
Master Thesis
January 28, 2014

MiningHub
A Social Mining and Data Sharing Platform

Silvan Troxler
of Hildisrieden, Switzerland (08-708-646)

supervised by
Prof. Dr. Harald C. Gall

Martin Brandtner

software evolution & architecture lab

Master Thesis

MiningHub
A Social Mining and Data Sharing Platform

Silvan Troxler

software evolution & architecture lab

Master Thesis

Author: Silvan Troxler, silvan.troxler@uzh.ch

Project period: August 15, 2013 - January 30, 2014

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

I would like to thank Prof. Dr. Harald C. Gall for giving me the opportunity to write a thesis in
the software evolution and architecture lab at the University of Zurich and Martin Brandtner for
his valuable feedback.

Abstract

The popularity of social coding websites has led to an increasing number of publicly available
software repositories over the last years. Researchers extract data sets from such repositories to
conduct studies based on them for finding novel insights in the software engineering field. Min-
ing software repositories is often time-consuming and error-prone. In spite of that, published
papers usually do not make the used data sets available, which complicates evaluation and repli-
cation of those studies. We developed MiningHub, a web-based and extensible mining platform
to overcome these limitations. Researchers can add support for arbitrary repositories to Min-
ingHub and use the platform to obtain data from these. In addition, we provided plugins for the
social coding website GitHub, bug tracking system JIRA, and discussion board Stack Overflow.
These plugins and mined data sets can also be shared among others. The results of the conducted
evaluation indicate that by using MiningHub, the time needed to mine software project data from
several types of repositories can be reduced for selected studies.

Zusammenfassung

Die Popularität von sozialen Programmier-Webseiten hat in den letzten Jahren dazu geführt,
dass eine immer grösser werdende Anzahl an Software-Repositories öffentlich zugänglich ist.
Forscher extrahieren Daten aus diesen Repositories und führen damit Studien durch, welche
häufig neue Erkenntnisse im Bereich der Software-Entwicklung liefern. Das Extrahieren von
Daten aus Software-Repositories ist allerdings oft aufwändig und fehleranfällig. Und trotzdem
veröffentlichen publizierte Studien nur selten die verwendeten Daten, was sowohl Evaluation
als auch Replizierung dieser Studien erschwert. Um diese Probleme zu umgehen haben wir die
webbasierte und erweiterbare MiningHub-Plattform entwickelt. Forscher haben die Möglichkeit,
MiningHub um die Unterstützung von beliebigen Repositories zu erweitern und anschliessend
Daten von diesen zu beziehen. Wir haben bereits Plugins für die soziale Programmier-Plattform
GitHub, das Fehlerverwaltungssystem JIRA sowie die Diskussionsforen von Stack Overflow hin-
zugefügt. Diese Plugins und abgeholte Datensätze können jeweils auch mit anderen geteilt wer-
den. Die durchgeführte Evaluation zeigt, dass durch die Verwendung von MiningHub die be-
nötigte Zeit zur Extrahierung von Daten aus Software-Repositories für einige Studien reduziert
werden kann.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goal . 1

2 Related Work 3
2.1 Data Collection . 3
2.2 Repository Mining Recommendations . 5
2.3 Data Exchange . 5

3 Preliminaries 7
3.1 Background . 7
3.2 MSR Paper Review . 8
3.3 Proposed Solution . 10
3.4 Technology Evaluation . 11

4 Implementation 15
4.1 Software Architecture . 15
4.2 Mining Scripts . 16

4.2.1 YAML . 16
4.2.2 GitHub . 17
4.2.3 JIRA . 23
4.2.4 Stack Overflow . 25
4.2.5 Specification and Validation . 28

4.3 Database and Data Structure . 29
4.4 Mining Software Repositories . 30

4.4.1 Error Handling . 30
4.4.2 Handling HTTP Status Codes . 31
4.4.3 Data Retrieval Process . 33

4.5 Searching Retrieved Data . 35
4.6 Exporting Retrieved Data . 35
4.7 User Interface and Social Aspects . 37
4.8 Mobile Support . 43

5 Evaluation 45
5.1 Community Structures . 45

5.1.1 Data Retrieval . 47
5.1.2 Data Preparation . 48

viii Contents

5.1.3 Community Structure per Repository . 51
5.1.4 Matching Users . 54
5.1.5 Overall Community Structure . 58
5.1.6 Discussion . 59

5.2 Repository Mining . 62
5.2.1 GHTorrent . 62
5.2.2 Innovation Diffusion Through Link Sharing 63
5.2.3 Analyzing Questions by Topic, Type, and Code 65
5.2.4 Predicting Defect Numbers . 65

5.3 Roundup . 66

6 Conclusion and Future Work 69

A Mining Scripts 71
A.1 Mining Script Schema . 71
A.2 GitHub . 75
A.3 JIRA . 79
A.4 Stack Overflow . 80

B Evaluation Queries 83

C Contents of the CD 85

Contents ix

List of Figures
4.1 The MiningHub start page. 38
4.2 Creating an import job on MiningHub: Selecting a Mining Script. 39
4.3 Creating an import job on MiningHub: Selecting Parameters. 39
4.4 Import detail view of MiningHub. 40
4.5 The Grails project in the MiningHub software project section. 41
4.6 The MiningHub start page on an Apple iPhone 4. 42
4.7 The MiningHub mining script view on an Apple iPhone 4. 42

List of Tables
3.1 Data sources and the number of MSR 2013 papers that used those in their studies. 9
3.2 Software projects and the number of MSR 2013 papers that used those in their studies. 9
3.3 Comparing Java and three Java-based programming languages. 12

4.1 HTTP status codes as defined in RFC 2616 extended by selected codes. 32

5.1 Statistics about the mining process for each of the three Groovy repositories. 47
5.2 Number of items per component of the Groovy project on GitHub. 50
5.3 Number of items per component of the Groovy project on the JIRA instance. 51
5.4 Number of items per component for questions tagged with Groovy on Stack Overflow. 51
5.5 Top ten committers to the Groovy GitHub repository. 53
5.6 Top ten contributors to the Groovy bug tracking system (JIRA). 54
5.7 Top five questioners of questions tagged with Groovy on Stack Overflow. 54
5.8 Top five answerers of questions tagged with Groovy on Stack Overflow. 54
5.9 Total number of contributions and contributors for each repository. 55
5.10 Top 15 contributors to the Groovy project on GitHub, JIRA, and Stack Overflow. . 60

List of Listings
4.1 Basic YAML example. 17
4.2 Types in YAML. 17
4.3 Outline of the GitHub mining script. 18
4.4 Component for commits of the GitHub mining script. 19
4.5 Minimized JSON response from a GitHub API request. 20
4.6 Minimized HTTP response from a GitHub API request. 21
4.7 Component for commit comments of the GitHub mining script. 22
4.8 Header of the mining script for JIRA. 23
4.9 Component for projects of the mining script for JIRA. 24
4.10 Component for issues of the mining script for JIRA. 25
4.11 Component for questions of the mining script for Stack Overflow. 26
4.12 Component for answers of the mining script for Stack Overflow. 27
4.13 Outline of the mining script schema written in JSON. 28
4.14 File format of data sets downloaded from MiningHub. 36
4.15 Export a JSON file to CSV using MongoDB. 37
5.1 Import JSON files into MongoDB collections. 48
5.2 Change string dates to real date objects. 49

x Contents

5.3 Remove entries from collections that are not in the specified date range. 49
5.4 Count total number of nested issue comments. 50
5.5 Create collection of commit users and aggregate the number of their contributions. 52
5.6 Query to create a new collection of Stack Overflow users. 56
5.7 Create collection of unique JIRA accounts. 57
5.8 Match JIRA accounts to Stack Overflow users. 58
5.9 Insert all JIRA accounts that were not matched into the user collection. 58
5.10 Calculate the overall activity score for each user account. 59
5.11 Component for events of a mining script to retrieve GitHub events. 64
A.1 JSON schema definition of a valid mining script. 71
A.2 Mining script for GitHub. 75
A.3 Mining script for JIRA. 79
A.4 Mining script for Stack Overflow. 80
B.1 Create collection of unique GitHub users and consolidate their email addresses. . . 83
B.2 Match GitHub accounts to all other users by looping through each email address. . 84

Chapter 1

Introduction

1.1 Motivation
The advent of social coding websites like GitHub1 has led to an increasing number of publicly
available software repositories. These constitute large amounts of data in the software engineer-
ing field and are gold mines for researchers. As a result, many recent studies use data from
source code version control, issue trackers, discussion board, or other software project reposito-
ries. These data sets have to be extracted from the corresponding repository prior to any use. The
process of such a data extraction is called software repository mining and there is even a dedicated
conference named Working Conference on Mining Software Repositories (MSR)2. Studies published
in the context of that conference use software repository data for purposes like bug prediction,
analyzing code ownership, or investigating effects of social interactions. Mining software repos-
itories may thus yield novel and useful information about productivity, quality, maintainability,
and other aspects in software development. As such, many researchers in the MSR field mine
software repositories and conduct studies based thereof. The mining step oftentimes takes a large
part of the time used for the whole study, though. This is caused by the non-trivial extraction
process of data from external repositories (e.g. [GS12]). It is tedious and error-prone as there are
many aspects to keep in mind when mining software repositories. Furthermore, when publish-
ing a study paper in the field, the used data sets are usually not made available to the public
(e.g. [Rob10]). The missing data often complicates replication and evaluation of studies although
these are essential properties of empirical research [RGBICH11]. It also causes repetitive work
in the research communities to create mining tools as well as extract the same data many times.
These are often stated problems in the mining software repositories field (e.g. [HNB+13]).

1.2 Goal
In this thesis, we try to solve two limitations in the mining software repositories field. We want
to simplify the mining process as well as make retrieved data sets available for reuse and repli-
cation. Therefore, we present our approach to mining software repositories called MiningHub.
MiningHub is a web-based and extensible platform which provides the basic features that are
necessary to retrieve data from software repositories. By using mining scripts, which are text files
containing information about repositories, researchers can extend the functionality of MiningHub
and add support for further data sources. In addition, all data that is mined by MiningHub can
be shared among other researchers to achieve replication possibilities. Based on the MiningHub

1https://github.com
2http://msrconf.org

https://github.com
http://msrconf.org

2 Chapter 1. Introduction

platform, we try to answer the following research question: How can a social mining platform
be an enabler for data analysis across multiple software repositories? For this, we conduct an
evaluation of our approach by means of a study replication involving three different types of
software repositories.

This thesis is structured as follows. After the introduction, we go through related projects and
studies. Then in Chapter 3, we describe the current situation in the mining software repository
field and present the proposed solution. In Chapter 4 we describe the approach and implementa-
tion we take with MiningHub as well as mining scripts. Chapter 5 evaluates our mining platform
based on a replication study and answers the research question. The conclusion of our approach
and future work can be found in Chapter 6.

Chapter 2

Related Work

In this chapter we present related work to the MiningHub project. The first section shows plat-
forms that have the same or a similar goal as MiningHub. That section also includes some tools
used for mining software repositories. In addition, we present recommendations from researchers
to avoid common pitfalls when mining repositories. The last section explains different solutions
of unified software project data schemas for data exchange and reuse.

2.1 Data Collection
The idea of developing an application that collects software project data from various sources and
then allows to publish it for open use is not new. There are even applications that directly analyze
the data as a service. For example, Boa by Dyer et al. [DNRN13] is a language and infrastruc-
ture for analyzing large-scale software repositories. They developed a domain-specific language
(DSL) that enables researchers to mine and directly analyze software repositories with only some
lines of code. The data sets are automatically retrieved from SourceForge and cached as monthly
snapshots. They also made use of massive parallelism that allows Boa to calculate the churn rates
(i.e. the average number of changed files per revision) of 620,000 projects in only 62 seconds us-
ing six lines of code. A Java program with the same task running serially would take about 174
minutes, which is 168 times slower [DNRN13]. While their approach is very useful for large-scale
analyses, it is not easily extendable by researchers themselves; for example, they cannot just add
a new kind of repository. A similar application to Boa is SOFAS (SOFtware Analysis Services)
as described by Ghezzi and Gall [GG11]. SOFAS provides a web service to create analyses and
retrieve their results. It employs a catalog of software analysis processes (e.g. metrics calcula-
tion or change coupling) of which a researcher can pick from and combine several processes to a
workflow. Using version history services (CVS, SVN, and Git) and issue tracking history services
(Bugzilla, Google Code, Trac, and SourceForge), SOFAS retrieves the needed data and executes
the workflow based on it. As soon as a workflow completes, the results of the analyses are made
available to the researcher. Another similar example is MetricMiner as described by Sokol et
al. [SAG13]. It is a web application which allows researchers to calculate metrics, extract data,
or compute statistical inference. While researchers can write code to calculate their own metrics,
MetricMiner already calculates some metrics on its own as soon as a new project is added. And
so far, all Apache open source projects were added to their index. Based on these metrics, re-
searchers then can formulate SQL queries and download the result directly from the MetricMiner
webpage. While this approach is uncomplicated for gaining metrics or other statistics, it seems
limited in other areas where, for example, more complex calculations have to be done or data
from other sources than the code itself is needed. Also for extracting code metrics in software
projects is Sourcerer as described by Ossher et al. [OBL+09] and Linstead et al. [LBN+08]. After

4 Chapter 2. Related Work

downloading arbitrary repositories, Sourcerer statically analyzes the code and also tries to find
the topics embedded in the code. Another goal is to calculate developer similarity and source file
similarity as well as cross-linking between different repositories. While Sourcerer performs a lot
of different analysis on the code, the same limitations as to MetricMiner apply. Another example
of a software project analysis application is Ohloh1 which aims to be a social network for software
developers and projects while exposing several kinds of statistics about them. The statistics that
Ohloh calculates are not numerous, but they have an extensive catalogue of software projects that
can be requested by using an API.

As a more low-level approach, Gousios and Spinellis [GS12] and Gousios [Gou13] presented
GHTorrent2, a system to obtain and mirror project data from GitHub repositories. They created a
model of entities and belonging attributes used on software projects, such as User, Repository, Com-
mit, and name, url (uniform resource locator), date, to appropriately store this information. Their
approach delivers a distributed data source but currently, they only support data from GitHub.
Similarly, the GitHub Archive3 by Ilya Grigorik aims to act as a mirror for the event data (e.g. Cre-
ateEvent, or ForkEvent) that is created day after day on GitHub. It does so by regularly requesting
the public GitHub event timeline and storing the event data for every single hour. It then allows to
download dumps of the events which were tracked and exposed by GitHub. The limitation of this
approach is that the data is not linked between different data sets, it is merely a list of events. And
the GitHub Archive is—as the name implies—only available for GitHub. A further data platform
was presented by Howison et al. [HCC06] with their FLOSSmole project which is a collaborative
data collection over several different software project services and other data sources. They also
host donated data sets and scripts for data retrieval from further research teams. Their data is
separated over many thousand, mostly unrelated files but not very well structured, though. Mer-
obase by Janjic et al. [JHSA13] is yet another data repository. It crawls SourceForge, JavaForge
as well as the web to index code repositories using CVS or SVN. The indexed code can then be
searched by using their code search engine. Additionally, they offer a heavy download of all the
stored data. Based on this data set, the authors also showed that producing statistics (e.g. find the
largest code file or the types of open source licenses used) on a large amount of projects can be
done relatively easily.

In contrast to the mostly hosted platforms described before, there are other tools that have
to be downloaded by their users and have to be run on their own computers where all data is
stored locally. An example of this is Mozkito4 that consists of a collection of modules to mine
software repositories. These modules include versions, issues, persons, as well as a persistence mod-
ule to store data in a database. Combined they build a framework to retrieve data by using a
command line tool; only some arguments (e.g. the repository URL) and a configuration file are
required. Mozkito supports many different repositories including bug trackers from Bugzilla,
JIRA, Mantis, GoogleCode, and version control from Git, Mercurial, Subversion. Another exam-
ple is MetricsGrimoire5 which consists of several different tools to retrieve data from code version
control systems, issue trackers, or mailing lists. While the manual setup on one’s own computer
might be a hurdle, there is FLOSSMetrics, as described by Herraiz et al. [HICRH+09], that uses
the tools from MetricsGrimoire to get the data of various projects and stores them online for re-
searchers to download. However, it appears that FLOSSMetrics has not been updated anymore
since 2009. Similar to MetricsGrimoire, Alitheia Core by Gousios and Spinellis [GS09] is another
example of a local data collection tool. It has to be downloaded and repository data can be added
so that metrics can be calculated. To extend the already included metrics, the researcher has the

1https://www.ohloh.net
2In [Gou13], Gousious consequently wrote about GHTorent but we believe the official name of that tool is GHTorrent

as [GS12] and the corresponding web address suggest.
3http://www.githubarchive.org
4https://mozkito.org
5http://metricsgrimoire.github.io

https://www.ohloh.net
http://www.githubarchive.org
https://mozkito.org
http://metricsgrimoire.github.io

2.2 Repository Mining Recommendations 5

possibility to add his own metric calculations. In addition to the presented applications, there is a
range of further tools to support mining software repositories. Some of these tools were included
in the comparative analysis by Olatunji et al. [OIAGAG10]. The authors compared six different
applications that enable researchers to simplify the data retrieval step. Thereby, they found that
the tools are mostly focused on one type of repository only. Another limitation of some of those
was that they are language dependent. Bosu [Bos12] presented a research plan to find commu-
nity structures for a certain project. To retrieve data he proposed different tools for different type
of repositories. CVSAnalY to mine version control, Bicho for retrieving issues from bug track-
ers, and Mailing List Stats to obtain discussions from mailing lists. There are also many more
tools available.

2.2 Repository Mining Recommendations
As mining software repositories is a non-trivial task, there are many papers giving recommen-
dations on what to keep in mind to avoid common problems. These often apply regardless of
whether using an existing tool or developing a new one. Bird et al. [BRB+09] conducted a study
on the promises and perils when mining the distributed Git source code management system
(DSCM). They showed that compared to other SCMs, Git has differing semantics of commit and
branch. This is caused by Git being a distributed SCM where a commit not necessarily means that
all developers may directly see the change. Furthermore, commits may be reordered, deleted, or
edited. As a result, mining Git is different from mining other SCMs as concepts differ in some
aspects. Robles et al. in [RGBICH09] and [RGBICH11] also gave advice for potential problems
that can occur when retrieving software repository data. They studied source code management
systems, mailing lists, and bug tracking systems to find pitfalls. For each of these types of repos-
itories, they also presented several tools that are capable of mining these. Furthermore, they
mentioned that in version control systems, it is important to separate the developers of code and
the actual committers. They also described challenges when merging data from different repos-
itories. In [RGBICH11], the authors also emphasized how important it is to reuse data sets to
allow validation and replication of studies as these are essential properties in empirical research.
With their MSR Cookbook, Hemmati et al. [HNB+13] created a survey on all the MSR proceed-
ings between 2004 and 2012 to come up with a list of recommendations. These recommendations
were then clustered in four categories of which Data Acquisition and Preparation and Sharing and
Replication are of our interest in the context of this thesis. For example, the authors found as well
that when mining bug tracking systems it is important to distinguish between committers and
submitters of a patch. Another recommendation was to only consider issues whose resolution is
either fixed or closed to avoid including issues which are work in progress or duplicates. On the
other hand, researchers should explicitly include such issues when they are trying to, for exam-
ple, find duplicate issues. Regarding sharing and replication, the authors noted that most MSR
research consisted of studies applying certain techniques on certain data sets. However, a single
study is not able to provide convincing evidence regarding their findings. As a result, many re-
searchers recommend making replicating studies more common in the MSR field. In their study,
Hemmati et al. even suggested making a website to collect and make available the used data and
tools of each research paper.

2.3 Data Exchange
Making the used data sets available provides a way to replicate studies. Establishing common file
formats to store the different aspects of software development would help even further. Kim et

6 Chapter 2. Related Work

al. [KZK+06] presented TA-RE, their exchange language for mining software repositories. They
defined a folder structure where a transaction (i.e. a commit) is a directory and contains XML files
for information about the transaction, the changed content, and the original file content. To spec-
ify this information, they defined XML schemas for the different file types. A limitation of their
approach is that they only supported file revision control systems and no other types of software
repositories. A more recent paper was presented by Würsch et al. [WGH+12]. Their solution,
called SEON (Software Evolution ONtology), aimed to establish a shared taxonomy of software
evolution. Therefore, they layered different concepts into several levels of abstraction. At the bot-
tom of the so-called SEON pyramid, there are system specific concepts such as Bugzilla, Java, and
Git. On the next higher level, they put domain specific concepts like issue tracking, source code,
and version history. On top of that, they defined domain spanning concepts that specify code
analyzations (e.g. code clones), and general domain-independent concepts of the software project
(e.g. activity, stakeholder, or file). Each of these layers were modeled by OWL classes so that each
item has got a fixed schema. And as ontologies are meant to be linked together, these items also
have properties like dependsOn that can be used for relations. That approach allows to build
domain-independent tools to support many different facets of the software development domain
as explained by the authors. The data sets ideally can be imported in and exported from differ-
ent tools which allows sharing of mined software data. SEON is also used in SOFAS by Ghezzi
and Gall [GG11]. Furthermore, with WEON (SoftWare Ecosystem ONtology) by Gutierrez and
Robbes [GR13], there is also a planned extension of SEON. The authors of WEON described their
roadmap to specify software project ecosystems in addition to just the project itself. That study
also shows that the approach of modeling software development artifacts in semantic web tech-
nologies enables extension of existing taxonomies.

Chapter 3

Preliminaries

This chapter starts with describing the current situation and problems in the mining software
repositories field. After that, we present a review of the papers published in MSR 2013 and the
respective data sources. Then we describe the proposed solution with which we aim to overcome
the limitations of repository mining and also conduct a technology evaluation.

3.1 Background
Due to the advent of open source development on social coding platforms (e.g. GitHub), the num-
ber of publicly available software repositories is steadily increasing. These repositories include
source code version control, issue tracking systems, and other platforms that are often used in
software development. All of these constitute large amounts of data in the software engineering
domain, and the project repositories are growing every day. Those data sets are gold mines for
research. As a result, many recent studies are based on data obtained from software reposito-
ries. Before researchers can work on data they want to analyze, they usually have to retrieve it
from a corresponding platform. The process of such a data retrieval is called software repository
mining. And the interest in that domain has even led to a dedicated conference called Working
Conference on Mining Software Repositories (MSR). In that field, there are many interesting studies
that use mined software data. For example, Naguib et al. [NNBH13] proposed an approach to au-
tomatically recommend an assignee to a new bug report. They based their studies on bug report
data as well as changes thereof (e.g. when was the resolution of an issue changed to fixed) from
three different software projects. Another example is finding difficult aspects of programming as
presented by Allamanis and Sutton [AS13b]. They analyzed questions and answers on the help
forum Stack Overflow1. Based on these data sets, they then extracted insights about what as-
pects of programming languages are most difficult to understand for its users. Such studies may
uncover findings in the field and might eventually bring their results into the industry. There,
research findings can help save time and money, and make software better.

Mining software repositories is the first step of many studies that rely on data in software
engineering research. Obtaining data from external repositories is a non-trivial task, though
(e.g. [GS12, RGBICH11, KZK+06]). Interfaces from different platforms have to be requested and
the data then needs to be extracted from the response, it also has to be properly stored. The whole
process also requires error handling to avoid lost data or other problems. As a result, mining soft-
ware repositories is an error-prone and time-consuming step of many research studies. To avoid
common problems and pitfalls, there are studies that give recommendations on how to properly
mine software repositories (e.g. [HNB+13, RGBICH11, RGBICH09, BRB+09]). Despite this less

1http://stackoverflow.com

http://stackoverflow.com

8 Chapter 3. Preliminaries

than ideal situation, there are many research groups that use their own tools to retrieve data. This
leads to repetitive work as other teams might already have created a similar tool or retrieved the
same data. To overcome these limitations, there is a broad variety of tool sets available that can
be used to obtain software data. As an example, Olatunji et al. [OIAGAG10] conducted a com-
parative analysis of various tools used to mine software repositories. Most of these tools can only
be used for a single type of repository or are even programming language dependent, though.
Using different applications also requires to get used to all of them and handle different data for-
mats for the integration. Another problem in the MSR field is that the replication of studies is
only rarely directly possible as the used data sets are usually not published [Rob10]. However, a
single study is not able to provide convincing evidence regarding their findings, and verification
by replicating the studies is required as stated by Hemmati et al. [HNB+13]. As a result, Hemmati
et al. suggested to create a website to collect and make available the data sets used in the papers.
Conclusively, it can be said that mining software repositories often is a time-consuming task and
publishing the retrieved data for studies has not yet been established in the field.

