodes are linked with each other, generating a tree, which will then be processed
by the rewriter. By applying all applicable rewriter rules stored in the system catalogs, the
rewriter transforms the parse-tree into the query-tree. In case that the query is syntactically
or semantically invalid, an error will be thrown during rewriting and further execution of the
query will be aborted.

Before the rewritten query-tree is executed, the optimizer will transform the query-tree. For
this, the optimizer looks up all possible paths leading to the same result. By rearranging nodes
and expanding the least cost path, an executable query-plan is being generated.

Finally, the executor executes the query-plan in the specified order by retrieving the neces-
sary tuples in the database, applying operators and returning the final result to the user.

4.2. Implementation Approach
We decided to implement the lineage computation in the rewriter. More precisely in the trans-
formation step that transforms the parse-tree into the query-tree. We transform the query,
which was entered by the user, in such a way that lineage is computed as well. To do so we
add calls to self defined C-functions and aggregate-functions, which take care of the correct
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computation of the lineage expressions. With this approach we make use of the already ex-
isting functionality of Postgres and since we transform the queries entered by the users into
other valid SQL-queries, no changes in the optimizer nor executor are required.

The computation of the confidence value is done by calling one of four C-functions and
passing the computed lineage expression as an argument to them. Depending on the algorithm
that should be used for the confidence computation the corresponding function is used. This
function then evaluates with the algorithm described in Section 3 the confidence value for
every result tuple.

4.3. Syntax of Relations
Since we are dealing with Temporal Probabilistic Databases we must make sure that all rela-
tions follow a certain syntax. In order to be able to use the concepts described in this work,
each relation must have a temporal and a probabilistic attribute. This means that each relation
must specify a column with the name p of type numeric, which defines the probability of the
tuple’s validity. Moreover there must be two columns that specify the time interval in which
the tuple is valid. The first of those columns must be called ts and holds the included starting
time point of the time interval and the second column must be called te and hold the excluded
ending time point of the time interval. In order for the Normalization and Alignment to work,
both these columns need to be at the end of the table. To be precise, ts must be the second last
column and te the last one.

standard attributes p ts te

Figure 4.1.: Syntax of relations

4.4. Syntax of Queries
Regarding query execution, queries must contain keywords such that lineage and the corre-
sponding confidence values get computed. We added the keywords LINEAGE and four dif-
ferent CONF-keywords, CONF, CONFA, CONFB and CONFC to the standard SQL-Syntax.
If at least one of these keywords is present in the user’s query the system will compute the
lineage expression for every result tuple. In order to have the query result show the computed
lineage expression, one must specify LINEAGE, while a CONF-keyword must be present to
get the confidence value computed and displayed. Each of the four different CONF-keyword
stands for another algorithm that is used to compute the confidence values. If none of the
keywords is given in the query, lineage will not be computed. Keywords can be used in all
possible combinations. The five keywords result in the following output:

• LINEAGE: Lineage expression
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• CONF: Confidence computed with Brute Force Algorithm

• CONFA: Confidence computed with Decomposition Algorithm

• CONFB: Confidence computed with Decomposition Algorithm with Theta (θ = 4)

• CONFC: Confidence computed with Approximate Algorithm (ε = 0.05)

The keywords must be listed right before the so called SELECT-list of the outermost SELECT-
statement. See the following segment of the SQL-SELECT-Statement synopsis.

1 SELECT [ ALL | DISTINCT [ ON ( e x p r e s s i o n [ , . . . ] ) ] ]
2 [ o p t _ l i n e a g e ]
3 ∗ | e x p r e s s i o n [ [ AS ] ou tpu t_name ] [ , . . . ] −− SELECT− l i s t
4 [ FROM from_i tem [ , . . . ] ]
5 [ WHERE c o n d i t i o n ]
6 . . .
7 o p t _ l i n e a g e = [ ] | o p t _ l i n e a g e LINEAGE | o p t _ l i n e a g e CONF | o p t _ l i n e a g e

CONFA | o p t _ l i n e a g e CONFB | o p t _ l i n e a g e CONFC

We tried to make our implementation user-friendly in a way, that the user does not need to
care about the lineage computation. If one of the keywords is present in the query, our imple-
mentation automatically adds the necessary operations to compute correct lineage expressions
for derived tuples. This allows the users to query the database and to display lineage and con-
fidence, without having knowledge about its computation.

