
Scalable Forensic
Transaction Matching

And its application for detecting patterns
of fraudulent financial transactions.

Daniel Strebel
of Zurich ZH, Switzerland

Student-ID: 07-908-072
strebel@ifi.uzh.ch

Master Thesis Dec 31, 2013

Advisor: Philip Stutz

Prof. Abraham Bernstein, PhD
Department of Informatics
University of Zurich
http://www.ifi.uzh.ch/ddis

Acknowledgements

First and foremost, I would like to thank Prof. Abraham Bernstein for introducing me

to this very interesting topic and giving me the opportunity to closely collaborate with

his Dynamic and Distributed Information Systems (DDIS) research group. I am deeply

grateful to my advisor Philip Stutz for his critical but always constructive feedback and

for being a mentor and friend for many years. I would like to thank the entire DDIS

research group for countless inspiring conversations and playful working environment.

I would also like to express my thanks to Stefan Schurgast, Luzius Meisser and Stefan

Amstein for providing my with valuable insights or data sets that contributed to this

thesis.

Last but not least, I am very grateful to my friends and family for their support during

all my years at the university.

Zusammenfassung

Die Erkennung von Betrugsmustern in grossen Datenmengen von finanziellen Transak-

tionsdaten stellt ein integraler Bestandteil forensischer Untersuchungen dar und findet

Anwendung bei der Identifizierung von Geldwäscherei, internem Mitarbeiterbetrug und

anderen illegalen Aktivitäten. Um diese grossen Datenmengen verarbeiten zu können,

werden skalierbare und flexible Lösungen benötigt.

Diese Arbeit stellt ein neues Verfahren vor, bei dem Abhängigkeiten zwischen eingehen-

den und ausgehenden Transaktionen gesucht werden und die daraus entstehenden Kom-

ponenten zu grösseren Mustern verbunden werden. Die daraus resultierenden Muster

können dann gefiltert und mithilfe einer speziellen graphischen Benutzeroberfläche un-

tersucht werden.

Die Evaluation dieses Verfahrens zeigt, dass es eine kontinuierliche Überprüfung von

realen Finanztransaktionen mit einem Durchsatz von über einer Million Transaktionen

pro Minute ermöglicht. Zudem zeigen wir, dass unser System in der Lage ist, sechs

komplexe Geldwäschereimuster auszudrücken und zu erkennen.

Das in dieser Arbeit vorgestellte System ist, nach useremWissen, das erste welches in der

Lage ist, skalierbar und aufgrund lokaler Informationen Finanzbetrugsmuster zu erken-

nen und dazu eine Abfragesprache bereitstellt, die eine breite Spanne an finanziellen

Betrugsmuster ausdrücken kann.

Abstract

The detection of fraudulent patterns in large sets of financial transaction data is a crucial

task in forensic investigations of money laundering, employee fraud and various other

illegal activities. Scalable and flexible tools are needed to be able to analyze these large

amounts of data and express the complex structures of the patterns that should be de-

tected.

This thesis presents a novel approach of locally identifying associations between incom-

ing and outgoing transactions for each participant of the transaction network and then

aggregating these associations to larger patterns. The identified patters can be pruned

and visualized in a graphical user interface to conduct further investigations.

The evaluation of our approach shows that it allows a stream-processing of real-world fi-

nancial transactions with a throughput of more than one million transactions per minute.

Furthermore we demonstrate the capability of our approach to express six sophisticated

money laundering patterns, as reported by the Egmont group, and successfully retrieve

components that correspond to these patterns.

To the best of our knowledge, this approach is the first to scalably identify dependent

financial transactions based on local transaction matching, while providing a flexible

query language to cover a broad range of financial fraud cases.

Table of Contents

1 Introduction 1
1.1 Goal of this Thesis . 3
1.2 Thesis Structure . 4

2 Related Work 7
2.1 Traditional Approaches . 7

2.1.1 Declarative Query Languages . 8
2.1.2 Traditional (non-relational) Data Mining 9

2.2 Graph Mining . 9
2.2.1 Graph Pattern Matching . 10
2.2.2 Unsupervised Graph Mining . 11
2.2.3 Graph Navigation Languages . 11

2.3 Graph Computation Frameworks . 12

3 Algorithmic Transactional Fraud Detection 15
3.1 Application Domains and Previous Approaches 16

3.1.1 Internal Financial Fraud Detection 17
3.1.2 Bitcoin Transactions . 18
3.1.3 Other Applications Domains . 21

3.2 (Financial-) Transaction Matching . 22
3.2.1 General Idea . 22
3.2.2 Matching Conditions . 23

4 System Design and Implementation 27
4.1 Transaction Matcher . 27

4.1.1 Hypothetical Batch-Processing Model 28
4.1.2 Continuous-Processing Model . 29
4.1.3 Graph Representation . 30
4.1.4 Pluggable Vertex Algorithms . 31
4.1.5 Loading . 33
4.1.6 Matching . 34
4.1.7 Component Detection . 36
4.1.8 Filtering . 37

x Table of Contents

4.2 Result Handling . 41
4.2.1 Command Line Debugger . 42
4.2.2 Visualizer . 43
4.2.3 Database Interface . 45

4.3 Execution Description Language . 46

5 Evaluation 49
5.1 Expressiveness of the System . 50

5.1.1 Expressiveness of the Query Language 51
5.1.2 Recall of Injected Components . 55

5.2 Performance depending on Matching Complexity 56
5.2.1 Execution Time . 57
5.2.2 Memory Usage . 59
5.2.3 Recall . 59

5.3 Performance depending on Matching Duration 60
5.3.1 Execution Time . 61
5.3.2 Memory Usage . 62

5.4 Generated Synthetic Banking Transactions. 63

6 Limitations and Future Work 67
6.1 Memory Consumption vs. CPU Time . 67
6.2 Distributed Computation . 68
6.3 Recall . 68
6.4 Low Latency Execution . 69

7 Conclusions 71

A Appendix 77
A.1 Result Exchange Format . 77
A.2 Execution Descriptions used in Performance Evaluations 78
A.3 Classification of Egmont Cases . 80

x

1

Introduction

Graphs are known to provide an intuitive representation of otherwise complicated rela-

tionships and are therefore widely used to describe and analyze data in a broad range

of application domains. The processing and analysis of static graphs, has seen a lot of

research interest in recent times and has even been integrated in a number of industrial

products. However, many interesting relationships cannot su�ciently be modelled as

static graph structures, because the interaction between two individuals is dependent on

a temporal dimension. The time attributes describes when an interaction took place or

introduces a temporal ordering of relationships. This thesis focuses on the analysis of

transactions, a subset of temporal relationships with additional properties. In addition

to the temporal dimension, transactions also carry a payload, which could be informa-

tion on a banking transaction, the message content of an email or many other forms

of information. Based on this payload and the aforementioned temporal dimension,

transactions are inherently well suited to express many interactions between individuals.

Moreover by connecting transactions in a meaningful way, one can easily retrace flows

of interactions between parties. Detecting these flows is essential for a broad range of

application scenarios, some of which include the detection of money laundering schemas,

threats to national security or to better understand word of mouth di↵usion in social

networks. This thesis presents a framework that enables the detection of interesting

transaction patterns through fast and scalable transaction matching and a subsequent

analysis of the reported components to assess their relevance for the use case at hand.

To demonstrate the e�ciency and expressiveness of the framework, we show how our

approach is capable of capturing fraudulent financial transaction patterns in a data set

2 CHAPTER 1. INTRODUCTION

of several million transactions. Even though the description in this thesis focuses on the

task of finding fraudulent financial transactions, the underlying transaction matching

approach is not limited to matching financial transactions and could easily be extended

to be used in other application domains.