3.2 MSR Paper Review
Mining Software Repositories (MSR) Conferences are being organized since 2004 and in 2013 the
tenth edition was held2. In these years, the researchers in this field conducted many studies that
were based on software repository data. In order to better understand which data sources were
often used by researchers in the recent years, we reviewed all papers published in the context
of the Mining Software Repositories Conference 2013. During that systematic review, we looked
through a total of 63 papers (not including the front matter and keynote). This review also in-
cludes a total of twelve papers of the yearly category Mining Challenge which conducted studies
on a predefined data set. In MSR 2013, the Mining Challenge data set was a simplified version of
the official Stack Overflow dump from August 2012 [Bac13].

Of all the 63 papers from MSR 2013, we extracted the data sources that were used by the re-
spective authors of these papers. A grouped list of the results can be found in Table 3.1 that shows
the number of papers that used these data sources. There are several papers that not only used
one data source, but took data sets from two or more repositories or other origins. That caused
the total number of used data sources reflected in Table 3.1 to be higher than 63. When looking
at the table, it is striking that version history and source code, discussion boards, and issue trackers are
used the most often. The number of data of discussion boards might be high because of the Min-
ing Challenge 2013 which included data sets of Stack Overflow. However, we assume that this
number also would have been high without the Mining Challenge as Stack Overflow is a highly
successful question and answer platform as for example stated by Mamykina et al. [MMM+11].
As such, it is an interesting data repository anyway. That the top three repositories in the table are
the most used in the reviewed papers is probably no coincidence. Version history and issue track-
ers are used by (almost) all larger software projects and constitute a large number of data to study.
Furthermore, the data from these platforms is often accessible using an application programming
interface (API) or similar mechanisms. As such, data sets can be extracted from the platform itself
and downloaded by the researcher in an accessible file format. In addition, it is also interesting to
see what other data sources are used by researchers for their studies. For example, notifications
and Twitter might not be obvious sources for research in the software engineering field.

An overview of software projects whose data was used in the MSR 2013 papers can be found
in Table 3.2. There are several paper authors that conducted studies on diverse projects without
mentioning all of them. Such papers are not included in that table. Overall, it is striking that many
studies were conducted on the same or similar software projects. For example, there are nine

2http://2014.msrconf.org/history.php

http://2014.msrconf.org/history.php

3.2 MSR Paper Review 9

Data sources #Papers

Version history and source code 23

Discussion boards 13

Issue trackers 13

MSR papers 4

Mailing lists 3

Maven repositories 2

Mobile app stores 2

Code documentations 1

Code reviews 1

Notifications 1

Stacktraces 1

System logs 1

Twitter 1

Others 6

Table 3.1: Data sources and the number of MSR
2013 papers that used those in their studies.

Software projects #Papers

Eclipse and Eclipse projects 9

Apache projects 7

Android 5

ArgoUML 5

Mozilla and Mozilla projects 5

Google Chrome 3

Gnu projects 2

Hadoop 2

IBM projects 2

JabRef 2

Linux 2

Maven 2

Others 20

No specific project 24

Table 3.2: Software projects and the number of
MSR 2013 papers that used those in their studies.

paper authors that used data from Eclipse or other projects from the Eclipse Foundation. Seven
studies relied on projects of the Apache Software Foundation. And five papers were written based
on Android, ArgoUML, and the Mozilla Foundation projects each. We can only speculate about
the reasons for that distribution. In any case, all of these projects have a long development history
and many thousand lines of code what makes them good resources for research. There may also
be existing data dumps available or tools that explicitly mine these software repositories. Maybe
the data of other projects is less accessible than, for example, the top five from the table. Either
way, the choice of a software project for a study seems to be biased according to the MSR 2013
papers. Table 3.2 also shows that there were studies that did not use a specific software project
as can be seen in the last row. The high number of papers is, in this case, influenced by the MSR
Mining Challenge where most study authors did not focus on a certain software project.

In addition to our review of the MSR 2013 papers in this section, Demeyer et al. [DMWL13]
conducted a text mining study on the MSR papers published from 2004 to 2012 in order to find
trends in this research area. One of their findings was targeted to popular and emerging min-
ing infrastructures. They uncovered that CVS and Bugzilla are the most frequently cited version
control system and bug tracking system. However, they also found that recently SVN, GIT, and
JIRA3 have steadily gained more interest in the field. Demeyer et al. also noted that researchers
should pay close attention to the more recent platforms and repositories which may provide fea-
tures helping to answer questions that could not be answered back in 2004. Although they did
not explicitly mention it, we think that GitHub is an example of such a more recent platform.
GitHub was just founded in 20084 and after rapid growth they have millions of people collaborat-

3https://www.atlassian.com/software/jira/
4https://github.com/about

https://www.atlassian.com/software/jira/
https://github.com/about

10 Chapter 3. Preliminaries

ing on over ten million repositories (see Section 4.2.2). Another recent platform is Stack Overflow
which was also founded in 20085 and today is part of the Stack Exchange question and answer
site network. The large user base of Stack Exchange has asked several million questions over
the last years (see Section 4.2.4). Both, GitHub and Stack Exchange, constitute huge data sets for
researchers in the mining software repositories field to work with.

3.3 Proposed Solution
The MSR paper review in Section 3.2 shows that the tools and repository platforms that re-
searchers use for their studies change over time and are also generally diverse. Furthermore,
the used software projects are numerous while there are some projects or software foundations
whose software is used more often than others. As a result, a mining and data sharing platform
must be flexible enough to easily extend its functionality to further types of repositories and must
not be focused on certain projects only. Instead, it should be a flexible, general-purpose mining
solution that can be upgraded without much effort. Based on these requirements, we present our
approach to mining software repositories.

In order to help researchers in retrieving data from different software repository types as sim-
ply as possible, we create a web-based repository miner application called MiningHub. The main
focus of MiningHub is simplicity; researchers should be able to obtain data for their studies with
as little effort as possible. To achieve this, we need to hide the API requests and the quirks that
come with them from the user. At the same time, MiningHub needs to be extensible to add
support for further repositories and also to be able to mine diverse projects without any modifi-
cations. We ourselves cannot add support for each and every API or repository, so we have to give
the users the possibility to add new services on their own. We do so by means of a novel mining
description format that we call mining script. Such scripts contain simple instructions on what
parameters the user has to provide, how to call a specific API, and how to store the retrieved data.
These commands can be added for each service that answers queries to its data by means of an
API. Researchers should therewith be able to write their own mining scripts and upload them to
the MiningHub script catalog. We also define a specification that mining scripts have to comply
with before they can be executed on MiningHub. This ensures that MiningHub can accurately
parse them into a a valid set of instructions and use them to mine software repositories. When
researchers would like to retrieve data from a repository, they just fill in the corresponding URL
(e.g. https://github.com/groovy/gmaven/) to a MiningHub import dialog. Based on URL
patterns, appropriate mining scripts are selected from the script catalog employed by MiningHub
and the researchers can choose a suitable one for their studies. Then the required parameters (e.g.
an API key, or a time frame) as defined in the chosen mining script have to be entered. After that,
the data import can be started and runs completely autonomously as long as it needs to retrieve
all requested data. As soon as the mining process has successfully completed, the researchers
can download the imported data sets to work on them. Furthermore, MiningHub also allows to
search the data that was already mined using the platform.

With that approach, some limitations in the mining software repositories field can be over-
come. For a start, we write several mining scripts for important software repositories as a proof-
of-concept. However, the MiningHub platform is extensible so that researchers can write and
execute their own mining scripts as well. Furthermore, they can share their scripts with other
researchers for reuse. And also the mined software repository data sets can be made publicly
available so that others can work on exactly the same data. This enables a way to replicate studies
and compare them to similar approaches by other authors. MiningHub aims to simplify the min-
ing software repositories step of many studies as well as make it possible for other researchers to

5http://stackexchange.com/about

https://github.com/groovy/gmaven/
http://stackexchange.com/about

3.4 Technology Evaluation 11

work on exactly the same data sets as were used in former experiments. We believe that by using
the described approach, MiningHub is able to attain both of these goals.

3.4 Technology Evaluation
MiningHub is a web-based platform to retrieve data sets from software repositories. Before start-
ing with the implementation phase, we conducted an evaluation of different technologies and
programming languages that we could use. In conclusion, we use Groovy6 with Grails7, Mon-
goDB8, Bootstrap9, and jQuery10. For the specification of mining scripts, we use YAML11. The
rationals behind these decisions can be found in the following paragraphs.

The client-side, which represents the user interface (HTML, CSS) and JavaScript, must ensure
compatibility for mobile and desktop browsers. It also must enable effortless use of asynchronous
requests, for example to load new content or store changed data. To fulfill these requirements,
we decided on using Bootstrap and jQuery. Bootstrap is a popular front-end framework which
simplifies creating appealing interfaces and is also well-suited for mobile websites. jQuery is
one of the most used JavaScript frameworks available. It makes adding new functionality and
handling asynchronous (AJAX) requests comfortable. Also, due to its popularity, there is a broad
range of resources and example code available.

Regarding databases, there are numerous products to choose from. To narrow down the
number of solutions to look at, we preselected the following popular systems: MySQL, Ora-
cle Database, Microsoft SQL Server, MongoDB, and CouchDB. To decide for one of them, we
first separated these database platforms into the two main categories NoSQL databases (Mon-
goDB, CouchDB) and (mainly) relational databases (all others). While NoSQL is a very broad term
lacking an agreed-on definition (for example [Tiw11]), both MongoDB and CouchDB are similar
document-based databases without the need of a fixed schema. In our project, we use mining
scripts created by users to retrieve and accurately store data mined from diverse APIs. Therefore,
we have absolutely no chance to create one single database schema beforehand that will fit all
kinds of data sources. We would have to dynamically change it based on different mining scripts
which would be cumbersome and error-prone. So the not required schema alone was already
enough for us to prefer a NoSQL database (DB) for this project. However, there is also another
advantage in using such a document-oriented DB instead of a purely relational one. MongoDB
and CouchDB both support nesting of data sets similar to the nesting that is used in the Exten-
sible Markup Language (XML) or JavaScript Object Notation (JSON). As APIs mostly use one of
these formats, the exposed data is often nested. As a result, using a document-oriented DB sim-
plifies storing the retrieved data as it does not have to be transformed or separated into several
relations. Also, exporting the data is simpler as it does not have to be assembled and nested again
but instead can be exported directly, maybe even without any modification at all. So we preferred
either MongoDB or CouchDB over a relational database for MiningHub. Choosing between the
two is not straightforward, though. They are similar, and both have their individual advantages
and drawbacks which makes deciding for one of them based on technical arguments a difficult
task. Looking at the non-technical differences, we decided in favor of MongoDB as its community
appears to be larger than the one of CouchDB. A larger community often means it has more help
resources as well as more up-to-date plugins and drivers for programming languages or frame-
works. It is furthermore important to point out that MongoDB uses a special terminology. Tables

6http://groovy.codehaus.org
7http://grails.org
8http://www.mongodb.org
9http://getbootstrap.com

10http://jquery.com
11http://www.yaml.org

http://groovy.codehaus.org
http://grails.org
http://www.mongodb.org
http://getbootstrap.com
http://jquery.com
http://www.yaml.org

12 Chapter 3. Preliminaries

are called collections and documents are the content of these collections. In relational databases,
documents would be rows in a table.

Java Scala Groovy JRuby

Paradigm or
specialty

plain, old Java;
object oriented
programming

functional pro-
gramming

“shorthand
Java”, compact
code

similarities to
Java and other
languages, ob-
ject oriented,
procedural

Type system static static static & dynamic dynamic

Size of the
community

huge community large community large community rather small com-
munity

IDE support great IDE sup-
port

good IDE sup-
port

good IDE sup-
port

IDE support
needs external
plugins

Build tool &
dependency
manager

Maven, Ant sbt Gmaven, Gradle,
Gant

RubyGems

Web frame-
works

Spring, Play 2 Lift, Play 2 Grails Ruby on Rails

Support for
JSON

possible to create
& read JSON but
laborious

possible to create
& read JSON but
laborious

very easy syntax
to create & read
JSON

very easy plu-
gin(s) to create &
read JSON

Table 3.3: Comparing Java and three Java-based programming languages. A green background shows a
good property in the corresponding language whereas a red background represents a bad property with

respect to our project. All other cells represent a neutral rating or are not very decisive for our goal.

We narrowed down the choice of a programming language to the ones that are Java-based, the
reason being that there are many third-party libraries available for these languages. In order to
confine that preselection even more, we selected Java, Scala12, Groovy, and JRuby13 as candidates
as they appear to be among the most used Java-based languages available. In order to evaluate
them, we compared several features and characteristics as can be seen in Table 3.3. One of the
most important requirement is good support for JSON as we have to handle different types of
APIs which often expose data in the JSON format. As MongoDB also answers queries in the
same data format, we have to deal with it a lot and the programming language should make it
as effortlessly as possible. An aspect which might also directly influence the JSON support is the
type system of the programming language. While dynamic typing makes parsing and creating
JSON data easier, static typing can help speeding up the development, debugging as well as
refactoring. As can be seen in Table 3.3, Groovy supports both static and dynamic types, and offers
good support for JSON which gives it an advantage. Regarding community size and IDE support,

12http://scala-lang.org
13http://jruby.org

http://scala-lang.org
http://jruby.org

3.4 Technology Evaluation 13

Java is the clear winner as it has a very large community, a lot of help resources, and also the most
mature IDE support. On the contrary, JRuby has got a rather small community (while Ruby itself
does have a large community, JRuby does not). As a broad adoption of a programming language
most often means it has got a lot of plugins (e.g. database drivers or API wrappers), popularity
is an advantage here. As for tool support and web frameworks, all of the four languages have
widely-used build tools as well as full-featured and well-known frameworks. So after evaluating
each language, we decided on using Groovy and Grails. Especially the simple JSON handling
as well as the broad adoption of Groovy brought about this decision. And as Grails is the main
framework of Groovy, it is obvious to embrace it.

Regarding mining scripts, we first planned to use a domain specific language to implement
these. However, we found that mining scripts do not need to contain functionality but only
information. A text-based file format is therefore easier to use for the user and also uncomplicated
to parse by an application. Obvious candidates would be JSON and also the lesser-known YAML
format (the markup language, not the CSS framework with the same name). Compared to JSON,
YAML has the advantages of no required braces, commas, or quotes, and support for comments.
These differences make YAML much easier to read and write by hand. As a result, we chose
YAML as format for our mining scripts.

Chapter 4

Implementation

This chapter explains the exact implementation approach we took with MiningHub. First, we
describe its software architecture. Then we show what mining scripts are and how they can be
written. The third section is about the database as well as the general data structure of stored
content. Then we go through the MiningHub software repository mining approach including its
error handling. We also show how MiningHub provides search and download capabilities. The
last section depicts the user interface as well as social features and mobile support of our platform.

4.1 Software Architecture
MiningHub is a platform for mining software repositories. As described in the solution proposal
(Section 3.3), it should allow the creation of import jobs that retrieve software repository data in
the background. We enable that functionality with a software architecture based on three com-
ponents as follows. MiningHub consists of the website where researchers can create import jobs,
the importer that retrieves data from repositories, and a component containing all shared func-
tionality. The reason for this setting is that the importer might be ran from several autonomous
instances (i.e. import workers) at the same time. This allows MiningHub to scale with the amount
of work it has to do and helps to overcome API limitations, for example when a repository limits
the amount of requests from a certain IP address. The MiningHub workers are scheduled to reg-
ularly check for new import jobs. If there is any work to do, they handle the specified imports as
described in Section 4.4.3. As there may be only one or instead many different workers retrieving
data at the same, they use the database for synchronization. That database runs on a server and
can be remotely accessed by the workers. This architecture of workers and the database also al-
lows to use MongoDB sharding to increase the DB scaling in the future. The MiningHub website
is implemented using the model-view-controller (MVC) pattern with Grails. The model defines
the data structure using an object-relational mapping between object-oriented domain models
and the database. It also provides functions to read and update data from the DB. The views
specify how the MiningHub webpages look like and what content they contain. Functionality
is provided by controllers, these handle requests, user sessions, and send content to the views.
The functionality of controllers are encapsulated in service classes that are called from controllers
based on the requests. This simplifies reusability and testing capabilities of the code. The website
and worker components also share some domain classes and utility functions. To avoid code du-
plication, shared functionality is implemented by means of a Grails plugin that is inserted in both
other components. By using the Grails dependency resolution, the shared code then can be used
as if it was implemented within the website or worker component themselves.

16 Chapter 4. Implementation

4.2 Mining Scripts
MiningHub is an extensible platform for retrieving data from different types of repositories. It
allows to be controlled by mining scripts, these are sets of commands written in YAML that spec-
ify how MiningHub can query data from repositories. MiningHub employs a catalog of different
mining scripts, each with a title and a description so that researchers can look through them.
All mining scripts are meant to extract information from one (or even several) software reposi-
tories. For example, they define the URLs of the API endpoints and parameters that are needed
from the user. They also define which components from a repository are retrieved and stored by
MiningHub. Mining scripts also specify whether a component has to be retrieved from an API
using a paging mechanism or whether it depends on another component. MiningHub then uses
these scripts to request the repositories and retrieve data accordingly. Overall, the MiningHub
approach aims to encourage researchers to write their own mining scripts so that they can upload
and use them to mine software repositories using MiningHub. Mining scripts can also be shared
and reused by other researchers. For that purpose, the script catalog also shows the complete
specification of the mining scripts and researchers can either reuse them directly or modify them
according to their needs. For example, an existing mining script to mine an issue tracker can
be configured to only retrieve issues of type defect in the date period from 2010 to 2013. Mining
scripts allow to change or add completely new functionality to MiningHub and are thus an es-
sential part of its overall approach. This section explains the essentials of the YAML format and
describes the mining script approach on three examples of popular repositories. After that, we
describe the mining script validation mechanism.

4.2.1 YAML
Mining scripts are written in the human-friendly text serialization format YAML (a recursive
acronym for YAML Ain’t Markup Language). Its feature set is similar to the one of JSON. How-
ever, as YAML is lesser-known than JSON, we think it is important to go through the essentials of
its syntax. YAML is a simple, nested file format that was created with the aim to be friendly for
both humans and computers. A basic example can be seen in Listing 4.1, which shows the nota-
tion of key/value, maps, comments, and lists. For humans, YAML looks very clean and intuitive.
Its structure and nesting is similar to JSON. But in contrast to that, YAML does not require curly
braces, square brackets, or commas to format the content. Nesting is simply done by indenting.
Listing 4.1 also shows that values do not need to be enclosed by quotation marks, and they are
still recognized as strings. For computers, a YAML document can be read and, thanks to the fixed
semantic and the nesting, parsed into either a list of values or a list of key/value pairs. After
parsing the YAML example, the values can be accessed by using for example key, map.key2,
list[0], or listOfMaps[1].key1. These data structures can then be iterated through and
used in the program logic to influence the behavior of the software as we do for mining software
repositories. So the main reason why we chose YAML for defining mining scripts in the first place
was that it makes creating them very straightforward. The users do not have to think about (or
close) braces or commas. In addition, most quotation marks can be omitted and there is support
for comments. But YAML still has the same expressiveness as JSON and is easily parsable. YAML
even supports implicit and explicit value types as can be seen in Listing 4.2. Some identifiers like
true (boolean), n (boolean), and 1 (integer) imply a type and are handled as such. However,
when these values should be interpreted as string types, they have to be enclosed by quotes. In
general, quotes for strings are only needed when a YAML parser infers a value to be of another
type than a string or when the parsed content could be ambiguous. So they can be omitted most
of the time.

4.2 Mining Scripts 17

1 key: value

2 map:

3 key1: value1

4 key2: value2

5 list:

6 - element1

7 - element2

8 # This is a comment

9 listOfMaps:

10 - key1: value1a

11 key2: value1b

12 - key1: value2a

13 key2: value2b

Listing 4.1: Basic YAML example.

1 boolean:

2 - false

3 - y

4 integer:

5 - 0

6 string:

7 - text

8 - "false"

9 - "y"

10 - "0"

11 - " "

12 null:

13 -

Listing 4.2: Types in YAML.

4.2.2 GitHub
GitHub is a popular social coding website that offers public and private project repositories with
code version control and issue tracking systems. As of January 7, 2014, their 4.9 million users
have created more than 10.2 million repositories. This constitutes a very large source of data for
software engineering research. And GitHub is indeed sometimes used or at least mentioned in
studies of the MSR and others, for example to calculate code complexity metrics [AS13a]. A study
by Demeyer et al. [DMWL13] in 2013 created a trend analysis of past MSR papers. They found
that while newer platforms like GitHub were referenced but only slowly picked up in studies,
researchers should pay close attention to them. These platforms might provide new features that
others do not and thus allow to answer questions that kept being unanswered so far. As a result of
emerging platforms, the MSR 2014 Mining Challenge uses data from GitHub [Gou13]. So GitHub
appears to be an important repository for research and is getting more and more attention in
the field. Therefore, we created a mining script that allows to retrieve data from this repository
using MiningHub. In this section, we go through that script and explain the essentials of the
mining script syntax. As a result, this section contains an extensive description of the mining
script concept and structure on the example of GitHub. In contrast to that, the scripts for JIRA
(Section 4.2.3) and Stack Overflow (Section 4.2.4) are less broadly explained as most things apply
to all three of them. We also indicate that all the keys that are printed in bold in mining script
listings are part of the schema definition (Section 4.2.5) and have a special meaning. Keys that are
not in bold are defined by the writer of the mining script and name components, parameters or
arguments.

The YAML code in Listing 4.3 shows the outline of a mining script for GitHub. Lines marked
with ... mean that we left out some content of the full script for brevity. The complete mining
script for GitHub can be found in Listing A.2 in the appendix. The first two lines of Listing 4.3
define the name and description of a mining script, this information is used in the MiningHub
script catalog. On line 3, the format of the API that GitHub provides is defined; in this case it is
json. JSON is the default value and is used if the apiFormat definition is missing from a mining
script. Currently, JSON is also the only supported format. We plan to include more formats, like
XML, in the future, though. Lines 4 to 8 show the urls list that contains one or several URL
patterns that this mining script supports. The pattern/parameters block defines a pattern for
a given URL, for example https://github.com/troxler/test-repository/, and causes
MiningHub to extract some contents of the URL into the parameters. In this case, troxler and test-

https://github.com/troxler/test-repository/

18 Chapter 4. Implementation

1 name: GitHub.com

2 description: Powerful collaboration, code review, and code management for open

source and private projects.

3 apiFormat: json

4 urls:

5 - pattern: "^http[s]?://github.com/([^/]+)/([^/]+)[/]?"

6 parameters:

7 - user

8 - repo

9 ...

10 parameters:

11 branch:

12 type: string

13 description: The name of the branch to mine (often master or trunk).

14 default: master

15 accessToken:

16 type: password

17 description: The Personal Access Token obtained from GitHub.

18 globalArguments:

19 user:

20 repo:

21 accessToken:

22 components:

23 ...

Listing 4.3: Outline of the GitHub mining script.

repository would be stored in user and repo, respectively. These variables can then be used to
request data from an API URL. Some more URL patterns of GitHub repositories were left away
in the listing. It should be noted that the parameters list is optional and has not to be defined
if the URL does not contain any identifiers that need to be used when requesting the API. So a
valid mining script url pattern could also just look like "ˆhttp[s]?://github.com", which
matches all GitHub URLs. Such a mining script might, for example, extract data from the GitHub
event timeline and thus does neither need a user nor repository name to request the API. Line
10 to 17 define parameters that the user has to fill in prior to the start of the import process. If
defined, each sub-map of parameters causes the import creation dialog to show a parameter
input. Each parameter has a name that is defined by the key (e.g. branch on line 11), a type, and
a description. The type is optional or one of string (default type), password, date, datetime, or int.
For API keys and other private parameters, the type must be defined as password (line 16) because
only parameters of that type are completely hidden in the MiningHub user interface. Values of all
other parameter types are visible instead. The description of a parameter must be clear enough
so that a user knows what he has to fill in to retrieve the desired data sets. In addition, it is also
possible to set a default value for a parameter. This value is then pre-filled in the correspond-
ing input field in the import creation dialog but might still be changed if needed. In the case of
GitHub, a default value for the branch name is defined as this is most often, but not always, mas-
ter. Furthermore, this parameter also allows to mine another branch (e.g. a feature branch) in a
repository. On line 18 to 21 of Listing 4.3, global arguments are listed. These arguments are meant
to replace the corresponding placeholders in API URLs (see line 5 of Listing 4.4 for an example).