SELECT CONF ∗
FROM

(V ALIGN W ON V. d e s t =W. l o c )V
LEFT JOIN

(W ALIGN V ON W. l o c =V. d e s t )W
ON V. d e s t =W. l o c AND V. t s =W. t s AND V. t e =W. t e

name dest ts te loc weather ts te p(CONF)
Ann Zurich 2014-12-04 2014-12-05 0.5
Ann Zurich 2014-12-05 2014-12-10 Zurich Snow 2014-12-05 2014-12-10 0.35
Ann Zurich 2014-12-08 2014-12-14 Zurich Fog 2014-12-08 2014-12-14 0.1

Figure 4.2.: Example query and its resulting table

An example of a query is presented in Figure 4.2. In this query the keyword CONF is used.
This means that the confidence value is computed with the Brute Force Algorithm and the
result is shown to the user. The figure also shows the result of the query, if it is executed on
the relations from Figure 2.1. Please note that the temporal attribute is split into two columns
ts and te, which is the standard syntax for relations in our implementation.
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4.5. Lineage Representation
Conceptually, lineage is represented as a boolean expression, but in terms of implementation
we want to represent it as a tree structure. For base tuples, lineage must be a variable that
allows us to uniquely identify the tuple itself. And for derived tuples, lineage must be able
to combine other lineages with the binary operators ∧ and ∨ and the unary operator ¬. We
therefore constructed a data-type called ’lineage’ that allows us to build such constructs.

To create the lineage expressions for the base tuples, which must be unique identifiers,
we make use of identifiers that are already existing in PostgreSQL. We look up the system
columns called ’tableoid’ and ’oid’, which are unique identifiers (so called object identifiers,
short OID) of the relation and the tuple respectively. Those are automatically created by the
system.1 Since the OIDs defined in PostgreSQL are 32-bit quantities and are assigned from a
single database-wide counter, it is possible that the counter wraps around in large databases.
To make sure that no two rows of a table are assigned with the same OID, a unique constraint
on the ’oid’ column should be created.2 By combining the tableoid and the oid we are able
to uniquely identify each tuple within the database. Therefore we store for the lineage of base
tuples one simple node that contains the tableoid and the oid of the tuple.

For derived tuples, all leaves of the tree structure are lineages of base tuples. On the other
side the internal nodes represent operators such as ∧, ∨ and ¬, where all ∧- and ∨-nodes
have two children that are either leaves or other internal nodes. ¬-nodes only have one child,
which also can be a leaf or another internal node. Figure 4.3 shows an example of a lineage
expression represented in the defined tree structure. In the leaf nodes we represent the unique
identifiers for simplification as tableoid.oid.

∨

1.2 ¬

∧

3.4 5.6

Figure 4.3.: Lineage as tree structure.

In order to be able to store this tree structure in the database, its structure must be changed.
Since the values stored as lineage may vary in size, we must follow some defined standard
layout, which PostgreSQL has for the representation of data types that vary in size. The rules
say that the first four bytes must be a char[4] field, in which the size of the complete structure

1Till PostgreSQL version 8.1., ’OIDs were created by default unless the user specified to create tables without
OIDs. But today, they are no longer created as most up to date applications do not need this attribute any
more. Therefore, we modified the code such that OIDs are created by default again, as this is eminent to
compute lineage.

