
Master Thesis
February 2, 2014

Combining Streams of Linked
Data with Rich Background

Data

Impact of the Inverse Cache on Recall and

Response Time

Frank Neugebauer
of Lichtenstein, Germany (06-711-808)

supervised by

Professor Abraham Bernstein

Dr. Thomas Scharrenbach

Department of Informatics

Master Thesis

Author: Frank Neugebauer, frank.neugebauer@gmail.com

URL: http://www.ifi.uzh.ch/ddis.html

Project period: 02.08.2013 - 02.02.2014

Department of Informatics, University of Zurich

Disclaimer. This thesis template is provided by the s.e.a.l. group (http://seal.ifi.uzh.ch) of the
University of Zurich, Department of Informatics (ifi) as a service to ifi students on an “as-is,
as-available” basis for (master/bachelor/diploma) thesis layouting purposes only. We assume no
responsibility for any errors or omissions in the template and make no commitment to update the
template on a regular basis.
ifi students may download and use the thesis template for personal and non-commercial use only,
without altering or removing any copyright or other notice from the template. For the proper use
of the template, the Frutiger Condensed font of the University of Zurich has to be installed.
Thesis template c© 2009, s.e.a.l – University of Zurich, Switzerland

Acknowledgements

I would like to thank everyone who helped me on my way to the completion of this thesis
and whose constant support rendered this work possible.

My sincere thanks goes to Prof. Dr. Bernstein for the opportunity to work and re-
search under his patronage. I am especially grateful for the support from my tutor Dr.
Scharrenbach. His advice and supervision were invaluable during the whole process of
this thesis.

I would also like to thank those who read this thesis several times and offered their
advice and time in order to smooth out the last ridges. Many thanks for all the emotional
support and encouragement from my friends and family who helped to keep me going
through the months of work on this thesis.

Finally, I would like to express my most heartfelt thanks and gratitude to my parents
for their patience, love and support.

Abstract

Stream processing engines often need to adhere to QoS contracts during their operation.
As they also query external data sources for supplemental information, they might not
be able to receive all results in time.

This thesis proposes and implements a local cache for the Esper complex event pro-
cessing engine. This ’inverse cache’ stores the results of Esper’s background queries that
complete after the Esper query timed out and provides this data for subsequent queries.

The evaluation of the inverse cache shows that it enables Esper to receive additional
external results, leading to a higher recall and faster processing time.

Zusammenfassung

Bei der Verarbeitung von Datenströmen sind häufig bestimmte Dienstgüten einzuhalten.
Zudem kann Esper bei der Verarbeitung auch externe Quellen anfragen. Hierdurch kann
allerdings eine Situation entstehen, in der die Verarbeitung fortgesetzt werden muss, ob-
wohl noch nicht alle Ergebnisse eingetroffen sind.

Diese Masterarbeit schlägt den Einsatz eines “inversen Zwischenspeichers” vor, welcher
verspätete Resultate sammelt und diese bei darauffolgenden Anfragen an Esper zurück
gibt und implementiert einen solchen Speicher.

Die Evaluation des Zwischenspeichers zeigt, dass Esper hierdurch vollständigere Re-
sultate erhält und die Ausführungszeit verringert wird.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Task description . 2
1.3 Goal and hypothesis . 2
1.4 Overview of the following chapters . 3

2 Fundamentals 4
2.1 Linked Data / RDF . 4
2.2 Processing streaming data . 5
2.3 Complex Event Processing . 5

2.3.1 Esper . 6
2.4 Triple store and (C-)SPARQL . 7
2.5 Cassandra . 7
2.6 Cassandra-Esper . 8
2.7 Inverse cache . 9
2.8 Benchmarking basics . 9

3 Implementation 11
3.1 System overview . 11

3.1.1 Esper . 12
3.1.2 Data input reader . 12
3.1.3 Background store . 13
3.1.4 Inverse cache . 13
3.1.5 Socket logger . 13

3.2 Datasets . 14
3.2.1 EsperCSV data set . 14
3.2.2 Twitter data set . 15

3.3 EsperCSV solution in detail . 16
3.3.1 Main . 17
3.3.2 ReadCsvDataFiles . 17
3.3.3 CreateEvents . 17
3.3.4 CEPListener . 18
3.3.5 CEPListenerMultiThread . 18

Contents v

3.3.6 FusekiVirtualDataWindow classes 19
3.3.7 QueryFuseki . 19
3.3.8 QueryCassandra . 19
3.3.9 SocketLogger . 20

3.4 Implementation of the inverse cache . 20
3.5 Twitter inverse cache . 24

4 Testing 28
4.1 Evaluation framework . 28

4.1.1 Response time baseline . 29
4.1.2 Recall with time-out . 29
4.1.3 Recall with time-out and inverse cache 29
4.1.4 Response time from the cache . 29
4.1.5 Overall time to completion . 29

4.2 Testing system . 29
4.3 Test cases . 30

4.3.1 Test 1 . 30
4.3.2 Test 2 . 30
4.3.3 Test 3 . 31

5 Experimental results 33
5.1 First experiment . 33
5.2 Second experiment . 35
5.3 Third experiment . 35
5.4 Fourth experiment . 40

6 Discussion 42
6.1 First experiment . 42
6.2 Second experiment . 42
6.3 Third experiment . 44
6.4 Fourth experiment . 47

7 Related work 49

8 Conclusion 51

Appendix 57
A.1 Test cases . 58
A.2 Overview of node properties . 59
A.3 Experiments . 61

Contents vi

List of Figures

5.1 Recall for for various cache sizes for data set ’Bertha’ 36
5.2 Recall for for various cache sizes for data set ’Bill’ 36
5.3 Recall for for various cache sizes for data set ’Charley’ 37
5.4 Recall for for various cache sizes for data set ’Gustav’ 37
5.5 Recall for for various cache sizes for data set ’Ike’ 38
5.6 Recall for for various cache sizes for data set ’Kathrina’ 38
5.7 Recall for for various cache sizes for data set ’Nevada Storm’ 39
5.8 Recall for for various cache sizes for data set ’Wilma’ 39
5.9 Recall based on the absolute number of results 40
5.10 Recall based on the maximum number of possible results 41

6.1 Minimum cache size from which on no further improvements of the over-
all recall were found for the query SRB 1 . 45

6.2 Minimum cache size from which on no further improvements of the over-
all recall were found for the query SRB 2 . 45

6.3 Minimum cache size from which on no further improvements of the over-
all recall were found for the query SRB 3 . 46

List of Tables

3.1 Overview of the Linked Observation Data data sets from kno.e.sis1 16

4.1 Overview of the EPL queries for EsperCsv 32

5.1 Number of returned triples for queries with more than 50 occurrences . . 34
5.2 The five DBPedia resources that return the most triples 34
5.3 Overview of the response times and spread for SELECT and DESCRIBE

queries for SPARQL queries that return more than 10000 elements 34
5.4 Summary of the results for n=1600 and variable query time-outs 41

A.1 Overview of permutations used for Test 2 58
A.2 Overview of permutations used for Test 3 58
A.3 Overview of the average overall recall for a combination of data set and

query with limited cache sizes . 62
A.4 Additional results for varying cache sizes - displayed is the overall recall

for query SRB1 . 63
A.5 Additional results for varying cache sizes - displayed is the overall recall

for query SRB2 . 64
A.6 Additional results for varying cache sizes - displayed is the overall recall

for query SRB3 . 65

Contents vii

List of Listings

3.1 Creation script for the Cassandra cache . 22
3.2 Extract from QueryCassandra.java showing the removal of old elements . 22
3.3 Extract from QueryDBPediaDescribe.java showing the asynchronous com-

munication with Cassandra . 26
3.4 Snipplet from QueryDBPediaDescribe.java showing the adding of elements

to the queue and the compensation of the total reported time through the
queueDuration variable . 27

A.1 Overview of the CPU features of a Kraken node 59
A.2 Overview of the memory configuration of a Kraken node 59

Chapter 1

Introduction

1.1 Motivation

This master’s thesis aims at creating a cache for streaming background data and evalu-
ating the impact of such a local cache on the response time and recall. This is based on
the current trend of accessing and consuming Linked Open Data through streams [CCG10,
BBC10,KCF12,AF11,LpDtPH11], which uses highly efficient means of analysing the main
data stream. The access of additional data, also referred to as ’background data’, has not
undergone the same amount of academic and professional scrutiny so far, thus this re-
search into the performance implications of using a lookup cache for said background
data.

While such cache-systems are usually realized with a local, in-memory hash-map this
approach is limited in so far as that distributing the main stream workload over different
machines would also need the local cache to be distributed and shared between other
machines. Furthermore, a in-memory cache will also suffer from the problem of storing
all the necessary data in a limited amount of memory. This leads to either the need to
overwrite some data, when the maximum cache size is reached or to increase the max-
imum memory capacity reserved for the cache. Both variants have their own obvious
drawbacks. The focus of this thesis will not comprise the problems arising from the dis-
tribution of a cache system across several systems. Instead, the influence of different
cache sizes and enforced Quality of Service contracts on streaming RDF data and exter-
nal background stores will be examined. Nevertheless, the endeavour to accomodate the
scaling-out of such a system will be made in the course of this work.

Additionally, the current overall trend [NSB13,FSB13] for extensive computation moves
towards distributed and parallel computing. An example are clusters, that are divided
into a number of nodes that each work on a subset of the original computational problem,
while only sharing limited resources among each other. A local cache on each node might
assist in their work, but each node could only cache information that it has accessed be-
fore. So the overall efficiency of several local cache systems would be lower than for a
cache system that keeps all the records in a centralized location.

1.2 Task description 2

Another problem that arises from querying external data stores for supplemental data
is that these queries might take an unspecified amount of time to complete before a result
is returned. This becomes problematic in high-paced computing environments that have
to enforce certain time-outs and Quality of Service (QoS) requirements of their own. These
systems have to either rely on the external store to answer fast enough with a complete
set of results or to use only the data that has been received up to a certain point in time
and then cut off the transmission - discarding all the data that arrived too late for the
processing engine.

To alleviate the problem of unsatisfying results due to time-outs, this thesis proposes
the use of a specialized caching system (dubbed inverse cache) for static background data
that will store external information that has been queried before. This system should
also store information that arrived after the cut off time of the main stream’s engine and
provide said information for all subsequent lookups in a more timely fashion. So it is
unlikely that the cache would increase the response time of recall for the first queries, but
it should help provide faster and better results for subsequent queries.

1.2 Task description

The main task for the thesis lies in the creation of an evaluation environment for testing
the impact of a caching system while taking current methods for combining data streams
with static background data into account. A focus of this exploration is the possible im-
provement of response times and the relation between response time and recall.

This evaluation environment will be using the Esper stream-processing engine, while
the external storage will be realized using a triple store like Apache Jena Fuseki. The local
caching system is to be implemented using Apache Cassandra, as this system can easily be
scaled to a variable number of computing nodes in the future.

The evaluation is to be performed with a proven benchmark and a widely available
data set. In this case the SR-Bench benchmarks are to be implemented in the Esper engine,
which uses the weather observations taken from sensors during storms. The background
data store will hold a subset of data from Geonames, so that additional queries can be
performed.

1.3 Goal and hypothesis

The goal of this thesis lies in the evaluation of the influence of a caching system for back-
ground data, that can be used for streaming engines as well as in the dimensions recall
and concerning response time.

Thus there are two main hypotheses which will be tested against the results from
chapter 5 on page 33ff.

1.4 Overview of the following chapters 3

1. A Complex Event Processing stream engine with additional cache will be able to work
more rapidly due to a faster lookup of background data through the cache.

2. A Complex Event Processing stream engine with additional cache will yield more
comprehensive results on the background data queried, given time constraints for
the response from the background data storage.

1.4 Overview of the following chapters

The following work is structured into seven main chapters, which will present the theo-
retical foundation and groundwork for this thesis first. This encompasses an introduction
into Linked Data, stream processing, CEP, benchmarking and the software solutions Es-
per and Cassandra. The next chapter will describe the implementation in general and
certain key points in increasing detail. The design decisions that were made during the
creation of the software are also outlined here. Furthermore this chapter will present a
few code samples for analysis.

After these preparing chapters the succeeding chapter will describe the background
for the evaluation: What will be tested, how will it be tested and what is the objective of
these tests. These questions are answered through the proposed test cases. Finally, the
underlying computer system for the tests is described.

The next chapter lists the raw results from the earlier test cases and visualizes relevant
parts of the obtained data. The complete raw data from the test runs can be found on the
accompanying optical disc, as it would be too extensive to be directly included in this
work. The next chapter offers an interpretation and discussion of the results attained.
Furthermore, work related to this thesis is presented and the connections between this
thesis and the body of work surrounding it are considered.

The conclusion of the thesis presents the overall results and summarized findings.
Additionally, an outlook for supplemental work is given.

Chapter 2

Fundamentals

The following chapter will lay out the basis for this thesis. It will mainly encompass a
short explanation of Linked Data, RDF, data streams, events and their processing, the
difference between traditional data bases and triple stores and discuss a few software
packages that are being used in the context of this thesis in closer detail. Furthermore,
it will introduce the basic ideas behind caching systems and the different approaches to
benchmarking. Lastly, the different data sets that were used during the evaluations will
be introduced.

2.1 Linked Data / RDF

With the advent of the internet the sharing of information has entered a new era. While
information exchange was mainly undertaken by humans and facilitated by computers,
the last decade bears witness to a different trend: computers are no longer just used as
helpers in acquiring raw information for the operator to process, but we try to use them
more and more as suppliers of knowledge or inferred information.