4.2 Mining Scripts 19

They are called global because they are part of every single URL that is requested from the API.
In addition, it also possible to declare arguments on a component-based approach instead as can
be seen in the description of Listing 4.4. The global arguments are just a shortcut for that to avoid
repetitive argument lists. In the case of GitHub, on every API address that is called, MiningHub
first has to insert the arguments user, repo, and accessToken. These arguments can either be
extracted from the URL given to the import dialog or filled in from the user. So it is important
to ensure that these two types of arguments do not include any duplicate identifiers. That means
that urls[*].parameters and parameters must not contain the same names. Line 22 of List-
ing 4.3 shows the components map. This is a container for all the components that this mining
script retrieves from an API. Each component has to be specified with a key and a declaration of
various settings as can be seen in Listing 4.4. Currently, the mining script for GitHub retrieves the
following components: commits, commitComments, issues, milestones, issueComments,
branches, tags, releases, and forks.

1 commits:

2 description: Code commits

3 primaryKey: sha

4 call:

5 - url: "https://api.github.com/repos/{{user}}/{{repo}}/commits?sha={{

branch}}&last_sha={{lastSha}}&access_token={{accessToken}}"

6 arguments:

7 lastSha:

8 branch:

9 store: .

10 index:

11 - commit.message

12 - commit.author

13 argumentRotation:

14 name: lastSha

15 start: ""

16 type: text

17 stop:

18 source: http

19 key: Link

20 isset: false

21 continue:

22 valueFromRegex: ’last_sha=([^&]+)[^>]+>; rel=\"next\"’

Listing 4.4: Component for commits of the GitHub mining script.

Listing 4.4 shows how a component in a mining script is defined. It specifies the complete
definition of the commits component that is a sub-map of the components container. Each
component must have at least a description and the definition of a primary key. The description
defines what exactly the corresponding component retrieves from the API and is an important
information that can be viewed in the MiningHub script catalog. The primaryKey specifies the
key name of a unique value returned in the retrieved component. Most APIs return their data in
a representation similar to Listing 4.5, which contains a list of commits. MiningHub has to store
this result in a database. And to avoid any duplicate entries, the value of the key name defined in

20 Chapter 4. Implementation

primaryKey is copied to a MongoDB _id key that always has a unique constraint. Furthermore,
MiningHub has to be able to reference certain items in each components. To ensure this reference,
MiningHub uses the unique identifier in _id for each of them. In the case of GitHub commits, the
primary key is the sha value that uniquely identifies each commit. So it could be used to retrieve
more information about a certain item of a component from the API (e.g. the commit with the
sha value of 91064d282b...b).

1 [

2 {

3 "sha": "91064d282b1ddd4b7f1620b0ba4211e3c1d33c3b",

4 "commit": {

5 "author": { "name": "troxler" },

6 "message": "Create README.md"

7 },

8 ...

9 },

10 {

11 "sha": "5e9bd60dfdf1b2778381aaf056526ea3f93b324a",

12 "commit": {

13 "author": { "name": "..." },

14 "message": "..."

15 },

16 ...

17 }

18]

Listing 4.5: Minimized JSON response from a GitHub API request.

Line 4 of Listing 4.4 starts the most important part of a component. It defines how and where
data has to be retrieved from an API. There are actually two different types of specifications,
namely call and each. The fundamental difference between the two is that call is used to re-
trieve lists of items whereas each is used for requesting more information about a specific item.
The latter is explained in Section 4.2.4 on the example of Stack Overflow and we focus on the call
requests in this section for GitHub. Line 5 defines the API URL to request commits with some
placeholders that are denoted by {{placeholderName}}. The static arguments user, repo,
and accessToken where already listed in the globalArguments section of Listing 4.3. On the
contrary, arguments that are only used in the commits component are lastSha and branch as
can be seen on line 6 to 8 of Listing 4.4. branch has to be defined by the user in the import dialog
and lastSha is assumed to be empty for the moment. With all these arguments listed in the
mining script, MiningHub knows that it has to replace the placeholders in the url key with the
actual values. After that has been done, MiningHub issues a hypertext transfer protocol (HTTP)
request to the complete URL and handles the response. The most important step in doing so is
storing the returned data. For this, mining scripts have to define what exactly needs to be stored
from the response using the store key. Line 9 of Listing 4.4 states store:., which is also the
default when nothing was defined. A dot (.) value indicates that a list of items is expected and
MiningHub has to store each element of that list in a MongoDB document. On other APIs, the
result of requests might look differently. An example response could be {"results":[...],
"otherKey":"otherValue"}, which encapsulates the results in a sub-list. To store each el-

4.2 Mining Scripts 21

ement in the results list, store:results has to be used. When the nesting is deeper, the
definition could also look like store:results.commits.items for example. It is important
to point out that the primaryKey definition is relative to the value in store. Line 10 to 12 define
which values of the response have to be indexed. This is specified so that MiningHub can search
the retrieved items as is described in Section 4.5. When a mining script does not define any values
to index, retrieved items cannot be found by the search engine. However, the indexing or search
capabilities have no effect on the data import or the download thereof. As a result, indexing is
optional.

1 HTTP/1.1 200 OK

2 Server: GitHub.com

3 Status: 200 OK

4 Content-Type: application/json; charset=utf-8

5 Link: <https://api.github.com/repositories/927442/commits?sha=master&last_sha=2

f0f7b4bce...6>; rel="next", <https://api.github.com/repositories/927442/

commits?sha=c979a1fefa...d>; rel="first"

Listing 4.6: Minimized HTTP response from a GitHub API request.

Most call requests are either only called once in an import process and then never again, or
they use a paging mechanism to retrieve more data. Paging in APIs is very similar to paging in,
for example, a discussion board. For a certain question, there might be ten answers on the first
page. To read the next ten answers, the next page has to be requested. It is exactly the same for
API requests. Usually, the URLs are thus just extended by a page=2 argument to retrieve the
second page. For GitHub commits, this is slightly different. The page number is not an increasing
integer starting from one, but instead it uses the sha values that are returned in the API responses.
The paging mechanism in mining scripts is achieved with the argumentRotation block starting
on line 13 of Listing 4.4. It defines the name of the argument that changes between consecutive
requests and also its start value. That start value can be either a string (in this case it is an
empty string) or an integer, the default value is 1. Similarly, the type defines the value type of
the changing argument. It is either text or int, whereas the latter is the default. As for GitHub
commits a string identifier is needed for the paging, MiningHub cannot just increase it by 1. So
for the first request, it just uses the start value which is an empty string in this case. After each
response of the API, MiningHub then analyzes the result and also the stop condition on line
17. This condition defines whether all the items for a component were retrieved and no more
requests are needed. So when MiningHub examines the condition and it resolves to true, the
corresponding component request is marked as completely retrieved and no further requests are
made on it. Such a condition always involves a value out of the response. Currently, there are
two possible sources for that value, it is either result (default) or http. The former selects a value
of the response content, which is mostly JSON. The latter reads the HTTP headers of the response
instead. For both of them, a key is necessary to be defined so that MiningHub knows which
value it has to extract from the response or the HTTP header. Then either isset or value have
to be defined to compare the extracted value. isset is either true or false and checks whether the
specified key is existing or not. value specifies a value of an arbitrary type (e.g. null, boolean,
string, integer) and causes MiningHub to compare the defined and the extracted values. For the
GitHub commits, the source of the comparison value is http. So MiningHub examines the HTTP
response of the request and tries to find the key name defined in key. If the key is not found,
the stop condition resolves to true and no more requests are done on the call block of this

22 Chapter 4. Implementation

component. But if the condition does not resolve to true, the continue block is examined. Line
22 defines a valueFromRegex that is currently only available on HTTP responses and extracts—
as the name implies—a value using a regular expression. GitHub uses such HTTP responses for
many different aspects, for example to return the URL of the next page. A minimized example
of such a response can be found in Listing 4.6. As the mining script defines the comparing key
to be Link, the important part of that listing is line 5, which defines full URLs to the next and the
first page of commits. The regular expression that is specified in valueFromRegex then extracts
the last_sha value of the next commit page from the HTTP header. After that extraction, all
required arguments are given and the placeholders in the url can be replaced by their proper
values. For the paging mechanism, the last_sha={{lastSha}} is then replaced with a proper
sha value and the second page of commits can be requested. These steps can be repeated until the
stop condition eventually evaluates to true. The continue block also provides an increment
key which is set to 1 by default for simpler paging approaches. Such paging examples can be
found in the description of Listing 4.7 below and in Section 4.2.3 on the example of the issue
tracking system JIRA.

1 commitComments:

2 description: Comments to Commits

3 primaryKey: id

4 call:

5 - url: "https://api.github.com/repos/{{user}}/{{repo}}/comments?page={{

commentPage}}&access_token={{accessToken}}"

6 arguments:

7 commentPage:

8 store: .

9 argumentRotation:

10 name: commentPage

11 start: 1

12 stop:

13 key: .

14 value: []

Listing 4.7: Component for commit comments of the GitHub mining script.

The component to retrieve commit comments in Listing 4.7 is similar to the commit component
but shows two important differences. First, it uses a different paging mechanism, and second, it
shows another stop approach. The paging for commit comments works with increasing page
numbers. In the listing, this is reflected on line 11 where the start value is defined as 1. The
type can be left away this time as int is the default. Furthermore, the whole continue block
is omitted as the default behavior for numeric page values is to increase by 1 on each iteration.
Evidently it is possible to write shorter mining scripts by using these default specifications. The
stop block only defines a key and a value. That causes MiningHub to compare the whole
response (defined by key:. on line 13) with an empty list as specified by the value key on line
14. The rational behind this is that GitHub returns an empty JSON list when a client requests
items from a too large page number. This is not ideal as it wastes a request of the limited API
quota. However, it is a needed step as the GitHub API is inconsistent on that matter. While
some components do not include the Link header in the HTTP response on the last page, other
components always transmit that header. As result, we use the response header to determine

4.2 Mining Scripts 23

whether there is a further page and if that header is always set, we use the approach with the
empty list. Either way, both approaches work well to see whether a call request of a component
has completed. The further components retrieved by the GitHub mining scripts work similarly
to Listing 4.4 and Listing 4.7 and are thus omitted for brevity.

4.2.3 JIRA
JIRA is a popular issue and project tracking software by Atlassian. It can either be used as a service
or downloaded and installed on a server. There are many large software projects and companies
that use JIRA for their project planning. Examples are the Apache Software Foundation1, Spring
by Pivotal Software2, and projects at Codehaus3. As a result, there are large data sets available for
research. Thus, JIRA is often used in mining software repository studies as can also be seen in the
MSR 2013 paper review in Section 3.2. A very often used JIRA instance is the one of Apache which
includes many different projects of that foundation and is a huge source of data. The popularity
among software projects and also researchers has led us to create a mining script for JIRA, too.
In this section, we describe some parts of it. However, as most aspects of the JIRA mining script
are similar to the one used for GitHub (Section 4.2.2), in this section we only go through the
differences between the two. The complete mining script for JIRA can be found in Listing A.3 in
the appendix.

1 name: "Jira: Public Issue Trackers"

2 description: This mining script will collect data about a single project and

all its issues from public issue trackers. ...

3 urls:

4 - pattern: "(^.*)/rest/api/2[/]?"

5 parameters:

6 - url

7 parameters:

8 projectKey:

9 type: string

10 description: The mandatory key name of a project, it must be UPPERCASE.

11 globalArguments:

12 url:

13 projectKey:

Listing 4.8: Header of the mining script for JIRA.

Listing 4.8 shows the head of the mining script for JIRA. It, again, starts with a name and
description. In this case, the name value must be enclosed with quotes as it contains a double
colon and YAML requires quotes to avoid ambiguity. The urls container starting on line 3 does
not define a domain name as JIRA may be hosted on any domain. As a result, it is required to
extract and store the domain name from the given URL as can be seen on line 4. Furthermore,
the mining script only matches URLs that include /rest/api/2, which is part of the API address
of JIRA. An example of such a URL is https://issues.apache.org/jira/rest/api/2/
that obviously points to the Apache JIRA instance. The parameter block causes MiningHub to

1https://issues.apache.org/jira/
2https://jira.springsource.org
3http://jira.codehaus.org

https://issues.apache.org/jira/rest/api/2/
https://issues.apache.org/jira/
https://jira.springsource.org
http://jira.codehaus.org

24 Chapter 4. Implementation

ask for a project name, which must be written in uppercase or JIRA does not recognize it. An
example project for Apache could be SOLR. The globalArguments then define the url of the
JIRA instance as well as the given projectKey to be used in the API requests.

1 projects:

2 description: Project information

3 primaryKey: id

4 call:

5 - url: "{{url}}/rest/api/2/project/{{projectKey}}"

6 # only store one single element, not each element in a collection

7 store: ..

Listing 4.9: Component for projects of the mining script for JIRA.

The projects component in Listing 4.9 retrieves information about the project that was de-
fined in the projectKey parameter. That includes, for example, a description, the project lead,
its components, issue types, versions, and so on. Line 5 shows the URL that does not specify a do-
main but instead has a placeholder. As the domain is extracted from the URL given in the import
creation dialog, the url contains just the placeholder which is replaced by the proper domain
before any request to the API is made. The projects component contains a call request that
is done once per import and directly retrieves all available information in one row. Thus, there
is neither a stop condition nor an argumentRotation block needed. One important aspect of
this component is also the definition of store. The JIRA API returns a map of key/value pairs in
the response for project data. If instead store:. was used, MiningHub would iterate through
the map and store each single value in an individual MongoDB document. To avoid that behavior
and cause MiningHub to store the whole result of the response in a single document including all
the keys, this component uses the double dot (..) notation. Its semantic is similar to the handling
of paths, for example in a command line. A double dot causes the current working directory to
be changed by going up one level. In mining scripts, the semantic is the same. Listing 4.10 shows
the second component of the JIRA mining script, namely the issues component. It is similar to
other components that use a paging mechanism with increasing numbers. However, the paging
on the JIRA API works slightly different. It is zero-index, which means that the first issues can be
found on page 0 and not 1. This is reflected by a proper start value on line 11. In addition, the
page number increases not by 1, but instead by the number of issues per page. So as the url on
line 5 defines maxResults per page to 20, the second issue page has the number 20. As a result,
the mining script has to explicitly define the increment value to be 20 (line 16) instead of the
default behavior to just increment by 1.

The mining script for JIRA is relatively small and Listings 4.8, 4.9, and 4.10 cover almost its
whole content (we only omitted index blocks). But although that mining script only defines two
components on a total of 53 lines of YAML, it retrieves many different data sets regarding the
issues. Reason being that the API of JIRA returns all the information related to issues when iter-
ating through them. For example, all the comments to an issue extended by their user details are
directly included in the issue response. Other aspects that are included are votes, resolution, pri-
ority, watches, labels, reporter including user details, and many more. As a result, API responses
for issues on JIRA are extensive regarding their size and we limited the maxResults per page to
a low value of only 20.

4.2 Mining Scripts 25

1 issues:

2 description: Issues

3 primaryKey: id

4 call:

5 - url: "{{url}}/rest/api/2/search?jql=project={{projectKey}}&startAt={{

issuePage}}&maxResults=20&fields=*all"

6 arguments:

7 issuePage:

8 store: issues

9 argumentRotation:

10 name: issuePage

11 start: 0

12 stop:

13 key: issues

14 value: []

15 continue:

16 increment: 20

Listing 4.10: Component for issues of the mining script for JIRA.

4.2.4 Stack Overflow
Stack Overflow is a popular question and answer board for professional and enthusiast program-
mers by Stack Exchange. Stack Exchange operates a whole network of numerous different answer
sites on diverse topics. As of January 7, 2014, their 4.6 million users asked 8 million questions and
wrote 14.2 million answers. Stack Overflow is the largest of their sites by far as it alone had 6.4
million questions. The Stack Exchange network is often used in research as, for example, can be
seen in the MSR 2013 paper review in Section 3.2. However, it should be noted that the mentioned
number of papers that used data from Stack Overflow is influenced by the fact that the MSR 2013
Mining Challenge provided data sets from that Stack Exchange site [Bac13]. Nonetheless, Stack
Overflow is a rich collection of data and an interesting platform for research. As a result, we
created a mining script for Stack Overflow that retrieves questions, answers, comments to either
of them, and also user data for a certain question tag. Its complete specification can be found in
Listing A.4 in the appendix.

The mining script for Stack Overflow is similar to the ones of GitHub and JIRA. Therefore
we omit the header part this time and only describe it briefly. To mine questions from Stack
Overflow, as always, an import with a given URL has to be created on MiningHub. The mining
script we wrote accepts URLs with the pattern ˆhttp[s]?://stackoverflow.com/ques-
tions/tagged/([ˆ/+]+). This matches all Stack Overflow addresses that show the questions
of a certain tag. That tag is automatically extracted from the URL and stored so that it can be
used for the API requests. The mining script also specifies parameters that the user has to fill in,
namely the API key as well as fromdate and todate. The last two are both of type date and
specify a date period from within questions should be considered during the retrieval phase. The
date type is used in the HTML code of the parameter input fields of the import dialog. Some
browsers support the date type directly and show a user interface to insert dates. For browsers
that do not yet support that input type, we show the pattern YYYY-MM-DD of a valid date in
the text input. Listing 4.11 defines how to retrieve questions from Stack Overflow according the
the given parameters (argumentRotation was omitted for brevity). On line 5 it specifies a URL

26 Chapter 4. Implementation

1 questions:

2 description: questions

3 primaryKey: question_id

4 call:

5 - url: "https://api.stackexchange.com/2.1/questions?page={{page}}&

pagesize=100&fromdate={{fromdate}}&todate={{todate}}&sort=creation&

tagged={{tag}}&site=stackoverflow&filter=withBody&key={{key}}"

6 arguments:

7 todate:

8 type: date

9 format: unix

10 fromdate:

11 type: date

12 format: unix

13 tag:

14 page:

15 store: items

Listing 4.11: Component for questions of the mining script for Stack Overflow.

that includes parameters for paging, sorting, filtering, and also to narrow down the questions by
date and tag. In contrast to others, this mining script uses the type and format specifications
in the arguments container. The Stack Exchange API allows to retrieve questions by date using
the fromdate and todate parameters. These expect as a value a unix timestamp, which is the
number of seconds since January 1, 1970, at 00:00:00 UTC. As an example, the date of January
1, 2014, 00:00:00 UTC would be 1388534400 in unix time. Having to insert such timestamps as
parameters would be annoying for the user. So MiningHub translates arguments of type date
and format unix to a unix timestamp before inserting it into the API URL.

Listing 4.12 shows the answers component that causes MiningHub to retrieve answers for
every question that was stored in the database. This is specified using the each request that
looks similar to call requests but always depends on another component. In this case, answers
depends on the component questions as is defined on line 5. On the Stack Exchange API, answers
are retrieved by requesting /questions/{{questionID}}/answers. The {{questionID}}
can thereby either be replaced by a single question ID or by several IDs concatenated with the
semicolon (;) as separator. MiningHub is able to deal with both approaches and for this mining
script we use the latter as that uses less API requests. First, the page argument start value is set to
1. Then, the argumentEach block is examined. It defines the name of the argument that is used
to retrieve answers on. We defined it as ids and also put the corresponding placeholder into the
url on line 6. The key specifies the name of the identifier that is used in the component defined
on line 5. In the case of answers, it is the question_id that has to be used to retrieve answers for
that corresponding question. The merge key defines how many question IDs are merged together
and the separator defines what character is used as a separator. To sum up, MiningHub reads
question_ids from the retrieved questions, merges 10 of them together with the separator ; and
replaces {{ids}} in the url value with the concatenated IDs. Then MiningHub can request the
answers. After a response was retrieved and the content of items (as defined on line 15) was
stored, MiningHub examines the repeat block. Similar to a stop container, repeat compares a
part of the response with a defined value and then either continues or aborts the iteration. Again,
the optional source key defines the response source and is either result (default) or http. The

4.2 Mining Scripts 27

1 answers:

2 description: Answers to the Questions

3 primaryKey: answer_id

4 each:

5 - component: questions

6 url: "https://api.stackexchange.com/2.1/questions/{{ids}}/answers?page

={{page}}&pagesize=100&order=asc&sort=creation&site=stackoverflow&

filter=withBody&key={{key}}"

7 arguments:

8 page:

9 value: 1

10 argumentEach:

11 name: ids

12 key: question_id

13 separator: ;

14 merge: 10

15 store: items

16 repeat:

17 key: has_more

18 value: true

19 argument: page

Listing 4.12: Component for answers of the mining script for Stack Overflow.

key specifies which key of the response has to be compared with either a value or a boolean
isset. With the definition on line 17 and 18, MiningHub reads the has_more key from the JSON
response and compares it to the boolean true value. If that comparison evaluates to true, the
argument is increased by 1 and inserted into the url. Then MiningHub retrieves the next page of
answers for the given question IDs. Thus, the repeat block works similar to a do {...} while
(condition) loop known from some programming languages. An each request block can also
be simplified in certain cases. If no merging of different identifiers has to be done, the separator
and merge keys in the argumentEach block can be omitted. In addition, the repeat block
is optional if it is clear that only one request has to be made in each iteration. The notation
of argumentEach and repeat is slightly different to the concept of argumentRotation and
continue. In the case of call requests, there is almost always a paging mechanism needed and
MiningHub performs numerous iterations to retrieve all data. For each requests, on the other
hand, it is rather unusual that more than one iteration is done. The functionality for it is available
if it has to be used, nonetheless.

In the Stack Overflow mining script, each requests are done to retrieve answers and com-
ments to questions, then they cause the retrieval of comments to answers, and then they are used
to retrieve user data for questioners, answerers, and commenters to questions and answers. This
means that the users component retrieves data based on four other components. For such cases,
mining scripts allow both call and each blocks to request more than just one API address. Both
of these blocks contain a list rather than a map of elements and thus can be extended by several
different types of requests. An example of such a multi request component is users in Listing A.4
in the appendix. The component, url, argumentEach, and store keys are thereby repeated
for every request as this allows for flexibility in cases where these must be handled differently. The
use of a proper primaryKey value for components that employ more than one call or each re-

28 Chapter 4. Implementation

quest is especially important. Overlapping data sets, for example a question and an answer with
the same author, could otherwise lead to duplicate entries in the database.

4.2.5 Specification and Validation
Mining scripts are flexible specifications for the behavior of MiningHub. Each user can write his
own scripts and upload them to our platform to mine software repositories. As a result, it is
very important to check each new mining script prior to any use to avoid illegal states or other
problems on the MiningHub platform. In addition, such a check helps researchers who write
mining scripts to spot obvious errors. We enable such a foregoing examination by validating
mining scripts before they can be stored on MiningHub. For YAML, this is a challenge as there
does not seem to be an established and well-documented YAML schema definition. Instead, we
use the standard JSON schema and utilize the similarity of YAML to JSON; they are almost fully
compatible in the data structures they can store. So we wrote an extensive JSON schema definition
for mining scripts (see Listing A.1 in the appendix) as if they were actually written in JSON. Given
a mining script written in YAML, we parse it and translate it to JSON. Then we are able to validate
the mining script with the JSON schema definition. This translation approach works very well
and has the advantage that we can use a standard schema definition with proven tools available.
A pure YAML schema would have given us neither.

1 {

2 "$schema": "http://json-schema.org/draft-04/schema#",

3 "title": "Schema to define the contents of a Mining Script for MiningHub.",

4 "type": "object",

5 "properties": {

6 "name": { "type": "string" },

7 "description": { "type": "string" },

8 "apiFormat": { ... },

9 "urls": { ... },

10 "parameters": { ... },

11 "globalArguments": { ... },

12 "backoffWhen": { ... },

13 "components": { ... }

14 },

15 "additionalProperties": false,

16 "required": [

17 "name",

18 "description",

19 "urls",

20 "components"

21]

22 }

Listing 4.13: Outline of the mining script schema written in JSON.

The outline of the mining script schema written in JSON can be found in Listing 4.13. It
starts with a schema version definition and a title, as well as the type of the root element. The

4.3 Database and Data Structure 29

properties map then specifies all the properties that may be contained in the root of the script.
Apart from name and description, these have all special type constraints and mostly several
subelements. The ... again denote that the further definition was omitted for brevity. Line 15
disallows the addition of further properties as MiningHub does not use them anyway and it also
might be an error. Lines 16 to 21 show a list of required properties, without these a mining script
is not valid and cannot be executed. Generally, when adding a mining script to MiningHub which
violates any of the rules in the schema definition, the platform prints an error message that exactly
tells what error occurred. This helps to spot mistakes and missing definitions. The complete
schema that we use for validating mining scripts can be found in Listing A.1 in the appendix.