The problem addressed in this thesis is manifold and one of the most challenging

factors is the sheer size of data that typically needs to be processed when investigat-

ing fraudulent transaction patterns. With current social networks consisting of over

one billion users (Facebook Inc. 2013), which actively interact with each other, or pub-

licly available payment graphs consisting of several million transactions (Quandl 2013),

already the detection of relatively simple transaction patterns presents a persistent prob-

lem to both researchers and practitioners. It is evident that these data sets require novel

algorithms and tools that are able to scale to such large amounts of transactions in order

to extract relevant information. The size of graph structured data sets also suggests that

there is currently a lot of information that can not be retrieved e�ciently for the lack

of appropriate tools, which are able to perform at these scales. The domain of graph

mining has hence become a very active field of research with varying levels of maturity

in di↵erent areas. A number of systems have been proposed to facilitate the processing

of large graph-based data sources. Their focus, however, often lies on the computation

of metrics of the graph structure rather than the detection of interesting subsets of the

graph. Apart from the problem of size of the initial data set, the detection of trans-

actional patterns presents an additional challenge because of the inherent properties of

transactions themselves. While most graph mining approaches have looked at static

properties of graphs, mining transactional graphs introduces additional complexity. A

transactional graph not only consists of a set of vertices and a set of edges but also a

temporal dimension, which can influence the states of all graph elements and possibly

also their connectivity.

For detecting patterns in transactional data sets, the temporal dimension is a critical

2

1.1. GOAL OF THIS THESIS 3

element in order to find associations between individual transactions. The approach de-

scribed in the subsequent sections is able to not only consider the temporal dimension,

when analyzing interactions of entities in the graph, but also exploits it in order to opti-

mize its memory consumption and computational complexity. Based on the timestamps

of the transactions and their payload the system decides whether or not transactions are

dependent on each other and should be considered as a potential elements of a flow of

transactions. For an optimal parallelization of the detection process the decision about

which transactions should be matched is entirely done based on local information. The

matching of the transactions is performed without any direct intervention of a user,

however the system allows the user to specify the structure of interesting transactional

patterns in advance. Once a transactional pattern is detected, the users conditions are

applied in order to prune the patterns. The users conditions can involve simple queries

about the reported pattern such as its size or require the execution of graph analysis

algorithms to obtain more complex statistics about the pattern that was reported. The

detection approach is designed to work on continuous data and report patterns, which

were detected and considered relevant, immediately to the user.

1.1 Goal of this Thesis

The goal of this thesis is to demonstrate a novel approach of detecting patterns of

transactions by locally matching dependent transactions and enforcing conditions on

the resulting components. For the scope of this thesis we focus on transaction graphs in

the environment of financial transactions, however the approach of how transactions are

matched and the processing workflow are more generic and able to be applied to other use

cases as well. For the purpose of parallelizing local computations, the system described

in this thesis is built on top of Signal/Collect (Stutz, Bernstein, and Cohen 2010) a

framework for parallel graph processing of large data sets. To allow for a broad range

of computations on top of a given graph topology, Signal/Collect needs to be extended

to support a change of vertex behaviour during an execution. Based on the associations

3

4 CHAPTER 1. INTRODUCTION

of transactions that were detected at a local scope the system needs to detect larger

connected components and assess whether the resulting patten is interesting. To evaluate

the detection approach, we evaluate it on a set of 50 million Bitcoin transactions as well

as a set of 1.8 million synthetic banking transactions. Because of the lack of ground

truth in both of these data sets, the recall of the system is demonstrated by manually

injecting known fraudulent patterns and retrieving them with the help of the system

and a set of specified conditions on the pattern structures. The detection system should

be designed to be used by domain experts with limited programming experience. The

domain experts should therefore be able to express the detection process in a higher-

level specification, where the conditions that the detected patterns have to fulfil and

other execution parameters can be specified. In a final step, the system provides ad-hoc

analysis component in the form of a graphical user interface. A specialized visualizer

allows the investigator to analyze the patterns that were found and provides him with

additional information.

1.2 Thesis Structure

The rest of this thesis is structured as follows: In the next chapter an overview over

existing graph mining approaches and techniques is given. The third chapter gives a

more specific description of selected areas within the domain of fraudulent transaction

detection and introduces previous work in this area. In a second part it introduces the

concept of matching transactions for the purpose of detecting financial fraud patterns

and presents our matching approach at an implementation-independent level. The fourth

chapter describes an end-to-end implementation of our transaction matching approach

by explaining the di↵erent components of the detection system individually. The main

focus hereby lies on the detection workflow that is responsible for matching transactions

and detecting relevant connected components. In addition to that, it also describes the

fundamental architecture components that allow for pluggable vertex implementations

on top of the Signal/Collect programming abstraction. The chapter concludes with a

4

1.2. THESIS STRUCTURE 5

description of the user facing features such as the execution description, which is used

to specify an execution, and the di↵erent components that can be used to analyze the

reported results. In the fifth chapter the detection system is evaluated for two di↵erent

use cases within the domain of financial fraud detection. The evaluation analyzes the

expressiveness and scalability of the proposed system as well as the recall of manually

injected patterns. The thesis concludes with an outline of limiting factors and recom-

mendations that have to be considered when building systems for scalable transaction

matching and transactional pattern querying.

5

2

Related Work

Computer aided tools and techniques have been used to detect cases of fraud in the con-

text of forensic investigations for many years. Given the large amounts of data that need

to be considered in these kinds of activities, it is obvious that automated algorithmic

procedures are advantageous compared to purely relying on human experts to detect and

investigate suspicious cases. This section gives an overview over existing technologies

that can be used in order to support the detection of suspicious transaction. In addition

to that, we also describe a selection of techniques that do not directly target the appli-

cation domain of matching fraudulent transactions, but provide lower-level foundations.

They can therefore be viewed as the building blocks towards constructing a productive

system. In addition to these low-level approaches, we will also show, how these ap-

proaches are currently used in order to detect fraudulent transactions and discuss their

advantages and disadvantages.

2.1 Traditional Approaches

When trying to detect relevant information about transactions and their interdepen-

dence, two common ways are either to look at the individual transactions as distinct

entries in a input data set or extract information based on their relationships and the

resulting graph structures. Since graph structures are built on top of the transactional

data, this section first describes traditional approaches of how to extract information

solely based on the information on individual transactions.

8 CHAPTER 2. RELATED WORK

2.1.1 Declarative Query Languages

Rules are often the most straightforward way to express suspicious factors with respect to

whether a transaction has a high probability to be fraudulent. Despite of their simplistic

nature, simple rules have been proven to be e↵ective in many cases (Egmont Group

2000). Declarative query languages are a simple and widely used method to retrieve

desired information based on existing rule conditions. SQL and similar declarative query

languages are very e�cient at handling relational data and allow investigators to retrieve

information with relatively low e↵ort (Blakeley 2008). For this reason it is obvious that

many companies still rely on periodically querying their data bases for occurrences of

transactions, which they suspect to be fraudulent (Chang et al. 2007).

Despite its popularity, pure SQL is poorly suited for applications that require an

analysis of highly interlinked data. For this reason, SPARQL (Prud’hommeaux and

Seaborne 2008) has emerged as the standard language for querying relational data in

RDF format. By design SPARQL is inherently well suited for querying relationships

among objects and even supports some basic functionality to define patterns that are of

interest to the issuer of the query. Because of its relatively simple design and similarity to

SQL, SPARQL is heavily used to query static knowledge bases or snapshots of knowledge

that changes infrequently. Extensions such as C-SPARQL (Barbieri et al. 2009) have

been proposed to extend SPARQL with the capability of processing continuous flows of

information. C-SPARQL allows to query RDF data within time intervals and creates

new RDF data streams that contain the query results.

One significant drawback that most declarative query languages have in common is

the missing ability to compute non-trivial, additional information that is not present in

the initial data base. However the computation of additional properties can be highly

relevant for the detection of fraudulent transaction patterns. A desirable property of a

detection system would therefore include the direct translation of simple rule conditions,

which are similar to the ones found in declarative query languages, combined with the

functionality to express more advanced computations that exploit the relational nature

of the transaction data.

8

2.2. GRAPH MINING 9

2.1.2 Traditional (non-relational) Data Mining

A common definition of data mining states ”data mining is the application of specific

algorithms for extracting patterns from data” (Fayyad, Piatetsky-Shapiro, and Smyth

1996). While this definition covers the problem space of finding fraudulent transaction

patterns, it is also obvious that this is a very generic classification and a lot of di↵erent

techniques and algorithms fall under this definition. In this thesis and in particular

in the context of detecting fraudulent transactions, the concept of a pattern is used to

describe dependent interactions between instances in a network. In data mining however,

the term pattern traditionally refers to patterns within the attribute structure of some

individual entity.