2Of course, it is only possible for the table to contain fewer than 232 (4 billion) rows with unique identifiers.
But in practice the table size should be much less anyhow, or performance might suffer.
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is stored. This first 4 bytes are never accessed directly, but they can be set and retrieved by
using SET_VARSIZE or VARSIZE respectively. The rest of the structure must be stored in
a char*. We therefore need two functions. One that transforms the tree structure into this
storable form and another one for the other way round.

The pack-function transforms the tree into the storable structure. To do this it traverses
through the tree and arranges all nodes in a array of type char. One node consists of five parts:
the tableoid, the oid, the type of the node (AND, OR, NOT and NONE for leaf nodes), a pointer
to the left child and a pointer to the right child. As an example see Figure 4.4, it shows the
lineage from Figure 4.3 in the storable structure. While creating the char array, the pointers
between the nodes are corrected and are made relative to the pointer of the root node. This
needs to be done because when the structure is retrieved the next time, the absolute pointer
values are different to what they are now and the pointers would point to invalid memory. In
4.4a the structure is shown with absolute pointers and in 4.4b with relative pointers. Finally,
the size of the array is analysed and it is set to the size attribute of the packed structure. See
the blue part in Figure 4.4.

The other function, which transforms the storable structure into the tree structure, is called
unpack-function. At first, the number of nodes of the lineage is computed by dividing the
whole size of the packed lineage structure through the size of one lineage node. Afterwards
the pointers in the node array are made absolute, such that they point to the correct nodes
again. After this step the tree structure is restored and all manipulations can be executed.

(a) absolute pointers

(b) relative pointers

Figure 4.4.: Packed Lineage structure.

To be able to create a new user-defined data type, an input- and an output-function must be
provided too. Those functions determine how the type appears as a string, for input by and
output to the users. To make the data type usable for our purpose, further operators for the
lineage data type were created. These allow us to combine two lineage expressions by adding
a new ∧-, ∨ or ¬-node. Moreover, an operator class for the new type was added. This class
allows to sort and compare different values of type lineage. And since for the normalization
and alignment algorithms it is necessary to sort by lineage, this operator class is required.
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5. Evaluation

In this section we evaluate our implementation of a temporal probabilistic database system
and we compare the four implemented confidence computation algorithms.

5.1. Setup
For these experiments, we ran our implementation on a machine with CentOS 6.4, 2 x Intel R©
Xeon R© CPU E5-2440 @ 2.40GHz (each 12 cores), 4 x 300GB 15,000rpm, 64 GB main mem-
ory. All parameters of the PostgreSQL server were kept to default values, except that we set
the creation of OIDs for every tuple as default again. For all experiments no indexes were used.

We ran the experiments with a synthetic dataset, with the same table structure as shown in
Figure 2.1. The tables were filled with different numbers of tuples to evaluate the performance
for different amounts of input tuples.

5.2. Lineage Computation
For this thesis, the lineage expression was implemented into the PostgreSQL database system
as a tree structure. But in a previous step we represented lineage as a string. In this sec-
tion those two techniques are evaluated. We evaluate different kinds of queries to see their
performance in various cases.
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Figure 5.1.: Runtime of lineage computation for simple queries

First we evaluated the performance of simple queries. We created three types of queries that
we executed on tables with a different amount of tuples. Query (a) is a simple selection of all
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tuples in the table, (b) performs an temporal probabilistic aggregation with grouping and (c) is
a temporal probabilistic projection on one attribute, which eliminates duplicates. The results
are presented in Figure 5.1. As we see query (a) performs very fast for every amount of input
tuples. The new lineage implementation performs a bit faster on average, but as we are in the
range of milliseconds, this is ignorable.