An example of this movement is Linked Data, which is structured data that draws its
usefulness from being interlinked with other data sources. Linked Data does not only
represent data values as an answer to a query, but also the relationship between the ele-
ments. These are often called triples, which are tuples of the length three, and consist of
subject, predicate and object.

As Linked Data is aimed for consumption by computers, it is mostly formatted using
the Resource Description Framework (RDF) data model, which is based on XML and URIs.
The RDF model can be represented in a number of formats like N3, RDF/XML or Turtle.
The term semantic web is closely interlinked, as it mainly consists of a critical mass of
Linked Data, that enables users to gain new insights through the relationships expressed
through Linked Data.

2.2 Processing streaming data 5

2.2 Processing streaming data

Data streams are different from conventional data, in so far as a data stream is considered
to be an unbound sequence of data, while normal data and its transmission are charac-
teristically marked by static start and end. Thus streaming data is defined as a continu-
ous, unlimited sequence of discrete data elements that are created as varying points in
time [BBD+02] and might also arrive in such a fashion at the receiver.

These kinds of data streams arise from various sources; among them are sensor net-
works, the monitoring of computer networks, stock and other financial markets and
many more [TGB05]. Often data streams are generated by sources that ideally demand
an almost immediate response by the receiver (e.g a Tsunami warning), which are hard
to handle for traditional Database Management Systems (DBMS).

The underlying DBMS structures were created with the processing of business data
in mind - this means that they are geared towards the storage of vast quantities of data,
for which only the current value of the data is important. DBMS expect a persistent data
set, which is also evident by the atomic processes of changing values in a DBMS [BSW01]
while a real-time response to queries is not important. Additional features like triggers
and alerts were added later in the development of DBMS, which explains why many of
these systems fail to scale a large amount of trigger statements [HCH+99] which would
be necessary to accommodate the needs of data stream processing.

In contrast Data Stream Management Systems (DSMS) execute continuous queries over
data streams, that are only stored as long as processing dictates; a DBMS stores data while
a DSMS stores queries [BBD+02]. Furthermore DSMS will need to process a large number
of streams in a short amount of time and be able to extract events from a window (e.g. all
sensors that reported a certain value during the last five minutes). These requirements
also merge into the domain of Complex Event Processing (CEP), which aims at extracting
relevant information and detecting events from streams of data [LF98].

2.3 Complex Event Processing

Event processing analyses information streams that contain events; Complex Event Pro-
cessing CEP supersedes this concept by combining data from several sources to infer
additional knowledge not originally represented by the received data [Dek07, Luc02].
Event processing is often employed when dealing with a high volume of data, especially
if this data is constantly being generated and needs to be analysed in near real time.
Application areas for this are manifold, but traffic analysis (car and computer alike), fi-
nancial markets and medical analysis are among the most popular ones in scientific ex-
change [CM12, ABNS06, SLG08].

CEP furthermore uses additional data from outside sources to aggregate the process

2.3 Complex Event Processing 6

with extra information and for inference of new events [WLLB06]. Other features that
can be found in CEP systems regulate the Quality of Service (QoS), which enforces restric-
tions on the acceptable response time and throughput for answers. This becomes a major
problem when a CEP system needs to query outside sources for additional information,
which can help the system in generating meaningful complex events, but also has to pro-
vide said events to a consumer in a given time frame.

2.3.1 Esper

Esper is an open source streaming data processing engine that provides event processing
services and is being developed by EsperTech1 since 2006. Esper is available in Java and C#
and offers several ways to represent events: either through getter methods of an object,
by objects that implement a hashMap interface or through an XML representation.

Esper uses subscriptions by offering to attach listeners, which are invoked when an
Esper statement match is found in the current data stream. Such statements are written
in Esper’s own Event Processing Language (EPL), which bears resemblances to the classic
Structured Query Language (SQL): SELECT clauses in Esper describe the event properties
to return, from clauses define the named event stream which is to use, while where clauses
specify constraints. Additionally, Esper offers aggregation, grouping and ordering func-
tions.

Esper is also able to combine several event streams, either by using insert clauses or
by joining patterns. These joins are also able to encompass SQL based databases with
relational data.

Another powerful feature of Esper is the possibility to define different views on the
underlying data event stream. This is done by using windows which can define temporal
and sequential relations between the events and are able to significantly alter the pro-
cessing engine’s behaviour: Examples for this are the sliding or tumbling event windows
that Esper offers. While the sliding windows keep either a certain number of events or all
events in a certain time frame in the window and advance the window with each new
event (e.g. queries that return the highest temperature that has been measured within the
last 30 minutes), tumbling windows store all Events until the window meets an external
constraint and releases all stored events to the engine for processing. An example for this
would be the implementation of a query that returns the highest measured temperature
once in an hour.

Furthermore, Esper offers support for SQL-like subqueries, the setup of various event
output frequencies and event patterns, that are used to describe relations between sub-
sequent events. Another interesting feature of Esper is the possibility to run Esper in
simulated time. This can be very useful for testing and benchmarking, as historical data
can be used for this purpose. The use of simulated time demands an external clock that

1EsperTech Inc., PO Box 3129, Wayne, NJ 07474-3129, USA

2.4 Triple store and (C-)SPARQL 7

advances the internal Esper time, but which can also be used to speed up the processing
of lengthy historical data. A more detailed description of Esper can be found in the Esper
documentation [Esp14].

2.4 Triple store and (C-)SPARQL

A triple store is a database with the purpose of storing and retrieving triples of informa-
tion composed of subject, predicate and object (e.g. "Adam knows Eve"). These stores can
be purpose built from scratch or on top of existing relational data bases; while both vari-
ants allow for the querying of the underlying RDF-graph, native triple stores are mostly
responding faster to queries against them [BS09a].

Queries against a RDF-graph are mostly formulated in the SPARQL Protocol and RDF
Query Language (SPARQL). SPARQL is the W3C recommendation for a RDF query lan-
guage as well as protocol and supports querying multiple graphs [CCeaD13]. While
SPARQL is still in development, it has already been implemented in several program-
ming languages. One of the biggest advantages of SPARQL is that it allows unambigu-
ous queries by using prefixes in the query to describe different ontologies.

An extension of SPARQL is C-SPARQL, which was built to support continuous queries
against RDF data streams. The main reason for the proposal of C-SPARQL lies in the static
- or only very slowly changing - nature of the underlying RDF graphs that are targeted by
SPARQL queries; the extension made by C-SPARQL aims at combining the nearly static
data from RDF triple stores with fast changing data from RDF data streams. C-SPARQL,
just like EPL, uses logical windows to aggregate data events over a certain time, in order
to allow for inference between this data [Bar09].

2.5 Cassandra

Apache Cassandra is an open-source nested key-value store originally developed by Face-
book,2 which has been implemented as a highly scalable distributed database. Generally
Cassandra is counted to the so called "NoSql" data stores. In contrast to traditional DBMS
these data stores are built to serve a high number of concurrent users while also allow-
ing the insertion of new data at the same time. This is achieved by scaling-out Cassandra
over the necessary number of servers, which will replicate and distribute the stored data
according to the Cassandra configuration. Thereby, the data store performs like a peer-to-
peer network in which data is distributed in a way that no single point of failure exists.
Cassandra can hold all or only partial amounts of data in memory.

A downside of this approach is the "eventual consistency" across nodes. While a tra-
ditional DBMS will adhere to the ACID principles and prevent inconsistent states, this is

2Facebook Inc., 1601 S. California Ave, Palo Alto, CA 94304

2.6 Cassandra-Esper 8

not easily possible on distributed systems given the inherent latency of communication
between them. This is also explained by Brewer’s CAP theorem [Bre00] that states that it
is impossible for a distributed computer system to simultaneously provide consistency,
availability and partition tolerance.

Consistency in this regard is understood to be the guarantee that all nodes have the
same data available at the same time, while availability concerns the guarantee of an as-
sured response to a query. Lastly, partition tolerance denotes the resilience of the system
against arbitrary data loss due to communication or hardware failures in the distributed
system [GL02].

Cassandra employs no locking mechanism, so it abandones the first point of the CAP
theorem, but offers automatic discovery for new nodes and detection of dead nodes and
spreads the data over various nodes, guaranteeing the second and last point of the theo-
rem. A kind of weak consistency assurance can be achieved by reading the same value
from different nodes and majority voting, but this is unsatisfactory, as it reduces the per-
formance and does not guarantee consistency.

Several benchmarks hint at Cassandra having a higher throughput than comparable
NoSQL stores like HBase, Redis or VoltDB, especially in environments with mixed read-
/write queries [TB11, RSMM12]. This is also partly due to its elasticity, which allows
Cassandra to spread an increasing number of read/write queries linearly across a large
number of nodes [RSMM12].

Furthermore, Cassandra employs its own query language CQL (Cassandra Query Lan-
guage) which offers a SQL-like syntax and similar keywords for setting up keyspaces
(databases) and tables in Cassandra itself. It should be noted, that this is an additional
level of abstraction, that does not correspond to the actual underlying internal imple-
mentation in Cassandra.

2.6 Cassandra-Esper

Cassandra-Esper is a Java library that is being developed by Dr. Scharrenbach at the De-
partment of Informatics at the University of Zurich. It acts as a middleware between Esper
and Cassandra and provides an implementation of the Esper Virtual Data Window (VDW)
that can be used to perform EPL queries against the Cassandra data store. With this library
the external Cassandra store can be transparently connected to Cassandra which means
that this library can be used to easily implement an inverse cache for existing Esper projects.

As of yet, it is unknown what kind of performance implications the use of this library
and the Esper VDWs might have.

2.7 Inverse cache 9

2.7 Inverse cache

Caching systems are widely known and employed in computer science and information
technology. They all rest on the assumption that storing a certain, often used datum in
a rapidly accessible place can speed up processing, due to the reduced time to fetch said
datum. The higher the frequency of accesses to this datum, the higher the amount of
stored data in the cache, the longer the validity of the datum in the cache, and the lower
the response time, the more efficient the cache will be in accelerating the main process.

This work proposes the inverse cache which aims at speeding up CEP on streaming
data - that is being enriched by external data - by providing a fast answering store for
queries to external data sources. As most data in external stores is considered slowly
changing in comparison to the information in the data stream, a cache should be able to
hold a significant number of valid entries.

Another point in favour of a caching system is that many external queries to stores
like DBpedia are not only slow, but might also limit the amount of external queries they
answer in a given time frame to reduce the strain on their own infrastructure. A caching
system can ensure that these external stores are not queried unnecessarily by holding a
local copy.

Another problem concerning Complex Event Processing is the unbound nature of re-
sponses. A query for all cities near a certain geographical landmark might yield an un-
predictable number of possible results and these might also take an unforeseeable time
to be returned. CEP systems that need to fulfil certain QoS criteria, like a maximum
time to respond to an incoming event, might not receive all the applicable data from a
background store in time. This problem can be alleviated by the inverse cache, as it can
still accept external data while the processing engine already moved on to the next data
events. This way, the next query for this particular information can be answered by the
cache without the drawbacks that the external store exhibits.

On the other hand a cache might also slow down processing in certain circumstances
- namely if the main process is trying to look up a datum in the cache which does not
exist. Such a cache miss will force the CEP engine to query the external store nevertheless.
A caching system can aim at minimising the amount of cache misses, respectively at
maximising the amount of cache hits by keeping the relevant data as long as it might be
needed.

2.8 Benchmarking basics

A benchmark assesses the relative performance of an entity (be it an object or process),
often by comparing it to different entities. There are five major factors, that all bench-
marks should exhibit:

2.8 Benchmarking basics 10

1. Relevancy

2. Repeatability

3. Fairness

4. Verification

5. Economical

These traits are supposed to make sure, that the benchmark focusses on an important
aspect (relevancy), that it will produce similar results again (repeatability), that all par-
ticipants can participate equally (fairness), that the results can be checked (verification)
and that the test can be run without high investment of resources (economical). A more
detailed explanation and many examples can be found in [Hup09].

Benchmarks often focus on certain Key Performance Indicators (KPIs) to meet the rele-
vancy criterion, as these indicators should represent a simplified yet accurate representa-
tion of how the system in question is performing. Examples for such KPIs that are often
used for DBMS and DSMS/CEP systems are throughput (number of records during a
certain time) and latency (time from query to response) [RSMM12]. While these are ma-
jor KPIs, these are often generated as an average value for the whole system. This can be
deceiving, as a system with an unreliably spiking latency might get a better average la-
tency than a system without such extreme behaviour. In regards to a possible application
in the QoS domain such an averaged benchmark would be misleading. Thus, one should
strive to report the best, worst and average for such KPIs.

A popular example for a streaming data benchmark, the Linear Road Benchmark [ACG04],
simulates a toll system on a motorway with variable tolling based on accident detection,
alerts and traffic congestion. It employs a fixed set of continuous and historical queries
against a stream of events, that is being generated in advance. Furthermore the Linear
Road Benchmark is able to run in simulated time, which allows for faster or slower than
real time processing. A downside to the Linear Road Benchmark lies in its reliance on the
relational data model, which makes it unfit for assessing the performance of RDF-graph
based streaming engines.

Another recent streaming data benchmark is SRBench [ZDCC12] which describes in it-
self a general purpose benchmark for streaming RDF/SPARQL engines. SRBench defines
17 queries in natural language that try to measure the abilities of the tested streaming en-
gines to perform over a broad range of use cases that cover different aspects of streaming
data. As synthetic data does generally not accurately predict the performance of stream-
ing systems [DKSU11], SRBench uses real world data: Mainly the "Linked Sensor Data"
data set from Kno.e.sis,3 but also the "Geonames" and "DBPedia" data set from the Linked
Open Data cloud.