4.3 Database and Data Structure
MiningHub uses MongoDB to store its data as already noted in the technology evaluation in
Section 3.4. MongoDB is a document-oriented database engine that in principle stores its data in
JSON. While the internals of MongoDB are different from JSON, most content it exposes is JSON-
like and we do not further differentiate the formats in this thesis. MongoDB has the advantage
that it can store data with dynamic schemas without having to define a data structure beforehand.
This means that arbitrary lists, maps, values, and also nested structures can be stored in MongoDB
collections. As a result, MiningHub can request APIs and store the response without having any
information about its content. This approach is very flexible and allows mining scripts to request
APIs without giving MiningHub insights about what the data actually contains. For requesting
or changing data, MongoDB provides a language similar to JavaScript. That approach allows not
only to retrieve data but also to process, change, extend, or even store it in different collections.
Additionally, there is support for functions, loops and variables. Example uses of these flexible
commands can be found in the evaluation (Chapter 5).

MiningHub uses several different MongoDB collections to store its data. The most important
ones contain information about stored mining scripts and import jobs that use these scripts. Fur-
thermore, there are also collections to store users, starred items (see Section 4.7), and the search
index (see Section 4.5). The collection for mining scripts stores the user ID of the script creator
as well as the creation date. It also has fields to define whether a mining script is enabled or dis-
abled and whether it is shared, private, or public. The mining script definition itself is stored in
a parsed map with nested key/value pairs instead of a string representation. This means that a
mining script only has to be parsed once and is then stored in MongoDB in a nested JSON object.
The import collection contains information about data retrieval jobs, such as the mining script to
use, the arguments given by the user, visibility settings, and also some more fields that are needed
to achieve a proper import as described in Section 4.4.3. Storing the data from mined repositories
is done in a dynamic approach as follows. Each import job has got an ID and retrieves several
components as defined in the used mining script. To store data for a certain component, Min-
ingHub uses collections named like import_ID_COMPONENT. For example, the import with ID 1
stores the component issues in a collection called import_1_issues. Such collections each con-
tain one item (e.g. one issue) per document. That approach has the advantage that MiningHub
can use the MongoDB _id key that has a unique constraint. By using the primaryKey value
defined in mining scripts as _id, it ensures that no duplicates are stored. Furthermore, it al-
lows for simple download mechanisms as described Section 4.6. As a result of this approach,
each import_ID_COMPONENT collection contains a list of items that expose the exact same data
structure and nesting as provided by the used API service.

For programmatically querying the database, we use two different libraries. Grails, the frame-
work we used for developing MiningHub, provides a flexible approach of handling data and
databases called Grails object-relational mapping (GORM). GORM allows to store and retrieve

30 Chapter 4. Implementation

data from databases without touching the internals of it in a very simple manner. It is also deeply
integrated in Grails and offers many convenience functions as well as domain objects. The latter
can be used to define tables and their schema so that GORM can create and manage these tables
on its own. The user interface of the MiningHub website uses GORM for showing imports, min-
ing scripts and all other database related content. GORM also has some limitations regarding
the handling of MongoDB, though. The biggest problem we faced with GORM was the inability
to store data in collections without a predefined name. It appears to be impossible to use tables
without a domain object in place. However, as MiningHub stores the retrieved data in collec-
tions with dynamic names, GORM cannot be used for the import worker code. Instead, we use
the GMongo4 framework that is a wrapper library around the MongoDB Java driver. It was cre-
ated for Groovy and resembles the syntax from the MongoDB command line interface as close
as possible. It therefore allows to access and store data in arbitrarily named collections using
db.COLLECTION.COMMAND(). In addition, it makes updating nested structures in MongoDB
much easier than the GORM approach of reading, changing, and updating. GMongo instead
supports updating certain fields only, for example, using a syntax like map.subkey1.subkey2.
It also allows to use special key names prefixed with $ that MongoDB uses to enforce special
behavior when updating collections. For example, functions like $inc to increment an integer,
$addToSet to add a new item to a set, or just $set to update a value are very practical when
dealing with MongoDB. Furthermore, GMongo has the advantage that it does not use sessions
like GORM and when a change is stored, it is instantly persisted in the database. This is especially
important as MiningHub uses the database to synchronize different import workers as described
in Section 4.1.

Using GMongo has given us many advantages over GORM but also caused several problems.
A development version of MiningHub running on a server repeatedly crashed with an OutOf-
MemoryException: Java heap space error after running for about two days. Later we found out that
GMongo exposes a thread leak when database connections are not explicitly closed after their
use. When we changed the code to always close the connections after some time of inactivity,
the problem was not gone, though. By more debugging, we found that GMongo also exposes
a memory leak when creating and closing connections for each request. Instead, it is necessary
to reuse the same connection over all requests and never close that connection. After having
implemented these two changes, we never ran into a thread or memory leak again. But it is an
important aspect to keep in mind when dealing with GMongo.

4.4 Mining Software Repositories
The core functionality of MiningHub is retrieving data from software repositories. By doing so, it
relies on the specifications contained in mining scripts and hides the complexity from the users.
But MiningHub itself still has to react properly in case of any unexpected results. This section
describes error handling as well as the whole mining process executed by MiningHub.

4.4.1 Error Handling
When mining software repositories with MiningHub or any other tool, a process retrieves data
from an external platform over the Internet. By doing so, there are many problems and errors that
can occur. The requested platform might be temporarily unavailable, the given URL parameters
could be invalid, the returned response might be incomplete, an invalid API key could have been
transmitted, or the API limits could have been reached. These are just some examples of many dif-
ferent types of problems that could occur. As we want MiningHub to run repository mining jobs

4https://github.com/poiati/gmongo

https://github.com/poiati/gmongo

4.4 Mining Software Repositories 31

autonomously, it has to be able to handle these and other unexpected behaviors and errors prop-
erly. As a result, there are many conditions in which MiningHub does either temporarily pause
or completely stop an import job. When a temporary problem occurs while MiningHub tries to
retrieve data from a repository, it marks the corresponding import job to back off further requests
for a certain amount of time. This causes the import to be paused and MiningHub does not re-
trieve any data for it anymore. After the back off period has elapsed, the import is activated again
and MiningHub continues to retrieve data. Should there be a temporary problem once more, the
import is backed off again. This process repeats until the import is able to continue retrieving
data from the repository. Reasons causing MiningHub to back off requests for an import job are
numerous. It starts at connection problems like no Internet connection on the worker, timeouts, or
API providers that are temporarily unavailable. Further reasons include invalid or non-standard
server answers (e.g. HTTP status codes, see Section 4.4.2) or when API quota limits are reached.
And it is also possible for a mining script creator to manually set back off conditions, for exam-
ple when a certain key is or is not defined or when a numeric value is lower than 1. The latter
could be used when an API returns the number of remaining API quota requests. In most of these
cases, the problems are only temporary and after a certain waiting time they do not occur again.
Permanent errors have to be handled differently as they will not just go away. Examples of such
situations include when the data provider notifies an invalid API key or an uncaught exception
occurs. The latter may be caused by problems in MiningHub where, for example, the handling
of retrieved data does not work as intended. Another cause for a permanent error is when Min-
ingHub detects an improper mining script. That may occur as although a mining script is valid
(see Section 4.2.5), it does not necessarily mean that all its content is meaningful and MiningHub
may abort its execution. When a permanent error occurs, MiningHub marks the corresponding
import as stopped and no further data is retrieved anymore. In addition, it is possible to manu-
ally stop and continue the execution of an import process. The latter can even be done when the
import was stopped automatically so that erroneously stopped imports can be continued by the
user. Every time a temporary or permanent error occurs, a log message is emitted by MiningHub.
These messages are stored separately for every single import job and are only accessible for its
creator. Based on these log messages, the user can be informed about any type of problems that
occurred and may slow down the data retrieval process. It also tells when a problem regarding
the API key occurred so that the import creator realizes that he might have used an invalid key.

4.4.2 Handling HTTP Status Codes
When a client requests a result over the hypertext transfer protocol from a server, an HTTP status
code is part of the response. These three digit numbers tell the client whether the request has
been answered successfully, or if not, what the problem was. There are APIs that return such
status information in the response content itself (e.g. encoded using JSON), but other APIs instead
use these HTTP status codes to answer requests or extend their response (e.g. the GitHub API
Version 3). Therefore, MiningHub needs to be able to understand the meaning of HTTP status
codes. The codes and their meanings have been defined by the World Wide Web Consortium in
RFC 26165. While developing MiningHub, we have seen several strange occurrences of status
codes, however. For example, we regularly received a 400 Bad Request that indicates that
the request was malformed and has to be modified to work. But minutes later the exact same
request worked without any modification whatsoever. Because of such incidences, most error
codes cause MiningHub to just back off further requests to the server for some time. We also
presume the creator of mining scripts to have tested them thoroughly enough so that the most
common errors, such as a wrong API address, would not occur in the first place. So when a
problem is indicated by a status code while importing, we assume the remote server to have

5http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

32 Chapter 4. Implementation

HTTP status code MiningHub behavior

100 Continue Back off
101 Switching Protocols Back off

200 OK Continue
201 Created Continue *
202 Accepted Continue *
203 Non-Authoritative Information Continue *
204 No Content Continue *
205 Reset Content Continue *
206 Partial Content Continue *

300 Multiple Choices Back off
301 Moved Permanently Redirect and continue
302 Found Redirect and continue
303 See Other Redirect and continue
304 Not Modified Back off
305 Use Proxy Back off
306 (Unused) Back off
307 Temporary Redirect Redirect and continue

400 Bad Request Back off
401 Unauthorized Stop
402 Payment Required Back off
403 Forbidden Stop
404 Not Found Back off
405 Method Not Allowed Back off
406 Not Acceptable Back off
407 Proxy Authentication Required Back off *
408 Request Timeout Back off
409 Conflict Back off
410 Gone Complete component
411 Length Required Back off
412 Precondition Failed Back off
413 Request Entity Too Large Back off *
414 Request-URI Too Long Back off
415 Unsupported Media Type Back off
416 Requested Range Not Satisfiable Back off *
417 Expectation Failed Back off
...
429 Too Many Requests Back off

500 Internal Server Error Back off
501 Not Implemented Back off
502 Bad Gateway Back off
503 Service Unavailable Back off
504 Gateway Timeout Back off
505 HTTP Version Not Supported Back off

Table 4.1: HTTP status codes as defined in RFC 2616 extended by selected codes as defined in RFC 6585.

4.4 Mining Software Repositories 33

temporary problems. As a result, MiningHub backs off further data requests for some time to
give the provider a chance to recover. Later, it will retry the request. In what follows, we describe
the behavior of MiningHub based on each category of status codes. A complete list of the behavior
can be found in Table 4.1. In addition, the behavior on some status codes is marked with a star
(*). This indicates that in theory according to code description, there might be APIs that use
that code to require special behavior. As an example, 206 Partial Content could be used to
implement a paging mechanism to import a lot of data over more than one request. We have not
come across any APIs that use the marked codes in such a way, though. As a result, MiningHub
handles these codes only as described in the table. But in the future, that behavior might change
should there be APIs that require such a handling. Status codes that were not listed in Table 4.1
cause the MiningHub importer to temporarily back off any new requests.

The informational 1xx status codes should not be emitted by an API as these make no sense
in that context. Should such a status code occur nevertheless, we assume a temporary problem
as described above and back off further calls for some time. The 2xx codes represent a successful
request and response; MiningHub continues normally. This category also contains some codes
(marked with the *) that could be interpreted differently if required by the API. But so far Min-
ingHub does not handle them differently and just continues processing data. Status codes 3xx
describe redirections. In general, we think that an API should have a fixed specification for a
given API version. Some parts of it might be experimental, but the stable behavior should never
change. So in theory, redirections should not occur. However, not all API providers agree with
that. For example, the specification of GitHub API version 3 explicitly states that HTTP redi-
rections might occur6. To avoid problems with redirections, MiningHub follows and handles
them as if no redirections occurred. For other codes in this category that do not directly relate to
redirections (e.g. 300 Multiple Choices) MiningHub backs off further requests. 4xx status
codes represent client errors and are either an authorization, API quota, or temporary problem.
A further reason for such a code are errors within a mining script. As, again, we presume mining
scripts to be tested, most codes cause MiningHub to back off and try again later. There are two ex-
ceptions: 401 Unauthorized are sometimes returned when no or a wrong API key was used;
MiningHub stops the import in this case. The second exception is 410 Gone, which indicates
that a resource does not even exist. In such a case, the requested component is directly marked
as completely retrieved. Table 4.1 also includes 429 Too Many Requests as defined in RFC
65857 that is sometimes used when the API rate limits are maxed out. MiningHub backs off in
these cases. Status codes 5xx indicate remote server errors and MiningHub backs off to give them
time to recover.

When MiningHub is backing off further requests, it always emits a log message so that the
user knows what is happening. It also tries to read the Retry-After header (if defined) and
respects the amount of time that the remote server asked to wait until further requests are made.
MiningHub also logs any occurrences of status codes on which it continues but there might be
some special behavior needed, as might be the case in 201 to 206. Status code 410 Gone are
logged as well.

4.4.3 Data Retrieval Process
MiningHub has the two main application components website and worker as described in Sec-
tion 4.1. On the website, researchers can create import jobs to retrieve data from repositories and
the workers run in the background and do the work of actually retrieving it. There may be only
one or several workers that mine repositories concurrently and use the database to synchronize
their behavior. Each worker instance regularly checks the database for active import jobs on a

6http://developer.github.com/v3/#http-redirects
7http://tools.ietf.org/html/rfc6585

http://developer.github.com/v3/##http-redirects
http://tools.ietf.org/html/rfc6585

34 Chapter 4. Implementation

configurable schedule, currently this is set to once every 60 seconds. Considered as active jobs
are all imports that are not stopped, not completed, not backing off, and are not currently or were
too recently handled by another worker. From the list of active imports, the worker selects one
by random and stores the current date to the lastIterationStarted key in the chosen im-
port to show other workers that they must not consider it as active anymore. The worker then
reads the mining script definition and loops through all its components. For each component,
the worker reads the call and each requests defined in the script and executes them. Each of
these requests returns whether or not it already has completed. It is important to know that the
two types of requests are handled differently and are described in detail in the paragraphs below.
When the execution of all components—that is, an iteration—has completed, the worker updates
the database by setting lastIterationStarted to null and lastIterationEnded to the cur-
rent date. The latter ensures that other workers do not pick up the same import immediately after
finishing an iteration to avoid flooding an API provider with requests. After a worker has exe-
cuted a full iteration with at least one active import, it reschedules its check for active imports
to a shorter time frame (currently, this is set to 10 seconds). This increases the speed of the data
retrieval from a repository. That whole process is repeated until all imports are either stopped,
completed, or otherwise inactive. Imports are stopped or backed off when in one of the compo-
nents a corresponding condition occurs (see Section 4.4.1). Import jobs are marked as completed
when all call and each requests notify that they retrieved all necessary data. And completed
imports are marked as finished and the user can download the mined software repository data.
In the next two paragraphs, both call and each requests are described in more detail.

call Requests. Each call request individually stores whether or not it has completed al-
ready. That is detected, for example, when the paging mechanism has reached the last page or
an empty page was returned. In an iteration, all completed requests are directly skipped. When
a request has not yet completed, it is handled as follows. First, the API URL with placeholders
is retrieved and the actual values (e.g. the API key) are inserted from arguments stored in the
database. The proper URL is then requested from a repository and the HTTP status codes are
handled according to Section 4.4.2. The HTTP response is then parsed from a string to a nested
map or list representation and the part of the response that has to be stored is extracted according
to the store definition in the mining script. Each retrieved item is then extended by a unique
_id key according to primaryKey and stored in the corresponding collection. After that, the
argumentRotation block is examined, if given. The stop.key value is extracted from the
defined stop.source and compared to either stop.value or stop.isset. When the com-
parison resolves to true, the request is marked as complete and skipped in the next iterations. If
it is not yet complete, the continue block gets examined. Depending on its content, the variable
whose value has to be changed for the next iteration is either incremented if it is numeric or it is
set to a new string value. Either way, the new argument value is stored in the database and is
used to replace the corresponding placeholder in the next iteration. That whole process repeats
in each iteration until the import has finished.

each Requests. each requests differ from call requests in that they always depend on a cer-
tain other component. For example, they are used to retrieve all the answers for a certain question
in the Stack Overflow mining script (see Section 4.2.4). So when executing an each request, Min-
ingHub first has to read items from another component from the database. It does so by reading
the keys defined in argumentEach.key from the collection that stores the component the cur-
rently executing component is depending on. To avoid repetitive calls for the answers to the
same question for example, the items that the current component depends on individually store
whether their depending components were already updated. MiningHub only retrieves depend-
ing items when they were not yet requested. If argumentEach.merge is defined and larger

4.5 Searching Retrieved Data 35

than 1, MiningHub reads several items and merges their argumentEach.key values together
separated by argumentEach.separator. This is useful when the API allows to retrieve, for
example, answers to more than one question in a single request. So MiningHub can merge sev-
eral question IDs together like 1;2;3;4;5 to retrieve all of their answers in one iteration. Based
on the merged (or just a single) argumentEach.key values retrieved from the database and
other arguments, MiningHub creates the proper URL and requests the specified API. From the
result, the HTTP status codes are handled in the same way as call requests. Furthermore, the
response is parsed and the part that has to be stored is extracted according to store. Again,
each item is extended by a unique _id key and stored in the database. If the current each re-
quest also defines a repeat block, it has to be examined as well. Similar to the behavior in
call requests, the repeat.key value is extracted from the defined repeat.source and com-
pared to either repeat.value or repeat.isset. When the comparison resolves to true, the
repeat.argument is increased by 1, inserted into the API URL and the request repeats. After
that, it again checks whether there is another request required and repeats this as long as needed.
When all depending items (e.g. answers) of another item (e.g. a question) are retrieved, the latter
is marked as complete and skipped in the next iterations. This whole process repeats in every iter-
ation. An each request has completed when there are no items from the depending components
left to extend. However, as the depending components may retrieve more items in each iteration,
each requests have to check whether there are more items to retrieve in every iteration as well.

4.5 Searching Retrieved Data
When MiningHub is used to mine software repositories, data can not only be retrieved and stored,
but also searched. A precondition for that functionality to be available is that mining scripts ex-
plicitly specify which parts of the retrieved data sets have to be searchable. This can be done by
creating an index list of key names in each component of a mining script. An example of that
can be seen in the mining script for GitHub in Listing A.2 in the appendix. The commits compo-
nent indexes the title and body while for commitComments only the body is indexed. MiningHub
examines the used mining script when importing data and checks whether any keys have to be
indexed. When there is an index list, MiningHub extracts their values from the API response
and uses Apache Lucene8 functionalities to tokenize the content. The tokenizer performs several
optimizations on the words including removal of punctation marks and stop words, stemming,
and further simplifications. The resulting tokens are then indexed in the database and linked
with the corresponding imports. After importing some data, it is possible to search it on the Min-
ingHub website. The search query is tokenized the same way as before and then compared to the
indexed imports. The search page lists all matched items from import components that contain
all of the words from the query. Matches are ordered by the number of words, this means that
matches with less words are ranked higher than others with more words. Due to a limitation of
MongoDB, the search page currently cannot show the total amount of found results. The calcula-
tion of query.count() takes very long on a larger (i.e. starting from about 100,000 index items)
indexes and slows down the whole search experience. Based on the search, a researcher might
find a suitable data set for his studies and download the corresponding import.

4.6 Exporting Retrieved Data
When an import job has successfully completed or it was stopped, the retrieved data sets can be
downloaded from the MiningHub platform. Each component can be downloaded on its own or

8http://lucene.apache.org

http://lucene.apache.org

36 Chapter 4. Implementation

in a compressed ZIP file containing all the components. The download mechanism reads the data
directly from the database and streams it to the user’s browser. So there is no need to create a
dump file on the server first. Furthermore, there are no modifications made to the data structure
that is read from the database. The download format thus is JSON as can be seen in Listing 4.14
that shows an example of a commit component. When downloading, each component collection
is exported into its own JSON file that contains a list of items. So the content of the file is exactly
the same as in the database collection on the server. The first and last line of each file contain
square brackets and in between the items are stored one item per line. There are two reasons
for that format: (1) It is valid JSON and (2) after removal of the first and last line (i.e. the square
brackets) the file can be imported into a MongoDB collection without file size limits. MongoDB
provides command line tools to import and export JSON files to and from collections. To import
data, the content of the file is either a JSON array as in Listing 4.14 or, when the total file size
is over 16MB, a list of one item per line. The latter is not valid JSON as a whole file, each line
itself must be valid, though. To define the behavior in these two cases, the --jsonArray switch
is used. An example of importing a complete JSON file can be seen on line 1 in Listing 4.15.
However, the import capability for MongoDB is only one advantage of the JSON export format
from MiningHub. JSON itself is easily parsable and there are many frameworks to handle it in
all major programming languages. Therefore, it is possible to parse an exported component into
an arbitrary file format with only some lines of code. As a result, the data sets downloaded from
MiningHub can be consumed by many applications that work with data. If an application does
not support JSON itself, it might be possible to convert the files to the needed data format by
using a programming language or an already existing mapper application.

1 [

2 { "_id": 123, "commit": { "text": "message1", "user": "name1" } },

3 { "_id": 456, "commit": { "text": "message2", "user": "name2" } }

4]

Listing 4.14: File format of data sets downloaded from MiningHub.

The MongoDB command line tools allow to import and export JSON. In addition, they also
allow to handle files that contain comma separated (CSV) or tabulator separated values (TSV).
That means that JSON files downloaded from MiningHub can be converted to CSV and TSV with
just two short command line functions. An example that shows how to do this for a file containing
the code in Listing 4.14 can be seen in Listing 4.15. Line 1 imports a file called commits.json into the
collection commits within a database called mininghub. It is then already available in MongoDB
and can be queried or updated. However, to export it to CSV we use the mongoexport command
with the --csv switch that converts the data to CSV and exports all the keys defined in -fields.
It is mandatory to list all the key names that should be exported because MongoDB is schema-less
and each document might have a different structure. So the user has to define which keys have to
be included in the resulting CSV file. The output of that command can be seen on line 4 to 6. There
are two columns as defined in the command, they contain the _id and a string representation of
the nested commit key. CSV does not support nesting and this is the only way of showing the
sub-keys. To properly export the sub-keys as well, the mongoexport command has to be written
as in line 8 where the fields are defined with the dot syntax (e.g. commit.text). The resulting
output (line 9 to 11) indeed shows the content properly. However, the first approach can still be
useful to export lists to CSV as this would not be possible without the JSON formatting in a CSV

4.7 User Interface and Social Aspects 37

cell. The commands in Listing 4.15 do not export the CSV data to a file but just write it to the
console. That is because we omitted the -o filename.csv argument for this demonstration.

1 $ mongoimport -d mininghub -c commits --jsonArray commits.json

2
3 $ mongoexport -d mininghub -c commits --csv -fields _id,commit

4 _id,commit

5 123,"{ ""text"" : ""message1"", ""user"" : ""name1"" }"

6 456,"{ ""text"" : ""message2"", ""user"" : ""name2"" }"

7
8 $ mongoexport -d mininghub -c commits --csv -fields _id,commit.text,commit.user

9 _id,commit.text,commit.user

10 123,"message1","name1"

11 456,"message2","name2"

Listing 4.15: Export a JSON file to CSV using MongoDB.

4.7 User Interface and Social Aspects
MiningHub is a web-based platform to help researchers mine software repositories. During its
development, we focused on a good usability and easy understanding of all the functionalities
that MiningHub provides. We think this is an important attribute to be an attractive social mining
and data sharing platform as is our goal. In this section we describe user interfaces of certain
pages of MiningHub and describe their functionality. Figure 4.1 shows the MiningHub start page.
The dark row on the top is the navigation bar with links to the start page, the import and mining
script sections, the projects list as well as to the documentation and user profile. In all further
screenshots of the MiningHub user interface, we omit the navigation as it is the same for all of
them. The start page gives a quick introduction on what MiningHub is and how it works. And
the three boxes on the bottom of the screen guide through the main steps, namely creating or
reusing a mining script, run an import, and then download the retrieved data. In addition, there
is also the documentation section that explains how to use MiningHub in more detail.