The grouping with aggregation (b) results in few result tuples with large lineage expres-
sions. In this case the implementation with strings outperforms the implementation in tree
structure. We explain this by the fact that for every operation that is performed on lineage,
the pack- and the unpack-function must be executed. As we have many of those operations in
this query and because the lineage which must be unpacked gets larger very fast, what makes
the unpacking and packing more time consuming, this query is slower with such a lineage
representation. Query (c) runs with both implementations in nearly the same time. Pleas note,
that we have more result tuples in this query, but the resulting lineage expressions are much
shorter. For shorter lineage expressions, the packing and unpacking functions, are much less
time consuming.
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Figure 5.2.: Runtime of lineage computation for complex queries

We also run the implementations with more complex queries. The runtime of those queries
is shown in Figure 5.2. The first query (a) performs an temporal probabilistic full join over two
tables and groups the resulting tuples. Since the grouping is made on attributes which do not
have many distinct values, we get few result tuples but those have huge lineage expressions.
As we already saw in the previous examples, the new lineage representation does perform
much worse in such a case.

The query (b) results in more tuples than (a), but those tuples have less complex lineage
expressions. To be exact, many normalizations are performed, which do not add any complex-
ity to the lineage expressions, and the temporal probabilistic difference is transformed into a
right outer join, which also only combines the lineage of two tuples. This results in much
less packing and unpacking calls, what leads to the fact that the new lineage representation is
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more efficient for such queries. An explanation for why the string representation is performing
worse in such queries might be, that the OIDs and the Boolean connectives must be saved as
text rather than integers.

Over all, the performance of the two implementations really depend on the length of the
lineage expressions that are built. The lineage represented as a string performs much better if
the lineage expressions are huge, which is usually the case for aggregations over large groups
of tuples. But if we have many result tuples with lineage expressions that are rather short, the
new lineage representation has its advantage. For further work, we might try to find a way
to evaluate during execution, which representation should be chosen. This could be done by
using some heuristics when looking at the query that is executed. Or we even might think
of a solution that transforms the lineage expression from one representation to the other for
different kinds of operations.

5.3. Confidence Computation
In this section we evaluate the performance of the different confidence computation algo-
rithms. For this we created four queries, each of which should evaluate a different aspect.
The queries (a) and (b) produce lineage expressions which are in 1OF, since no self joins are
performed. The difference is, that query (a) results in few result tuples with huge lineage ex-
pressions and query (b) results in many result tuples with short lineage expressions. Queries
(c) and (d) include self joins, which results in lineage expressions that are not in 1OF, since
one result tuple can be derived from one base tuples in multiple ways. The query (c) includes
no difference operation, whereas query (d) does. This means that the lineage expressions of
the result tuples from (c) include no negations but those from (d) do.

In Figure 5.3 we present the result of those experiments. As expected, does the Brute Force
Algorithm perform bad for large lineage expressions. After a certain amount of input tuples is
reached, its running time explodes. This is due to the fact that its complexity isO(n∗2f ) where
f is the number of distinct base variables in a lineage expression. The other three algorithms
all perform similar. Since we have lineage expressions in 1OF here, they are all expected to
run in linear time and because checking if the lineage expression is in 1OF comes first in all
three algorithms, they also should be similarly fast. For query (b) the result is different in a
way that the Brute Force Algorithm performs good as well. This is because the lineage ex-
pressions of the resulting tuples are short and therefore this algorithm has no disadvantages.

The results from queries (c) and (d) are similar. The Brute Force Algorithm gets explosively
slow after a certain point, the same happens to the other three algorithms but much later. For
a long time, they perform quite well and nearly the same. But at a certain point their running
time explodes too. For the two Decomposition Algorithms this point comes at exactly the
same time. This derives from the fact that their implementation is nearly the same, too. On
the other hand we have the Approximation Algorithm, which performs worse for query (c) but
much better for (d). The advantages of the Approximate Algorithm in (d) can be explained
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Figure 5.3.: Runtime of confidence computation

with the fact, that close enough bounds can be found fast, but to compute the exact value many
further steps are needed. In (c) the algorithm might not be able to find good enough bounds
and due to the overhead of computations that are needed to compute the bounds, the running
time grows earlier.