3http://knoesis.org/

Chapter 3

Implementation

The following chapter illustrates the details of the implementation by outlining the basic
system components and their functions. This is followed by a more detailed look on the
Esper set up, the a priori data manipulation of the SR-Bench datasets, the set up of the
background data server and the implementation of the InverseCache with Apache Cassan-
dra. The last part selects certain aspects of the InverseCache and clarifies the reasoning
behind these.

If not indicated otherwise the programming language used is Java.1 Esper is inte-
grated into the project through a Java jar file.

3.1 System overview

The proposed implementation consists of five main parts that will be described in the
following. All programs use the following external libraries as dependencies:

• httpclient-4.2.3.jar

• esper-4.10.0.jar

• esperio-csv-4.10.0.jar

• log4j-1.2.16.jar

• commons-logging-1.1.1.jar

• cglib-nodep-2.2.jar

• antlr-runtime-3.2.jar

• jena-sdb-1.4.0.jar

• jena-tdb-1.0.0.jar

• jena-arq-2.11.0.jar

• jena-core-2.11.0.jar

• jena-iri-1.0.0.jar

• jcl-over-slf4j-1.6.4.jar

• commons-codec-1.6.jar

• httpcore-4.2.2.jar

• xml-apis-1.4.01.jar

• xercesImpl-2.11.0.jar

• log4j-1.2.16.jar

• slf4j-log4j12-1.6.4.jar
1JDK 7

3.1 System overview 12

• slf4j-api-1.6.4.jar

• cassandra-esper-0.3.0.jar

• json-simple-1.1.jar

• cassandra-driver-core-2.0.0-rc2.jar

• guava-15.0.jar

3.1.1 Esper

The Complex Event Processing engine Esper (see 2.3 for more information) uses a single
incoming data stream as information source. This incoming data stream is parsed into
events and then forwarded to the processing engine itself. Delays between the events are
mapped from the real time span using a delay factor (between [0.0001;1]) to the simu-
lated time of the Esper engine. This was done to ensure that the engine does not receive a
constant flow of events at the maximum processing capacity of the engine, but rather that
the incoming event flow dwindles and swells in a more realistic way. Esper is capable of
processing data at a very fast rate, but with this setting it is also possible to simulate how
Esper would perform in a real-world real-time setting.

Esper uses EPL [Esp14], a proprietary SQL-like description language for configura-
tion, the creation of data windows - these describe the current view of the engine on the
events - and for adding statements. Statements are evaluated against the stream of events
as limited by the data window. In the event of a match Esper calls a listener, which then
in turn cascades further lookups or processes. In this case the listener is programmed to
look up additional data from the background store and the cache. The Esper engine will
only continue after receiving the requested external data or a time-out has occurred.

3.1.2 Data input reader

The input reader is necessary due to constraints of Espers CSV file reader. Although Esper
can handle multiple source data streams, Esper is currently unable to accept multiple data
streams with time stamps in an interleaving fashion. At the moment, data streams will
only be sorted by the first time stamp. Due to this restriction the Knoesis Linked Sensor
Observation data set, which is split into files for each sensor id, was merged a priori into
a single file. Furthermore, this file was supplemented with extra data to indicate delays
between the events in question. Additionally, these input files were checked to exhibit a
monotone increase in time stamp value, because the Esper engine is unable to handle a
non-chronological flow of events.

This input reader is also the basis for the advancement of the simulated time on which
Esper’s statements are evaluated and is also responsible for introducing the delays be-
tween these events where appropriate.

3.1 System overview 13

3.1.3 Background store

The external store in this project is place holder for any possible external triple store. For
this thesis Apache Fuseki had been selected, as the performance of this particular store has
already been studied in multiple papers [DS12, VMS12] and should make the interpre-
tation of the evaluation results clearer. Furthermore, Fuseki allows for an easy exchange
with another store at a later time. The Fuseki store is run locally to minimize any influence
of network latency.

Esper has been configured to use a virtual data window for queries against the Fuseki
store; the queries return location data for the respective Knoesis Linked Observation Data
sensor id. The cache operates under the assumption, that if the external storage returns a
result, it is correct. There are no checks in place to detect fraudulent or damaged data.

3.1.4 Inverse cache

The cache is based on Apache Cassandra2 and uses the standard configuration running on
a single node. While an in memory hash map would yield faster results, this approach
enables the scaling of the inverse cache across a multitude of machines in the future. All
results from the background store are also written to the inverse cache, so that they will be
available faster during the next query. Furthermore, the cache will also accept and store
data from the external store after the Esper engine received a time-out or incomplete data
from the background data source.

Esper queries the cache through another virtual data window, so that queries to the
cache and the background storage are following the same program paths. This should
also lead to a similar overhead for the Esper virtual data windows. The queries are han-
dled by Cassandra-Esper 0.33 which is based on the DataStax4 drivers. Due to small API
changes in the newest version of Cassandra and the DataStax drivers some alterations
needed to be made to Cassandra-Esper.

3.1.5 Socket logger

The socket logger is a helper process that runs independently. It offers a socket which
the other program parts can send their logging data to, so that it can be written into the
central log. Currently the logger keeps track of

• the overall configuration of the engine

• the current Esper statement

• the total count of events sent to the Esper engine

2http://cassandra.apache.org/
3https://bitbucket.org/scharrenbach/cassandra-esper/wiki/Home
4http://www.datastax.com/

3.2 Datasets 14

• the total amount of events matching the current Esper statement

• the current delay factor used

• the size of the cache to be tested

• start, stop and duration time stamps for the respective queries to Fuseki and Cassan-
dra

The logger was designed to be non-blocking and will accept and queue all external
log messages, so that both Esper and the cache will not be influenced. The logger will also
record the time stamps for each query to the cache or background store in CSV format.

3.2 Datasets

3.2.1 EsperCSV data set

In order to provide Esper with a stream of events, the need for a known and widely avail-
able dataset, which would satisfy the outlined criteria for testing from section 2.8, arose.
The selection fell on the Kno.e.sis Linked Observation Data data set, which provides obser-
vations of weather stations from north America during several hurricanes (and a single
blizzard) from 2003-2009. The data is subdivided temporally into the different storm pe-
riods and available at kno.e.sis.5 Each subset contains a number of files that describe the
observations for a single weather station over a given time. Note that their might be mul-
tiple files for different time ranges for the same sensor.

These data sets are based on the works from MesoWest [PHS10], a subdivision in the
Department of Meteorology at the University of Utah, which provided sensor observa-
tions as comma separated values. This information was then manipulated in order to
create an RDF representation of the observations and measurements [PHS10].

This base data set was deemed a fitting choice, as it is relevant to the investigation,
tests are easily repeatable as the data is static, the data is fair and it provides an easy
way for verification. A slight compromise is being made in regards to running the tests
economically, as complex queries with large subsets of the Linked Observation Data might
take more than 12 hours to complete. The sizes and number of triples respectivly sensor
observations are noted in table 3.1 on page 16.

To make this dataset accessible to Esper, it needed to be transformed. All sensor obser-
vations and their current time were extracted and parsed into a single CSV file - which
was sorted according to the time stamps of the sensor observations - to accommodate
Esper’s requirements: While Esper is able to read multiple CSV files simultaneously and
can even coordinate start times between them, it falls short in cases when the data time

5http://wiki.knoesis.org/index.php/LinkedSensorData

3.2 Datasets 15

stamps are not monotone increasing from the end of one sensor file to the start of an-
other. This problem was mitigated by providing Esper with the sensor observations in
a pre-sorted single CSV file. Additionally, a delay column was added to the CSV data
file, which allows Esper to simulate a variable flow of incoming information (e.g. bursts
of data that arrive roughly every 5 minutes) while negating the need to calculate said
delays during the runtime.

Furthermore, the Linked Sensor Data data set6 from kno.e.sis was used, as this set pro-
vides additional information for 20000 weather stations in the US. This data set was used
unaltered and imported into the background store.

3.2.2 Twitter data set

Additionally, some of the tests will also be run based on a Twitter dataset. This data set
consists of a simple comma separated values (CSV) file, which includes a time stamp,
a message id, a user id and a URI. The URIs in this dataset are DBPedia resources (i.e.
<http://dbpedia.org/resource/Hamster>), which offer an easy way to query the DBPe-
dia for background information. The data provided is not unique in so far as there are
duplicate URIs.

This data set is simulating a torrent of messages (tweets) that offer a convenient way
for semantic annotation through their URIs. In total, this data set contains 308991 mes-
sages with up to 1923 occurrences of the same URI.

This simple set up and the variance in the amount of URIs and messages make this
data set a promising candidate for tests concerning the impact of the inverse cache. The
amount of messages in a very short time frame and the possible very high amount of
data, which can be returned from Querying said URIs offers some challenges though.

This data set was not transformed (although it was sorted) before passing the events
to Esper. As this data is static, tests are very easily repeatable and the possibility to only
parse parts of this data file should also ensure that tests can be performed economically.
More data on this data set can be found on the tables 5.1, 5.2, 5.3 on page 34.

The data set can also be found on the accompanying optical disc.

6Available for download at http://wiki.knoesis.org/index.php/LinkedSensorData
8Note that no official name exists for this storm, as it did not fit the international naming scheme of the

World Meteorological Organization for tropical storms and hurricanes.
8http://wiki.knoesis.org/index.php/LinkedSensorData

3.3 EsperCSV solution in detail 16

Name Storm type Date Number of triples Number of observations Data size
All 1’730’284’735 159’460’500 ~111 GB
Bill Hurricane 17-22.08.2009 231’021’108 21’272’790 ~15 GB
Ike Hurricane 01-13.09.2008 374’094’660 34’430’964 ~34 GB
Gustav Hurricane 25-31.08.2008 258’378’511 23’792’818 ~17 GB
Bertha Hurricane 06-17.06.2008 278’235’734 25’762’568 ~13 GB
Wilma Hurricane 17-23.10.2005 171’854’686 15’797’852 ~10 GB
Kathrina Hurricane 23-30.08.2005 203’386’049 18’832’041 ~12 GB
Charley Hurricane 09-15.08.2004 101’956’760 9’333’676 ~7 GB
"Nevada Storm"7 Blizzard 01-06.04.2003 111’357’227 10’237’791 ~2 GB

Table 3.1: Overview of the Linked Observation Data data sets from kno.e.sis8

3.3 EsperCSV solution in detail

The following section will describe the proposed solution in detail, lay out the necessary
configurations, describe the queries used and explain the data and program flow.

The inverse cache was programmed using the IDE Eclipse9 and the tests were run us-
ing the Java OpenJDK 7.10

The Inverse Cache Project consists of the follwing files, which will be discussed be-
low in so far as to aid the understanding of the project. Commonly known or expected
programming routines will not be elaborated upon.

• Main.java

• ReadCsvDataFiles.java

• CreateEvents.java

• StormEvent.java

• FusekiVirtualDataWindow.java

• FusekiVirtualDataWindowFactory.java

• FusekiVirtualDataWindowLookup.java

• FusekiEvent.java

• QueryFuseki.java

• QueryCassandra.java

• CEPListener.java

9Version: 3.8.1
10Version "1.7.0_25". OpenJDK Runtime Environment (IcedTea 2.3.10) (7u25_2.3.10_1_ubuntu0.13.04.2)

OpenJDK 64 Bit Server VM (build 23.7_b01, mixed mode)

3.3 EsperCSV solution in detail 17

• CEPListenerMultiThread.java

• SocketLoggerClient.java

3.3.1 Main

The main method of the Inverse Cache Project accepts outside parameters as well as config-
uration files and configures the Log4J logger, as well as the Fuseki, Cassandra and storm
event Esper engines. Furthermore, the internal timer on the storm event engine is dis-
abled, as this engine will be run in simulated time, while the other two run normally.

The Fuseki and Cassandra engines are configured to use the respective Virtual Data
Window (VDW), which enables Esper to query these external sources in the same way as
the primary data stream. The Cassandra VDW uses Cassandra-Esper for this access.

Additionally, the main class sets the starting time for the storm event Esper engine
back to 01.01.1990 - this allows for the advancement of the simulated time for events that
take place after this date.

Next, a continuous query in the form of an EPStatement for the storm event engine
is declared and a listener (CEPListener) is attached to this statement. The EPStatement is
extracted from the outside configuration file and the listener will get called if Esper can
match the incoming event stream to the Statement.

After this set up, the main routine starts the parsing of the external events from the
csv file through ReadCsvDataFiles.

3.3.2 ReadCsvDataFiles

This helper class reads the external CSV file storing the Linked Sensor Observation events
(see part 3.2 on page 14 for an explanation) and then passes the extracted data to the
CreateEvents class, which creates an Esper event and passes this event - together with a
possible delay to simulate bursts of data - to the storm event Esper engine.

Additionally, this class keeps track of the overall number of events that were passed
to Esper, as well as the overall timing and total delay time used while running the test.
All these items are passed through a socket connection to the SocketLogger (see chapter
3.3.9).

3.3.3 CreateEvents

In this class the more specific constructor of the StormEvent class is used to build an
EsperEvent. The next step checks if the Event has a valid time stamp and advances the
Esper simulated time if necessary - errors in the time continuum will result in a critical
error and the termination of the program. If a delay was specified for the current event,

3.3 EsperCSV solution in detail 18

this class will also wait for the time delay (stretched by the global delay factor) between
two events to be reached and then pass the EsperEvent to the Esper engine for processing.