Even though their main focus relies on the assessment of individual transactions, tra-

ditional data mining techniques have been successfully applied in practice and research.

Especially in domains where the input data consists of a large number of data entries

with many attributes, finding good classifiers that are able to detect occurrences of

fraud is a non-trivial task. For many data-intensive domains such as credit card pur-

chases (Chan et al. 1999; Bhattacharyya et al. 2011) or insurance claims (Derrig 2002),

data mining techniques therefore play a significant role in analyzing the individual en-

tries. Supervised approaches, where transactions are labeled with a risk score based on

previously detected fraud cases are especially valuable for the area of fraud detection.

Usually these investigations are based on trainable learning algorithms such as neural

networks or support vector machines but also Bayesian networks and decision trees have

been used to predict whether some occurrence is likely to be fraudulent (Wang 2010;

Ngai et al. 2011).

2.2 Graph Mining

Graphs are a particularly interesting way of organizing information because they are able

to naturally represent the topology of a target domain. By mapping entities to nodes

that are interconnected by edges one explicitly expresses relationships and dependencies

9

10 CHAPTER 2. RELATED WORK

within the data. Because of their wide applicability and their structural advantages

over traditional data representations, graphs o↵er additional capabilities for knowledge

discovery in many ways. For the scope of this thesis, graph representations are ap-

plied in order to model temporal interactions between participants of a network. More

specifically, graphs are used in the context of forensic investigations to detect interesting

patterns of interactions between users. In this section a short description of selected

graph mining sub-domains is given. We also highlight some prominent implementations

in every area and analyze them with respect to their suitability for discovering fraudulent

patterns.

2.2.1 Graph Pattern Matching

Graph pattern matching is the task of finding occurrences of instances of an abstract pat-

tern graph a larger data graph. This matching is typically defined in terms of subgraph

isomorphism (Ullmann 1976). The NP-Complete matching of structural properties of

graph elements is computationally expensive and therefore usually requires an upfront

candidate selection (Gallagher 2006). To reduce the computational complexity many

modifications of graph simulation (Henzinger, Henzinger, and Kopke 1995) were pro-

posed, but most of them result in the detection of patterns that di↵er significantly from

the structure found in the pattern query. Other approaches are based on the formula-

tion of reachability constraints by extending graph simulations with regular expressions

(Fan et al. 2011a) or by bounded simulation (Fan et al. 2011b) that limits the number

of allowed hops. Both approaches can be very e�cient when the characteristics of the

graph can be expressed based on the labels on the vertices. In our case, where also

transactions between homogeneous entities should be considered, this constraint seems

to be infeasible to enforce.

10

2.2. GRAPH MINING 11

2.2.2 Unsupervised Graph Mining

While the methods described above required the user to explicitly specify what patterns

to extract from the graph storage, the domain of unsupervised graph mining operates

in an opposite direction. The problem at hand is much less specific and the goal is

usually to gain new insights about the structure of the information as well as to find

anomalies (Chandola, Banerjee, and Kumar 2009), which could lead to the detection

of interesting patterns. Noble et al. presented an unsupervised system (Noble and

Cook 2003) for detecting anomalies within graphs based on the information theoretic

value of sub-graphs. This approach for detecting interesting patterns seems to perform

particularly well in cases where the portion of anomalies within the graph is very rare

and their structure is well distinguishable from regular occurrences. In our use cases,

the graph structures of fraudulent transactions have a very high resemblance to regular

transactions. Anomaly-based detection strategies are therefore not particularly well

suited for our use case, because they would most likely lead to higher error rates of

both types. However, unsupervised graph mining could be used complementary to the

approach presented in this thesis in order to learn previously unknown patterns. These

new patterns could be integrated in the detection work-flow to better assess the relevance

of the reported components or find new types of fraud.

2.2.3 Graph Navigation Languages

Graph navigation is another approach that has proven to be useful for accessing informa-

tion stored in graph representations. Compared to declarative query languages as well

as the previously presented unsupervised graph mining approaches, graph navigation is

placed at a much lower level of abstraction. While for the declarative query languages

the underlying storage structure is transparent, graph navigation directly makes use of

the graph structure of the data. Because expensive joins are avoided, this can lead to

more e�cient query processing in some use cases (Holzschuher and Peinl 2013), but the

concept is less generally applicable. Usually, traversals are performed by using a piping

11

12 CHAPTER 2. RELATED WORK

mechanism, which feeds the output of one operation as an input to subsequent opera-

tions. The concept of low level traversal has already been used for XML traversals in

the form of XPath1. The XPath language provides primitives to traverse an XML tree

and retrieve one or more nodes or attributes. Similar approaches have been proposed

to extract information from more general graph structures. With Gremlin2 and Trails

(Kröni and Schweizer 2013) two systems were developed to extend the Neo4j3 graph

database with low level graph traversal functionality. Gremlin allows users to define

external storage structures that can be accessed and modified during graph traversals.

Compared to Neo4j’s declarative query language Cypher4, Gremlin was found less in-

tuitive to formulate more sophisticated graph queries (Holzschuher and Peinl 2013) but

performed slightly better when operating on direct relationships between nodes in the

graph. A significant drawback of current low level graph traversal languages with respect

to our use case scenarios is the missing support for for querying based on their temporal

dimension. In addition to that, the exact structure of the graph might be unknown

and an unguided traversal through the graph, based on graph traversal functionality,

would not yield any additional benefit. Graph navigation languages might however be a

very promising approach to manually explore the vicinity of entities based on a reported

component of suspicious transactions and could be applied in a subsequent investigation.

2.3 Graph Computation Frameworks

Specialized graph algorithms, e.g. PageRank, have been proven to scale nicely on top of

general purpose parallelization infrastructures such as MapReduce or more specialized

frameworks for graph processing such Singal/Collect (Stutz, Bernstein, and Cohen 2010)

GraphLab (Low et al. 2010; Low et al. 2012), Pregel (Malewicz et al. 2010) or Giraph

5. However the purpose of most of these systems is to show the parallelization of graph

1
http://www.w3.org/TR/xpath20/ (visited on 11/04/2013)

2
https://github.com/tinkerpop/gremlin (visited on 11/05/2013)

3
http://www.neo4j.org/ (visited on 11/05/2013)

4
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html (visited on 11/05/2013)

5
http://giraph.apache.org (visited on 12/24/2013)

12

2.3. GRAPH COMPUTATION FRAMEWORKS 13

computations and they provide relatively little insight about the information inside the

graph apart from its structural properties. Based in the insights of the aforementioned

parallelization infrastructure, more specialized systems have been presented that allow

the user to query relational data in the form of RDF data graphs. Both TripleRush

(Stutz et al. 2013) and Trinity (Shao, Wang, and Li 2013) have been proven to process

pattern queries on large graphs but are limited with regard to their expressiveness of

the query language. To the best of our knowledge, none of these systems allow to query

for transactional patterns among entities in large graphs. Also none of these systems

directly support relational queries with a temporal dimension. However such queries are

of significant interest because a purely static analysis of a data graph is often insu�cient

for many application scenarios. Which opens the space for the focus of this thesis.

13

3

Algorithmic Transactional Fraud
Detection

Detecting previously unknown and potentially illegal activities within large reports of

transactions presents an ongoing challenge for many public and private organizations.

A number of tool have been developed to allow domain experts to conduct investigative

operations. Some early applications (Senator et al. 1995) provided a simple graphic user

interface that allowed users to monitor and investigate transactions. However, these

tools required the experts to issue precise queries in order to find the information that

they were looking for. Over time it has become apparent that looking at individual

data records only provides limited insight about actual events and that a more holistic

view is needed, in order to detect more complex occurrences. One of the first productive

systems to detect such more elaborate patterns in large amounts of data is the National

Association of Securities Dealers’ Regulation Advanced Detection System (ADS). The

ADS was introduced in 1997 to monitor trades and quotations in the NASDAQ stock

market (Kirkland et al. 1999). Cortes (Cortes, Pregibon, and Volinsky 2001) looked

at transactional data within a telecommunication network and proposed an algorithm

to identify so-called ”Communities of Interest” which are likely to identify fraudulent

participants. A manual analysis in such use cases would most often be too complex and

not feasible for most application scenarios. To capture these occurrences of connected

transactions, which can be associated to build patterns, tools have to go beyond looking

at the individual transactions and also have to analyze the interdependence between

them. In addition to the mere detection, the tools also have to be able decide whether

16 CHAPTER 3. ALGORITHMIC TRANSACTIONAL FRAUD DETECTION

a pattern is in some way violating policies or at least has a high probability to be

considered fraudulent. This chapter first describes a selection of use cases where our

detection approach could be applied in order to find fraudulent transaction patterns and

then introduces the general idea in an implementation-independent way.