The import section of MiningHub employs a tabbed interface with different pages. The first
tab links the section where researchers can create new import jobs to retrieve data from reposito-
ries. The Running Imports and Finished Imports tabs each list a number of imports jobs. The former
only contains imports that are active (i.e. not completed or stopped), and the latter lists all finished
import jobs. This distinction helps researchers to quickly see whether a data retrieval step is still
running or has already finished. Both of these lists show the title as well as the state—either run-
ning, stopped, or completed—of an import. Further shown information are the used mining script
as well as parameters. The last tab contains search functionality to find items retrieved from soft-
ware repositories that match a certain query. To retrieve data from a repository, first an import
job has to be created in the corresponding section on MiningHub. This is a multi-step process;
a repository URL has to be added, then a suitable mining script has to be chosen and required
parameters need to be filled in. Figure 4.2 shows the step after selecting a repository URL. Min-
ingHub lists all the mining scripts that can handle the given address and the user has to select one
of them. In this case, there is only one mining script available that can handle repositories from
GitHub. After a mining script is selected, MiningHub asks to fill in required parameters as can be

38 Chapter 4. Implementation

Figure 4.1: The MiningHub start page showing the navigation and a short introduction to MiningHub.

seen in Figure 4.3. An import name is always necessary as it helps to distinguish between different
import processes in the views. The mining script for GitHub (see Section 4.2.2) also requires an
accessToken which authorizes a certain user on the GitHub API. As can be seen in the figure, there
is also a note saying that This entry will be hidden for any user. API keys should always be defined
as type:password so that they cannot be viewed by anyone and are kept private. There are also
similar notes for other parameter types. After filling in the parameters and starting the import,
MiningHub shows a detail view of the created import; an example can be seen in Figure 4.4. That
page lists information about an import such as the user that created it, the used mining script, the
dates of its start and completion as well as its status. The latter is one of running when the im-
port is still retrieving data, stopped when it was manually or automatically stopped, or completed
when the import was successful. A running import can be stopped and continued by its creator if
needed. For stopped and completed imports, the retrieved data sets can be downloaded as JSON
files (see Section 4.6) and the total duration of the import is being showed. The import page also
shows a list of the components that the chosen mining script retrieves from the repository as well

4.7 User Interface and Social Aspects 39

Figure 4.2: Creating an import job on MiningHub: Selecting a Mining Script.

Figure 4.3: Creating an import job on MiningHub: Selecting Parameters.

40 Chapter 4. Implementation

Figure 4.4: Import detail view of MiningHub showing the state of the import, its components and parameters.

as the number of stored items for each of them. Furthermore, the import parameters, the logging
system and the comment section are shown (the last two are missing in Figure 4.4). The latter
ensures that users can comment on imports and exchange further information. For that purpose,
we use Disqus9 which is a web service that allows to include commenting functionalities on any
website. In addition, it is possible to change the visibility settings of imports. Their creators can
decide whether they want them to be private so that only they alone can see them, shared so that
they and the defined users can see them, or public so that everybody can see them. All users that
are allowed to see the import can also star it and the total number of stars is displayed to anybody.
That can, for example, be used to bookmark import jobs. There is also a Twitter10 button so that
the users can publish the imported data by means of a link in a tweet.

The mining script section uses a similar tabbed interface as the import section. The first tab
shows a page to add new mining scripts. In the second and third tab, there are lists of active
and disabled scripts, respectively. When creating a new import, only active scripts can be used
because disabled ones do probably not work anymore or are superseded by a new one. The page
to add a new mining script just shows an empty text input where scripts can be copied into.
Another approach to upload a new script is to drag a local mining script file into the input field
and the file gets uploaded instantly. Before being able to store the new mining script, it has to
be validated according to the schema (see Section 4.2.5). Invalid script inputs cause MiningHub

9http://disqus.com
10https://twitter.com

http://disqus.com
https://twitter.com

4.7 User Interface and Social Aspects 41

to show an appropriate error message that exactly explains what is wrong. Valid mining scripts
are added to the script catalog and can be viewed in the active list. The detail view of mining
scripts shows information about its content. This includes the title and description of the script,
information about its creator, the supported URL patterns, the components, and the required
parameters. The view also shows the complete specification written in YAML. In addition, the
view has similar social functions as the import section. The creator of a mining script can change
its visibility from private (default) to shared with some others or make it available to the public.
Users who can view the script can also tweet about it (only when its visibility is public), comment
on it, or star it. The comment system allows to discuss potential problems with a mining script or
suggest ways to extend it. The starred scripts are highlighted in every view (e.g. when creating an
import and having to choose a mining script) so that they can be found among others in a more
user-friendly way. The creator of a mining script can also disable it when it was superseded by a
newer version, for example.

Figure 4.5: The Grails project in the MiningHub software project section.

MiningHub aims to simplify data retrieval from software repositories. As a result, we inte-
grated a software project catalog directly into the MiningHub website. In that project section it is
possible to search for a certain project and start an import process on it. To enable that function,
we use the project API from Ohloh which provides a large number of software projects including
the types of repositories they use. An example of the project view can be seen in Figure 4.5. That
page shows a description of the Grails project and lists different repositories that are used. Each
repository has a button to start a data import from the corresponding repository URL. But it is
important to note that this also requires a mining script that can handle the corresponding URL.

42 Chapter 4. Implementation

If there is, the data retrieval step can be started for the repository of an arbitrary software project
without leaving the MiningHub website.

On the top right of Figure 4.1, there is the user section of MiningHub. Most views are avail-
able for any user without logging in but there are some functions that require authentication or
authorization. For the login mechanism, we use the GitHub OAuth API11 so that each user of
GitHub can log in on the MiningHub website. We only use the GitHub user name and therefore
do not request any private data. As a result, the MiningHub application is only allowed to access
a user’s followers, public repositories and public gists. There is no way to be granted access to
the user name only. After logging in, a user has access to all functionality of MiningHub. He can
create new import jobs, add mining scripts, and star imports as well as scripts. There is also a
user view where the created or starred imports and scripts of the logged in user or of an arbitrary
user can be seen. Commenting and sharing on Twitter is always possible and does not require
being logged in. In addition, it is also possible to view public imports, mining scripts as well as
users without any authentication.

Figure 4.6: The MiningHub start page on an Ap-
ple iPhone 4.

Figure 4.7: The MiningHub mining script view on
an Apple iPhone 4.

11http://developer.github.com/v3/oauth/

http://developer.github.com/v3/oauth/

4.8 Mobile Support 43

4.8 Mobile Support
During the development of MiningHub, we also focused on a good usability for mobile device
users. A large part of that was already achieved just by using Bootstrap (see Section 3.4) which
uses a mobile-first approach. Web pages are responsive to different screen sizes by default and
optimize the layout of the content depending on the users’ devices. In addition, we also further
optimized some views and functionalities for mobile devices. As a result, mobile users can use the
exact same functionalities of MiningHub as is possible on complete web browsers. An example
screenshot of the MiningHub start page on an Apple iPhone 4 can be seen in Figure 4.6. The
navigation is automatically collapsed on smaller screens and can be shown by tapping on the
button on the top right. That way, the complete navigation is available without covering a large
part of the screen. Figure 4.7 depicts another screenshot on an iPhone 4 showing the mining script
view. As can be seen, the content breaks at the edge of the screen and no horizontal scrolling is
needed. Both Figure 4.6 and Figure 4.7 are screenshots taken from the iOS simulator on Mac OS
X 10.8. In addition to the simulator, we also tested MiningHub on different real iOS and Android
mobile devices, though.

Chapter 5

Evaluation

In this chapter, we evaluate the MiningHub approach as follows. In the first section we replicate a
paper by Bosu [Bos12] in which he described how to reveal the community structure of a software
project based on version history, issue tracking, and mailing lists. We used his research plan and
performed a basic community structure study on the Groovy programming language project. For
the data retrieval we used MiningHub. In the second section, we examine four additional papers
and analyze the data that the respective authors used for their studies. For each paper, we then
show whether and how MiningHub would be able to retrieve the used data sets. The third section
is a roundup of the evaluation chapter.

5.1 Community Structures
In order to show that MiningHub can be used to retrieve data needed for studies, we conducted
a replication of a research plan by Bosu [Bos12]. In that paper, he explained an approach to mea-
sure the community structure of software projects by calculating an activity score for each mem-
ber. With that score, the community structure can then be analyzed. Bosu therefore mentioned
the hierarchical onion model as for example described by Crowston and Howison [CH05]. In the
center of the hierarchy there are the core developers who contribute the most part of the code
and are responsible for the project itself. The next outer ring is employed by the co-developers
who provide patches that are reviewed by core developers. In the next outer level are the active
users who do not provide code but file issues and test new releases. All other users are passive,
they do not contribute to neither the code nor discussion boards. The exact layers of the onion
model are not fixed, for example, Bosu [Bos12] defined them as core members, active developers,
peripheral developers, patch submitters, active users, and passive users. This differentiation is
obviously more exact than the one of Crowston and Howison [CH05]. Bosu argued that the ac-
tivity of the developers and users may vary considerably in each type of repository. For example,
a developer might provide a lot of code but is rarely active on discussion boards. So when we
want to reveal the overall community structure of a project, different aspects of activity have to
be considered. Bosu extended the onion model to include such variations and also more types
of users. However, he also mentioned that it is still uncertain how to determine the number of
users in each hierarchical level. He introduced the activity score to overcome this limitation. That
score is calculated for each member of an open source community as defined in (5.1). The total
score is summed up from a user’s relative activity in version control, bug tracking system, and
mailing lists for a single project. That formula also includes weights for each of the three types of
repository so that, for example, the importance of code changes could be emphasized by increas-
ing its weight. Bosu, though, noted that the values of the three weighting variables need to be
determined empirically. Our replication study did not try to find good weights but instead aimed

46 Chapter 5. Evaluation

to show that research in the field can be simplified with an automatic data retrieval approach. As
a result, for our study we simplified the equation for our needs as can be seen in (5.2). First, we
defined all the weights to be 1 so that they can be omitted. Secondly, we did not mine a mailing
list but instead used the questions and answers on Stack Overflow. So the equation to calculate
the activity score for people involved in a certain project is just the sum of the relative activity of
the users on GitHub, JIRA, and Stack Overflow.

Activity Score by Bosu = % of code commits ∗ code_commit_weight
+ % of mailing list posts ∗ mailing_post_weight (5.1)
+ % of interaction in bug repository ∗ bug_interaction_weight

Simplified Activity Score = % of code commits
+ % of discussion board posts (5.2)
+ % of interaction in bug repository

For the evaluation of MiningHub, we replicated the research plan of Bosu [Bos12]. In doing so,
our main goal was to show that the software repository mining step can be simplified consider-
ably by using MiningHub. This simplification allows to conduct studies based on the mined data
sets with less effort, and in the case of Bosu’s research plan, with just a few queries. So to find the
activity scores of developers and other users, we first had to select an open source project. As in
the context of this thesis, we already wrote extensive mining scripts for repositories on GitHub,
JIRA bug tracking, and questions on Stack Overflow (see Section 4.2), we wanted to use all three
of these mining scripts for this evaluation. Because of that, we used a project that is hosted on
GitHub, but does not use the included issue tracker. MiningHub itself was developed in the JVM-
based programming language Groovy. That project has large enough dimensions regarding, for
example, number of commits, developers, issues, and questions. And their users are active on
GitHub, JIRA, and Stack Overflow. Thus, we calculated the overall activity score for all the users
involved in the Groovy project.

The activity score (5.2) depends on the observed date range. For example, a core developer
of a project who was active up until five years ago could today still have a very large activity
score. Therefore, we limited the data that we used to analyze the community structure of the
Groovy project to the date range from December 1, 2012 to November 30, 2013. With a full year
of data, we calculated a very recent activity score of the users involved in the Groovy community.
Furthermore, each of the involved software repositories exposes data about several components
as described in Section 4.2. To calculate the activity score we did not need all of them, however. As
a result, we only included the most important repository components into our study. For GitHub,
we only used the commits as these represent work on the code, which is the main activity on
GitHub. Other components were ignored in this replication as they are either not important in
this context or are very small regarding the number of data sets they contain. For the JIRA issue
tracker, we used both, the issues and issue comments as these are very important contributions
to a software project. Regarding Stack Overflow, we took the contributions from questions and
answers into account. Comments to either questions or answers were ignored as they are often
only very short and as such do not represent a large contribution in a community. In addition,
we did not use the user component as both, questions and answers, already include enough
information about their respective authors.

Based on these data sets, we executed the research plan as described by Bosu [Bos12]. As a
first step, we used MiningHub and the three mining scripts for each GitHub, JIRA, and Stack
Overflow to retrieve repository data of the Groovy project. While mining scripts are very flexible
and we could have written new scripts to just retrieve the data sets that we actually needed and

5.1 Community Structures 47

only from the specified date interval, we used general-purpose mining scripts instead of updating
them. Reason being that we want to show that mining scripts that fetch almost all available data
can also be used for more basic tasks. So general-purpose mining scripts can also be used for very
specific data needs. The next step in this replication study was the matching of the individual
users between all three repositories. This step is needed as the users employ different accounts on
the different platforms and they have to be combined first. Based on that matching, we were then
able to merge and count the contributions of each user in the different repositories. The notion
of contribution was used for any activity of a user in one of the components that we looked at in
this study. As an example, a contribution might be one commit, one reported issue, or answering
one question. After matching different user accounts, we calculated the overall activity score of
each user involved in the Groovy project. With that score, we were then able to identify the most
active users on the whole project.

5.1.1 Data Retrieval
The Groovy project uses several different repositories for their development. Their version his-
tory is hosted on GitHub1, their bug tracking system is a JIRA installation at Codehaus2, and a lot
of questions about Groovy are asked on Stack Overflow3. For these three repositories, we have
already created mining scripts (see Section 4.2) that we thus used for the data retrieval step. Start-
ing the imports on MiningHub is straightforward: As described in Section 4.4, we only had to
paste the URL of a repository in the MiningHub Choose Repository form and select the proposed
mining script. In addition to an import name, the GitHub and Stack Overflow mining scripts also
require an API key to be filled in. For the Stack Overflow questions, we also added the specified
date range. After the parameter dialog, the imports could be started. In total, the creation of the
three import jobs on MiningHub, which occurred on Friday, December 13, 2013, took only about
five minutes. After creating them consecutively, the imports then ran in parallel on a server using
two workers (see Section 4.1 for the notion of workers). As the mined software repositories were
not that large, all import processes were successfully finished in less than one and a half hours,
as can be seen in Table 5.1. Retrieving Groovy related questions from Stack Overflow only took
69 minutes. Data imports from GitHub and JIRA both completed with almost the same running
time after approximately 80 minutes. As soon as an import has completed on MiningHub, the re-
trieved data sets can be download in the JSON file format. Table 5.1 also shows the file size which
is the uncompressed total size of all component files for each repository. MiningHub retrieved a
total of 112.7 MegaBytes (MB) from three repositories. The last row of the table shows the number
of components that the used mining scripts obtain from the different repositories (see Section 4.2).
And with that, the data retrieval step for the study replication has already been done.

Repository Mining duration File size #Components

GitHub 1 hour, 20 minutes, 10 seconds 35.4 MB 9

JIRA 1 hour, 19 minutes, 45 seconds 61.7 MB 2

Stack Overflow 1 hour, 08 minutes, 59 seconds 15.6 MB 5

Table 5.1: Duration of the mining process for each of the three Groovy repositories as well as the total file
size and the number of obtained components.

1https://github.com/groovy/groovy-core
2https://jira.codehaus.org/browse/GROOVY
3http://stackoverflow.com/questions/tagged/groovy

https://github.com/groovy/groovy-core
https://jira.codehaus.org/browse/GROOVY
http://stackoverflow.com/questions/tagged/groovy

48 Chapter 5. Evaluation

In comparison to the MiningHub approach, Bosu mentioned three different tools he intended
to use, each only capable of mining one of the three involved types of repository (version control,
bug tracking, mailing lists). For each of them, Bosu also noted some disadvantages like, for ex-
ample, being limited to a single service provider. He then mentioned that for each of the three
tools, to overcome their limitations, he planned to write some scripts. That shows that there is
a heterogeneous environment of applications available to mine software repositories. However,
researchers might still be forced to add new or extend existing functionality.

5.1.2 Data Preparation
To work with the imported data, we had to import it into a database engine and prepare it so that
we could work on it. We also removed some data items that we did not use or need.

Import. After downloading and extracting the compressed JSON files, we had to import them
into a database engine. As we have worked with MongoDB during developing MiningHub,
and the data sets are already in JSON, it is very straightforward to use MongoDB again. To im-
port JSON files into collections, there is already a command line utility called mongoimport that
comes with MongoDB. Its interface is called like mongoimport [parameters] -d DATABASE
-c COLLECTION JSON_FILE and Listing 5.1 shows how we used it to import the downloaded
files. As can seen by the --jsonArray parameter, we used two different import modes. The rea-
son is a limitation in mongoimport. When downloading JSON files from MiningHub, they look
like Listing 4.14 (page 36). The first line is an open square bracket ([) and the last line is a closing
bracket (]), everything in between is a list of objects (one object per line). Using the --jsonArray
parameter, it is possible to directly import a whole file as is into a collection. However, there is a
file size limit of 16 MB when using that parameter. As the commits.json and issues.json files were
sized 33.1 MB and 61.7 MB, respectively, this did not work for them. To import them anyway,
we used the default behavior of mongoimport, which reads each line of a file separately and
imports that line as a single entry into the specified collection. We had to remove the first and the
last line of the two mentioned files and imported the data with the commands on line 5 and 8 of
Listing 5.1. After the import step, we then had to prepare the data sets for our use case.

1 mongoimport --jsonArray -d evaluation -c so_answers ID_answers.json

2 mongoimport --jsonArray -d evaluation -c so_questions ID_questions.json

3
4 # delete first and last line before this step

5 mongoimport -d evaluation -c gh_commits ID_commits.json

6
7 # delete first and last line before this step

8 mongoimport -d evaluation -c jr_issues ID_issues.json

Listing 5.1: Import JSON files into MongoDB collections.

Date Format. We were only working on data from a twelve month time frame. While the min-
ing script for Stack Overflow already allows to specify a time frame, those for GitHub and JIRA
do not. Because of that, we had to remove items from the mined data which had a date either
before our date range, or after that range. After importing the data sets into MongoDB, the dates

5.1 Community Structures 49

are stored as plain strings with which we cannot make comparisons. So first, we had to transform
the string dates to real date objects so that they were comparable. Listing 5.2 shows the approach
that we used to change the date format for all the involved collections. The listing actually shows
JavaScript code that runs on the MongoDB shell. So to adjust the date format, we let MongoDB
loop through a collection, changed the string dates to date objects, and wrote them back to the
database. This step was then repeated for all the collections that contained entries which lay
outside of our date range.

1 db.COLLECTIONNAME.find().forEach(function(doc) {

2 doc.PATH.TO.DATE = new Date(doc.PATH.TO.DATE);

3 db.COLLECTIONNAME.save(doc);

4 });

Listing 5.2: Change string dates to real date objects.

Remove Unneeded Data. We have limited the data that we used to the twelve month range
from December 1, 2012 to November 30, 2013. To also reflect that on our data set, we had to re-
move commits and issues which were created before or after that period. The components of Stack
Overflow in contrast were already in that date range because we specified it accordingly when
creating the import job on MiningHub. So Listing 5.3 only removes data mined from GitHub and
JIRA. To understand said listing properly, it is important to know that new Date() using three
parameters as we did has a special notion of month. Namely, months are zero-indexed as op-
posed to the one-index we are used to. That means that new Date(2013,10,30) is November
30, 2013, and not October 30. In addition to the removal of entries that are not in the date range,
we also deleted a total number of four commits which did not have a committer and/or not
have an author value, but just a null value. Such null values are most probably caused by
GitHub users that deleted their account.

1 db.gh_commits.remove({"commit.author.date": {$gt: new Date(2013,10,30)}});

2 db.gh_commits.remove({"commit.author.date": {$lt: new Date(2012,11,1)}});

3 db.gh_commits.remove({"commit.committer.date": {$gt: new Date(2013,10,30)}});

4 db.gh_commits.remove({"commit.committer.date": {$lt: new Date(2012,11,1)}});

5 db.jr_issues.remove({"fields.created": {$gt: new Date(2013,10,30)}});

6 db.jr_issues.remove({"fields.created": {$lt: new Date(2012,11,1)}});

Listing 5.3: Remove entries from collections that are not in the specified date range.

Statistics. After having performed the cleaning process as described above, we present some
statistics about the mined data; in each case before and after the data cleaning. The MiningHub
import overview shows the number of mined items for every component so that in most cases,
we could just take these numbers. For components that contained more entries than specified by
the date range and thus were reduced, we used the MongoDB function db.COLLECTIONNAME
.count() to count the number of documents in a collection. For each of the three tables men-
tioned in this paragraph, the columns are the same: (1) the names of the components, (2) the

50 Chapter 5. Evaluation

number of items per component before removing any data, and (3) the number of items per com-
ponent after cleaning the data set.

Component Number of items After cleaning

Commits 9,553 975

Commit comments 41 -

Issue comments 652 -

Branches 13 -

Tags 117 -

Forks 185 -

Table 5.2: Number of items per component of the Groovy project on GitHub.

For GitHub, Table 5.2 shows the number of items that were retrieved by MiningHub. The number
of issues, milestones, and releases are all zero and are therefore omitted. The component issue
comments can be non-zero even when the project does not use issue tracking system of GitHub.
Reason being that comments to pull requests are also counted as issue comments. By removing
all commits that were pushed before December, 2012 or after November, 2013, the number was
decreased to 975 commits. All other components mined by the used mining script are omitted for
this study which is denoted by a dash (-) in the third column of the table.

1 db.jr_issues.aggregate([{

2 $group: {

3 _id: null,

4 total: {$sum: "$fields.comment.total"}

5 }

6 }]);

Listing 5.4: Count total number of nested issue comments.

For JIRA, the way of counting the number of issue comments was different. The corresponding
mining scripts retrieves only the components project and issues. Comments themselves are not in
their own component but nested in the issues because the JIRA API returns issues including all
of their comments. So to count the nested comments, we used the MongoDB query in Listing 5.4.
This query reads the number of comments stored in the field fields.comment.total of each
issue and then aggregates them by summing up the individual values. The total number of issues
and issue comments can be found in Table 5.3. In total, we worked with 622 issues and 1,314 issue
comments in our study.

The data we mined from Stack Overflow did not need any removals as the date range was already
obeyed in the retrieval process. The total number of items can be found in Table 5.4 that also
depicts that we used only questions and answers for our study. It must be pointed out that
while the user component itself was omitted, we still used the user data for the matching process.
However, the questions and answers themselves already included all the user information that

5.1 Community Structures 51

we relied on. In total, we used 2,196 questions and 2,683 answers for calculating the activity score
of each individual user.

Component Number of items After cleaning

Issues 6,220 622

Issue comments 18,891 1,314

Table 5.3: Number of items per component of the Groovy project on the JIRA instance.

Component Number of items After cleaning

Questions 2,196 2,196

Question comments 2,778 -

Answers 2,683 2,683

Answer comments 3,687 -

Users 2,322 -

Table 5.4: Number of items per component for questions tagged with Groovy on Stack Overflow.

5.1.3 Community Structure per Repository
Before we calculated the activity score over all three repositories that are used by the Groovy
project, we examined each of them on its own. This way, we found the top contributors of each of
the repositories, namely version control at GitHub, issue tracking with JIRA, and help board on
Stack Overflow.

GitHub. To change code on GitHub, the developers commit their changes to the version control
system named Git4. In the observed date range, there are a total of 975 such commits as can
be found in Table 5.2. However, there is one important distinction regarding commits: A single
commit can be issued by one or two different developers. The intuition behind this is that the
author (i.e. the person who changed the code) is not necessarily the committer (i.e. the person
who added the change to the project). An example of such a situation are pull requests. When
a developer who does not have write access to a project wants to change the code anyway, he
can fork the project, make his changes and issue a pull request. As a result, that developer is the
author of the commit. But before the change is actually added to the project, someone with write
privileges has to review the change and commit it. So the reviewer is the committer. We reflected
this distinction when calculating the activity score. A developer committing his own changes was
counted as one contribution. On the contrary, a commit that has different author and committer
was counted as one contribution per developer as both coding and reviewing changes takes a
certain amount of time. So to count the number of contributions for each developer, we looped

4http://git-scm.com

http://git-scm.com

52 Chapter 5. Evaluation

through all the commits and added the users to a new collection as can be seen at line 1 to 15 in
Listing 5.5. Thereby we stored a new document for each contribution and made the distinction
between one and two person commits. We did that by simply storing a type key whose value
is either author, committer, or both. Incorporating this distinction led to a total number of 996
contributions compared to 975 commits to the version history of Groovy.

1 db.gh_commits.find().forEach(function(doc) {

2 var user = {}

3 if (doc.committer.login == doc.author.login) {

4 user.user = doc.committer.login

5 user.type = "both"

6 db.gh_commits_users.insert(user);

7 } else {

8 user.user = doc.author.login

9 user.type = "author"

10 db.gh_commits_users.insert(user);

11 user.user = doc.committer.login

12 user.type = "committer"

13 db.gh_commits_users.insert(user);

14 }

15 });

16
17 db.gh_commits_users.aggregate({

18 $group: {

19 _id: "$user",

20 sum: {$sum: 1}

21 }

22 }, {

23 $sort: {sum: -1}

24 });

Listing 5.5: Create a new collection for all users involved in commits, and then perform an aggregation to
count the number of contributions per user.