3.3.4 CEPListener

The Complex Event Processing Listener (CEPListener) waits for the Esper engine to match
the current EPStatement to the events it receives. On a positive match, this listener up-
date method receives two EventBeans for the old and new data in the window (a view
specified through the EPStatement, which holds all current matches to that statement)
that fit the search criteria.

For these matching events, we extract the name of the weather station (sensorId) and
create two new queries: One for the background data store based on Fuseki and one for
the Cassandra Cache. Both of these queries are simple EPL statements, as these two stores
will also be queries through the VDW that were created during the configuration phase in
the main class. The preparation of these queries is additionally timed, to check if query-
ing the external stores through Esper incurs a non-negligible performance loss.

In the next step the Cassandra cache is queried for supplemental data on the weather
station. If the cache holds the relevant data, it is returned to the listener and a log entry
with the start and end times of the query, an event number, the ID of the station that
was matched and the source of the match (in this case the Cassandra cache) is produced
and sent to the SocketLogger. If the Cache returns an empty result, the Fuseki result is
evaluated. Both accesses are also timed and can be used for the creation of a performance
profile.

A result with the initial Esper data as well as the supplemental data is created - al-
though said result is not used anywhere else in the program, as this falls outside the
scope of this work.

3.3.5 CEPListenerMultiThread

This class works in the same way as the CEPListener, with the exception that it uses an Ex-
ecutorService to concurrently query both stores at the same time. If the Cassandra result is
empty, then it waits for the Fuseki store to finish its query and evaluates the result. While
this class performs slightly faster than CEPListener, the Future-constructs used pose dif-
ficulties while debugging. Any error due to incorrect queries will result in a highly un-
specific Java error that points to this class, even though the error actually occurred in
another subclass. If changes are to be made, the author recommends using CEPListener
until a working solution has been reached and then changing over to the multi thread
CEPListener. It is also advisable to use the CEPListener, if external background stores
that enforce a quota on queries are to be used, as the CEPListenerMultiThread will put
additional strain on the external store by creating more queries.

3.3 EsperCSV solution in detail 19

3.3.6 FusekiVirtualDataWindow classes

The FusekiVirtualDataWindow class is part of the three classes that are defining the ac-
tions of the Esper VDW for Fuseki, which allows for the use of EPL queries against this
named window. The benefit of this approach lies in the possibility to exchange the back-
ground store with another solution, while keeping the rest of the code as it stands. This
loose-coupling allows furthermore to use a unified query language (EPL) for all queries
against VDW without the need to know the actual set up behind.

This class is an implementation of the Esper VirtualDataWindow class and handles
basic methods for this window (getLookup, update, destroy, handleEvent and iterator).

The factory class FusekiVirtualDataWindowFactory is used for creating FusekiVir-
tualDataWindows and implements the Esper VirtualDataWindowFactory with the ba-
sic methods initialize, create, destroyAllContextPartitions and getUniqueKeyProperty-
Names.

The focus should lie on the FusekiVirtualDataWindowLookup class, which surpris-
ingly implements the Esper VirtualDataWindowLookup, as this class handles the actual
communication with the outside Fuseki store. As the external store will only be queried
for data, this class only implements the lookup method through a call of the QueryFuseki
class. The returned values are then stored into a HashMap from which an Esper Event-
Bean is created (through an EventFactory and a data wrapper) and passed back to the
engine.

3.3.7 QueryFuseki

This part of the program deals with building and executing the SPARQL query against
the Fuseki store. Currently it expects the Fuseki store to answer SPARQL queries directed
at the endpoint http://localhost:3030/ds/query or http://localhost:3030/ds/sparql, but this can
also be moved to a different endpoint. The actual queries transport is handled through
the Jena libraries, while error handling and extraction of data from the query result hap-
pens in the QueryFuseki class.

Additionally, each returned Fuseki query - be it empty or containing results - is for-
warded and inserted into the Cassandra cache. This means that the Cassandra cache would
always receive all the data that is returned from the Fuseki store.

3.3.8 QueryCassandra

The QueryCassandra class is the counterpart to the QueryFuseki class, as it offers access
to the Cassandra cache via the Datastax 2.0 Cassandra driver. Furthermore, this class makes
sure that INSERT queries into the Cassandra cache respect the size of the cache, as defined
during start up. If the cache is already full, then this class will ensure to delete the oldest
entries before inserting new ones. See section 3.4 for more information on the cache.

3.4 Implementation of the inverse cache 20

3.3.9 SocketLogger

The SocketLogger is split into a client part and a server component which writes the
actual log file. The logging server is run independently and provides a socket. The
client component connects to this socket and offers a simple method of writing messages
through the socket to the log file on the server. The socket server is also able to handle
multiple incoming connections, which will all write into the same log file.

3.4 Implementation of the inverse cache

One core component of this project is the inverse cache, which was realized through the
implementation of a Apache Cassandra11 database. The purpose of the inverse cache is to
store results from the external background store and respond to queries faster than the
background store. The cache also includes results that arrive from the external store af-
ter the primary query was aborted due to time constraints (i.e. query time-outs or QoS
requirements), so that these "slow" results can be kept "at the ready" in the inverse cache.
Another possible benefit of the cache is the possibility to store complete results, which in
turn would allow the Esper engine to forego the need to query the background store at all.

In this implementation and in all experiments the inverse cache was run on the same
host as the Esper engine and queried through a local connection, in order to minimize
potential latency impact. It should be noted, that running Cassandra in a local network
should only have a minimal performance impact and that a single cache can supply re-
sults to multiple partners at the same time. For multiple machines or clusters of stream-
ing engines that are separated through high-latency networks (100+ ms RTT12) it would
likely be advisable to deploy a single Cassandra instance per network and possibly even
to interconnect these cache instances, so that Cassandra is able to synchronize the cache
across the different locations. In case that a single Cassandra instance would not be able to
handle all the traffic, Cassandra also offers linear scalability over multiple instances which
facilitates the increase of possible transactions.

In this case, Cassandra was configured to not use any form of authentication, as only
queries from the trusted local network are possible. The cache uses the keyspace cas-
sandra with the table cassandrawindow and accepts text as primary key and coordinate
values with an index on the coordinates. The script used to set up the Cassandra store
with additional settings can be seen in listing 3.1 on page 22. The actual connection to the
Cassandra inverse cache is handled by the Datastax Java driver in version 2.0.0-rc2 which
is provided by Datastax.13

The maximum size of the cache is managed through the Java code: Before new items
are added to the cache, a query determines the current size and compares it with the

11Version 2.0.4
12Round Trip Time
13https://github.com/datastax/java-driver

3.4 Implementation of the inverse cache 21

maximum allowed cache size. In case the new elements would not fit into the cache
without violating the maximum size, some elements would be removed from the cache.
At the moment, this is implemented through a first-in-first-out (FIFO) scheme which is
based on the internal Cassandra time stamp for each cache entry, that can be explicitly
queried but is not reported back in normal SELECT or COUNT queries. As Cassandra
returns results in an unsorted fashion14 it is necessary to sort the cache in order to select
the oldest queries that can be removed. The selection query and sorting are shown in
listing 3.2 on page 22.

14as long as not explicitly specified otherwise

3.4 Implementation of the inverse cache 22

CREATE KEYSPACE cassandra WITH replication = {

’class’: ’SimpleStrategy’,

’replication_factor’: ’3’

};

USE cassandra;

CREATE TABLE cassandrawindow (

cassandraid text,

coord decimal,
PRIMARY KEY (cassandraid)

) WITH

bloom_filter_fp_chance=0.010000 AND
caching=’KEYS_ONLY’ AND
comment=’’ AND
dclocal_read_repair_chance=0.000000 AND
gc_grace_seconds=864000 AND
index_interval=128 AND
read_repair_chance=0.100000 AND
replicate_on_write=’true’ AND
populate_io_cache_on_flush=’false’ AND
default_time_to_live=0 AND
speculative_retry=’99.0PERCENTILE’ AND
memtable_flush_period_in_ms=0 AND
compaction={’class’: ’SizeTieredCompactionStrategy’} AND
compression={’sstable_compression’: ’LZ4Compressor’};

CREATE INDEX cassandrawindow_coord_idx ON cassandrawindow (coord);

Listing 3.1: Creation script for the Cassandra cache

public void reduceCacheSize(int maxSize) {

// Code to set up session and connection to Cassandra

// create a set, that is sorted by the value and not the key

SortedSet<Map.Entry<String, Long>> sortedset = new TreeSet<Map.

Entry<String, Long>>(

new Comparator<Map.Entry<String, Long>>() {

@Override

public int compare(Map.Entry<String, Long> e1,

Map.Entry<String, Long> e2) {

return e1.getValue().compareTo(e2.getValue());

}

});

3.4 Implementation of the inverse cache 23

SortedMap<String, Long> rowMap = new TreeMap<String, Long>();

// Cassandra query string with explicit time stamp

ResultSet cassResultSet = session.execute("select cassandraid,

writetime(coord) from cassandraWindow;");

// extract and add relevant information to the rowMap

while (!cassResultSet.isExhausted()) {

Row myRow = cassResultSet.one();

String sensorId = myRow.getString(0);

long timestamp = myRow.getLong(1);

rowMap.put(sensorId, timestamp);

}

// add rowMap to the sorted set

sortedset.addAll(rowMap.entrySet());

// determine cache size

int resultSize = sortedset.size();

//removing items by age

if (resultSize > maxSize) {

while (resultSize>maxSize) {

// remove first item from cache

session.execute(String.format("Delete from cassandraWindow

where cassandraid=’%s’", sortedset.first().getKey()));

// remove first item from sortedSet

sortedset.remove(sortedset.first());

// decrease resultSize by 1

resultSize--;

}

}

// terminating connections

}

Listing 3.2: Extract from QueryCassandra.java showing the removal of old elements

One trade-off the cache faces is the decision whether to check if an item exists in the
cache and then query the background store, or to start queries to both stores at the same
time. The first approach is advisable in order to reduce strain on the external store, even
though it might negatively influence the overall return time for background data for a
query. This impact would be more pronounced for smaller cache sizes or bigger vari-
ances in queries.

The second variant of querying both data sources at the same time creates unneces-
sary traffic and consumes resources needlessly, if the cache already stores the complete

3.5 Twitter inverse cache 24

results for the query and returns these faster than the external store. Nevertheless, this
approach will theoretically ensure the fastest response time possible. This thesis imple-
ments both variants in the CEPListener and CEPListenerMultiThread classes.

3.5 Twitter inverse cache

The Twitter inverse cache program was created in order to focus on the investigation of
the impact of the inverse cache for bigger amounts of data, especially in cases with QoS
contracts as a limiting factor. In order to do so, the Twitter inverse cache uses many of
the features that were already developed for the EsperCsv client. Namely the ReadCsv-
DataFiles class, the logging components and many of the settings and configurations that
were used for the EsperCsv client.

For this reason only the particularities of this additional testing program will be de-
scribed. Compared to EsperCsv the Twitter inverse cache offers the possibility to enforce
time-outs for the queries to the background store and the inverse cache. Additionally, and
in order to guarantee the fairness of the evaluation, the maximum number of events that
should be parsed by the ReadCsvDataFiles class can be limited.

In order to generate a larger stress on the inverse cache, the Esper engine’s EPL state-
ment was configured to match every incoming event, which in turn also requires the
program to query the background store (in this case DBPedia) and inverse cache for every
event. Additionally, the queries to the background store were implemented as DESCRIBE
queries, which return all known information for the given resource. Such a result might
encompass tens of thousands of result triples.

The QoS time-out aspect was designed in a way that incoming information from the
background store will only be added to the collection of results until the time-out is
reached. After this cut-off time, all additional events will be forwarded to the inverse
cache. That way the cache will exclusively hold data that has at least returned late once
during the runtime of the program.

A problem that needed solving was the burst of data, that might block the whole
network stack; simply forwarding all elements as soon as they arrived after the cut-off
time resulted in a very high count of concurrent threads that all tried to execute INSERT
queries simultaneously against the Cassandra store. This lead to very high memory and
CPU requirements during the runtime, which also impacted the performance of the main
program, which in turn distorted the time measurements. Additionally, Cassandra IN-
SERT queries might time-out, which lead to an undesirable state of the cache.

This problem was tackled by providing a ConcurrentLinkedQueue which buffers all
data that has to be inserted to Cassandra. An additional thread then queries this buffer
repeatedly and inserts data one after another into Cassandra. This way there is only one
entity per query that needs to communicate with Cassandra, thus greatly reducing the

3.5 Twitter inverse cache 25

load on both the client and on Cassandra as well. The implementaion of this scheme can
be seen in the two listings 3.3 and 3.4.

Unfortunately, Cassandra does not accept INSERT queries with multiple value sets.
A future improvement for large amounts of data would be the use of sstables instead of
single INSERT queries, which should result in a much faster rate of data insertion.

3.5 Twitter inverse cache 26

final ConcurrentLinkedQueue<Triple> myQueue = new
ConcurrentLinkedQueue<Triple>();

Thread thr = new Thread(new Runnable() {

public void run() {

while (true) {

Triple qt = myQueue.poll(); // getting new triples from

the queue

if (qt != null) {

String queryPreHash = String.format("%s%s%s",

qt.getSubject(), qt.getPredicate(),

qt.getMatchObject());

HashCode hash = Hashing.goodFastHash(64).hashString(

queryPreHash, Charsets.UTF_8);

String cassandraQuery = String

.format("INSERT INTO twittercache (hash, res, s

, p, o) VALUES (’%s’, ’%s’, ’%s’, ’%s’, ’%s

’)",

queryPreHash, res, qt.getSubject(),

qt.getPredicate(), qt.getMatchObject());

try {

session.executeAsync(cassandraQuery); // Executing

the asynchronous insert query

} catch (SyntaxError e) {

// Ignore errors because of EOF in triples

}

} else {

try {

Thread.sleep(100);

} catch (InterruptedException e) {

// Interrupts are used to terminate this thread

}

}

}

}

});

thr.start(); // Starting the worker thread

Listing 3.3: Extract from QueryDBPediaDescribe.java showing the asynchronous
communication with Cassandra

3.5 Twitter inverse cache 27

if (elapsedTime > timeout) {

// long start = System.nanoTime();

myQueue.add(qt); // adding late comers to the queue

long end = System.nanoTime();

queueDuration=queueDuration+(end-start);
...