3.1 Application Domains and Previous Approaches

Financial transaction networks provide many areas that have needs for the deployment

of algorithmic fraud detection tools. With credit card transactions being the area, which

received the most attention (Wang 2010) within research but also in the industry, fraud

detection in the financial domain has become a persistently active field of interest. Some

algorithms in this field have proven to be generalizable enough to be applied to a number

of problem domains. Fraud detection is therefore also ubiquitous in preventing money

laundering or insurance fraud schemas.

Financial fraud can span a variety of di↵erent forms and includes cases of document

forgery, unauthorized actions performed on managed bank assets but also transaction

based fraud cases, where the delinquents are trying to obscure the true origin of a

money stream (Egmont Group 2000). The motivations behind these patterns can have

many origins and might allow the coordinating instance to perform some sort of money

laundering or other forms of illegal payout schemas. The exact definition of these fraud

cases requires a lot of explicit and implicit knowledge about the target domain and

the category of fraud that should be investigated. However many fraud schemas that

work by concatenating seemingly unsuspicious money transactions to achieve a higher-

level goal. Even more interestingly these transaction patterns are often composed of a

small number of relatively simple building blocks, that are combined to more complex

smurfing schemas (Luell 2010). This property can be exploited in order to detect an initial

underlying structure with regard to how transactions are dependent on each other.

16

3.1. APPLICATION DOMAINS AND PREVIOUS APPROACHES 17

3.1.1 Internal Financial Fraud Detection

Luell (Luell 2010) looked at company internal fraud cased that were reported by an

undisclosed financial institution located in Switzerland. The study lists transaction

chains and a number of smurfing patterns as central indicators for the occurrence of

internal fraud cases. The proposed workflow for detecting suspicious transaction pat-

terns is constructed by combining multiple processing steps. In a first step a so-called

BaseMatcher is applied to prune the search space and find an initial set of suspi-

cious sub-graphs that confirm to a specified pattern. One implementation of such a

BaseMatcher was implemented in the form of a so-called ChainFinder (Luell 2010;

Amstein 2009). The ChainFinder is a specialized form of tree search that allows the

detection of tempo-relational patterns in a graph. Such patterns can include some form

of chain transaction where money is forwarded from one account to its subsequent node

in the chain or more general and complex smurfing patterns. As an intermediary result

of the BaseMatcher, a so-called AlertGraph is generated that consists of all identified

suspicious sub-patterns. In order to find more meaningful patterns, this AlertGraph is

then further refined by expanding the patterns in the alert graph and performing some

structural analysis. One proposed solution to perform these kinds of structural analysis

is a System called TMatch (Luell 2010; Moll 2009). TMatch is itself a multi-step pro-

cess and starts with a set of initial nodes which could be the result of the previously

introduced ChainFinder. In a first step all the nodes are iteratively expanded if they

fulfill all the required conditions for expanding and have not yet been expanded. In

a second step the expanded structures are analyzed using a ComponentF inder which

identifies connected components and filters out structures that are not of interest. In a

last step a number of scoring algorithms can be run on the remaining connected compo-

nents, which results in a score of each component for each scoring aspect. These scores

are then reported to the investigator of the inquiry together with the connected compo-

nents. Unfortunately the neither the original data set nor concrete examples of specific

fraud patterns were published by the author because of an non disclosure agreement

with the participating financial institution. However we were given access to a data set

17

18 CHAPTER 3. ALGORITHMIC TRANSACTIONAL FRAUD DETECTION

of simulated transactions that were generated within the context of this work (Galliker

2008) in order to test the capabilities of our system to recognize patterns in a similar

use case. Compared to the implementation in (Luell 2010) the system described in this

thesis is also more generic in a way that it does not require the specification of suspicious

accounts but analyzes all transactions in the input data. In addition to that, our system

is also able to detect more generic layering schemas and is not restricted to chains and

sum-chains.

3.1.2 Bitcoin Transactions

Another domain that can be analyzed by using our implementation is the network of

Bitcoin transactions. Bitcoin Nakamoto 2008 is a peer-to-peer cryptocurrency that is

able to preform and authorize financial transactions without the involvement of a central

trusted institution. The system works under the assumption that the majority of the

participating nodes in the network play behave according to the protocol and any poten-

tially malicious node would therefore have no incentive not to comply with the protocol.

Because the Bitcoin network is designed to work without any central coordination, it is

necessary to make all transactions public, i.e. visible to every participating node in the

network, by keeping them in the so-called block chain. In order to maintain anonymity

of the participants despite the public transaction logs, users are encouraged to use newly

generated public addresses for every transaction that they are involved in. As reported

in a study on the anonymity in the Bitcoin system (Reid and Harrigan 2013) this advice

is not followed by all users of the network. With very little e↵ort common owners of Bit-

coin public addresses can be inferred by observing when addresses appear as joint inputs

in a transaction. By the design of the Bitcoin protocol, addresses that are jointly used

as inputs of a transaction must be controlled by the same owner. Using this property

the transaction network as contained the Bitcoin block chain, can be transformed into

a user network as shown in figure 3.1.

The user graph is characterized as a clustering of public addresses that are controlled

by the same user. However the clustering is not guaranteed to be complete and there

18

3.1. APPLICATION DOMAINS AND PREVIOUS APPROACHES 19

$� $� $� $�

7�

$� $�

7�

$�

8VHU��
$���$���$����

8VHU��
$����

8VHU��
$����

Figure 3.1: Transaction- vs. user network

might be several clusters of public addresses, which are controlled by the same user but

can not be linked solely based on the graph structure. Consequently the user network as

seen on the right in figure 3.1 is an approximation of the true money flow between the

actual participants of the network. In order to further improve the clustering of public

addresses, (Meiklejohn et al. 2013) used the transaction graph structure together with

external data sources. However even this approach is still far from a complete resolving

of the ownership of all addresses.

The topic of anonymity in the Bitcoin network is especially interesting and has re-

ceived a lot if attention recent years, because some exponents in politics, fear that the

Bitcoin currency might help users to circumvent regulatory policies and that tax eva-

sion, money laundering or illegal transactions would be impossible to trace. While the

level of anonymity for transactions within the Bitcoin network is relatively high, the

owner of an address has to unveil his or her true identity when exchanging Bitcoins for

a traditional currency such as USD. For this reason Bitcoin exchanges such as Mt. Gox

1 are of special interest because they are currently one of the only points that would be

suitable for enforcing regulations. However, if the acceptance of Bitcoins would rise in a

way that valuable goods could be bought using this currency, it would open new ways for

laundering Bitcoins outside of the closed Bitcoin system. In (Stokes 2012) the authors

analyzed the potential of virtual currencies such as the Linden Dollar (Second life) and

1
https://www.mtgox.com/ (visited on 10/13/2013)

19

20 CHAPTER 3. ALGORITHMIC TRANSACTIONAL FRAUD DETECTION

Bitcoin to be used for money laundering purposes. They point out the di�culty of mon-

itoring transactions within the virtual financial network, because no financial institution

in involved as an intermediary. Another challenge that regulatory institutions have to

face, is, that in the peer to peer case of the Bitcoin network monitoring to prevent or de-

tect money laundering presents itself more di�cult than in the more centralized Linden

Dollar case. However, the money laundering potential of virtual currencies is lower than

it appears at first sight. Taking into account the currently still small capitalization of

virtual currencies and still much lower transaction volumes would require much higher

e↵orts for laundering even moderately large sums of money.