As a conclusion, we might say that the Brute Force Algorithm can only be used for queries
with short lineage expressions, but for those it performs very well. The two Decomposition
Algorithms perform very similar in all cases. To distinguish their behaviour in detail, further
experiments would be needed. And as we see, if an approximate confidence value is good
enough, the Approximate Algorithm is a good choice, since it performs very well for all sorts
of queries.
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5.4. Real-World Application
For the implementation as it was done in this work, it is eminent, that the given data is com-
plete. This means for the system to work properly and be able to compute correct results, every
table must include time intervals and a probabilistic attribute. Without this, the data is not ap-
propriate for our implementation. When trying to use data from the knowledge base YAGO
[8] for our evaluation, the problem of incompleteness arose. Especially, in terms of time we
faced obstacles. Since we were only interested in facts with time intervals, we extracted those,
but many had timestamps that were not complete or multiple start or ending dates were given.
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A. Reduction Rules

We show here the complete set of reduction rules. Those include the set operations with the
postfix all, where all indicates that the duplicates are not eliminated.

Let r and s be temporal probabilistic relations over schema RTP , θ be a predicate, F be a
set of aggregation functions over r.A, B ⊆ A be a set of attributes and OR, AND and NOT
functions respectively aggregation functions that combine the given lineage expressions with
the defined connective. Then the following reduction rules define a temporal probabilistic al-
gebra with sequenced semantics.

Operator Reduction
Selection σTP

θ (r) = σθ(r)

Projection πTP
B (r) = B,TϑOR(λ)(NTP

B (r; r))

Normalization NTP
B (r; s) = πr.A,r.T,r.λ(NB(r; s))

Alignment r ΦTP
θ s = πr.A,r.T,r.λ(rΦθs)

High Aggregation Bϑ
TP
F (r) = B,TϑF,AND(λ)(NTP

B (r; r))

Difference r−TP s = r.A,r.TϑOR(AND(r.λ,NOT (s.λ)))((NTP
A (r;NTP

A (r; s))) d|><| r.A=s.A∧r.T=s.T (NTP
A (s;NTP

A (s; r))))

Difference All r−TP
ALL s = πr.A,r.T,AND(r.λ,NOT (s.λ))((NTP

A (r;NTP
A (r; s))) d|><| r.A=s.A∧r.T=s.T (A,TϑOR(λ)NTP

A (s;NTP
A (s; r))))

Union r ∪TP s = r.A,r.TϑOR(r.λ)(NTP
A (r;NTP

A (r; s)) ∪NTP
A (s;NTP

A (s; r)))

Union All r ∪TP
ALL s = NTP

A (r;NTP
A (r; s)) ∪NTP

A (s;NTP
A (s; r))

Intersection r ∩TP s = r.A,r.TϑOR(AND(r.λ,s.λ))((NTP
A (r;NTP

A (r; s))) |><| r.A=s.A∧r.T=s.T (NTP
A (s;NTP

A (s; r))))

Intersection All r ∩TP
ALL s = πr.A,r.T,AND(r.λ,s.λ)((NTP

A (r;NTP
A (r; s))) |><| r.A=s.A∧r.T=s.T (A,TϑOR(λ)NTP

A (s;NTP
A (s; r))))

Cartesian Product r×TP s = πr.A,r.T,s.A,s.T,AND(r.λ,s.λ)((rΦTP
trues) |><| r.T=s.T (sΦTP

truer))

Inner Join r |><|
TP
θ s = πr.A,r.T,s.A,s.T,AND(r.λ,s.λ)((rΦTP

θ s) |><| θ∧r.T=s.T (sΦTP
θ r))

Left Outer Join r d|><|
TP
θ s = πr.A,r.T,s.A,s.T,AND(r.λ,s.λ)((rΦTP

θ s) d|><| θ∧r.T=s.T (sΦTP
θ r))

Right Outer Join r |><|d
TP
θ s = πr.A,r.T,s.A,s.T,AND(r.λ,s.λ)((rΦTP

θ s) |><|d θ∧r.T=s.T (sΦTP
θ r))

Full Outer Join r d|><|d
TP
θ s = πr.A,r.T,s.A,s.T,AND(r.λ,s.λ)((rΦTP

θ s) d|><|d θ∧r.T=s.T (sΦTP
θ r))
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B. Algorithms

In this appendix further Algorithms are shown, which are used for the confidence computation
algorithms to work. The first snippet shows the main Algorithm of the Brute Force Algorithm.