}

Listing 3.4: Snipplet from QueryDBPediaDescribe.java showing the adding of elements
to the queue and the compensation of the total reported time through the queueDuration
variable

Chapter 4

Testing

This chapter outlines the motivation and reasoning behind the evaluation. First, the setup
of our fundamental evaluation framework and the Key Performance Indicators (KPIs) in
our scope will be explained. The KPIs are based on the PCKS [SUM+13] approach in
order to ensure a meaningful link between the measured items and the underlying chal-
lenges and properties. This is followed by a description of the test environment, the
queries used and finally the discussion as well as the explanation of the test cases em-
ployed.

4.1 Evaluation framework

A test framework encompasses the systematic accounting of criteria observed and method-
ologies applied in order to determine the impact of a change. In this case, the focus lies
on observing changes in properties that allow for conclusions about the impact of a cache
system on recall and response times of background queries from a streaming engine. The
following sections will outline the respective indications under consideration and explain
how these values are raised. For this purpose, we define the following performance in-
dicators:

1. Response time for an external query from a streaming engine for varying sizes of
returned information, which can be used as a baseline.

2. Recall for such queries from a streaming engine given response time restrictions
(QoS).

3. Recall for such a time restricted query with the use of the unbound inverse cache,
which will accept information after the engine’s time-out.

4. Response time of background queries to the cache.

5. Overall time to completion for the streaming engine in regard to cache size.

4.2 Testing system 29

4.1.1 Response time baseline

The response time baseline will be tested by requesting background information from
the DBPedia SPARQL endpoint1, as DBPedia offers an extensive amount of semantic real
world data. These tests should return varying amounts of data in order to evaluate the
responsiveness of this endpoint. In order to prevent slow response times due to complex
joins and lookups, the DBPedia queries should only consist of basic lookups.

4.1.2 Recall with time-out

As streaming engines may operate under a QoS agreement, it might not be able to wait
for the complete result from an external query. This measures the completeness of the
result of a query after a certain amount of time has passed. The recall is defined as the
amount of received data items out of the total available amount of matching data items
for a certain query. A higher recall is favourable, as this will expose more relevant data
to the streaming engine, thus yielding improved results.

4.1.3 Recall with time-out and inverse cache

The inverse cache will accept data after the streaming engine’s time-out, which should re-
sult in a collection of data items in the cache. Operating under the assumption that an
additional query to the cache will respond faster to a request for data, the cache should
be able to offer additional data items to the streaming engine. This should result in a
higher recall for the background query, which can improve the correctness of the stream-
ing engine’s composite result.

4.1.4 Response time from the cache

Analogical to part 4.1.1 the response time for different queries and varying amounts of
returned data from the inverse cache is also taken into account. This should also allow for
the specification of the lowest boundary for a time-out for given queries.

4.1.5 Overall time to completion

Lastly, one of the most basic indicators is the total runtime, which might be impacted by
the faster responses from the cache. This indicator represents the amount of real time
spent for processing all stream events and the associated background lookups.

4.2 Testing system

All tests were run on the so called Kraken Cluster at the Department for Informatics at the
University of Zurich. This cluster consists of 12 distinct nodes that are managed through

1http://dbpedia.org/sparql

4.3 Test cases 30

the Terascale Open-Source Resource and QUEue Manager2 (Torque) that resides on another
dedicated management server. All nodes are equipped with 24 physical processors and
around 63 GB of RAM which makes the execution of parallel processes highly efficient
and offers enough heap space for the execution of the test programs.

The used operating system on these nodes is Debian3 and the java version is 1.7.0_25.4

A detailed overview of the properties of a node can be found in the appendix on page 59.

4.3 Test cases

The following section describes the test cases that were used to gather data on the per-
formance indicators mentioned beforehand. Each subsection outlines how the respective
test was run and what data was gathered. Furthermore, any variation in the test setting
will be pointed out (i.e. changing the cache size or varying the time-outs).

4.3.1 Test 1

A data set containing data from Twitter5 (see section 3.2 on page 14 for details) was parsed
and converted to Esper events. For each entry in this dataset a query to the SPARQL
endpoint of DBPedia was initialized and the times for a complete result were noted. In
order to receive a substantial amount of data without straining DBPedia unnecessarily,
the query used was a DESCRIBE query. In order to receive a good baseline, this test
should be run multiple times and the results should be condensed into an average as
well as percentiles.

4.3.2 Test 2

This test also uses the Twitter data set, but introduces the inverse cache and a limitation
on the timeout for each query. The timeout for the inverse cache and the DBPedia query
are set to the same values and the same queries as are used in test 1. Furthermore, the
amount of Twitter events that are parsed is limited to see if the results show a meaningful
difference due to different test sizes. Both test parameters can be varied through start up
arguments of the TwitterInverseCache.jar.

This test is supposed to yield results for the average recall for the possible queries
from DBPedia and the inverse cache under time constraints. These values should also
allow for the derivation of the combined recall. The used time-outs and the amount of
events parsed can be seen in table A.1. All 100 permutations should be run several times
in order to establish reliable values.

2http://www.adaptivecomputing.com/products/open-source/torque/
3Linux hector 3.2.0-4-amd64 #1 SMP Debian 3.2.51-1 x86_64 GNU/Linux
4OpenJDK Runtime Environment (IcedTea 2.3.10) (7u25-2.3.10-1 deb7u1) OpenJDK 64-Bit Server VM

(build 23.7-b01, mixed mode)
5https://twitter.com/

4.3 Test cases 31

4.3.3 Test 3

This test employs the EsperCSV classes and the storm events presented in chapter 2 and
3.3. The provided sensor events are parsed into storm events, which Esper handles. Esper
then tries to match one of the queries from table 4.1 to the events in the current win-
dow. In the case of a successful match, Esper initiates a location lookup query for the
first matching station. For the first result this is expected to be exclusively being returned
by the Fuseki store, while the Cassandra store might also respond to subsequent queries.
The used Esper EPL queries are based on the widely known SR-Bench queries, which are
presented in natural language.6

This test further offers the possibility to alternate the maximum allowed cache size;
in the experiments that were conducted the sizes 10, 100 and 1000 were used. Each query
execution time is being logged through the SocketLogger in order to infer the impact on
the total runtime of EsperCsv.

6http://www.w3.org/wiki/SRBench

4.3 Test cases 32

Query name EPL query

SRB1 SELECT DISTINCT sensorId, value FROM
StormEvent.win:time_batch(60 minutes) WHERE
(propertyName=’Precipitation’ and value>1)

SRB2 SELECT DISTINCT sensorId, sum(value) FROM
StormEvent.win:time_batch(60 minutes) WHERE
((propertyName=’Precipitation’ OR
propertyName=’PrecipitationAccumulated’ OR
propertyName=’PrecipitationSmoothed’) AND value>1)

SRB3 SELECT sensorId FROM StormEvent.win:time(60 minutes) WHERE
(propertyName=’PeakWindSpeed’ and value>73)

SRB4 SELECT sensorId, AVG(value) from StormEvent.win:time_batch(10
minutes) WHERE (propertyName=’WindSpeed’ and sensorId IN
(SELECT sensorId from StormEvent.win:time_batch(10 minutes)
where (propertyName=’AirTemperature’ and value>32)))

SRB5 SELECT DISTINCT sensorId from StormEvent.win:time(3 hours)
WHERE (propertyName=’Precipitation’ AND value>10 AND
sensorId IN (SELECT DISTINCT sensorId from
StormEvent.win:time(3 hours) where
(propertyName=’AirTemperature’ AND value<32 sensorId IN
(SELECT DISTINCT sensorId from StormEvent.win:time(3 hours)
where (propertyName=’WindSpeed’ AND value>40)))))

SRB6 SELECT DISTINCT sensorId FROM StormEvent.win:time(60 minutes)
WHERE ((propertyName=’Visibility’ and value<10) OR
(propertyName=’Precipitation’ AND value>30))

SRB8 SELECT sensorId, min(value) as minTemp, max(value) as maxTemp
FROM StormEvent.win:time_batch(30 minutes) WHERE
(sensorId=(SELECT sensorId from StormEvent.win:time_batch(30
minutes) TOP 1) AND propertyName=’AirTemperature’) GROUP BY
sensorId

SRB TEST SELECT * FROM StormEvent.win:time(1 min) where
sensorId=’AP035’

Table 4.1: Overview of the EPL queries for EsperCsv

Chapter 5

Experimental results

The following chapter provides an overview concerning the run experiments and their
outcomes. For data too numerous to be displayed in full, excerpts are shown. The inter-
pretation of this data will take place in chapter 6 on page 42ff.

5.1 First experiment

The first experiment was conducted with the TwitterInverseCache tool. The tables 5.1
and 5.2 on the following page offer an overview of the structure of the data file which
was used to feed the Esper engine with events. In total this data set contains 308991 lines
which are translated by the ReadCsvDataFiles class into 308990 Esper events. Each event
contains a DBPedia resource, which will be queried using a DESCRIBE query through
Jena.

Additionally, a test was run in order to determine if there is a major difference for the
arrival timings of single data elements from DBPedia. This was measured through a Jena
Iterator for each result. The findings for DESCRIBE and SELECT queries can be seen in
table 5.3.

5.1 First experiment 34

Resource
(http://dbpedia.org/resource)

Number of elements returned Occurrences

/Up_All_Night_Tour 73 1923
/Up_All_Night_(One_Direction_album) 288 447
/UAN 50 353
/One_Direction 350 177
/United_Kingdom 92202 145
/Tour_de_France 279 124
/Hug 104 120
/Australia 49584 77
/Justin_Bieber 603 74
/Indonesia 9102 69
/United_States 431232 57
/France 84594 56

Table 5.1: Number of returned triples for queries with more than 50 occurrences

Resource
(http://dbpedia.org/resource)

Number of elements returned Occurrences

/United_States 431232 57
/England 135266 6
/United_Kingdom 92202 145
/France 84594 56
/Poland 73135 2

Average 2900 7.25

Table 5.2: The five DBPedia resources that return the most triples

Query type Select Describe

Average time between results in ms 0.0397 0.0413
Percentile of results >=2ms 0.0011 0.0002
Percentile of results <1ms 0.9778 0.9762

Table 5.3: Overview of the response times and spread for SELECT and DESCRIBE queries
for SPARQL queries that return more than 10000 elements

5.2 Second experiment 35

5.2 Second experiment

The second experiment uses the Linked Sensor Observation data sets (see table 3.1 on page
16 for details) as event inputs for the Esper engine. Each data set was run for 7 different
EPL statements and for each combination of three different cache sizes (10;100;1000). The
resulting 147 combinations were run two times in order to ensure that the displayed re-
sults are valid. The overall average recall for the whole run is shown - it should be noted,
that due to the fact that the cache is empty to begin with, the average recall will never be
able to reach 1. The recall was calculated as the total number of events that were matched
by the cache divided by the number of elements that matched the EPL statement.

Unfortunately, it became obvious that even using the fast Kraken Cluster, some of the
queries (SRB 5 and SRB 8) were too complex to allow for fast processing. These tests were
aborted after each of them ran for more than 24 hours, as a such demanding and long-
running test violates the premise of an economical test. These aborted tests are marked
with timeout.

Another surprising point is that several data sets did not yield any results for certain
queries. This is based on the composition of sensor observations for these tests: While
SRB 1 and SRB 2 require precipitation information in order to match the EPL query to the
generated data stream, these data sets do not include such information. Thus as result it
was impossible to calculate recall. As for the query SRB 3 and the missing results for the
data sets Charley and Nevada Storm - while these data sets include data concerning peak
wind speeds, the boundary set by the query is so high, that it does not match a beneficial
amount of events. For this reason, they were excluded from further discussion and are
not represented in these tables.

5.3 Third experiment

In order to paint a more accurate picture of the impact the cache size has on the recall,
this test uses the three simple queries (SRB 1-3) with finer granularity for the cache size,
after the most interesting range was narrowed down previously. Additionally, recalculat-
ing the old values (10;100;1000) offers an opportunity to check the results of the previous
tests.

The tables A.4, A.5, A.6 outlining these results can be found in the appendix. Addi-
tionally, the figures 5.1-5.8 on the next pages visualize the recall for each data set.