Apart from the legal aspects involved with the Bitcoin network, it represents also a

very interesting data set to perform forensic investigations and try to find occurrences of

smurfing schemas as described in (Luell 2010). While the data set used in the detection

of possible internal fraud cases was highly confidential and only covered transactions

within accounts of one financial institution, the Bitcoin block chain is publicly accessible

and contains every valid transaction that was ever performed. Because of their similar

nature and function as financial transaction network, the Bitcoin transaction graph shows

similar structures of transactions as reported in the internal fraud cases. For instance,

a number of famous Bitcoin theft cases were shown to be built on a very similar set

of basic building blocks for obscuring the traces that lead from the victim to the theft

(Meiklejohn et al. 2013). As in the case of company internal fraud, chain transactions also

played an important role in Bitcoin thefts. However the chain transactions in the Bitcoin

case formed what the authors called a ”peeling chain” which is a chain of subsequent

transactions where at each transaction a small fraction of the amount is transferred to

a separate account outside of the transaction chain. This pattern is displayed in figure

3.2a). In addition to peeling chains the authors also reported the splitting, aggregation

and folding of transactions as the fundamental building blocks that are involved in almost

all theft cases. Figures 3.2b), 3.2c) and 3.2d) show an illustration of their structures.

Since these three building blocks are su�cient to build other, more complex patterns,

20

3.1. APPLICATION DOMAINS AND PREVIOUS APPROACHES 21

such as the smurfing patterns reported for company internal fraud, they are used at the

core of our system in order to detect interdependence between transactions and trough

that, allow for the detection of a wider range of transaction patterns.

$� $� $� $�

7�

$� $�

7�

$�

8VHU��
$���$���$����

8VHU��
$����

8VHU��
$����

D� E� F� G�

Figure 3.2: Building blocks of financial fraud patterns.

3.1.3 Other Applications Domains

Even though the system described in this thesis focuses on matching transactions in the

domain of fraudulent financial transactions, the underlying concepts of our approach

could also be applied to other domains. For instance, another form of transactional

flows, which is relevant within the field of transaction based forensic investigations, is

the flow of information between participants of a network. With the increasing amount

of information that is shared in social networks such as Facebook, Google+ or Twitter

this form of information analysis has become very relevant. While many applications

mainly focus on the detection of influential nodes within a network, e.g. to promote

new products or learn about emerging trends, the analysis of the flow of information can

also be crucial in forensic investigations. As seen in recent history of so-called whistle

blower cases, where individuals shared sensitive information about governmental oper-

ations (Nayar 2010) or on clients of financial institutions, communication networks are

used to spread information of dubious origin. This has raised the need for a systematic

pattern analysis of information flow networks. Just as the analysis of money transfers

described in the previous section, analyzing information flows requires a temporal anal-

ysis of the graph structure. As described in (John Tang Mirco Musolesi and Latora

2010) considering transactions with respect to the time at which the interaction took

place yields more accurate results because it the time ordering is preserved. For analyz-

21

22 CHAPTER 3. ALGORITHMIC TRANSACTIONAL FRAUD DETECTION

ing the spread of information, the time ordering of events is crucial to the detection of

informational flow patterns because it is immediately obvious that information has to

be received first before it can be spread to other network participants.

For the scope of this thesis we will focus on the detection of patterns of financial trans-

action. The general architecture of the system presented is however independent of the

origin of the data and could match any transactional data set where an interdependence

between transactions can be defined as described in the next section.

3.2 (Financial-) Transaction Matching

Before explaining the concrete implementation of the transaction matching system in

the next chapter, we would like to introduce our approach in a more abstract and

implementation-independent form. As already mentioned, the goal of our approach

is to scalably detect patterns of interesting transactions in large data sets. For this

reason we propose an approach of matching transactions based on local information

and then aggregate the associations that were found to connected components. As

transactions can be thought of as a set of interactions between entities that have a

temporal annotation as well as a payload, they could represent many di↵erent forms of

interactions and are not limited to financial transactions. This section therefore describes

our transaction matching approach in a generic and use-case-independent way.

3.2.1 General Idea

The general idea behind our approach comes from the observation of the detection sys-

tems and fraud case scenarios reported in the previous section. While the identification

of suspicious individual entities in a transaction network can often be detected with

relatively straightforward flag conditions or classification mechanisms, the detection of

interaction patterns that are composed of multiple entities is more challenging. We also

described that most financial fraud cases used some form of layering or other mechanism

to obfuscate money streams. Money laundering schemas typically span multiple accounts

22

3.2. (FINANCIAL-) TRANSACTION MATCHING 23

and generate seemingly complex transaction structures between them. However, at the

level of the individual accounts the patterns are composed of a small number of simple

building blocks. Figure 3.3 shows three basic building blocks from an accounts perspec-

tive. Each account is represented as an entity with incoming and outgoing transactions

that are represented as circles at the left and right side of each entity. The dotted lines

that connect the incoming and outgoing transactions within the entities show money

streams that are either forwarded (as in entity 1), split (entity 2) or aggregated (entity

3) and through that associate sets of transactions. Our approach exploits these simple

building blocks by proactively detecting their existence at the local level of an account.

Of course an existence of such a building block does not yet imply, that an account has

to be considered to be suspicious. For this reason our approach processes the building

blocks and tries to connect them if they share transactions. In our example case in figure

3.3 the three building blocks would be connected because they share the two transactions

that are represented by black arrows. The resulting connected component would then

have to be assessed with regard to its relevance for the specific use case.

(QWLW\��(QWLW\��

LQ RXW LQ RXW LQ RXW

(QWLW\��

Figure 3.3: General transaction matching approach.

3.2.2 Matching Conditions

As described above, the matching of transactions between entities is not specific to one

particular use case, and only requires that a dependency condition between transactions

can be defined. In order to understand the matching of transactions and use it in

the system implementation in the next chapter, we first have to define the properties

23

24 CHAPTER 3. ALGORITHMIC TRANSACTIONAL FRAUD DETECTION

of dependent transactions. As an initial condition, dependent transactions have to be

connected to the same entity e.g. the same account acts as the receiver of sender of a

transaction that participates in an association. We denote the set of received transactions

of an entity x 2 E as T in

x

and the set of sent transactions as T out

x

. Since we are only

interested in transactions that connect di↵erent entities of the graph we require that the

same entity never acts as the sender and receiver of a single transaction:

T in

x

\ T out

x

= ?, 8x (3.1)

The goal of the matching process is to find pairs of sets of transactions that match

each other. These pairs consist of a set of input transactions M in

x

and a set output

transactions Mout

x

at the same entity. In order to be regarded as a successful match, the

two sets have to meet all of the following restrictions:

Both match sets have to be subsets of the respective sets of transactions.

M in

x

⇢ T in

x

^Mout

x

⇢ T out

x

(3.2)

Both match sets must not be empty.

M in

x

6= ? ^Mout

y

6= ? (3.3)

All members of the input match set must happen before the earliest member of the

output match set.

max
t

M in

x

< min
t

Mout

x

(3.4)

Because the transactions contain a domain specific payload, a successful match requires,

that the aggregated payload of the input transactions must match the aggregated payload

of the output transactions. The aggregation functions aggr
in

and aggr
out

hereby depend

on the specific use case and the nature of the transactions.

aggr
in

(M in

x

) ' aggr
out

(Mout

x

) (3.5)

24

3.2. (FINANCIAL-) TRANSACTION MATCHING 25

In the specific case of matching financial transactions, the association could be based on

the sum of transaction values while allowing for a small di↵erence in values of ".

X
M in

x

=
X

Mout

x

± " (3.6)

This specification of how transactions can be matched based on their pair-wise inter-

dependence can be considered as a generalization of the sum-chains or chains described

in (Luell 2010) and presents the fundamental mechanism of the transaction matching

system. The next chapter will show, how transactions that comply with these depen-

dency conditions can be detected in large sets of financial transactions and outlines an

end-to-end implementation of the entire matching process.