After having created the new commit contributors collection, we wanted to aggregate its data. We
did so by use of the aggregate function in MongoDB as can be seen at line 17 to 24 in Listing 5.5.
This query calculates the total number of contributions for each developer and sorts it accordingly.
To also calculate the contributions where a person was committer or author only, the query can
be extended by adding the match parameter $match:{type:"author"} to the aggregate()
function. The result of this aggregation can be found in Table 5.5 that shows the top ten code
contributors of the Groovy project. It is obvious that, at least in the top ten, commits with different
author and committer are not numerous. However, we still think that this distinction was and is
important and should be done especially when a larger date range is taken into account for the
study. Irrespective of that, the table shows that in the specified date range, there are not more
than about eight developers (depending on the definition) that repeatedly make changes to the
code. One can also see that about five committers appear to be core developers (again, depending
on the definition).

5.1 Community Structures 53

User Author and committer Author only Committer only Total

paulk-asert 217 - 8 225

melix 206 1 10 217

PascalSchumacher 196 3 1 200

blackdrag 105 - 1 106

tkruse 93 - - 93

andresteingress 38 6 - 44

glaforge 30 - - 30

timyates 23 - - 23

aalmiray 2 5 - 7

bura 6 1 - 7

Table 5.5: Top ten committers to the Groovy GitHub repository.

JIRA. When a bug description or a feature request is filed in an issue tracking system, many
times there are also written comments with questions, more information, or attachments to these
issues. As the comments often help resolving issues, we counted both the creation of issues and
the writing of comments as one contribution each. Therefore, the total contribution by a user
is the sum of his created issues and his written comments. To calculate the top contributors to
the Groovy issue tracking system, we used queries similar to the ones in Listing 5.5. Again, we
created a new collection that for each contribution contained the user name and the type which
is either reporter or commenter. To do that, we looped through all issues, added the reporters, and
then iterated through the nested issue comments and also added the commenters. After creating
the new collection, finding the top ten contributors was straightforward and very similar to the
second query in Listing 5.5. The results of this aggregation can be found in Table 5.6. As before,
the number of contributions in the top ten were diverging, from lowest of 29 to the highest of 295.
That is a large difference, especially when also considering the total number of contributors which
was 243 people. When comparing Table 5.5 and Table 5.6, we could already see by looking at the
user names that at least six developers were in the top ten of code committers and also in the top
ten of issue tracking activity. In addition, the top four users were the same in both repositories,
even when they were not in the same order. So we expected all of them to also be at least in the
top ten of the overall activity score.

Stack Overflow. For Stack Overflow we only took questions and answers into consideration for
simplicity. We omitted comments to questions or answers. When observing the top contributors
to questions and answers tagged as Groovy, we found that there is no overlap between the top
ten questioners and top ten answerers. The reason for this is that Groovy beginners are asking a
lot of questions at the beginning of the learning process. On the other side, experienced Groovy
developers can answer many questions based on their knowledge but themselves do not ask
many questions as they know how to help themselves. The data aggregation in this case was
very straightforward as we could directly use the so_questions collection we already had and
group by the key owner.display_name. Same thing worked for the so_answers collection.
We list the top five questioners in Table 5.7 and the top five answerers in Table 5.8. It is remarkable
how large the difference between the top contributor (user tim_yates) and the second most active

54 Chapter 5. Evaluation

User Reporter Commenter Total

paulk 37 258 295

melix 54 166 220

blackdrag 16 191 207

pschumacher 32 140 172

asteingress 6 47 53

lhotari 11 33 44

guillaume 6 32 38

tim_yates 11 22 33

mxm 17 13 30

pniederw 11 18 29

Table 5.6: Top ten contributors to the Groovy bug tracking system (JIRA).

User Questions

Anthony 16

Himanshu Yadav 16

Clinton 15

user1170330 15

birdy 13

Table 5.7: Top five questioners of questions
tagged with Groovy on Stack Overflow.

User Answers

tim_yates 418

dmahapatro 173

Will P 104

Peter Niederwieser 75

ataylor 61

Table 5.8: Top five answerers of questions
tagged with Groovy on Stack Overflow.

contributor (user dmahapatro) was. Furthermore, it is interesting to note that just based on the user
names, tim_yates seems to be the only contributor that was in the top ten of each GitHub and JIRA
as well as in the top five on Stack Overflow. As a result, said developer is definitely in the top ten
users ranked according to their activity score in all three repositories.

5.1.4 Matching Users
The activity score by Bosu included the activity of developers on each of code version control, is-
sue tracking, and discussion boards. To properly calculate that score, the users had to be matched
between the three different platforms first. This is obviously a requirement for the activity score
calculation, but a non-trivial task as the people often use several varying user names which might
be similar or completely different. To still being able to match at least some of the users, we used
their email addresses to uniquely identify them. This is possible as both GitHub and JIRA include
their user’s email addresses in the API responses, Stack Overflow at least provides the message di-
gest 5 (MD5) hash of the addresses. As a result, we could match the users even when their names
are completely different but they at least used the same email address on two or more platforms.

5.1 Community Structures 55

In addition to the email address, we also matched users that have the exact same user name on
different platforms or a name which is very similar. For the latter, we used the Levenshtein dis-
tance measurement [Lev66]. Before we go ahead with the actual matching description, we show
some basic statistics that can be found in Table 5.9. This table gives a résumé over the number
of contributions and contributors for all three of the mined software repositories. The number
of contributions was calculated by using a count() query on a collection. The number of con-
tributors in contrast, was calculated on the temporary collections we created in Section 5.1.3 by
a query using distinct("name").length, which returns each user name only once and then
counts them. The number of contributions was later used to calculate the relative activity for a
user on each repository. But also the numbers of contributors are interesting. They show that few
people are working on the code of Groovy, more people are involved in reporting and comment-
ing bugs or feature requests, and a lot of people are asking or answering questions regarding the
use of Groovy. We believe that this kind of distribution between different types of repositories are
similar for many open source software projects.

Repository Number of contributions Number of contributors

GitHub 996 32

JIRA 1,936 243

Stack Overflow 4,879 2,000

Table 5.9: Total number of contributions and contributors for each repository.

In order to match different user accounts, we first created a collection of accounts that con-
tributed to Groovy on Stack Overflow as the number of users in this community was the largest
of the analyzed Groovy repositories. The query we used for that can be found in Listing 5.6. As
can be seen in that query, we tried to extract parts of the profile_image field. This is because
most users of Stack Overflow that are represented in our data set have an avatar that is linked to
Gravatar5 with a URL that contains the hashed email address (e.g. https://gravatar.com/
avatar/HASH). However, some users have their avatars linked to Imgur6 with a URL that only
contains a short ID instead of a hash (e.g. http://i.stack.imgur.com/ID.jpg). We could
not compare email address hashes to this ID. There were also some users that did not have any
profile image at all. So to prepare user matching, we tried to extract the hash that is used for
Gravatar URLs. Therefore, we had to check whether the profile_image was defined at all. If it
was, we tried to extract the hashed email address from the image URL using a regular expression.
Then we inserted the display_name into the collection as document key so that no duplicate
values occured. We also directly added the number of contributions of a user on Stack Overflow.
This was done with the MongoDB upsert functionality that either inserted a new entry with a
contribution of one or updated a matching entry and increased the number of contributions by
one. As the query in Listing 5.6 only ran on Stack Overflow questions, we had to run the same
query against the answers collection as well. After the execution of these two queries, we had a
new collection containing a list of unique contributing Stack Overflow users including their dis-
play name (_id), an MD5 hash of their email address (so_hash, if given), and the number of
their help board contributions (so_contributions).

After having created a user collection based on Stack Overflow accounts, we also added users
from the JIRA data set. But first, we created another new collection which contained all unique

5Avatar hosting service: http://gravatar.com
6Image hosting service: http://imgur.com

https://gravatar.com/avatar/HASH
https://gravatar.com/avatar/HASH
http://i.stack.imgur.com/ID.jpg
http://gravatar.com
http://imgur.com

56 Chapter 5. Evaluation

1 db.so_questions.find().forEach(function(doc) {

2 var match = doc.owner.profile_image

3 ? doc.owner.profile_image.match(/.*avatar\/([^\?]*)/)

4 : null;

5 db.users.update(

6 {_id: doc.owner.display_name},

7 {

8 $setOnInsert: {

9 so_hash: match ? match[1] : null,

10 },

11 $inc: {so_contributions: 1}

12 },

13 {upsert: true}

14);

15 });

Listing 5.6: Query to create a new collection of Stack Overflow users.

accounts that contributed to issues. The corresponding query can be found in Listing 5.7. It
iterated through all issues and added the reporter to the collection, then it did the same for every
issue comment. To avoid duplicate users, we again used the MongoDB _idwhich must be unique
in every collection. By iterating through the users, we also added their email addresses and
summed up their contributions to the Groovy project. We did so by again using the upsert
functionality provided by MongoDB. After executing that query to generate a list of unique JIRA
users, we tried to match them with the collection of Stack Overflow accounts. Listing 5.8 shows
the query that we were using for that. Users matched when they have got the same nick name or
the email address from the JIRA account matches the MD5 hash (see hex_md5() on line 4) of the
address stored at Stack Overflow. Using this approach, we were able to combine 39 user accounts.
When we tried to match more accounts using the Levenshtein distance measurement [Lev66], we
were noticing that there were already a lot of false positives using the smallest possible distance
of one. By manually looking through the proposed duplicate users, we were also unable to find
true obvious matches. Consequentially, we did not use the Levenshtein distance measurement
anymore in further matching processes. That approach might help to find possible matches, but
the rate of false positives can be very large. In our opinion, that measurement is not accurate
enough to match user names which are often short and therefore also very similar. So for this
study we continued matching users by identical display name or email address only. The matches
that we found, were then merged with their respective account and extended by name, email
address, and number of contributions on JIRA. After that, we added all other JIRA users that did
not match anything to the users collection as well. The query for this can be found in Listing 5.9.
It simply looped through all user names from JIRA and checked whether the users collection
already contains such an account. If it did not, it was inserted with all the information we needed
later for calculating the activity score.

The matching process for users from GitHub was very similar. There was one very important
difference, though: When a user commits a change using Git, his account details are attached
to the commit. As these account details are taken from a local configuration file, they do not
necessarily reflect the details stored on GitHub about that user. That also means that the local
configuration can be changed effortlessly. As a result, there were commits from the same user
but with different email addresses. Consequentially, we had more user data available when a

5.1 Community Structures 57

1 db.jr_issues.find().forEach(function(doc) {

2 db.jr_users.update(

3 {_id: doc.fields.reporter.name},

4 {

5 $setOnInsert:{

6 displayname:doc.fields.reporter.displayName,

7 email:doc.fields.reporter.emailAddress

8 },

9 $inc: {contributions:1}

10 },

11 {upsert: true}

12);

13 doc.fields.comment.comments.forEach(function(comment) {

14 db.jr_users.update(

15 {_id: comment.author.name},

16 {

17 $setOnInsert:{

18 displayname:comment.author.displayName,

19 email:comment.author.emailAddress

20 },

21 $inc: {contributions:1}

22 },

23 {upsert: true}

24);

25 });

26 });

Listing 5.7: Create collection of unique JIRA accounts.

developer changed his local email address. So to utilize that information, we had to collect all the
email addresses used in commits for each user. We again created a new collection of unique users
similar to Listing 5.7. However, instead of $setOnInsert we used $addToSet for the email
addresses. This way we created a list of unique addresses for each user account. That procedure
was repeated on every commit for every author and committer. Thereby we also summed up
the contributions where we counted a commit with identical author and committer as one con-
tribution only. The exact query we used for creating that collection can be found in Listing B.1
in the appendix. As after that we had a list of unique accounts from GitHub users involved in
the Groovy project, we could match them to the users collection. As before, this was done by
matching email addresses and user names as in Listing 5.8. The difference that time was that we
also looped through all the email addresses of each users and tried to match them. Found matches
were then extended by the user account from GitHub including the number of contributions. The
complete query that performed this process can be found in Listing B.2 in the appendix. By com-
paring the users’ names and their email addresses, a total of 29 GitHub accounts were merged
with entries in the users collection. As final step, we repeated the query in Listing 5.9 to add
the remaining users. But that time on the gh_users collection to ensure that there were all un-
matched accounts stored in users as well.

After this procedure, we had finished matching the user accounts of the three different repos-
itories GitHub, JIRA, and Stack Overflow. In that matching process, a total of 2,275 user accounts

58 Chapter 5. Evaluation

1 db.jr_users.find().forEach(function(doc) {

2 db.users.update({$or: [

3 {_id:doc._id},

4 {so_hash: hex_md5(doc.email)}

5]},

6 {

7 $set:{

8 jr_name:doc._id,

9 jr_email:doc.email,

10 jr_contributions:doc.contributions

11 }

12 });

13 });

Listing 5.8: Match JIRA accounts to Stack Overflow users.

1 db.jr_users.find().forEach(function(doc) {

2 if (db.users.find({jr_name:doc._id}).count() == 0) {

3 db.users.insert({

4 jr_name:doc._id,

5 jr_email:doc.emails,

6 jr_contributions:doc.contributions

7 });

8 }

9 });

Listing 5.9: Insert all JIRA accounts that were not matched into the user collection.

from three different sources were merged to 2,218 accounts. While this is not a large reduction,
keep in mind that our matching process was very basic and only merged obvious duplicate ac-
counts. And still, almost all accounts from GitHub could be matched with the ones from JIRA
and/or Stack Overflow. The process as is could definitely be improved for more advanced stud-
ies, though. More elaborate matching algorithms as well as manual work would certainly increase
the matching rate if needed.

5.1.5 Overall Community Structure
After having performed the account matching, we had a collection containing a list of 2,218
unique users including their user names and number of contributions from three different repos-
itories. When looking at the top contributors by the total number of activities, we noticed that
there were two obvious duplicates which were not found by our automatic user matching ap-
proach, though. We combined them manually. We also found a user that apparently had two user
accounts on JIRA. We combined that user and summed up his contributions manually. After these
changes, the total number of users was 2,215. Overall, we were able to merge 31 of 32 GitHub
users to other accounts. So for the GitHub data sets we used, even our naive matching approach
worked very good. After having cleaned parts of the user data, we wanted to calculate the overall
activity score for each individual account. For that, we used the equation defined in (5.2), which

5.1 Community Structures 59

calculates the sum of the relative activity on each repository on its own. As we already had the
absolute number of contributions for each user, we just had to compute the relative activity and
then sum them up. We used the query in Listing 5.10 for this calculation. First, the relative ac-
tivity for each user on all the repositories was computed and stored in the activity map. The
numerical divisors on line 3-5 represent the total number of contributions in the corresponding
repository as shown in Table 5.9. Then, the individual scores were summed up to the overall
activity score and that value was stored to the database.

1 db.users.find().forEach(function(doc) {

2 doc.activity = {

3 gh: (doc.gh_contributions ? doc.gh_contributions / 996 : 0),

4 jr: (doc.jr_contributions ? doc.jr_contributions / 1936 : 0),

5 so: (doc.so_contributions ? doc.so_contributions / 4879 : 0)

6 };

7 doc.activity.overall = doc.activity.gh + doc.activity.jr + doc.activity.so;

8 db.users.save(doc);

9 });

Listing 5.10: Calculate the overall activity score for each user account.

After that processing, all data that we needed was stored in the users collection and we could
analyze it. As already mentioned, we observed the overall top contributors to the Groovy project
on GitHub, JIRA, and Stack Overflow. The only thing left to do was to query users from the col-
lection and sort them after the overall activity score using sort("activity.overall":-1).
The top 15 contributors found by that query can be seen in Table 5.10 that, in its main columns,
shows the results for GitHub, JIRA, Stack Overflow and then the overall activity score. The rows
each represent a single user that was merged from different accounts (if a match was found). Ac-
counts that were not matched between the different repositories (i.e. we did not find the matching
account or it does not exist) are denoted by a question mark (?). The columns below repository
types are separated between user name as well as absolute (#) and relative (%) contribution on
that repository. The fourth column, the overall activity score, is the sum of the individual relative
contribution scores. On JIRA, the accounts asteingress and andre.steingress appear to belong to the
same person and as such were consolidated to a single user. As a result, we have found the overall
most active users involved in the Groovy project.

5.1.6 Discussion
After we calculated the top contributors to the Groovy project, we present a short discussion of
the results and threats to their validity. And more importantly, we also compare the data retrieval
step to the approach proposed by Bosu [Bos12] in more depth.

Results. Table 5.10 shows the overall top contributors of the Groovy project. The largest activity
score of about 0.378 was achieved by user paulk-asert. He had large scores of 0.226 and 0.152
on GitHub and JIRA, respectively. On Stack Overflow he was not very active in the observed
date range, though. Overall, a large portion of the top contributing people on the individual
repositories (see Tables 5.5, 5.6, and 5.8) were also represented in the top 15 of the summed activity
scores. Namely, nine of the top ten contributors on GitHub, all of the top ten from JIRA, and four
of the top five users from Stack Overflow. Furthermore, it is important to note that while we did

60 Chapter 5. Evaluation

G
itH

ub
JIR

A
Stack

O
verflow

O
verall

U
ser

C
ontributions

U
ser

C
ontributions

U
ser

C
ontributions

A
ctivity

score

#
%

#
%

#
%

paulk-asert
225

0.22590
paulk

295
0.15238

PaulK
ing

1
0.00020

0.37848

m
elix

217
0.21787

m
elix

220
0.11364

m
elix

5
0.00102

0.33253

PascalSchum
acher

200
0.20080

pschum
acher

172
0.08884

?
0.28965

blackdrag
106

0.10643
blackdrag

207
0.10692

blackdrag
17

0.00348
0.21683

tim
yates

23
0.02309

tim
_yates

33
0.01705

tim
_yates

418
0.08567

0.12581

tkruse
93

0.09337
tkruse

24
0.01240

?
0.10577

andresteingress
44

0.04418
asteingress
andre.steingress

68
0.03512

A
ndre

Steingress
2

0.00041
0.07971

glaforge
30

0.03012
guillaum

e
38

0.01963
?

0.04975

?
?

dm
ahapatro

173
0.03546

0.03546

pniederw
2

0.00201
pniederw

29
0.01498

Peter
N

iederw
ieser

75
0.01537

0.03236

?
lhotari

44
0.02273

FlareC
oder

1
0.00020

0.02293

?
?

W
illP

104
0.02132

0.02132

?
m

xm
30

0.01550
?

0.01550

aalm
iray

7
0.00703

aalm
iray

10
0.00517

aalm
iray

12
0.00246

0.01465

?
russel

28
0.01446

?
0.01446

Table
5.10:

Top
15

contributors
to

the
G

roovy
projecton

G
itH

ub,JIR
A

,and
S

tack
O

verflow
.

5.1 Community Structures 61

not use any weighting mechanism as in (5.1), contributions to the code were worth more to the
overall score than activity on the other repositories. In our case, this was caused by the different
absolute numbers of contributions (see Table 5.9). For example, one commit on GitHub added a
larger contribution to the overall activity score then a Stack Overflow answer. Reason being that
the relative activity is higher when the total number of contributions is lower. As a conclusion of
Table 5.10 and the calculated activity scores, one can say that in the case of the Groovy project most
users that were very active on one repository were also active on the others. This is especially true
for the code repository and issue tracking, but not that much for the help board at Stack Overflow.
Our study using a naive user matching approach indicates that especially the lead developers of
Groovy are not very active on Stack Overflow.

Mining Software Repositories. When calculating the overall activity scores of members of the
Groovy community, we followed the research plan of Bosu [Bos12]. One important difference,
though, was the way we retrieved data from the different repositories. In our study, we used our
novel approach with mining scripts that were executed on the MiningHub platform as described
in Section 5.1.1 (page 47). On the other hand, Bosu explained his approach of mining software
repositories in his research plan relatively extensively. He started by presenting CVSAnalY7 that
is a tool to mine source code repository logs and store the extracted information into a database.
In spite of its name, CVSAnalY is also capable of mining version control systems other than just
CVS. For mining bug trackers, Bosu recommended using Bicho8. Bicho is a command line tool
that parses the issues in a corresponding repository and stores them locally. Back when Bosu
wrote his research plan, Bicho was able to handle three different types of bug tracking systems.
For mining mailing lists, Bosu planned to use a tool called Mailing List Stats9 (or short, MLStats).
Based on a given mailing list, MLStats can download the emails and then create a database by
extracting the information contained in these discussions. Bosu also noted that each of these tools
has limitations, for example they can only mine one or a very limited number of repositories. To
overcome these limitations and to extend the functionality of the tools, he planned to write scripts
for each of them to be able to retrieve the data that he wanted. While in the meantime all of these
tools might have been improved gradually, some limitations still apply. Before being able to start
to mine software repositories, each of these tools has to be downloaded and installed. For each,
the documentation (if available) has to be read and it is required to understand how the tool actu-
ally works. They also have to be configured according to one’s needs and it is necessary to make
sure that they run properly on the used computer. In the case of Bosu’s research plan, all the men-
tioned tools are at least capable of writing their data into a relational database so the data format
is probably similar. However, when using other tools, there might also be varying data formats a
researcher has to deal with. As a result, before actually being able to start with the study work, re-
searchers have to handle (and maybe even extend) different tools that might be complicated and
produce data sets in different file formats. In contrast to that, getting started with MiningHub is
very straightforward. There is no need to install any tool as MiningHub works as a web service in
the browser. There are also no configuration settings, as the complete behavior is defined in min-
ing scripts. So as long as there is a suitable mining script available for a given task, it is possible to
start mining repositories right away. A researcher just has to fill in some parameters and then the
process runs autonomously in the background. The already existing mining scripts cover popu-
lar types of repositories, like GitHub, JIRA, and Stack Overflow. And when a researcher wants
to mine some other repository, it is possible to write further mining scripts, which is relatively
easy and well documented in this thesis. It is important to note that mining scripts have no logic,
they are just key/value pairs that store the information that MiningHub needs to know how to

7http://metricsgrimoire.github.io/CVSAnalY/
8http://metricsgrimoire.github.io/Bicho/
9http://metricsgrimoire.github.io/MailingListStats/

http://metricsgrimoire.github.io/CVSAnalY/
http://metricsgrimoire.github.io/Bicho/
http://metricsgrimoire.github.io/MailingListStats/

62 Chapter 5. Evaluation

retrieve data from an API (e.g. the URLs to request the specified components). They do not have
to handle HTTP requests, timeouts, errors, logging, databases and so on. Additionally, new min-
ing scripts can be reused and even extended by other researchers. In this study, we have also
shown that the starting process of data retrieval jobs on MiningHub is straightforward and only
takes few minutes, as can be seen in Section 5.1.1. And as soon as a mining process completed, all
the retrieved data sets can be downloaded in the JSON file format. The files can be imported in
a database that supports nesting, such as MongoDB. Using MongoDB commands, it is also very
simple to export to other file formats, for example to CSV. The downloaded files are structured in
the exact same way as the utilized API exposes its data. So if somebody is already familiar with
that API, the result of MiningHub are especially user-friendly to work with. MiningHub, thus,
can simplify the whole mining software repository process. As a result, a researcher can focus on
his study instead of setting up different mining tools on his computer. Creating mining jobs takes
only some minutes and everything else is done by MiningHub. The researchers then just have to
download the requested data sets and start doing the real work.

Threats to Validity. We conducted a basic replication study on the activity scores of people
involved in the Groovy community. For that purpose, we only took commits, issues, issue com-
ments, questions, and answers into account. There would be more information available that we
could have used, for example question comments, comments on pull requests and so on. Re-
garding the observed date range, we only used one year of data, namely activity from December,
2012 to November, 2013. Depending on what exactly a study wants to show, this period might be
too short or too long. Furthermore, our user matching process was very basic. We only merged
accounts when their nick names or email addresses were identical. There would have been more
data available to use, for example the name part of the email address or full names if given. Also,
more manual work would have improved the matching. As a result, our merging procedure has
definitely not found all existing account matches. Another threat could be the missing consid-
eration of weights. We omitted them for simplicity and because of the need to estimate them
empirically first. By including weights, the results could look differently, though. Weights could
even be used to differentiate between the activities on a single repository, for example between
issue reporting and issue commenting. It should also be noted that there are no reference results
we could use to compare with our outcome.