5.3 Third experiment 36

Bertha

R
e
c
a
ll

0

0.2

0.4

0.6

0.8

1

Cache size

1 10 100 1'000

Figure 5.1: Recall for for various cache sizes for data set ’Bertha’

Bill

R
e
c
a
ll

0

0.2

0.4

0.6

0.8

1

Cache size

1 10 100 1'000

Figure 5.2: Recall for for various cache sizes for data set ’Bill’

5.3 Third experiment 37

Charley

R
e
ca

ll

0

0.2

0.4

0.6

0.8

1

Cache size
1 10 100 1'000

Figure 5.3: Recall for for various cache sizes for data set ’Charley’

Gustav

R
e
c
a
ll

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cache size

1 10 100 1'000

Figure 5.4: Recall for for various cache sizes for data set ’Gustav’

5.3 Third experiment 38

Ike

R
e
c
a
ll

0

0.2

0.4

0.6

0.8

1

Cache size

1 10 100 1'000

Figure 5.5: Recall for for various cache sizes for data set ’Ike’

Kathrina

R
e
c
a
ll

0

0.2

0.4

0.6

0.8

1

Cache size

1 10 100 1'000

Figure 5.6: Recall for for various cache sizes for data set ’Kathrina’

5.3 Third experiment 39

Nevada Storm

R
e
c
a
ll

0

0.2

0.4

0.6

0.8

1

Cache size

1 10 100 1'000

Figure 5.7: Recall for for various cache sizes for data set ’Nevada Storm’

Wilma

R
e
c
a
ll

0

0.2

0.4

0.6

0.8

1

Cache size

1 10 100 1'000

Figure 5.8: Recall for for various cache sizes for data set ’Wilma’

5.4 Fourth experiment 40

5.4 Fourth experiment

This experiment simulates the influence of the inverse cache on queries that are bounded
through time-outs. This test used the Twitter inverse cache program to calculate the recall
for different time-outs. The observation time-outs were chosen in order to cover both
favourable and unfavourable circumstances for the recall of the inverse cache. As some
quick tests determined that the route to the DBPedia servers is quite fast (~24 ms RTT), it
was decided to use roughly 1.5x of the RTT as the lowest time-out value. From this start-
ing point each subsequent measurement uses roughly double the time-out value of the
previous run. The last time-out was chosen to be very high, so that these results can be
used as a baseline. In order to ensure economical processing, a batch size of 1600 events,
which will result in roughly 3200 total queries per run, was used.

The detailed results can be found in table 5.4. The respective time-out is listed - no
results that violate this cut-off were taken into account - as well as the number of queries
that could be answered (partly or in full). The next columns break this number down into
the sources of these results. In this context, answer-parts are defined as sub-elements of
an answer; this distinction is necessary as queries might return such a high number of
results, that the time-out may cut off the transmission, leaving the Esper engine with
parts of the answer from the background query.

Figure 5.9: Recall based on the absolute number of results

5.4 Fourth experiment 41

Time-out in ms Answered
queries
before

time-out

Answers
from

Inverse
Cache

Answers
from

DBPedia

Sub-
Answers

from
inverse

cache

Sub-
Answers

from
DBPedia

37 26 26 0 1478 0
75 1448 435 1013 26971 114748

125 2025 655 1370 45619 336585
250 1919 479 1440 34197 577536
500 1960 478 1482 33938 999989

1000 1974 482 1492 47552 1212338
2000 1517 1 1516 15493 2384874
4000 1575 0 1575 0 7438619
8000 1573 0 1573 0 7303188

9999999 1590 0 1590 0 13907099

Table 5.4: Summary of the results for n=1600 and variable query time-outs

Figure 5.10: Recall based on the maximum number of possible results

Chapter 6

Discussion

This chapter will delve into the accumulated data and offer explanations for the observa-
tions where possible. Each experiment is going to be revisited in order to establish a link
between the different aspects of the results and to help further the understanding of the
inverse cache.

6.1 First experiment

The first experiment can be seen as groundwork as it underpins the decision to use DE-
SCRIBE queries for parts of the experiments. The results show clearly that although there
is a small difference (0.0397 ms vs. 0.0413 ms) between the more common SELECT query
and the DESCRIBE query, both need approximately the same amount of time to return
the next part of a result through an iterator. It should be noted though, that SELECT
queries tend to be faster, as they need less computation to find the correct results.

Furthermore, the reliability of the DBPedia SPARQL endpoint is impressive, in so far
as that more than 97% of the sub-results that arrived through the DESCRIBE iterator or
the SELECT result set arrived with less than 1 ms gaps in between. The amount of sub-
results that required equal or more than 2 ms until the next item was available is also
minuscule (less than 0.1%). These numbers were extracted from queries which return
more than 10’000 elements, so they should hold true for larger result sets.

6.2 Second experiment

The second experiment was conducted with EsperCsv in order to gather information on
the recall performance of the inverse cache for various fixed cache sizes. The Linked Sen-
sor Observations offer data on distinct storms in the US, yet they still belong to the same
class of observations, which facilitates the building of a common processing path. As
there is already a widely-known stream benchmark that uses the same base data set, it

6.2 Second experiment 43

was decided to also implement some of the SR-Bench queries for this test. Unfortunately,
it turned out that these queries were mainly constructed with pure streaming engines
in mind: Esper is easily capable of processing several thousand events per second, but
having to query background stores for additional data slows this processing down to a
crawl, as such external queries take significantly longer.

Combining the SR-Bench queries with complete data sets leads to the undesirable re-
sult that some of the queries would need to run for more than 24 hours, which makes
these queries unwieldy. Tests and benchmarks should be repeatable with limited re-
sources so that they can be considered economical. Unfortunately, some of the more
complex statements (SRB 5, SRB 8) fell into this category and were thus removed from
further work. These queries might be interesting in regard to long term testing, though.

The remaining queries were used to determine the overall recall with various maxi-
mum cache sizes. A very obvious result from these tests is the fact that the recall seems to
be mostly influenced by cache sizes of fewer than 100 results. High recall rates for cache
sizes of 10 indicate that the EPL query results seem to exhibit a low amount of variability
- examples can be found in the data for the SRB 2 query. Another factor that impacts
the average recall is the total size of the data set used: A big data set might return more
results and thus require a bigger cache to reach maximum efficiency.

A query to highlight is SRB 6, which exhibits a consistently even spread over all three
caching sizes and across all data sets. Nevertheless, the influence of the raw event num-
ber is also evident when looking at the recall numbers for the biggest data set Ike. It
shows that in order to reach the highest possible recall, even the biggest cache size can
still be improved for this particular permutation.

Apart from these aspects, the inverse cache achieved high recall rates across the board,
which is an indication that the amount of repetition, even in real world data, is not to
be underestimated. Even a very small cache that only holds the results for 10 queries
might be able to answer a surprising amount of background queries. Another possible
improvement factor for this is the cache eviction strategy. During these examples a very
basic "first in, first out" strategy was used to shrink the cache. A heuristic approach might
be able to identify entries that are more likely to be requested again and thus increase the
recall even further by keeping them in the cache whereas the FiFo algorithm would have
removed them.

Again, it should also be noted, that the recall is defined as the percentage of queries
that the cache was able to answer. It is impossible (barring errors) for the very first query
for a certain element to be found in the cache, which means that the recall cannot rise to
1, it can only approach this border asymptotically.

6.3 Third experiment 44

6.3 Third experiment

The third experiment performed, is based on the results from the previous test, which
rendered evident that the recall rate reached a high niveau very fast. In order to allow for
a more detailed explanation in this respect, it was elected to generate additional data for
supplemental cache sizes.

This test chose the fastest three queries (SRB 1-3) for this task and introduced 5 new
sampling points between 10 and 100, as well as 3 below that number. Additionally, the
range between 100 and 1000 was also subdivided and a last measuring point for a size of
1500 was introduced. The reasoning behind the introduction of the last sampling point
is to check if the cache already topped-out at 1000 entries, or if there would still be room
for some additional improvements. In total 16 cache sizes for each of the 8 distinct storm
data sets were run for each of the three selected queries. This results in 384 variations.

Investigating whether there is a clear correlation between the size of the base data
set (and thus the number of observations) and the optimal cache size did not yield clear
results. While some data sets contain significantly more observations, this does not nec-
essarily translate into demand for a bigger cache size. The cache sizes for the highest
recall are visualized in the figures 6.1, 6.2, 6.3. The average optimal cache size, uniformly
averaged over all data sets1, yields an optimal cache size of 26.73, which can be used as a
starting point for further optimisation.

In conclusion, this experiment has shown that an inverse cache with a modest size is
able to reach promising recall results. It has to be noted though, that the optimal size of
the inverse cache is highly dependant on environmental factors like the data set size (re-
spectively the number of events per second for a streaming engine), the query itself and
the make up of the data set.

1and excluding the outlier from SRB 3 / Ike

6.3 Third experiment 45

Figure 6.1: Minimum cache size from which on no further improvements of the overall
recall were found for the query SRB 1

Figure 6.2: Minimum cache size from which on no further improvements of the overall
recall were found for the query SRB 2

6.3 Third experiment 46

1500

Figure 6.3: Minimum cache size from which on no further improvements of the overall
recall were found for the query SRB 3

6.4 Fourth experiment 47

6.4 Fourth experiment

The aptly named fourth experiment investigates the relation between the recall of the in-
verse cache, the recall of an external background store and enforced time-outs through the
use of the Twitter inverse cache Project. This test simulates the operation of the Esper engine
under a time constricted QoS agreement for background data; Esper only accepts infor-
mation from the background and inverse cache queries until a certain time-out is reached.
Nevertheless, data that arrives after this cut-off is still forwarded to the inverse cache.

For this experiment, the range of time-out values that were considered, ranges from
37 to 8000 ms. An additional pass with a time-out of 999’999 ms was made to guaran-
tee the existence of a baseline for the queries, so that the other results can be compared
against the baseline. All received data was checked again in order to assure that only
data consistent with the cut-off criterion was considered in the evaluation. One should
also note, that the maximum number of results is smaller than the number of events, as
there are several background queries that do not return any data. These empty results
are not counted.

The results for this test, as seen in figure 5.10 and 6.1, as well as table 5.4 on page 41,
show that the inverse cache improves the recall for time-outs in the range of 37-2000 ms.
Beyond the 1000 ms time-out, the amount of recall for the inverse cache is steadily shrink-
ing because there are less and less latecomers that need to be written to the cache.

In an environment with a forced time-out the inverse cache can fulfil two possible func-
tions:

1. Increasing total recall: The inverse cache can allow for a higher number of total re-
sults, by augmenting the results from the background query with latecomers dur-
ing the allowed time-out period

2. Speeding up recall: In an environment where only a part of the results is needed (i.e.
a situation with a fixed recall or respectively a fixed needed result count) the inverse
cache can alternatively speed up the response to a background query by adding its
own results, allowing the response to reach the required amount of information
faster and enabling the engine to proceed more rapidly.

The decision which function would be more advantageous, cannot be made in gen-
eral though, as this would depend on outside factors.

The implementation of the inverse cache in this context has a downside too, which be-
comes clear when inspecting the recall values for the times-outs in the range 125-1000 ms:
The combined recall of the DBPedia and the inverse cache queries is above 100%, which
strongly suggests that there are duplicate results. These duplicates can be created eas-
ily due to the interdependency of the inverse cache, which will store every latecomer and
the DBPedia queries which are not guaranteed to arrive in the same order or even in the

6.4 Fourth experiment 48

same amount of time. This interdependency leads to a number of intersecting results. No
further inquiries to determine the amount of duplicates were made.

Another area that can be improved is the handling of the latecomers, where a more
intelligent approach might be beneficial. As of now, the inverse cache will receive all late-
comers regardless of whether this datum already exists in the cache. As queries for check-
ing the existence of data are fast in Cassandra, it might be beneficial to check for old data
before overwriting it with a new INSERT query. This check was not implemented into the
current version, as it is yet unclear if such a check would incur a significant performance
penalty in comparison to making non-essential INSERT queries.

Additionally, the second experiment made apparent that distinct INSERT queries are
a comfortable way of storing data in Cassandra, at least as long as there are not too many
at the same time. The fourth experiment is storing several magnitudes more data in the
inverse cache which leads to the INSERT queries turning into a bottle neck. In these cases
it would be advisable to employ Cassandra’s sstables mechanic which bulk inserts data as
soon as a certain threshold is reached. Alternatively, it would also be possible to deploy
several Cassandra instances and balance the INSERT queries between these machines.

It should also be noted, that the recall of the inverse cache, as displayed in figure 6.1 on
page 45, first grows and then shrinks again. This behaviour might look counterintuitive,
but can be explained by taking the background of the time-outs into account. The inverse
cache is unable to provide results for very fast time-out values, so the recall grows with
increasing time-outs. This continues up to the point when the amount of DBPedia results
and responses from the inverse cache are in equilibrium. From there on, larger time-out
values will lead to a diminishing recall for the inverse cache, as the overall amount of re-
sults that are considered latecomers, is shrinking.

Chapter 7

Related work

This thesis relates to the following domains of research:

1. Semantic Flow Processing (SFP)

2. Information Flow Processing (IFP)

3. Complex Event Processing (CEP)

4. RDF / SPARQL

5. Benchmarks for streaming processing

Information in the semantic web is commonly described using the Resource Descrip-
tion Framework (RDF) and increasingly often queried using SPARQL. The last years
have borne witness to the creation of several stream processing systems. Systems like
C-SPARQL [Bar09] are of major relevance for the area of semantic flow processing, which
matches patterns (continuous queries) on segments of the data flow (commonly called
windows). Another example is Event Processing SPARQL (EP-SPARQL) [AF11], which
focusses more on the temporal relation between streamed data.

Closely related to these SFP systems are Complex Event Processing (CEP) systems like
Esper [Dek07], that aggregate events with additional data in order to infer new informa-
tion from these connections [SLG08]. Queries can be written in a plethora of dialects -
Esper uses EPL, the Esper Processing Language.

There have been various proposed benchmarks for stream processing systems over
the last years. Among the most widely known is the SR-Bench(mark) [ZDCC12] which
uses real world data from the Linked Open Data cloud and describes several queries in
natural language in order to be agnostic in regards to the actual implementation of these
queries.