25

4

System Design and Implementation

This chapter describes the architecture and implementation of a system that is able to

detect relevant connected components within a stream of transactions. In addition to

that, the system o↵ers a front-end and a domain specific language to facilitate usage

in investigative scenarios. The description of the system is separated into three parts

and starts with the specification of the central transaction matching functionality, where

transactions are loaded and interesting connected components are detected. In a second

step, a number of tools are presented that are designed to help an investigator analyze

the suspicious patterns, which are returned by the system. In a final step we show how

the di↵erent modules of the matching system can easily be orchestrated using a domain

specific execution description language.

4.1 Transaction Matcher

On a conceptual level, the tasks of the transaction matcher module can be separated

into a workflow that consists of four distinct steps. In an initial phase, a set of trans-

actions need to be loaded into the system from some database or source input file. In

a second step, the system attempts to find connected components, where subsets of

the transactions are pairwise dependent on each other. The third step associates the

previously connected transactions by following transitive dependencies. In a last step,

the connected components are separated from the unmatched transactions and tested

against a set of conditions. These conditions can be specified by the user and allow him

28 CHAPTER 4. SYSTEM DESIGN AND IMPLEMENTATION

to express his interest in specific occurrences or patterns. The result of this process is

a set of connected components that are of interest to the user. The four steps of the

transaction matcher are summarized in the visualization in figure 4.1.

7UDQVDFWLRQ�0DWFKHU

/RDGLQJ 0DWFKLQJ &RPSRQHQWV)LOWHULQJ

Figure 4.1: High-level view of the transaction matcher module.

4.1.1 Hypothetical Batch-Processing Model

A first naive approach to implement this workflow would be, to sort the input data by

the timestamps of the transactions and then partition it. These partitions can the be

run through the four steps described above. This version of batch-processing imposes a

number of restrictions on the resulting connected components that can be detected. One

of the most di�cult aspects of this form of processing is the appropriate selection of the

right partition size. The algorithm in such a batch-processing schema can only detect

patterns that are contained within a partition. While larger partitions are more likely to

contain entire patterns, they also require significantly more memory. Another problem

is, that a non-overlapping partitioning of the input data is not able to capture connected

components that span two or more partitions. For this reason we need to ensure that

all the components are at least entirely contained once within a partition. This could be

achieved by applying overlapping partitions as shown in figure 4.2. Depending on the

overlap properties, one can optimize for either a minimal size of the partition or a small

number of repeated executions per element in the data set. It can easily be proved,

that in our concrete case this means, that in order to capture a connected component of

duration d we need partitions of size 2d that are shifted by d to reduce the number of

repeated executions for each transaction. Another disadvantage of this system is, that

28

4.1. TRANSACTION MATCHER 29

it can only consider information that is available within the processed partition of the

graph and can therefore not accumulate knowledge over time. On the other hand the

batch-processing is embarrassingly parallel because the processing of one portion is not

dependent on any other execution. As a consequence all portions of the graph could be

computed in parallel on a distributed infrastructure.

7UDQVDFWLRQ�0DWFKHU

/RDGLQJ &RPSRQHQWV)LOWHULQJ0DWFKLQJ

W

1RQ�
RYHUODSSLQJ

2YHUODSSLQJ
�VPDOO�ZLQGRZV�

2YHUODSSLQJ
�IHZHU�H[HFXWLRQV�

W

0DWFKLQJ

/R
DG
LQJ

&RPSRQHQW�
'HWHFWLRQ

)LOWHULQJ
Figure 4.2: Overlap strategies for batch-processing.

4.1.2 Continuous-Processing Model

Considering the fact, that in a batch-processing system a lot of the patterns would

be detected multiple times and therefore a significant portion of the e↵ort would be

redundant, we decided to also explore the possibility of streamed processing of the input

data. The main steps that are needed in order to detect interesting patterns remain the

same as shown in figure 4.1. However, the streaming mode holds transactions that can

each be in any step of the processing workflow. This is in contrast to the batch-processing

mode, where the entire data set is pushed through the steps of the workflow and only

one workflow step is active at a specific point in time. Figure 4.3 shows an exemplary

snapshot of a streamed execution and the di↵erent phases that the transactions are in.

As time flows from left to right, new transactions are added to the right and automat-

ically enter the matching phase. The newly added transactions are now to be associated

with other transactions. After a specified amount of time transactions are no longer able

to receive associations from subsequent transactions. If the transaction has not yet been

matched, it is automatically discarded and removed from the process. If the transac-

29

30 CHAPTER 4. SYSTEM DESIGN AND IMPLEMENTATION

7UDQVDFWLRQ�0DWFKHU

/RDGLQJ &RPSRQHQWV)LOWHULQJ0DWFKLQJ

W

1RQ�
RYHUODSSLQJ

2YHUODSSLQJ
�VPDOO�ZLQGRZV�

2YHUODSSLQJ
�IHZHU�H[HFXWLRQV�

QHZHU

0DWFKLQJ

/RD
GLQJ

&RPSRQHQW�
'HWHFWLRQ)LOWHULQJ

ROGHU

Figure 4.3: Exemplary snapshot of di↵erent processing phases in a streamed execution.

tion was successfully matched it enters the component detection phase. In this phase

the transaction gathers information about the members of its connected component and

waits for all component members to also enter the component detection phase. At the

point where the entire connected component is in the component detection phase, the

component is reported and a number of filters are applied to assess whether or not the

component is of interest to the user. After successfully passing the filtering step the

components are reported and removed.

The following sections will explain each of the processing steps in detail. However

before going through the processing model, we explain how transactions are represented

as graph structures and how the basic graph elements are composed to allow di↵erent

behavior depending on the processing phase that they are in.

4.1.3 Graph Representation

Transactions can be modeled in various forms as graphs structures. A very intuitive

representation is a graph that consists of set of entity vertices V and a set of transac-

tions as edges E between them. A systematic visual representation of this is shown in

figure 4.4a). Despite its intuitiveness, this representation comes at the cost of several

limitations when the temporal dimension of transactions is considered. The edges would

only be valid at a single point in time and a static graph G = (V,E) would imply reach-

abilities that are not valid, when the temporal order of the transactions is considered.

Additionally the stated goal of finding suspicious flows of transactions would be more

30

4.1. TRANSACTION MATCHER 31

di�cult if a flow visited the same vertex more than once i.e. the static graph G contains

cycles of repeatedly visited accounts. Of course these cycles could be unfolded by con-

sidering the time stamps on the transactions, but this would again introduce additional

complexity to the system. For these reasons it is beneficial to represent both, the enti-

ties and the transactions, as vertices as shown in figure 4.4b). The upper vertices in b),

which represent the transactions, are hereby semantically equivalent to the edges in a).

The transaction vertices have exactly one incoming and one outgoing edge, whereas the

vertices that are located below them and represent the entities that issue transactions

can have multiple incoming and outgoing edges.

D� E�

Figure 4.4: Alternative graph representations for transaction networks.

In the matching system, the graph structure shown in figure 4.4b) is constructed at

loading time. In addition to the association of a transaction with its source and tar-

get entities it can build new connections to other transactions if they are associated

with each other. For instance if a transaction is dependent on another transaction that

happened earlier in time they will be bi-connected to represent this pair-wise relation-

ship. Obviously this connectivity between transactions will cause the graph structure of

transactions and entities to lose its bipartite graph property that existed after loading.

4.1.4 Pluggable Vertex Algorithms

As described above, the process of identifying related transactions and aggregating them

to transaction patterns involves a series of steps that a transaction would have to step

through until it can be reported as part of a component. As the processing system is

built on top of Signal/Collect (Stutz, Bernstein, and Cohen 2010) we had to come up

with an extension to Signal/Collect that allowed di↵erent vertex behaviors based on

the step in a workflow that a vertex is currently in. This change in behavior however

31

32 CHAPTER 4. SYSTEM DESIGN AND IMPLEMENTATION

should happen based on local decision factors and be transparent for other components

of the graph. In addition to that the neighborhood of a vertex should not be altered

when a vertex changes its behavior. For this reason a special vertex implementation

called RepeatedAnalysisV ertex was created that allows for pluggable algorithm imple-

mentations. Pluggable algorithms implement the V ertexAlgorithm interface and can

be swapped during run time.

9HUWH[

$OJRULWKP

(GJHV

��/DEHO��9DOXH�!

$OJRULWKP

9HUWH[

Figure 4.5: RepeatedAnalysisVertex with pluggable vertex algorithm.