Algorithm 4 Computing Probability value of lineage expression λwith Brute Force Algorithm
Require: lineage expression λ

1: function PROBABILITYBRUTEFORCE(lineage expression λ)
2: int sum
3: array vars . Array that stores the allocation and the probability value for every base

variable
4: n←SIZE(vars)
5: while i < 2n do
6: int j = 0
7: for all var in vars do
8: if FLOOR(i/2n−1−j) %2 = 0 then . This constructs the truth table
9: var.allocation← true

10: else
11: var.allocation← false
12: end if
13: j ← j + 1
14: end for
15: if EVALUATE(λ, vars) then
16: double p← 1
17: for all var in vars do
18: if var.allocation then
19: p← p ∗ var.P
20: else
21: p← p ∗ (1− var.P )
22: end if
23: end for
24: sum← sum+ p
25: end if
26: i← i+ 1
27: end while
28: return sum
29: end function
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Algorithm 5 shows the algorithm that evaluates a lineage expression with a given allocation
for each base variable.

Algorithm 5 Evaluating if lineage expression λ is true with the given allocation
Require: lineage expression λ, an allocation for every base variable in λ

1: function EVALUATE(lineage expression λ, array vars)
2: if λ→op = NONE then . λ is leaf node
3: return vars[λ].allocation
4: else if λ→op = ¬ then
5: return !EVALUATE(λ→left, vars)
6: else if λ→op = ∧ then
7: return EVALUATE(λ→left, vars)∧EVALUATE(λ→right, vars)
8: else
9: return EVALUATE(λ→left, vars)∨EVALUATE(λ→right, vars)

10: end if
11: end function
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Algorithm 6 shows the algorithm that computes the NNF of a lineage expression. If a ∧-
or ∨-node must be negated, we change from one to the other and negate both children (lines
11-18). If two negations follow each other they can both be deleted (line 9) and otherwise
nothing needs to be done.

Algorithm 6 Computes Negation Normal Form of λ
Require: lineage expression λ
Ensure: λ is in NNF

1: λ← NNF(λ)
2: function NNF(lineage expression λ)
3: if λ→op = NONE then . λ is leaf node
4: return λ
5: else if λ→op = ¬ then
6: if λ→left is leaf node then . λ→left is leaf node
7: return λ
8: else if λ→left→op = ¬ then
9: return λ→left→left

10: else . λ→left is ∧- or ∨-node
11: λ→left← ADDNOT(λ→left) . Add a ¬-node at the top of the left node
12: λ→right← ADDNOT(λ→right)
13: if λ→op = ∧ then
14: λ→op← ∨
15: else
16: λ→op← ∧
17: end if
18: return NNF(λ)
19: end if
20: else
21: λ→left← NNF(λ→left)
22: λ→right← NNF(λ→right)
23: return λ
24: end if
25: end function
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Algorithm 7 shows the algorithm that computes the probability of a lineage expression in
1OF.

Algorithm 7 Computing probability of a lineage expression λ in 1OF
Require: lineage expression λ in 1OF

1: function PROBABILITY1OF(lineage expression λ)
2: if λ→op = NONE then . λ is leaf node
3: return λ.P . λ.P is the probability value stored in the tuple with identifier λ
4: else if λ→op = ¬ then
5: return 1− λ→left.P
6: else if λ→op = ∧ then
7: return PROBABILITY1OF(λ→left) ∗ PROBABILITY1OF(λ→right)
8: else
9: return 1−((1− PROBABILITY1OF(λ→left) )∗(1− PROBABILITY1OF(λ→right)

))
10: end if
11: end function
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Algorithm 8 shows the main algorithm of the Decomposition Algorithm with Theta.