5.2 Repository Mining
In Section 5.1, we have shown that MiningHub can be used to simplify the error prone first step of
some repository mining processes. We did that by completely replicating a research plan by Bosu
[Bos12]. In this section, we show other use cases for which MiningHub might be an advantage
over other repository mining approaches. We do so by looking at four different research papers
and elaborate on their data need and, if explained, also their mining process. If possible or needed,
we explain how mining scripts have to be changed or extended to replicate a corresponding data
retrieval step. However, in this section we only describe the approach that we would take to
mine software repositories using MiningHub. We did not actually perform that step, though.
Additionally, we also show some limitations in the use of MiningHub for repository mining.

5.2.1 GHTorrent
In the paper about GHTorrent [GS12], Gousios and Spinellis described their approach of a mirror
of data produced on and with GitHub. To create such a mirror, GHTorrent relies on the GitHub
event API, which is a publicly available list of recent events that occurred on GitHub and can be

5.2 Repository Mining 63

found on https://api.github.com/events. That list contains the latest 30 events, includ-
ing the creation of commits, issues, comments, wiki pages, releases, forks, downloads, and so
on. Using a paging mechanism, it is possible to retrieve the 300 latest events in total. As there
are dozens of events occurring in a short time frame, that API has to be read very regularly to
avoid missing data. Gousios and Spinellis found that a rate of about 450 requests per hour is
adequate to keep up with the event stream of GitHub. Based on the retrieved events, GHTorrent
can then crawl the repositories that were represented in the event stream more deeply. When
that paper was published, the authors did that for commits and watch events. In the meantime,
there are probably more event types that are followed. After the data has been mined from the
software repositories, it is made available to other researchers as monthly snapshots. As a result,
GHTorrent offers evolutionary information about software projects.

Contrary to GHTorrent, MiningHub is not meant for large-scale repository mining. Min-
ingHub works well for single projects, of which researchers only need a snapshot of data to
work with. Furthermore, MiningHub currently does not support temporal constraints in a min-
ing script. So if one wants to replicate at least parts of the GHTorrent functionality, a slight re-
configuration and some tricks with mining scripts are needed. To avoid missing data of the event
stream, MiningHub would have to be configured with a lower waiting time between consecutive
requests. Currently, this configuration can only be done globally and only by the administrator
of the MiningHub installation. A mining script that retrieves events from the stream could look
like Listing 5.11. It retrieves events from the stream URL and stores them to the database with
the event id as primary key so that no duplicates will be stored. Using the argumentRotation
functionality, we ensure that the stream is requested multiple times. For that, we store an argu-
ment called incrementor with a starting value of 1 but it is not used in the URL as an argument.
It just ensures that MiningHub thinks it requests several different API results. The event stream
then is regularly retrieved until the stop condition (starting on line 9) is true. We set that con-
dition to be true if the key of the result is false. However, as the events API returns a list, we
cannot extract a key from it so that the complete list is used as value and, as a result, the condition
is never true. With these additions to a mining script, we allow MiningHub to retrieve events
forever. As a result, it is—at least in theory—possible to replicate the event stream mirroring of
GHTorrent. With our approach several limitations apply of which the data download capabilities
are the most severe. Normally, data can only be downloaded from an import if it has completed
or it was stopped. As a never-stopping import does not allow us to download any data, we would
have to stop it temporarily. But by doing so we risk the loss of events from the GitHub stream
as MiningHub does not request them while being stopped. Furthermore, every time we wanted
to download the latest events, we would have to download the whole data set again. There is
no way to download only weekly or monthly dumps instead. A further limitation is the back-off
mechanism used by MiningHub to avoid flooding of an API with requests when there is a tem-
porary problem. Would a back-off condition be met, further requests to the GitHub API would
stop for a certain amount of time. During that back-off period new events cannot be tracked
and would be lost, though. So as a conclusion, there is currently no practical way of completely
replicating the functionality of GHTorrent with MiningHub.

5.2.2 Innovation Diffusion Through Link Sharing
On the questions and answers platform Stack Overflow, there are a lot of links shared every day.
Gomez et al. [GCS13] wanted to analyze and categorize the types of these links. To do that, they
used the data set provided by the MSR 2013 Mining Challenge [Bac13], which is based on the
official Stack Exchange dump from August 2012. Gomez et al. then extracted all the clickable
URLs from the questions and answers in that data set. In total, they found 1,999,026 unique links
and 4,197,085 total link citations. As the authors wanted to manually observe linked websites,

https://api.github.com/events

64 Chapter 5. Evaluation

1 components:

2 events:

3 primaryKey: id

4 call:

5 - url: "https://api.github.com/events?page=1"

6 argumentRotation:

7 name: incrementor

8 start: 1

9 stop:

10 key: key

11 isset: false

Listing 5.11: Component for events of a mining script to retrieve GitHub events.

they extracted a random sample of 1000 links and categorized them by type. They found that
of the sample, a total of 185 (18%) links just redirected to a 404 page not found error. Apart from
that, the most linked website types were official documentations with a total of 153 links. Blog
posts (135 links) and product or project websites (129 links) were second and third most shared
website types, respectively. Besides further statistics, they also extracted the number of shares
of each domain on the full data set. The top five domains of most shared links on Stack Over-
flow were stackoverflow.com itself, microsoft.com, wikipedia.org, google.com, and
github.com.

When trying to replicate the data retrieval step of the paper by Gomez et al. using MiningHub,
we can use the mining script for Stack Overflow (Section 4.2.4). There are only two changes
needed. First, the existing mining script collects the user data about questioners and answerers on
Stack Overflow. However, the study by Gomez et al. does not use these data and thus, it does not
have to be mined. Therefore, we can remove the complete users component block of the existing
mining script to save time and network traffic. And second, we have to remove the tag parameter
from the existing mining script as we want to retrieve questions regardless of their assigned tags.
This can be done by just deleting the tag from the urls.parameters block in the mining script
head, removing it from the arguments block of each request, and replacing &tagged={{tag}}
of each request URL. For convenience, we can also change the urls.pattern to something
like "ˆhttp[s]?://stackoverflow.com" to match all the Stack Overflow URLs. With these
changes done, we can add the updated mining script to MiningHub and start a new import with
parameters from date of something like 2000-01-01 (this does not really matter as long as it is a
date before the inception of Stack Overflow) and a to date of 2012-08-31. Using that approach, it
would be possible to mine the same data as was used in this research paper. However, the used
MSR Mining Challenge data set [Bac13] contains a huge amount of information; the XML dump
weights about 7.1 GigaBytes (GB) and the PostgreSQL dump is sized about 3.1 GB. It would cer-
tainly take several days—or rather weeks—to retrieve all data with our approach. Furthermore,
MiningHub was not yet tested with data sets sized several GigaBytes. We ran different imports
that resulted in data of more than a GigaByte, but these were still smaller than three or even seven
GigaBytes. While there are no hard limits related to maximum supported file sizes, we still have
to investigate the limits of MiningHub in that matter.

stackoverflow.com
microsoft.com
wikipedia.org
google.com
github.com

5.2 Repository Mining 65

5.2.3 Analyzing Questions by Topic, Type, and Code
Another study based on data from Stack Overflow was conducted by Allamanis and Sutton
[AS13b]. For certain categories, for example Java, Python, or Android, they wanted to find in-
sights into certain concepts that are the most confusing (e.g. how to perform encoding). They did
so by analyzing the questions for a defined set of question tags. The data set they used for that
was, again, from the MSR 2013 Mining Challenge [Bac13]. However, they only used a very small
part of it: Only questions and no answers or comments from a total of 16 tags were used. On
these questions, the authors then applied different text analyzing techniques, such as word stem-
ming, to extract concepts and the types of questions. Examples of such question categories are
concepts that have been coded but do not work, not knowing how to implement something, or the way of
using some piece of code or API. Based on these concepts, the authors also found that, at least be-
tween Python and Java, the types of questions are similar and independent of the programming
language. Furthermore, they found that within tag categories (e.g. version control systems or
programming languages), the used words are often similar and might be used for code-related
information retrieval.

To replicate the repository mining step of the paper by Allamanis and Sutton using Min-
ingHub, the mining scripts can be reused. The script for Stack Overflow can even be reduced
by removing all the components except questions as this is the only needed component. That
means, we can remove questionComments, answers, answerComments, and users from the
components block. After having made these changes to the mining script, the only thing left to
do is creating import jobs on MiningHub. For each of the 16 tags, a job has to be created with a
date range of for example 2000-01-01 to 2012-08-31. That range reflects the one of the MSR 2013
Mining Challenge data set [Bac13]. These imports would certainly take some time to retrieve all
the requested questions. As an example, Allamanis and Sutton used a total of 281,508 Java re-
lated questions in their study [AS13b]. As soon as all the imports have completed, the data can be
downloaded. Before actually being able to perform the word analysis, duplicate questions have
to be removed. Such duplicates may occur as the list of tags contains overlapping categories, for
example java and java-ee, and there might be questions which were tagged with more than just
one of these. As a result, the questions tagged with java might contain some questions that are
also tagged with java-ee. To remove such duplicates, we could for example create a MongoDB
collection and import all the mined questions using their question id as _id in the collection.
That way, duplicates are ignored and the result is a collection just containing unique questions.
This exactly replicates the data set that was used by Allamanis and Sutton.

5.2.4 Predicting Defect Numbers
When a certain defect of a software project is added to its issue tracker, it normally has a state
of new or is maybe already assigned to somebody. After a developer has fixed the problem, the
issue state will then be changed to resolved and it will be closed. Additionally, there might be
intermediate issue states. These defect state transitions are the focus of the paper by Wang and
Zhang [WZ12]. They presented BugStates, a method to predict the number of defects at each state
based on defect state transition models built on historical issue data. The authors argued that such
a prediction can record the defect-fixing performance of a project team or community. Further-
more, it allows to better estimate the software maintenance effort and allocate developer resources
for future defect fixing. To evaluate their approach, the authors used six software projects relying
on two different bug tracking systems. The projects they used were PDE.Build, JDT.Text, JDT.UI
and Platform.Debug by the Eclipse foundation whose bug tracking system is Bugzilla, as well as
Apache Lucene and Spring.NET that use JIRA. For each of these projects, they extracted the state
transitions of defects from the HTML pages of the issues. On these data sets, they then applied

66 Chapter 5. Evaluation

statistical models to predict the next states of a defect. The authors found that using BugStates,
they were able to outperform other related methods in terms of errors and thus achieve a more
accurate prediction of defect state numbers.

Mining issue tracking systems is an important and often performed process in the MSR field.
For MiningHub, there is already a mining script available for JIRA that can be extended to repli-
cate parts of the data retrieval step of Wang and Zhang’s study [WZ12]. Both, SpringSource
(creator of Spring.NET) and Apache (creator of Lucene) have publicly open JIRA APIs which can
be used to retrieve their issues. Before the existing mining script for JIRA can work for us, we
need to change two aspects for this special use case. First, only issues of type defect are used
for the study. So we have to change the query that we use for selecting the issues of a certain
project in the mining script. The corresponding URL has to be extended by an issuetype=Bug
filter. For the JIRA API, this can be done by using the JIRA query language (JQL) which leads to
a URL-escaped query like search?jql=issuetype%3DBug. Now, MiningHub retrieves only
issues from JIRA which are defects. The second change we have to do is related to the defect
transition information as the current mining script does not retrieve it. To explicitly include the
transitions in the mining process, we have to create an each request which iterates through all
the issues and retrieves their defect transition information. This can be collected from the API
using a URL like issue/<issueIdOrKey>?expand=changelog. That API request essentially
retrieves the issue information again but this time it includes all the issue state transitions be-
cause of the expand argument. So retrieving information from the JIRA installations is relatively
effortless. Regarding Bugzilla it is different. Although Bugzilla provides a representational state
transfer (REST) API, the instance operated by the Eclipse foundation has not enabled that feature.
Instead, they provide an XML remote procedure call (XML-RPC) API, which MiningHub does
not yet support. As an alternative, it is also possible to retrieve individual issues as XML by just
adding a ctype=xml parameter to the issue address. We did not find any way of retrieving a list
of issues for a certain project with that method, though. So it appears that retrieving data from
the Eclipse Bugzilla with MiningHub is not possible at the moment. As a conclusion, MiningHub
works well for issue trackers of single projects as long as they offer a REST API. Currently, there
is no other way of mining repositories with MiningHub.

5.3 Roundup
Mining software repositories is an important process in software engineering research. We argue
that this process should not be a step that takes a lot of effort and is error-prone. By using the
right tools for the right job, repository mining can be simplified considerably. In this chapter,
we evaluated MiningHub, our approach to enable software repository mining using the flexible
methodology of user-contributed mining scripts. As such, MiningHub has its advantages and
limitations. As we have shown in Section 5.1 about finding community structures in a software
project community, MiningHub can considerably simplify the data retrieval process at least for
some use cases. We replicated a research plan by Bosu [Bos12] and analyzed the activity of com-
munity members on GitHub, JIRA, and Stack Overflow for the Groovy project. Each of these
platforms are very popular in the software development field and often used in research. We
have shown that, in contrast to Bosu’s proposed tools, the repository mining step on these plat-
forms using MiningHub is only a very small fraction of the total time needed for the whole study.
Furthermore, we argue that the study itself is easier to conduct using MiningHub as we only have
to deal with one single file format instead of transforming the data from three different tools. In
Section 5.2.1, we tried to replicate the functionality of GHTorrent by Gousios and Spinellis [GS12].
We found that it is not doable with the current version MiningHub. It is only possible to retrieve
the GitHub event timeline after a reconfiguration of the MiningHub API request delays. This il-

5.3 Roundup 67

lustrates a limitation in the current version of MiningHub; there is no way of changing the timing
constraints in a mining script. Some APIs might only offer a low amount of requests per time
range, others could allow many requests per second or even no limits at all. MiningHub cur-
rently cannot support such cases with mining scripts. Furthermore, we found that the lacking
download capabilities are the main reason why MiningHub is not suitable for large-scale mining.
Currently, there is no way to download, for example, weekly dumps of the retrieved data; only
complete dumps are supported. For studies that need large data sets and thus a long retrieval
period, (re-)downloading complete data dumps might not be a viable solution. We also analyzed
a paper about link sharing on Stack Overflow by Gomez et al. [GCS13] in Section 5.2.2. We found
that the retrieval step of that study can be replicated by slightly changing the existing mining
script that only retrieves questions related to a single tag. The flexibility of mining scripts allows
to remove that constraint and retrieve all questions regardless of their tag instead. Then an im-
port job has to be created on MiningHub and ran for several days (or rather, weeks). While we
already let MiningHub import data weighting more than one GigaByte several times, we do not
yet know where its limits are. MiningHub works very well for small and medium data sets, for
large imports we do not yet have enough experience, though. In Section 5.2.3, we investigated in
the data retrieval replicability of a study by Allamanis and Sutton [AS13b] that categorized Stack
Overflow questions regarding their content. We found that the provided mining script for Stack
Overflow can be reused. It can even be reduced to just retrieve the content of the questions with-
out the need to request all the other components. With that change, retrieving the needed data
can be done in less time. One downside of the MiningHub approach in this case is the repetitive
task of creating 16 individual import jobs with different question tags and identical parameters
(date range and API key). MiningHub currently does not offer an API itself or any other way that
could be used to automate the creation of such imports. So while MiningHub can be used for use
cases where several different tags or different projects have to be mined, it is not very comfort-
able to create numerous jobs with almost the same parameters each time. A study by Wang and
Zhang [WZ12] about predicting defect numbers in each issue state (e.g. new, assigned, or resolved)
was analyzed in Section 5.2.4. Our findings show that retrieving data from public JIRA instances
is unproblematic using mining scripts. The one for JIRA can be changed to only retrieve the is-
sues of type defect and to include the transitions between different states. These changes can be
achieved by appending more arguments to the already specified API URLs. For Bugzilla, on the
other hand, there is not yet a mining script available that can be used. But as MiningHub does not
support XML-RPC, there is currently no way to extract the issues from the Eclipse projects using
MiningHub. This exposes another limitation of MiningHub; currently it is impossible to retrieve
data from platforms that either do not provide an API at all or provide an API that does not allow
requests by adding parameters to a URL. XML-RPC on the contrary, requires requests to be done
to a single URL by sending data as XML. As a result, the data retrieval step of this study can only
partly be replicated by MiningHub.

In general, MiningHub works fine on small to medium-sized data sets, such as the version
history and issues of a single software project. The repository mining step of such studies can
be considerably reduced by using MiningHub in some cases. Using mining scripts, researchers
are also able to exactly specify what data they want to retrieve and what parameters are required
to be given. Such scripts allow a high flexibility and can—but do not have to—be fine-tuned
individually for each study. Mining scripts even allow to extend MiningHub to support new
repositories. MiningHub also allows to create several individual jobs to retrieve more than just
one project. But this is currently laborious, especially for cases when a large number of imports
would be required. When broader data sets are needed, researchers can write mining scripts
that retrieve a lot of data of projects in the same job. This is not always possible, though. An
interesting feature for MiningHub would thus be the addition of an API which could allow easier
import creation for repetitive parameters. Furthermore, MiningHub has limited capabilities when

68 Chapter 5. Evaluation

it comes to large-scale repository mining. For example, there is no way to download intermediate
data for long-running imports. Only complete dumps can be (re-)downloaded. Support for daily
or weekly dumps would be useful in such cases. MiningHub currently only works on APIs that
allow to request data with URL parameters but do not require any further content to be sent. As a
result, some API types like XML-RPC are not supported; extending the capabilities in that matter
is left to future work. While mining scripts allow flexible modifications, there is currently no way
of changing temporal constraints. MiningHub might thus be unable to exploit the number of
allowed API requests for certain providers while it may flood others that have low request limits.
This is an area where mining scripts could still be improved. And finally, we do not yet know
where the limits of MiningHub are. We found that it works very well for some small to medium-
sized imports and can also be used for larger data sets. But it is an open issue on how large these
data sets can be.

Chapter 6

Conclusion and Future Work

The increasing interest in social coding sites has led to more publicly available software repos-
itories which are frequently used to conduct research. Retrieving data from these repositories
is often time-consuming and error-prone, and yet many published MSR studies do not make the
used data sets available. This complicates replication of these studies and causes research commu-
nities to perform repetitive work on creating tools and retrieving data. In this thesis, we presented
our software repository mining approach called MiningHub to overcome limitations in the MSR
community. MiningHub is a web-based platform that can be extended by writing mining scripts.
Such scripts are textual specifications describing how certain repositories need to be mined and
thus allow researchers to add support for these on the MiningHub platform. Mining scripts can
be shared among other research communities so that repetitive work can be avoided. Mined data
can also be published for other researchers to enable reuse and replication of studies. In our eval-
uation, we replicated a research plan by Bosu [Bos12] to analyze community structures over three
different project repositories. We have shown that by using MiningHub, retrieving data from
these repositories takes only a small amount of time. Based on the mined data we were able to
completely replicate that study. Furthermore, we have analyzed the repository mining steps of
four other studies [AS13b,GCS13,GS12,WZ12] and found certain evidence that MiningHub could
be used for three of them. MiningHub was technically evaluated and we found it to be a viable
approach for some small and medium-sized data requirements. We believe that MiningHub has
the potential to simplify the mining step of many papers published in the context of the MSR
conference and also others. The extensible platform supports an arbitrary number of reposito-
ries and, ideally, MiningHub is the only tool needed for mining software projects. Data of each
of the supported repositories can be retrieved and downloaded in the same data formats, which
simplifies the integration of data obtained from multiple software repositories. The MiningHub
platform also enables sharing and reusing of both mining scripts and mined data sets. The so-
cial features and sharing capabilities still have to prove themselves in practical use. With more
mining scripts, we expect that MiningHub can become an attractive platform for mining software
repositories as it is capable of simplifying the mining process and enables study replications.

Future Work. The MiningHub platform has reached its first milestone and enables mining of
most software repositories with its mining script mechanism. Both the scripts and the mined data
sets can be shared among certain researchers only or with the public. In addition, we plan to
further extend and improve the functionality of the MiningHub platform. As a first step, more
public mining scripts that add support for additional repositories should be added. Candidates

70 Chapter 6. Conclusion and Future Work

are for example Bugzilla1, Google Groups2, BitBucket3, Jenkins4, and many more. We also think
about adding an API so that the creation and handling of repository mining jobs on MiningHub
can be automated using corresponding applications. This is useful when it is needed to retrieve
data from a list of projects instead of just a single one, for example. Currently, only manually
started import jobs are possible. Support for scheduled retrieval processes has to be added so
that MiningHub regularly checks for and retrieves new data. We also plan to improve support
for large-scale repository mining. Therefore, timed snapshots of data are needed so that partial
data sets can be downloaded instead of only one complete dump. A further step of extension
should be the support for more download formats like CSV, XML, SEON, or the resource descrip-
tion framework (RDF). In addition to technical improvements, MiningHub has to be evaluated
regarding the social features in practice.

1http://www.bugzilla.org
2https://groups.google.com
3https://bitbucket.org
4http://jenkins-ci.org

http://www.bugzilla.org
https://groups.google.com
https://bitbucket.org
http://jenkins-ci.org

Appendix A

Mining Scripts

These sections show the complete mining script schema as well as the mining scripts for GitHub,
JIRA, and Stack Overflow.

A.1 Mining Script Schema

Listing A.1: JSON schema definition of a valid mining script.

1 {

2 "$schema": "http://json-schema.org/draft-04/schema#",

3 "title": "Schema to define the contents of a Mining Script for MiningHub.",

4 "type": "object",

5 "properties": {

6 "name": { "type": "string" },

7 "description": { "type": "string" },

8 "apiFormat": {

9 "type": "string",

10 "enum": ["json"]

11 },

12 "urls": {

13 "type": "array",

14 "items": {

15 "type": "object",

16 "properties": {

17 "pattern": { "type": "string" },

18 "parameters": {

19 "type": "array",

20 "items": { "type": "string" }

21 }

22 },

23 "additionalProperties": false,
24 "required": ["pattern"]

25 }

26 },

27 "parameters": {

28 "type": "object",

29 "patternProperties": {

30 "[a-z0-9]": {

31 "type": "object",

32 "properties": {

33 "type": {

34 "type": "string",

35 "enum": [

36 "string",

72 Chapter A. Mining Scripts

37 "password",

38 "date",

39 "datetime",

40 "int"

41]

42 },

43 "description": { "type": "string" }

44 },

45 "additionalProperties": false,
46 "required": ["description"]

47 }

48 },

49 "additionalProperties": false
50 },

51 "globalArguments": {

52 "type": "object",

53 "id": "#arguments",

54 "patternProperties": {

55 "[a-z0-9]": {

56 "type": [

57 "object",

58 "null"

59],

60 "properties": {

61 "type": {

62 "type": "string",

63 "enum": [

64 "date",

65 "datetime",

66 "int",

67 "string"

68]

69 },

70 "format": {

71 "type": "string",

72 "enum": [

73 "unix"

74]

75 },

76 "value": {

77 "type": [

78 "string",

79 "integer"

80]

81 }

82 },

83 "additionalProperties": false
84 }

85 },

86 "additionalProperties": false
87 },

88 "backoffWhen": {

89 "type": "array",

90 "items": {

91 "type": "object",

92 "properties": {

93 "key": { "type": "string" },

94 "source": {

95 "type": "string",

96 "enum": [

97 "http",

98 "result"

99]

100 },

A.1 Mining Script Schema 73

101 "type": {

102 "type": "string",

103 "enum": [

104 "int",

105 "string"

106]

107 },

108 "lowerThan": { "type": "integer" }

109 },

110 "additionalProperties": false,
111 "required": ["key"]

112 }

113 },

114 "components": {

115 "type": "object",

116 "patternProperties": {

117 "[a-z0-9]": {

118 "type": "object",

119 "properties": {

120 "description": { "type": "string" },

121 "primaryKey": { "type": "string" },

122 "call": {

123 "type": "array",

124 "items": {

125 "type": "object",

126 "properties": {

127 "url": { "type": "string" },

128 "arguments": { "$ref": "#/properties/globalArguments" },

129 "store": { "type": "string" },

130 "argumentRotation": {

131 "type": "object",

132 "properties": {

133 "name": { "type": "string" },

134 "start": {

135 "type": [

136 "string",

137 "integer"

138]

139 },

140 "type": {

141 "type": "string",

142 "enum": [

143 "text",

144 "int"

145]

146 },

147 "stop": {

148 "type": "object",

149 "properties": {

150 "key": { "type": "string" },

151 "source": {

152 "type": "string",

153 "enum": [

154 "result",

155 "http"

156]

157 },

158 "value": { },

159 "isset": { "type": "boolean" }

160 },

161 "additionalProperties": false,
162 "required": [

163 "key"

164]

74 Chapter A. Mining Scripts

165 },

166 "continue": {

167 "type": "object",

168 "properties": {

169 "increment": { "type": "integer" },

170 "valueFromRegex": { "type": "string" }

171 },

172 "additionalProperties": false
173 }

174 },

175 "additionalProperties": false,
176 "required": [

177 "name",

178 "stop"

179]

180 }

181 },

182 "additionalProperties": false,
183 "required": ["url"]

184 }

185 },

186 "each": {

187 "type": "array",

188 "items": {

189 "type": "object",

190 "properties": {

191 "component": { "type": "string" },

192 "url": { "type": "string" },

193 "arguments": { "$ref": "#/properties/globalArguments" },

194 "argumentEach": {

195 "type": "object",

196 "properties": {

197 "name": { "type": "string" },

198 "key": { "type": "string" },

199 "separator": { "type": "string" },

200 "merge": { "type": "integer" }

201 },

202 "additionalProperties": false,
203 "required": [

204 "name",

205 "key"

206]

207 },

208 "store": { "type": "string" },

209 "repeat": {

210 "type": "object",

211 "properties": {

212 "key": { "type": "string" },

213 "source": {

214 "type": "string",

215 "enum": [

216 "result",

217 "http"

218]

219 },

220 "value": { },

221 "isset": { "type": "boolean" },

222 "argument": { "type": "string" }

223 },

224 "additionalProperties": false,
225 "required": [

226 "key",

227 "argument"

228]

A.2 GitHub 75

229 }

230 },

231 "additionalProperties": false,
232 "required": [

233 "component",

234 "url"

235]

236 }

237 }

238 },

239 "additionalProperties": false,
240 "required": [

241 "description",

242 "primaryKey"

243]

244 }

245 },

246 "additionalProperties": false
247 }

248 },

249 "additionalProperties": false,
250 "required": [

251 "name",

252 "description",

253 "urls",

254 "components"

255]

256 }

A.2 GitHub

Listing A.2: Mining script for GitHub.