Another widely known benchmark is the the Linear Road Benchmark [ACG04], which
simulates a toll system on a motorway with variable tolling based on accident detection,
alerts and traffic congestion. It employs a fixed set of continuous and historical queries

50

against a stream of events that is being generated in advance. A downside to the Lin-
ear Road Benchmark lies in its reliance on the relational data model, which makes it unfit
for assessing the performance of RDF-graph based streaming engines. The Linear Road
Benchmark is mainly used for IFP systems [JAA+06].

Furthermore, there is the Lehigh University Benchmark (LUBM), which is a benchmark
that is aiming at OWL Knowledge Base systems [GPH05]. This benchmark features syn-
thetic data built over a university domain and offers a list of 14 SPARQL queries for
which several metrics are computed.

In addition, there is also the Berlin SPARQL benchmark [BS09b] (BSBM) which uses
an e-commerce setting wherein different products are offered and consumers can post
reviews about these products. The queries are designed to emulate the search and navi-
gation behaviour of a customer looking to buy a certain product. The BSBM was created
in order to allow for performance comparison between different underlying systems that
offer SPARQL endpoints.

In relation to the foundation of benchmarking, the work of [Hup09] is important, as
it outlines basic properties and demands that need to be fulfilled by a good benchmark.
Among them are demands for relevancy, repeatability, fairness as well as being economi-
cal and verifiable. These basic ideas are extended by the Properties-Challenges-KPIs-Stress-
tests (PCKS) paradigm for benchmarking SFP systems [SUM+13], which outlines seven
commandments for stress testing SFPs in relation to precisely defined key performance
indicators (KPI). This paradigm makes the valid point that not only throughput should
be considered for performance evaluation [LpNQV13], but that response time, the maxi-
mum input throughput and the minimum time to completion or to accuracy should also
be regarded as valid KPIs in most contexts.

Moreover, there is also a significant corpus investigating the impact of caches on
databases [CMEF13] and RDF stores [MUA10, YW11, WW11] - but to the extent of the
knowledge of the author, the proposed inverse cache for background queries of streaming
engines is a novel idea in relation to streaming semantic data. The author was unable to
find any other system that proposes caching of external information at the stream pro-
cessing sink. It should be noted though, that there are some works that describe the use
of a cache on a data stream source or for storing semantic data [DFJ+96].

Chapter 8

Conclusion

This thesis implemented an inverse cache for use with Complex Event Processing engines
that enrich events with additional data from outside sources. The inverse cache runs on
the same machine as the CEP engine to ensure a fast connection in accordance with the
spacial / temporal locality principle. In settings with Quality of Service requirements for
the response time, the inverse cache will store late responses from the external data source
and provide the event processing engine with these stored results for subsequent exter-
nal queries.

The proposed system should fulfil two hypotheses: Firstly, allowing the stream pro-
cessing engine to perform faster and secondly, providing more comprehensive results in
environments with a QoS time-out constraint.

In order to check these hypotheses, the proposed system has undergone several tests
which examined Key Performance Indicators (KPIs) that mirror these properties (mini-
mum time to completion, recall in relation to response time). The tests were designed fol-
lowing the PCKS methodology [SUM+13] and used SR-Bench data sets as well as queries.

After the evaluation through the programs EsperCSV and TwitterInverseCache, the re-
sults from chapter 5 clearly show that both of the early hypotheses can be validated
for the test cases. In a scenario with a moderate amount of external queries the inverse
cache was able to answer many of the background queries in 10% of the original query
time. Furthermore, it could be shown that the inverse cache increased the overall recall for
queries with a maximum response time between 37 and 1000 ms.

The significance of these results needs to be limited though, as the inverse cache has
not been tested in different environments so far. Furthermore, the inverse cache employs
a naive eviction strategy for tests with limited cache sizes and it has been shown that sta-
tistical heuristics might have the ability to improve this eviction approach and thus also
yield higher recall results [NSB13].

Moreover, it should be investigated if Apache Cassandra is the best solution for the un-
derlying storage of the inverse cache, or if another storage solution is superior in regards

52

to the requirements of the inverse cache. Another point that could likely be improved, is
the communication with Cassandra during INSERT queries. Currently the main programs
are unable to insert many data items very rapidly as Cassandra only accepts a set number
of concurrent connections. While one could certainly raise this limit, the author would
rather propose to use the Cassandra sstables mechanic in order to allow for bulk inserts.

Future research might also surpass this work’s implementation of the SR-Bench queries
and create a comprehensive set of results for all available SR-Bench queries. This would
improve the comparability of the inverse cache. Incorporating the inverse cache into other
benchmarking systems for streaming engines might also result in a more complete view
of the strengths and weaknesses of the local caching approach. Another intriguing topic
that opens up through this thesis is the investigation of the impact that a distributed in-
verse cache would have in comparison to this singular implementation.

The author believes that while the current research focusses on improving RDF stores,
the potential for caching external results locally has been overlooked so far. Hopefully,
this thesis offers a first glimpse into the possibilities for performance improvement through
systems such as the inverse cache.

Bibliography

[ABNS06] Asaf Adi, David Botzer, Gil Nechushtai, and Guy Sharon. Complex Event
Processing for Financial Services. 2006 IEEE Services Computing Workshops,
pages 7–12, September 2006.

[ACG04] Arvind Arasu, Mitch Cherniack, and Eduardo Galvez. Linear road: a
stream data management benchmark. In VLDB ’04 Proceedings of the Thirti-
eth international conference on Very large data bases, pages 480–491, 2004.

[AF11] Darko Anicic and Paul Fodor. EP-SPARQL: a unified language for event
processing and stream reasoning. Proceedings of the 20th international confer-
ence on World wide web, pages 635–644, 2011.

[Bar09] Davide Francesco Barbieri. C-SPARQL : SPARQL for Continuous Querying.
Proceedings of the 18th international conference on World wide web, (c):1061–
1062, 2009.

[BBC10] DF Barbieri, Daniele Braga, and S Ceri. Querying rdf streams with c-sparql.
ACM SIGMOD Record, 39(1):20–26, 2010.

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer
Widom. Models and issues in data stream systems. Proceedings of the twenty-
first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database sys-
tems - PODS ’02, page 1, 2002.

[Bre00] Eric A. Brewer. Towards robust distributed systems. In Proceedings of
the nineteenth annual ACM symposium on Principles of distributed computing
- PODC ’00, page 7, 2000.

[BS09a] Christian Bizer and Andreas Schultz. Benchmarking the performance of
storage systems that expose SPARQL endpoints. International Journal on
Semantic Web and Information Systems (IJSWIS), 5(2):1–24, 2009.

[BS09b] Christian Bizer and Andreas Schultz. The berlin sparql benchmark. Inter-
national Journal on Semantic Web and Information Systems (IJSWIS), 5(2):1–24,
2009.

BIBLIOGRAPHY 54

[BSW01] Shivnath Babu, L Subramanian, and Jennifer Widom. A data stream man-
agement system for network traffic management. Workshop on Network-
Related Data Management (NRDM 2001), pages 1–2, 2001.

[CCeaD13] Aranda Carlos, Olivier Corby, and Souripriya et al Das. SPARQL 1.1
Overview, 2013.

[CCG10] Jean-paul Calbimonte, Oscar Corcho, and Alasdair J G Gray. Enabling
Ontology-based Access to Streaming Data Sources. In 9th International Se-
mantic Web Conference (ISWC 2010), pages 96–111, 2010.

[CM12] G Cugola and Alessandro Margara. Processing flows of information: From
data stream to complex event processing. ACM Computing Surveys (CSUR),
pages 359–360, 2012.

[CMEF13] P Cudré-Mauroux, Iliya Enchev, and Sever Fundatureanu. NoSQL
Databases for RDF: An Empirical Evaluation. The Semantic Web – ISWC
2013, 8219:310–325, 2013.

[Dek07] Paul Dekkers. Complex Event Processing. PhD thesis, 2007.

[DFJ+96] Shaul Dar, MJ Franklin, BT Jonsson, D Srivastava, and Michael Tan. Seman-
tic data caching and replacement. VLDB, 96:330–341, 1996.

[DKSU11] Songyun Duan, Anastasios Kementsietsidis, Kavitha Srinivas, and Octa-
vian Udrea. Apples and Oranges : A Comparison of RDF Benchmarks and
Real RDF Datasets. In Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, pages 145–156, 2011.

[DS12] Miyuru Dayarathna and T Suzumura. XGDBench: A benchmarking plat-
form for graph stores in exascale clouds. Cloud Computing Technology and
Science (CloudCom), pages 3–10, 2012.

[Esp14] Esper Team. Esper Reference, 2014.

[FSB13] Lorenz Fischer, Thomas Scharrenbach, and Abraham Bernstein. Scalable
Linked Data Stream Processing via Network-Aware Workload Scheduling.
In 9th International Workshop on Scalable Semantic Web Knowledge Base Sys-
tems, number 296126, page 81, 2013.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. ACM SIGACT News,
33(2):51, June 2002.

[GPH05] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for
OWL knowledge base systems. Web Semantics: Science, Services and Agents
on the World Wide Web, 3(2):158–182, 2005.

BIBLIOGRAPHY 55

[HCH+99] E.N. Hanson, C. Carnes, L. Huang, M. Konyala, L. Noronha,
S. Parthasarathy, J.B. Park, and a. Vernon. Scalable trigger process-
ing. Proceedings 15th International Conference on Data Engineering (Cat.
No.99CB36337), pages 266–275, 1999.

[Hup09] Karl Huppler. The art of building a good benchmark. Performance Evaluation
and Benchmarking, 2009.

[JAA+06] Navendu Jain, Lisa Amini, Henrique Andrade, Richard King, Yoonho Park,
Philippe Selo, and Chitra Venkatramani. Design , Implementation , and
Evaluation of the Linear Road Benchmark on the Stream Processing Core. In
Proceedings of the 2006 ACM SIGMOD international conference on Management
of data, pages 431–442, 2006.

[KCF12] Srdjan Komazec, Davide Cerri, and Dieter Fensel. Sparkwave: continu-
ous schema-enhanced pattern matching over RDF data streams. DEBS ’12
Proceedings of the 6th ACM International Conference on Distributed Event-Based
Systems, pages 58–68, 2012.

[LF98] DC Luckham and Brian Frasca. Complex event processing in distributed
systems. Computer Systems Laboratory Technical Report CSL-TR-98-754, 1998.

[LpDtPH11] Danh Le-phuoc, Minh Dao-tran, Josiane Xavier Parreira, and Manfred
Hauswirth. A Native and Adaptive Approach for Unified Processing of
Linked Streams and Linked Data. In The Semantic Web – ISWC 2011: 10th
International Semantic Web Conference, volume 7031, pages 370–388, 2011.

[LpNQV13] Danh Le-phuoc, Hoan Nguyen, Mau Quoc, and Chan Le Van. Elastic and
Scalable Processing of Linked Stream Data in the Cloud. The Semantic Web
– ISWC 2013, 287305:280–297, 2013.

[Luc02] David C Luckham. The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems, volume 2003. Reading: Addison-
Wesley, 2002.

[MUA10] Michael Martin, J Unbehauen, and S Auer. Improving the performance
of semantic web applications with SPARQL query caching. The Semantic
Web: Research and Applications Lecture Notes in Computer Science, 6089:304–
318, 2010.

[NSB13] MK Nguyen, Thomas Scharrenbach, and Abraham Bernstein. Eviction
Strategies for Semantic Flow Processing. In 9th International Workshop on
Scalable Semantic Web Knowledge Base Systems, number 296126, page 66, 2013.

[PHS10] Harshal Patni, Cory Henson, and Amit Sheth. Linked sensor data. 2010
International Symposium on Collaborative Technologies and Systems, pages 362–
370, 2010.

BIBLIOGRAPHY 56

[RSMM12] Tilmann Rabl, G Sergio, Victor Munt, and Serge Mankovskii. Solving Big
Data Challenges for Enterprise Application Performance Management. Pro-
ceedings of the VLDB Endowmen, 5(12):1724–1735, 2012.

[SLG08] S Stoa, Morten Lindeberg, and Vera Goebel. Online analysis of myocardial
ischemia from medical sensor data streams with Esper. Applied Sciences on
Biomedical and Communication Technologies, pages 1–5, 2008.

[SUM+13] Thomas Scharrenbach, Jacopo Urbani, Alessandro Margara,
Emanuele Della Valle, and Abraham Bernstein. Seven Command-
ments for Benchmarking Semantic Flow Processing Systems. In Proceedings
of the 10th Extended Semantic Web Conference (ESWC), pages 305–319, 2013.

[TB11] Bogdan George Tudorica and Cristian Bucur. A comparison between sev-
eral NoSQL databases with comments and notes. 2011 RoEduNet Interna-
tional Conference 10th Edition: Networking in Education and Research, pages
1–5, June 2011.

[TGB05] VV Titov, FI Gonzalez, and EN Bernard. Real-time tsunami forecasting:
Challenges and solutions. Developing Tsunami-Resilient Communities, 2005.

[VMS12] Martin Voigt, Annett Mitschick, and Jonas Schulz. Yet Another Triple Store
Benchmark? Practical Experiences with Real-World Data. SDA, 2012.

[WLLB06] Fusheng Wang, S Liu, Peiya Liu, and Yijian Bai. Bridging physical and
virtual worlds: complex event processing for RFID data streams. Advances
in Database Technology-EDBT 2006, 2006.

[WW11] GT Williams and Jesse Weaver. Enabling fine-grained HTTP caching of
SPARQL query results. The Semantic Web–ISWC 2011, pages 762–777, 2011.