The RepeatedAnalysisV ertex as shown in 4.5 is essentially an adaption of the state

pattern (Gamma et al. 1995) of object oriented design. The enclosing vertex imple-

mentation delegates all algorithm dependent calls to the enclosed V ertexAlgorithm

but is responsible for the vertex’s connectivity within the graph. In addition to that

the RepeatedAnalysisV ertex is capable of storing arbitrary values in a dictionary data

structure. This dictionary used for two purposes. On the one hand, it allows to easily

add new named attributes as field values without sub-classing and adding the fields at

compile time. These field values can later be used in the specific algorithm. Addition-

ally the dictionary can also retain intermediary results, that were obtained by executing

algorithms on the vertices. This allows the user to reuse results in subsequent algorithm

executions by retrieving the stored intermediary result. If we look at a transaction vertex

in our financial transactions use case, the dictionary is initially loaded with entries for

the value of the transaction, the time stamp and similar values. During the execution

of the work-flow additional entries, such as information about the component that it

belongs to, can be added to the dictionary and reused by algorithm implementations.

32

4.1. TRANSACTION MATCHER 33

Field Type Description
Id Integer A globally unique identifier
Time Long Unix timestamp (sec. since 1/1/1970)
Src Integer The Id of the source entity
Target Integer The Id of the target entity

Table 4.1: Mandatory fields for transaction vertices.

4.1.5 Loading

As described in the overview section on the transaction matching implementation, the

loading step represents the initial phase of the entire detection process. The goal of

this phase is to generate the required graph elements for each entry in the input data

an add them to the graph for further processing. Because the behavior of the graph

elements changes over the process of the execution, all vertices of the graph are directly

loaded in the pluggable form as described in the preceding section. As each entry in

the input data is assumed to represent a transaction between two entities, the loading

of such an entry results in three vertex instances. Two of the instantiated vertices

represent the source and target vertex of the transaction and the third vertex represents

the transaction itself. The source and target entities are loaded with no additional state

information apart from their globally unique Ids and are directly added to the graph.

If the graph already contains an entity with the same Id no additional entity will be

added. The entities initially have no reference to the transactions that it issues but will

accumulate this knowledge during the matching process. The transactions on the other

hand are loaded with more state information and include all the relevant information

that is available as part of the input data. The number of fields that can be included

in the transaction vertex is not limited, however for the transaction matching phase a

number of fields are required. Those fields are listed in table 4.1. In addition to the

mandatory fields some information about the payload of the transaction might also have

to be included in order to be able to meaningfully associate the transactions. After

storing all the fields the transaction is added to the graph and proceeds to the matching

phase.

33

34 CHAPTER 4. SYSTEM DESIGN AND IMPLEMENTATION

4.1.6 Matching

After the new transactions are loaded and added to the graph, they have to be matched

with other transactions in order to find sets of transactions that are dependent on each

other. As described the high level overview, the matching phase provides the initial

structure which underlies the suspicious patterns and is therefore essential to the recall

of the entire process. The goal of the matching process is hereby to find transaction

patterns that are dependent on each other with regard to the conditions described in

the general description of the matching process in section 3.2.2. The matcher therefore

has to consider all the conditions in (3.1)-(3.5) in order to find successful matches among

the transactions. For the purpose of maintaining a use case independent infrastructure,

the matching process can be divided in a generic and an application-domain specific part.

As seen in the more formal description above, the matching of transactions is based on

the local view of the entities that participate in these transactions. Regardless of the

specific application domain, an entity is responsible for maintaining its transactions

and detecting possible associations among them. Because the entities are loaded as

separate instances and exist independently of the transactions the transactions have

to announce themselves at both their sending and receiving entity by sending them a

subset of their transaction attributes. In turn the entities hold lists of the incoming and

outgoing transactions and try to find matches among them. The process of matching

these lists of transactions can be a computationally expensive task and accounts for a

significant amount of the e↵ort of the entire processing workflow. In order to reduce

this e↵ort the system has to avoid repeated computations of matches over the same set

of transactions. Therefore the matching process is only performed once new options,

i.e. transactions, are available for matching. Moreover, since transaction are assumed

to be loaded in the order of their time stamps, an entity only starts a new matching

attempt at the arrival of new outgoing transactions. Incoming transactions will be added

to the list of input candidates, because condition 3.4 does not allow that it would be

matched with transactions, which happened before this transaction. At the arrival of

outgoing transactions the entity will try to match the new outgoing transaction with

34

4.1. TRANSACTION MATCHER 35

all the incoming and outgoing transactions that are available at that point in time

and eligible given the conditions stated above. If the matching could not detect any

associations among the transactions the new output is added to the list of the potential

matches for further executions. In case the attempt resulted in a successful match, all

the transactions that took part in this match are connected with a pair of edges. These

denote their pairwise dependence in both directions.

Figure 4.6 illustrates the steps of the matching process for financial transactions, where

the matching is based on the sums of the transaction amounts as described in condition

3.6. For the simplicity of this illustration we assume that the matcher only considers

exact matches by setting " = 0. The first step shows an entity with two incoming

transactions and one outgoing transaction. Even though both incoming transactions

have a smaller time stamp than the outgoing transaction, they cannot be matched,

because no combination of the input values matches the output. After a new outgoing

transaction to the entity, it is now able to identify a possible match. By summing up

both the values of both input transactions, the aggregation matches the most recent

output. Subsequently the successfully matched transactions learn about their related

transactions and build up bidirectional connections between the inputs and the outputs.

The user of the system can also decide if transactions should only participate once in

a match or be available for multiple matching associations. The fist approach yields

unambiguous results but could potentially miss out on matching interesting patterns. If

transactions can participate in multiple matching associations all matching possibilities

are considered at the cost of potentially capturing larger components than intended.

Depending on the use case and the user’s preference function he can therefore choose

either option, by setting the appropriate flag in the execution description.

The matching of transactions is temporally constrained to a sliding window, which

means that transactions that could not successfully be matched within a predefined

duration are automatically removed from the graph. Consequently, the transaction will

also be removed from the lists of matching candidates at its respective source and target

entities. The sliding window is achieved by periodically sending a timeout message to

35

36 CHAPTER 4. SYSTEM DESIGN AND IMPLEMENTATION

W�
���

W�
���

W�
���

W�
���

W� ���
W� ���

W� ���

W�
���

W�
���

W�
���

W� ���
W� ���

W� ���
W� ���

W�
���

W�
���

W�
���

W�
���

W� ���
W� ���

W� ���
W� ���

Figure 4.6: Matching of transactions at an entity.

all active vertices in the graph. Upon receipt of a timeout message the transactions

compares the time in the message with its own time stamp. If its time stamp is older

than the timeout it received, the transaction will no longer be eligible for matching.

These transaction then either proceed to the component detection phase or are removed

from the graph in case they have not been matched. Entities on the other hand use

the same timeout messages to remove intermediary matching structures that they built

up based on the transaction information and have now timed out. When an entity has

removed all its transactions, it removes itself from the graph as well. The broadcasting

of the timeout messages is a compromise that ensures consistency with regard to the

order of removal of transactions without having a central instance that keeps track of

the transactions and their timestamps.

4.1.7 Component Detection

Transactions are transferred to the component detection phase, once they were success-

fully matched with other transactions by the means of the previously described conditions

and are no longer available for matching. The goal of the component detection phase is to

build larger constructs from the previously detected associations between transactions.

The constructs are built by concatenating the associations from the previous phase in a

way that an output transaction participates as an input transaction in another associ-

36

4.1. TRANSACTION MATCHER 37

ation. Because the graph elements allow for pluggable vertex behavior, the component

detection is initiated by switching out the algorithm on the matched transactions and

replacing it with the component detection algorithm. The component detection is based

on a simple algorithm to find consensus about which transaction the component master

should be. The id of the component master will then serve as the component identifier.

The component master is determined by broadcasting the transaction signature of that

transaction that is believed to be the master of the component. This signature contains

the id of that transaction and its time stamp. Every transaction starts by propagating

its own signature and will switch to the signature that it has received from one of its

neighbors, if the signature represents a more recent transaction. In case the timestamps

are equal, the signature will be switched, if the ID contained in the received signature is

greater than the one currently held. If a transaction decided to switch to a new signature

it broadcasts that new signature along its associations. This aggregation of signatures

deterministically converges towards the label of the most recent transaction in the graph.