Algorithm 8 Computing probability of the tuple with lineage expression λ with threshold θ
Require: lineage expression λ in NNF

1: function PROBABILITYθ(lineage expression λ, int θ)
2: if λ is in 1OF then
3: return PROBABILITY1OF(λ)
4: else if λ→left is independent from λ→right then
5: if λ→op = ∧ then
6: return PROBABILITYθ(λ→left, θ) ∗ PROBABILITYθ(λ→right, θ)
7: else
8: return 1 − ((1− PROBABILITYθ(λ→ left, θ) ) ∗ (1− PROBABILITYθ(λ→

right, θ) ))
9: end if

10: else if F (λ) <= θ then
11: return PROBABILITYBRUTEFORCE(λ)
12: else . Shannon expansion
13: x← base variable that occurs most in λ
14: return x.P∗ PROBABILITYθ(λ|x=true, θ) +(1 − x.P )∗

PROBABILITYθ(λ|x=false, θ)
15: end if
16: end function

Algorithm 9 shows the algorithm that computes the bounds, which are in 1OF, of a lineage
expression. This algorithm is used for the Approximate Confidence Computation Algorithm.

Algorithm 9 Computing bounds of lineage expression λ
Require: λ needs to be in NNF

1: UBound ← BOUNDλ(λ,NEWTREE(), true), LBound ← BOUNDλ(λ,NEWTREE(), false)
2: function BOUNDλ(lineage expression λ, binary search tree tree, bool v)
3: if λ→op = NONE then . λ is leaf node
4: if SEARCH(tree, λ) then
5: INSERT(tree, λ)
6: return NULL
7: else
8: return COPYNODE(λ)
9: end if
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10: else if λ→op = ¬ then
11: l← BOUNDλ(λ→left, tree, v)
12: if l then
13: return NEWNODE(¬, l,NULL) . Return a new node with op = ¬, left = l

and right = NULL
14: else
15: return NULL
16: end if
17: end if
18: l← BOUNDλ(λ→left, tree, v)
19: if !l ∧ ((v ∧ λ→op = ∨) ∨ (!v ∧ λ→op = ∧)) then
20: return NULL
21: else
22: r ← BOUNDλ(λ→right, tree, v)
23: if !r ∧ (!l ∨ ((v ∧ λ→op = ∨) ∨ (!v ∧ λ→op = ∧))) then
24: return NULL
25: else
26: if !l then
27: return r
28: else if !r then
29: return l
30: else
31: return NEWNODE(λ→op, l, r)
32: end if
33: end if
34: end if
35: end function
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Algorithm 10 shows the algorithm that computes the bounds of a decomposition tree. This
algorithm is also used for the Approximate Confidence Computation Algorithm.

Algorithm 10 Computing bounds of decomposition tree T
1: function BOUND(decomposition tree T )
2: if T→op = NONE then
3: if T→bounds = NULL then . Bounds were not yet computed
4: if T→λ is positive or unate then
5: T→bounds ← (BOUNDλ(T→λ,NEWTREE(), false),

BOUNDλ(T→λ,NEWTREE(), true))
6: else
7: T→bounds← (0, 1)
8: end if
9: end if

10: return T→bounds
11: else
12: (LeftBoundL, LeftBoundU)← BOUND(T→left)
13: (RightBoundL, RightBoundU)← BOUND(T→right)
14: if T→op = ∧ then
15: return (LeftBoundL ∗RightBoundL,LeftBoundU ∗RightBoundU )
16: else if T→op = ∧ then
17: return (1 − ((1 − LeftBoundL) ∗ (1 − RightBoundL)),1 − ((1 −

LeftBoundU) ∗ (1−RightBoundU)))
18: else if T→op = ⊕ then
19: return (LeftBoundL +RightBoundL,LeftBoundU +RightBoundU )
20: end if
21: end if
22: end function
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