[YW11] Mengdong Yang and Gang Wu. Caching intermediate result of SPARQL
queries. Proceedings of the 20th international conference companion on World
wide web - WWW ’11, page 159, 2011.

[ZDCC12] Ying Zhang, PM Duc, Oscar Corcho, and JP Calbimonte. SRBench: a stream-
ing RDF/SPARQL benchmark. In The Semantic Web – ISWC 2012, pages
641–657. 2012.

Appendix

A.1 Test cases 58

A.1 Test cases

Time-out in ms Number of events

37 10
75 100

125 200
250 400
500 800

1000 1600
2000 3200
4000 6400
8000 12800

999999 308991

Table A.1: Overview of permutations used for Test 2

Query Name Data set Cache size

SRB1 Bertha 10
SRB2 Bill 100
SRB3 Charley 1000
SRB4 Gustav
SRB5 Ike
SRB6 Kathrina
SRB8 Nevada Storm
SRB TEST Wilma

Table A.2: Overview of permutations used for Test 3

A.2 Overview of node properties 59

A.2 Overview of node properties

Each of the 12 Kraken nodes offers this hardware:

processor : 8

vendor_id : AuthenticAMD

cpu family : 16

model : 9

model name : AMD Opteron(tm) Processor 6174

stepping : 1

microcode : 0x10000c4

cpu MHz : 800.000

cache size : 512 KB

physical id : 0

siblings : 12

core id : 2

cpu cores : 12

apicid : 24

initial apicid : 8

fpu : yes

fpu_exception : yes

cpuid level : 5

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov

pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt

pdpe1gb rdtscp lm 3dnowext 3dnow constant_tsc rep_good nopl

nonstop_tsc extd_apicid amd_dcm pni monitor cx16 popcnt lahf_lm

cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3

dnowprefetch osvw ibs skinit wdt nodeid_msr hw_pstate npt lbrv

svm_lock nrip_save pausefilter

bogomips : 4400.35

TLB size : 1024 4K pages

clflush size : 64

cache_alignment : 64

address sizes : 48 bits physical, 48 bits virtual

power management: ts ttp tm stc 100mhzsteps hwpstate

Listing A.1: Overview of the CPU features of a Kraken node

MemTotal: 66112060 kB

MemFree: 37049716 kB

Buffers: 334808 kB

Cached: 27904112 kB

SwapCached: 2664 kB

Active: 13243324 kB

Inactive: 15101836 kB

A.2 Overview of node properties 60

Active(anon): 77580 kB

Inactive(anon): 51212 kB

Active(file): 13165744 kB

Inactive(file): 15050624 kB

Unevictable: 9948 kB

Mlocked: 9948 kB

SwapTotal: 127406076 kB

SwapFree: 127394000 kB

Dirty: 4 kB

Writeback: 0 kB

AnonPages: 115336 kB

Mapped: 11780 kB

Shmem: 19200 kB

Slab: 509960 kB

SReclaimable: 475360 kB

SUnreclaim: 34600 kB

KernelStack: 2240 kB

PageTables: 2720 kB

NFS_Unstable: 0 kB

Bounce: 0 kB

WritebackTmp: 0 kB

CommitLimit: 160462104 kB

Committed_AS: 367468 kB

VmallocTotal: 34359738367 kB

VmallocUsed: 416764 kB

VmallocChunk: 34308991840 kB

HardwareCorrupted: 0 kB

AnonHugePages: 0 kB

HugePages_Total: 0

HugePages_Free: 0

HugePages_Rsvd: 0

HugePages_Surp: 0

Hugepagesize: 2048 kB

DirectMap4k: 248384 kB

DirectMap2M: 37498880 kB

DirectMap1G: 29360128 kB

Listing A.2: Overview of the memory configuration of a Kraken node

A.3 Experiments 61

A.3 Experiments

A.3 Experiments 62

Q
ue

ry
C

ac
he

Bi
ll

Be
rt

ha
C

ha
rl

ey
G

us
ta

v
Ik

e
K

at
hr

in
a

N
ev

ad
a

St
or

m

SR
B

1
10

0.
81

12
-

0.
37

14
0.

64
67

0.
50

75
0.

74
85

0.
50

53
10

0
0.

83
22

-
0.

73
57

0.
76

65
0.

82
39

0.
77

25
0.

68
42

10
00

0.
83

22
-

0.
73

57
0.

76
65

0.
82

39
0.

77
25

0.
68

42

SR
B

2
10

0.
98

60
-

0.
97

20
0.

70
66

0.
38

21
0.

97
38

0.
93

01
10

0
0.

98
60

-
0.

97
20

0.
78

44
0.

82
99

0.
97

38
0.

93
01

10
00

0.
98

60
-

0.
97

20
0.

78
44

0.
82

99
0.

97
38

0.
93

01

SR
B

3
10

0.
69

84
0.

78
33

-
0.

64
39

0.
33

54
0.

81
78

-
10

0
0.

82
54

0.
85

83
-

0.
79

55
0.

81
50

0.
92

62
-

10
00

0.
82

54
0.

85
83

-
0.

79
55

0.
81

50
0.

92
62

-

SR
B

4
10

0.
22

04
0.

30
97

0.
99

88
0.

41
55

0.
17

43
0.

07
74

0.
64

34
10

0
0.

72
97

0.
79

93
0.

99
88

0.
67

59
0.

44
29

0.
97

74
0.

96
05

10
00

0.
93

62
0.

85
61

0.
99

88
0.

77
93

0.
82

67
0.

97
74

0.
96

05

SR
B

5
10

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

10
0

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

10
00

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

SR
B

6
10

0.
01

56
0.

20
09

0.
05

71
0.

01
45

0.
00

00
0.

01
24

0.
00

00
10

0
0.

14
76

0.
91

34
0.

43
06

0.
11

12
0.

10
37

0.
33

33
0.

29
31

10
00

0.
62

46
0.

99
38

0.
89

96
0.

66
91

0.
58

46
0.

88
80

0.
90

13

SR
B

8
10

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

10
0

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

10
00

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

ti
m

eo
ut

Ta
bl

e
A

.3
:O

ve
rv

ie
w

of
th

e
av

er
ag

e
ov

er
al

lr
ec

al
lf

or
a

co
m

bi
na

ti
on

of
da

ta
se

ta
nd

qu
er

y
w

it
h

lim
it

ed
ca

ch
e

si
ze

s

A.3 Experiments 63

C
ac

he
Si

ze
Be

rt
ha

Bi
ll

C
ha

rl
ey

G
us

ta
v

Ik
e

K
at

hr
in

a
N

ev
ad

a
St

or
m

W
ilm

a

1
-

0.
34

27
0.

00
00

0.
15

57
0.

18
51

0.
26

95
0.

00
00

-

2
-

0.
41

96
0.

05
71

0.
23

35
0.

30
75

0.
30

54
0.

04
21

-

5
-

0.
76

22
0.

39
29

0.
57

49
0.

43
58

0.
44

31
0.

48
42

-

10
-

0.
81

12
0.

37
14

0.
64

67
0.

50
75

0.
74

85
0.

50
53

-

20
-

0.
83

22
0.

65
00

0.
76

65
0.

63
28

0.
76

05
0.

63
16

-

30
-

0.
83

22
0.

71
43

0.
76

65
0.

50
75

0.
76

05
0.

68
42

-

40
-

0.
83

22
0.

73
57

0.
76

65
0.

79
70

0.
77

25
0.

68
42

-

60
-

0.
83

22
0.

73
57

0.
76

65
0.

82
39

0.
77

25
0.

68
42

-

80
-

0.
83

22
0.

73
57

0.
76

65
0.

82
39

0.
77

25
0.

68
42

-

10
0

-
0.

83
22

0.
73

57
0.

76
65

0.
82

39
0.

77
25

0.
68

42
-

14
0

-
0.

83
22

0.
73

57
0.

76
65

0.
82

39
0.

77
25

0.
68

42
-

22
0

-
0.

83
22

0.
73

57
0.

76
65

0.
89

55
0.

77
25

0.
68

42
-

38
0

-
0.

83
22

0.
73

57
0.

76
65

0.
94

03
0.

77
25

0.
68

42
-

70
0

-
0.

83
22

0.
73

57
0.

76
65

0.
82

39
0.

77
25

0.
68

42
-

10
00

-
0.

83
22

0.
73

57
0.

76
65

0.
82

39
0.

77
25

0.
68

42
-

15
00

-
0.

83
22

0.
73

57
0.

76
65

0.
82

39
0.

77
25

0.
68

42
-

Ta
bl

e
A

.4
:A

dd
it

io
na

lr
es

ul
ts

fo
r

va
ry

in
g

ca
ch

e
si

ze
s

-d
is

pl
ay

ed
is

th
e

ov
er

al
lr

ec
al

lf
or

qu
er

y
SR

B1

A.3 Experiments 64

C
ac

he
Si

ze
Be

rt
ha

Bi
ll

C
ha

rl
ey

G
us

ta
v

Ik
e

K
at

hr
in

a
N

ev
ad

a
St

or
m

W
ilm

a

1
-

0.
97

90
0.

96
50

0.
10

18
0.

17
01

0.
95

81
0.

83
92

-

2
-

0.
98

60
0.

96
50

0.
36

53
0.

22
39

0.
97

38
0.

88
11

-

5
-

0.
98

60
0.

97
20

0.
40

72
0.

37
01

0.
97

38
0.

91
61

-

10
-

0.
98

60
0.

97
20

0.
70

66
0.

38
21

0.
97

38
0.

93
01

-

20
-

0.
98

60
0.

97
20

0.
77

84
0.

59
10

0.
97

38
0.

93
01

-

30
-

0.
98

60
0.

97
20

0.
78

44
0.

69
55

0.
97

38
0.

93
01

-

40
-

0.
98

60
0.

97
20

0.
78

44
0.

81
79

0.
97

38
0.

93
01

-

60
-

0.
98

60
0.

97
20

0.
78

44
0.

82
99

0.
97

38
0.

93
01

-

80
-

0.
98

60
0.

97
20

0.
78

44
0.

82
99

0.
97

38
0.

93
01

-

10
0

-
0.

98
60

0.
97

20
0.

78
44

0.
82

99
0.

97
38

0.
93

01
-

14
0

-
0.

98
60

0.
97

20
0.

78
44

0.
82

99
0.

97
38

0.
93

01
-

22
0

-
0.

98
60

0.
97

20
0.

78
44

0.
82

99
0.

97
38

0.
93

01
-

38
0

-
0.

98
60

0.
97

20
0.

78
44

0.
82

99
0.

97
38

0.
93

01
-

70
0

-
0.

98
60

0.
97

20
0.

78
44

0.
82

99
0.

97
38

0.
93

01
-

10
00

-
0.

98
60

0.
97

20
0.

78
44

0.
82

99
0.

97
38

0.
93

01
-

15
00

-
0.

98
60

0.
97

20
0.

78
44

0.
91

64
0.

97
38

0.
93

01
-

Ta
bl

e
A

.5
:A

dd
it

io
na

lr
es

ul
ts

fo
r

va
ry

in
g

ca
ch

e
si

ze
s

-d
is

pl
ay

ed
is

th
e

ov
er

al
lr

ec
al

lf
or

qu
er

y
SR

B2

A.3 Experiments 65

C
ac

he
Si

ze
Be

rt
ha

Bi
ll

C
ha

rl
ey

G
us

ta
v

Ik
e

K
at

hr
in

a
N

ev
ad

a
St

or
m

W
ilm

a

1
0.

02
50

0.
02

38
-

0.
03

79
0.

00
63

0.
00

00
-

0.
00

65

2
0.

08
33

0.
34

13
-

0.
14

39
0.

02
82

0.
03

90
-

0.
23

13

5
0.

50
83

0.
43

65
-

0.
49

24
0.

22
26

0.
55

97
-

0.
44

30

10
0.

78
33

0.
69

84
-

0.
64

39
0.

33
54

0.
81

78
-

0.
65

80

20
0.

85
83

0.
80

95
-

0.
78

03
0.

64
26

0.
90

46
-

0.
86

97

30
0.

85
83

0.
82

54
-

0.
79

55
0.

69
28

0.
92

41
-

0.
88

60

40
0.

85
83

0.
82

54
-

0.
79

55
0.

76
49

0.
92

62
-

0.
89

25

60
0.

85
83

0.
82

54
-

0.
79

55
0.

81
50

0.
92

62
-

0.
89

25

80
0.

85
83

0.
82

54
-

0.
79

55
0.

81
50

0.
92

62
-

0.
89

25

10
0

0.
85

83
0.

82
54

-
0.

79
55

0.
81

50
0.

92
62

-
0.

89
25

14
0

0.
85

83
0.

82
54

-
0.

79
55

0.
81

50
0.

92
62

-
0.

89
25

22
0

0.
85

83
0.

82
54

-
0.

79
55

0.
81

50
0.

92
62

-
0.

89
25

38
0

0.
85

83
0.

82
54

-
0.

79
55

0.
81

50
0.

92
62

-
0.

89
25

70
0

0.
85

83
0.

82
54

-
0.

79
55

0.
81

50
0.

92
62

-
0.

89
25

10
00

0.
85

83
0.

82
54

-
0.

79
55

0.
81

50
0.

92
62

-
0.

89
25

15
00

0.
85

83
0.

82
54

-
0.

79
55

0.
93

73
0.

92
62

-
0.

89
25

Ta
bl

e
A

.6
:A

dd
it

io
na

lr
es

ul
ts

fo
r

va
ry

in
g

ca
ch

e
si

ze
s

-d
is

pl
ay

ed
is

th
e

ov
er

al
lr

ec
al

lf
or

qu
er

y
SR

B3