1 name: GitHub.com

2 description: Powerful collaboration, code review, and code management for open source and private

projects.

3 apiFormat: json

4
5 urls:

6 - pattern: "^http[s]?://github.com/([^/]+)/([^/]+)[/]?"

7 parameters:

8 - user

9 - repo

10 - pattern: "^http[s]?://www\\.github.com/([^/]+)/([^/]+)[/]?"

11 parameters:

12 - user

13 - repo

14 - pattern: "^git://github.com/([^/]+)/([^/]+).git"

15 parameters:

16 - user

17 - repo

18
19 parameters:

20 branch:

21 type: string

22 description: The name of the branch to mine (most often master or trunk).

23 default: master

24 accessToken:

25 type: password

26 description: The Personal Access Token obtained from GitHub.

76 Chapter A. Mining Scripts

27
28
29 globalArguments:

30 user:

31 repo:

32 accessToken:

33
34
35 components:

36
37 commits:

38 description: Code commits

39 primaryKey: sha

40 call:

41 - url: "https://api.github.com/repos/{{user}}/{{repo}}/commits?sha={{branch}}&last_sha={{

lastSha}}&access_token={{accessToken}}"

42 arguments:

43 lastSha:

44 branch:

45 store: .

46 index:

47 - commit.message

48 - commit.author

49 argumentRotation:

50 name: lastSha

51 start: ""

52 type: text

53 stop:

54 source: http

55 key: Link

56 isset: false

57 continue:

58 valueFromRegex: ’last_sha=([^&]+)[^>]+>; rel=\"next\"’

59
60 commitComments:

61 description: Comments to Commits

62 primaryKey: id

63 call:

64 - url: "https://api.github.com/repos/{{user}}/{{repo}}/comments?page={{commentPage}}&

access_token={{accessToken}}"

65 arguments:

66 commentPage:

67 store: .

68 index:

69 - body

70 argumentRotation:

71 name: commentPage

72 start: 1

73 stop:

74 key: .

75 value: []

76
77 issues:

78 description: Project Issues

79 primaryKey: number

80 call:

81 # open issues

82 - url: "https://api.github.com/repos/{{user}}/{{repo}}/issues?page={{openIssuePage}}&state=

open&access_token={{accessToken}}"

83 arguments:

84 openIssuePage:

85 store: .

86 index:

87 - title

A.2 GitHub 77

88 - body

89 argumentRotation:

90 name: openIssuePage

91 start: 1

92 stop:

93 source: http

94 key: Link

95 isset: false

96 # closed issues

97 - url: "https://api.github.com/repos/{{user}}/{{repo}}/issues?page={{closedIssuePage}}&

state=closed&access_token={{accessToken}}"

98 arguments:

99 closedIssuePage:

100 store: .

101 index:

102 - title

103 - body

104 argumentRotation:

105 name: closedIssuePage

106 start: 1

107 stop:

108 source: http

109 key: Link

110 isset: false

111
112 milestones:

113 description: Project Milestones

114 primaryKey: number

115 call:

116 # open milestones

117 - url: "https://api.github.com/repos/{{user}}/{{repo}}/milestones?page={{openMilestonePage

}}&state=open&access_token={{accessToken}}"

118 arguments:

119 openMilestonePage:

120 store: .

121 index:

122 - title

123 - description

124 argumentRotation:

125 name: openMilestonePage

126 start: 1

127 stop:

128 source: http

129 key: Link

130 isset: false

131 # closed milestones

132 - url: "https://api.github.com/repos/{{user}}/{{repo}}/milestones?page={{

closedMilestonePage}}&state=closed&access_token={{accessToken}}"

133 arguments:

134 closedMilestonePage:

135 store: .

136 index:

137 - title

138 - description

139 argumentRotation:

140 name: closedMilestonePage

141 start: 1

142 stop:

143 source: http

144 key: Link

145 isset: false

146
147 issueComments:

148 description: Comments to project issues

78 Chapter A. Mining Scripts

149 primaryKey: id

150 call:

151 - url: "https://api.github.com/repos/{{user}}/{{repo}}/issues/comments?page={{

issueCommentPage}}&access_token={{accessToken}}"

152 arguments:

153 issueCommentPage:

154 index:

155 - body

156 argumentRotation:

157 name: issueCommentPage

158 start: 1

159 stop:

160 key: .

161 value: []

162
163 branches:

164 description: Development branches

165 primaryKey: commit.sha

166 call:

167 - url: "https://api.github.com/repos/{{user}}/{{repo}}/branches?page={{branchesPage}}&

access_token={{accessToken}}"

168 arguments:

169 branchesPage:

170 store: .

171 argumentRotation:

172 name: branchesPage

173 start: 1

174 stop:

175 source: http

176 key: Link

177 isset: false

178
179 tags:

180 description: Development snapshots

181 primaryKey: name

182 call:

183 - url: "https://api.github.com/repos/{{user}}/{{repo}}/tags?access_token={{accessToken}}"

184
185 releases:

186 description: Project releases

187 primaryKey: id

188 call:

189 - url: "https://api.github.com/repos/{{user}}/{{repo}}/releases?access_token={{accessToken

}}"

190 index:

191 - body

192
193 forks:

194 description: Project forks

195 primaryKey: id

196 call:

197 - url: "https://api.github.com/repos/{{user}}/{{repo}}/forks?sort=oldest&page={{forksPage

}}&access_token={{accessToken}}"

198 arguments:

199 forksPage:

200 argumentRotation:

201 name: forksPage

202 start: 1

203 stop:

204 key: .

205 value: []

A.3 JIRA 79

A.3 JIRA

Listing A.3: Mining script for JIRA.

1 name: "Jira: Public Issue Trackers"

2 description: This mining script will collect data about a single project and all its issues from

public issue trackers. As Jira can be installed on any domain, this script will match all urls

that contain "/rest/api/2", the default Jira API accessor.

3 apiFormat: json

4
5 urls:

6 - pattern: "(^.*)/rest/api/2[/]?"

7 parameters:

8 - url

9
10 parameters:

11 projectKey:

12 type: string

13 description: The mandatory key name of a project, it *must* be UPPERCASE.

14
15 globalArguments:

16 url:

17 projectKey:

18
19
20 components:

21
22 projects:

23 description: Project information

24 primaryKey: id

25 call:

26 - url: "{{url}}/rest/api/2/project/{{projectKey}}"

27 store: ..

28 # only store one single element, not each element in a collection

29 index:

30 - name

31 - description

32 - lead.name

33 - lead.displayName

34
35 issues:

36 description: Issues

37 primaryKey: id

38 call:

39 - url: "{{url}}/rest/api/2/search?jql=project={{projectKey}}&startAt={{issuePage}}&

maxResults=20&fields=*all"

40 arguments:

41 issuePage:

42 store: issues

43 index:

44 - fields.summary

45 - fields.description

46 argumentRotation:

47 name: issuePage

48 start: 0

49 stop:

50 key: issues

51 value: []

52 continue:

53 increment: 20

80 Chapter A. Mining Scripts

A.4 Stack Overflow

Listing A.4: Mining script for Stack Overflow.

1 name: StackOverflow.com

2 description: StackOverflow.com is a help board for programmers.

3 apiFormat: json

4
5 urls:

6 - pattern: "^http[s]?://stackoverflow.com/questions/tagged/([^/+]+)"

7 parameters:

8 - tag

9
10 parameters:

11 fromdate:

12 type: date

13 description: The date on which to start getting data.

14 todate:

15 type: date

16 description: The date on which to end getting data.

17 key:

18 type: password

19 description: The API key you received from StackExchange.

20
21 globalArguments:

22 key:

23
24
25 components:

26
27 questions:

28 description: questions

29 primaryKey: question_id

30 call:

31 - url: "https://api.stackexchange.com/2.1/questions?page={{page}}&pagesize=100&fromdate={{

fromdate}}&todate={{todate}}&order=asc&sort=creation&tagged={{tag}}&site=stackoverflow

&filter=withBody&key={{key}}"

32 arguments:

33 todate:

34 type: date

35 format: unix

36 fromdate:

37 type: date

38 format: unix

39 tag:

40 page:

41 store: items

42 index:

43 - body

44 - title

45 - tags

46 argumentRotation:

47 name: page

48 start: 1

49 stop:

50 key: has_more

51 value: false

52
53
54 questionComments:

55 description: Comments to Questions

56 primaryKey: comment_id

A.4 Stack Overflow 81

57 each:

58 - component: questions

59 url: "https://api.stackexchange.com/2.1/questions/{{ids}}/comments?page={{page}}&pagesize

=100&order=asc&sort=creation&site=stackoverflow&filter=withBody&key={{key}}"

60 arguments:

61 page:

62 value: 1

63 argumentEach:

64 name: ids

65 key: question_id

66 separator: ;

67 merge: 10

68 store: items

69 index:

70 - body

71 repeat:

72 key: has_more

73 value: true

74 argument: page

75
76
77 answers:

78 description: Answers to the Questions

79 primaryKey: answer_id

80 each:

81 - component: questions

82 url: "https://api.stackexchange.com/2.1/questions/{{ids}}/answers?page={{page}}&pagesize

=100&order=asc&sort=creation&site=stackoverflow&filter=withBody&key={{key}}"

83 arguments:

84 page:

85 value: 1

86 argumentEach:

87 name: ids

88 key: question_id

89 separator: ;

90 merge: 10

91 store: items

92 index:

93 - body

94 repeat:

95 key: has_more

96 value: true

97 argument: page

98
99

100 answerComments:

101 description: Comments to Answers

102 primaryKey: comment_id

103 each:

104 - component: answers

105 url: "https://api.stackexchange.com/2.1/answers/{{ids}}/comments?page={{page}}&pagesize

=100&order=asc&sort=creation&site=stackoverflow&filter=withBody&key={{key}}"

106 arguments:

107 page:

108 value: 1

109 argumentEach:

110 name: ids

111 key: answer_id

112 separator: ;

113 merge: 10

114 store: items

115 index:

116 - body

117 repeat:

82 Chapter A. Mining Scripts

118 key: has_more

119 value: true

120 argument: page

121
122
123 users:

124 description: Users

125 primaryKey: user_id

126 each:

127 - component: questions

128 url: "https://api.stackexchange.com/2.1/users/{{ids}}?pagesize=100&site=stackoverflow&key

={{key}}"

129 argumentEach:

130 name: ids

131 key: owner.user_id

132 separator: ;

133 merge: 100

134 store: items

135 index:

136 - display_name

137 - component: questionComments

138 url: "https://api.stackexchange.com/2.1/users/{{ids}}?pagesize=100&site=stackoverflow&key

={{key}}"

139 argumentEach:

140 name: ids

141 key: owner.user_id

142 separator: ;

143 merge: 100

144 store: items

145 index:

146 - display_name

147 - component: answers

148 url: "https://api.stackexchange.com/2.1/users/{{ids}}?pagesize=100&site=stackoverflow&key

={{key}}"

149 argumentEach:

150 name: ids

151 key: owner.user_id

152 separator: ;

153 merge: 100

154 store: items

155 index:

156 - display_name

157 - component: answerComments

158 url: "https://api.stackexchange.com/2.1/users/{{ids}}?pagesize=100&site=stackoverflow&key

={{key}}"

159 argumentEach:

160 name: ids

161 key: owner.user_id

162 separator: ;

163 merge: 100

164 store: items

165 index:

166 - display_name

Appendix B

Evaluation Queries

This section contains queries that were used in the MiningHub evaluation (Chapter 5).

1 db.gh_commits.find().forEach(function(doc) {

2 db.gh_users.update(

3 {_id: doc.committer.login},

4 {

5 $addToSet: {

6 emails: doc.commit.committer.email

7 },

8 $inc: {contributions: 1}

9 },

10 {upsert: true}

11);

12 if (doc.committer.login != doc.author.login) {

13 db.gh_users.update(

14 {_id: doc.author.login},

15 {

16 $addToSet: {

17 emails: doc.commit.author.email

18 },

19 $inc: {contributions: 1}

20 },

21 {upsert: true}

22);

23 }

24 });

Listing B.1: Create collection of unique GitHub users and consolidate their email addresses.

84 Chapter B. Evaluation Queries

1 db.gh_users.find().forEach(function(doc) {

2 doc.emails.forEach(function(mail) {

3 db.users.update(

4 {

5 $or: [

6 {_id: doc._id},

7 {jr_name: doc._id},

8 {so_hash: hex_md5(mail)},

9 {jr_email: mail}

10]

11 },

12 {

13 $set: {

14 gh_name:doc._id,

15 gh_email:mail,

16 gh_contributions:doc.contributions

17 }

18 }

19);

20 });

21 });

Listing B.2: Match GitHub accounts to all other users by looping through each email address.

Appendix C

Contents of the CD

• Written thesis (Masterarbeit.pdf)

– Abstract (Abstract.txt)

– German abstract (Zusfsg.txt)

• Mining script schema (mining-script-schema/schema.json)

• Mining scripts

– GitHub (mining-scripts/github.yaml)

– JIRA (mining-scripts/jira.yaml)

– Stack Overflow (mining-scripts/stackoverflow.yaml)

• Source code (code/)

• Evaluation data (evaluation-data/)

86 Chapter C. Contents of the CD

Bibliography

[AS13a] Miltiadis Allamanis and Charles Sutton. Mining Source Code Repositories at Mas-
sive Scale using Language Modeling. In Proceedings of the 10th Working Conference
on Mining Software Repositories, pages 207–216, San Francisco, CA, USA, 2013. IEEE
Press.

[AS13b] Miltiadis Allamanis and Charles Sutton. Why, When, and What: Analyzing Stack
Overflow Questions by Topic, Type, and Code. In Proceedings of the 10th Working
Conference on Mining Software Repositories, pages 53–56, San Francisco, CA, USA,
2013. IEEE Press.

[Bac13] Alberto Bacchelli. Mining Challenge 2013: Stack Overflow. In Proceedings of the 10th
Working Conference on Mining Software Repositories, page to appear, San Francisco,
CA, USA, 2013.

[Bos12] Amiangshu Bosu. Mining repositories to reveal the community structures of Open
Source Software projects. In Proceedings of the 50th Annual Southeast Regional Con-
ference, pages 397–398, Tuscaloosa, AL, USA, 2012. ACM.

[BRB+09] Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M. German,
and Prem Devanbu. The Promises and Perils of Mining Git. In Proceedings of the 6th
IEEE International Working Conference on Mining Software Repositories, pages 1–10,
Vancouver, Canada, 2009.

[CH05] Kevin Crowston and James Howison. The social structure of free and open source
software development. First Monday, 10(2):1–21, 2005.

[DMWL13] Serge Demeyer, Alessandro Murgia, Kevin Wyckmans, and Ahmed Lamkanfi.
Happy Birthday! A Trend Analysis on Past MSR Papers. In Proceedings of the 10th
Working Conference on Mining Software Repositories, pages 353–362, San Francisco,
CA, USA, 2013. IEEE Press.

[DNRN13] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. Boa: A
Language and Infrastructure for Analyzing Ultra-Large-Scale Software Reposito-
ries. In Proceedings of the 2013 International Conference on Software Engineering, pages
422–431, San Francisco, CA, USA, 2013. IEEE Press.

[GCS13] Carlos Gómez, Brendan Cleary, and Leif Singer. A Study of Innovation Diffusion
through Link Sharing on Stack Overflow. In Proceedings of the 10th Working Con-
ference on Mining Software Repositories, pages 81–84, San Francisco, CA, USA, 2013.
IEEE Press.

88 BIBLIOGRAPHY

[GG11] Giacomo Ghezzi and Harald C. Gall. SOFAS: A Lightweight Architecture for Soft-
ware Analysis as a Service. In 9th Working IEEE/IFIP Conference on Software Archi-
tecture, pages 93–102, Boulder, CO, USA, 2011. IEEE Computer Society.

[Gou13] Georgios Gousios. The GHTorent Dataset and Tool Suite. In Proceedings of the 10th
Working Conference on Mining Software Repositories, pages 233–236, San Francisco,
CA, USA, 2013. IEEE Press.

[GR13] Claudio Gutierrez and Romain Robbes. WEON: Towards a softWare Ecosystem
ONtology. In Proceedings of the 2013 International Workshop on Ecosystem Architec-
tures, pages 16–20, Saint Petersburg, Russia, 2013. ACM.

[GS09] Georgios Gousios and Diomidis Spinellis. Alitheia Core: An extensible software
quality monitoring platform. In Proceedings of the 31st International Conference on
Software Engineering, pages 579–582, Washington, DC, USA, 2009. IEEE Computer
Society.

[GS12] Georgios Gousios and Diomidis Spinellis. GHTorrent: Github’s Data from a Fire-
hose. In 9th IEEE Working Conference of Mining Software Repositories, pages 12–21,
Zurich, Switzerland, 2012. IEEE.

[HCC06] James Howison, Megan Conklin, and Kevin Crowston. FLOSSmole: A collabora-
tive repository for FLOSS research data and analyses. International Journal of Infor-
mation Technology and Web Engineering, 1(3):17–26, 2006.

[HICRH+09] Israel Herraiz, Daniel Izquierdo-Cortazar, Francisco Rivas-Hernandez, Jesús
Gonzalez-Barahona, Gregorio Robles, Santiago Dueñas Domínguez, Carlos Garcia-
Campos, Juan Francisco Gato, and Liliana Tovar. FLOSSMetrics: Free / Libre /
Open Source Software Metrics. In 13th European Conference on Software Maintenance
and Reengineering, pages 281–284, Kaiserslautern, Germany, 2009.

[HNB+13] Hadi Hemmati, Sarah Nadi, Olga Baysal, Oleksii Kononenko, Wei Wang, Reid
Holmes, and Michael W. Godfrey. The MSR Cookbook: Mining a Decade of Re-
search. In Proceedings of the 10th Working Conference on Mining Software Repositories,
pages 343–352, San Francisco, CA, USA, 2013. IEEE Press.

[JHSA13] Werner Janjic, Oliver Hummel, Marcus Schumacher, and Colin Atkinson. An
Unabridged Source Code Dataset for Research in Software Reuse. In Proceedings
of the 10th Working Conference on Mining Software Repositories, pages 339–342, San
Francisco, CA, USA, 2013. IEEE Press.

[KZK+06] Sunghun Kim, Thomas Zimmermann, Miryung Kim, Ahmed Hassan, Audris
Mockus, Tudor Girba, Martin Pinzger, E. James Whitehead Jr., and Andreas Zeller.
TA-RE : An Exchange Language for Mining Software Repositories. In Proceedings of
the 2006 International Workshop on Mining Software Repositories, pages 1–4, Shanghai,
China, 2006. ACM.

[LBN+08] Erik Linstead, Sushil Bajracharya, Trung Ngo, Paul Rigor, Cristina Lopes, and
Pierre Baldi. Sourcerer: Mining and Searching Internet-Scale Software Reposito-
ries. Data Mining and Knowledge Discovery, 18(2):300–336, October 2008.

[Lev66] Vladimir I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions,
and Reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

BIBLIOGRAPHY 89

[MMM+11] Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and Björn Hart-
mann. Design Lessons from the Fastest Q&A Site in the West. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages 2857–2866, New
York, NY, USA, 2011. ACM.

[NNBH13] Hoda Naguib, Nitesh Narayan, Bernd Brügge, and Dina Helal. Bug Report As-
signee Recommendation using Activity Profiles. In Proceedings of the 10th Working
Conference on Mining Software Repositories, pages 22–30, San Francisco, CA, USA,
2013. IEEE Press.

[OBL+09] Joel Ossher, Sushil Bajracharya, Erik Linstead, Pierre Baldi, and Cristina Lopes.
SourcererDB: An Aggregated Repository of Statically Analyzed and Cross-Linked
Open Source Java Projects. In Proceedings of the 6th IEEE International Working Con-
ference on Mining Software Repositories, pages 183–186, Vancouver, Canada, 2009.

[OIAGAG10] Sunday O. Olatunji, Syed U. Idrees, Yasser S. Al-Ghamdi, and Jarallah Saleh Ali
Al-Ghamdi. Mining Software Repositories – A Comparative Analysis. International
Journal of Computer Science and Network Security, 10(8):161–174, 2010.

[RGBICH09] Gregorio Robles, Jesús M. González-Barahona, Daniel Izquierdo-Cortazar, and Is-
rael Herraiz. Tools for the Study of the Usual Data Sources found in Libre Software
Projects. International Journal of Open Source Software and Processes, 1(1):24–45, 2009.

[RGBICH11] Gregorio Robles, Jesús M. González-Barahona, Daniel Izquierdo-Cortazar, and Is-
rael Herraiz. Tools and datasets for mining libre software repositories. Multi-
Disciplinary Advancement in Open Source Software and Processes, 1:24–42, 2011.

[Rob10] Gregorio Robles. Replicating MSR: A study of the potential replicability of papers
published in the Mining Software Repositories Proceedings. In Proceedings of the
7th International Working Conference on Mining Software Repositories, pages 171–180,
Cape Town, South Africa, 2010. IEEE.

[SAG13] Francisco Zigmund Sokol, Mauricio Finavaro Aniche, and Marco Aurélio Gerosa.
MetricMiner: Supporting Researchers in Mining Software Repositories. In 13th In-
ternational Working Conference on Source Code Analysis and Manipulation, pages 142–
146, Eindhoven, Netherlands, 2013. IEEE.

[Tiw11] Shashank Tiwari. Professional NoSQL. Programmmer to programmer. Wiley, 1 edi-
tion, 2011.

[WGH+12] Michael Würsch, Giacomo Ghezzi, Matthias Hert, Gerald Reif, and Harald C. Gall.
SEON: a pyramid of ontologies for software evolution and its applications. Com-
puting, 94(11):857–885, July 2012.

[WZ12] Jue Wang and Hongyu Zhang. Predicting Defect Numbers Based on Defect State
Transition Models. In Proceedings of the ACM-IEEE International Symposium on Em-
pirical Software Engineering and Measurement, pages 191–200, New York, NY, USA,
2012. ACM Press.

	Introduction
	Motivation
	Goal

	Related Work
	Data Collection
	Repository Mining Recommendations
	Data Exchange

	Preliminaries
	Background
	MSR Paper Review
	Proposed Solution
	Technology Evaluation

	Implementation
	Software Architecture
	Mining Scripts
	YAML
	GitHub
	JIRA
	Stack Overflow
	Specification and Validation

	Database and Data Structure
	Mining Software Repositories
	Error Handling
	Handling HTTP Status Codes
	Data Retrieval Process

	Searching Retrieved Data
	Exporting Retrieved Data
	User Interface and Social Aspects
	Mobile Support

	Evaluation
	Community Structures
	Data Retrieval
	Data Preparation
	Community Structure per Repository
	Matching Users
	Overall Community Structure
	Discussion

	Repository Mining
	GHTorrent
	Innovation Diffusion Through Link Sharing
	Analyzing Questions by Topic, Type, and Code
	Predicting Defect Numbers

	Roundup

	Conclusion and Future Work
	Mining Scripts
	Mining Script Schema
	GitHub
	JIRA
	Stack Overflow

	Evaluation Queries
	Contents of the CD