Since the component detection causes all transactions contained within a component to

learn about the e most recent transaction, that transaction will later act as the master

of this component.

The component detection phase ends when the most recent transaction of the com-

ponent cannot be associated with new transactions anymore. This means that for all

transactions in the component, the di↵erence in time to a new transaction would be

longer than the matching specification allowed for. For data sets that are composed

of highly connected transactions the user also has the choice of specifying an optional

maximum duration of a connected component to ensure that components are reported

and do not get stuck in the component detection phase.

4.1.8 Filtering

The component detection phase described in the previous section results in a number

of connected components which each consist of a set of component members and one

component master. However the transactions within a component only know about

37

38 CHAPTER 4. SYSTEM DESIGN AND IMPLEMENTATION

their local neighborhood and the existence of the component master. In the next step

the system needs to decide whether a component is relevant to the user. For this purpose

the information about the component needs to be centralized and reported. Because the

number of components can be large, this process is based on a hierarchical organization,

where components are represented by their component masters. In a first step the

component master therefore has to learn about all the members of the component that

he represents. In order to do that, every component member sends information about

itself to the component master. The master will in turn aggregate all these messages

and build a list of all its members. As soon as the master learned about all its members

he reports the component to an external component handler.

The component handler itself is responsible for identifying the interesting components

within the set of connected components and report them to the result handlers (see

section 4.2). For this purpose the component handler can be configured with a filter-

ing workflow. This workflow is essentially represented as an ordered list of conditions,

which the components have to fulfill in order to be considered relevant to the user. The

component handler is responsible for distributing this workflow to the components and

receives all components that successfully passed the entire workflow. In the implementa-

tion this means, that whenever a new component is reported at the component handler,

an instance of the workflow is sent to the component master for evaluation. Figure 4.7

shows a component workflow consisting of 3 conditions and an acceptance state that is

executed on two di↵erent components. The components are associated with a step in the

workflow which means that the components at least fulfill the conditions of the previous

steps. The green component has reached the acceptance step and can be reported as a

successful match.

The conditions in the di↵erent workflow steps are required to evaluate to a Boolean

value that determines whether the component passes this step of the workflow or not.

This list of conditions allow the user to express any condition that is required in order to

assess the relevance of a component in the context of a specific use case. Each condition

is composed of information about the component and a comparison function to evaluate

38

4.1. TRANSACTION MATCHER 39

&RPSRQHQW�:RUNIORZ

VL]H�! �� GHSWK�! �� VLQNV� ��� 䘟

&RPSRQHQW�:RUNIORZ

VL]H�! �� GHSWK�! �� VLQNV� ��� 䘟

Figure 4.7: Component workflow execution on di↵erent components.

the returned result. The information about the component can either directly be an-

swered by the component master, e.g. the size of the component, or require the execution

of an algorithm on the component members. If an algorithm execution is required, the

results of the algorithm execution need to be aggregated by the component master to

obtain the information that needs to be checked against the comparison function. This

execution of arbitrary algorithms and especially graph algorithms on the component

structure allows for complex attribute queries that the component master could answer

purely based on the list of component members and contributes to the expressiveness

of the overall system. The di↵erent queries and algorithms that can be used to obtain

information about the components are extensible and can be directly registered at the

component handler. They are then loaded via the workflow steps on the component’s

vertices. An exemplary request is shown in listing 4.1 were the request consists of a

function on the component master. The resulting size would then be evaluated against

the evaluation condition and the master would proceed to the next step in the workflow

1 // Queries the master for the size of its component

2 val SizeQuery = ComponentMasterQuery(master => master.members.size)

Listing 4.1: Simple component query example

Queries that require the execution of an algorithm on the component structure are

slightly more complicated because they consist of two parts. The first argument is the

39

40 CHAPTER 4. SYSTEM DESIGN AND IMPLEMENTATION

algorithm that should be loaded on all members of the component and the second ar-

gument describes the aggregation function that the component master needs to apply

to compute the return value. Listing 4.2 shows such an algorithm execution, which

runs a depth exploration on the component graph which will label each vertex of the

component with its maximal depth based on the component structure. The aggregation

function is relatively simple and computes the maximum value of all results returned

by the components. By implementing the same set of interfaces one can define various

other graph algorithms to extract relevant information from the component.

1 // Queries the component for the max depth i.e. the longest path from

any source to a sink transaction

2 val depthAlgorithm = ComponentAlgorithmExecution(depthMemberAlgorithm,

maxInt)

3

4 // Returns the depth of a transaction in the graph.

5 val depthMemberAlgorithm = ComponentMemberAlgorithm(vertex => new

PatternDepthAnalyzer(vertex))

6

7 // Get the max integer of all component member replies

8 val maxInt: (Iterable[ComponentMemberMessage], ComponentMaster) => Any

= {

9 (repliesFromMembers, master) =>

10 {

11 val replies =

repliesFromMembers.asInstanceOf[ArrayBuffer[ComponentMemberResponse]]

12 replies.map(_.response.get.asInstanceOf[Int]).max

13 }

14 }

40

4.2. RESULT HANDLING 41

Listing 4.2: Component member algorithm example

After passing the last workflow condition, the component master composes a serial-

ized representation of its component and passes this to the component handler. The

component handler then forwards these serialized components to the result handlers

that are registered with it. The result handler’s functionality as well as a selection of

di↵erent result handler implementations will be described in the following section. An

example of a complete filtering process consisting of two conditions, of which one is a

simple query on the component master and the other one requires the execution of the

previously described depthAlgorithm, is visualized in figure 4.8. As the figure shows,

the component handler only takes part in the initialization and the final phase of the

workflow whereas the workflow is processed independently on the component master and

its members. This not only reduces the load on the component handler but also avoids

unnecessary communications between the component handler and the master. For this

reason the current implementation uses only one component handler but the architecture

would allow for replicated component handlers to balance the workload if that would

ever become necessary.

4.2 Result Handling

In order to make meaningful use of the patterns that were found by the matching and

filtering process that was described in the previous section, the system also provides a

number of tools that allow the user to investigate the reported results or persistently

store them in some other location. As described in the previous section the component

handler receives a serialized version of the entire component from the component master

and then broadcasts this information to all registered result handlers. Because the

reports need to be provided in an exchangeable format that can be used by a variety of

di↵erent tools we decided to use the JSON serialization format to represent the serialized

components. An example of such a serialized component in JSON format can be found

41

42 CHAPTER 4. SYSTEM DESIGN AND IMPLEMENTATION

Figure 4.8: Workflow execution on a component with three members.

in Appendix A.1. The result handlers that are described in the rest of this section

are all able to accept such serialized components and process them according to their

implemented functionality.

4.2.1 Command Line Debugger

The command line debugger is the most basic result handler. It accepts the reported

component and forwards its character string representation to the standard output. This

result handler is mainly used for debugging or logging purposes. However, despite of its

simplicity this mode allows other command line tools to further process the results and

hence contributes to the extensibility of the system.

42

4.2. RESULT HANDLING 43

4.2.2 Visualizer

The visualizer is the most elaborate result handler and allows the user to inspect the

reported components in a visual graph representation. The visualizer result handler is

composed of a server and a client part. The server component’s tasks can be separated

into two logically separated components. On the one hand, the server is responsible for

serving the client libraries and the static visualizer page that builds the foundation of

the client’s web app. In addition to its file serving functionality, the server also acts as

the receiver of the serialized components from the component handler and sends them

to the connected clients. Clients are connected to the server via HMTL5 web sockets,

which allows for two-way communications between the server and the clients. The two-

way communication channel allows the server to send information directly to the client

application without the delay and overhead of manual refreshes. In addition to that,

the client can connect to the web socket endpoint over a network connection and run

on a separate machine. A high-level overview over the di↵erent visualizer components

is shown in figure 4.9.

9LVXDOL]HU�:HE�$SS

6WDWLF�)LOH�6HUYHU

&RPSRQHQW�+DQGOHU

9LVXDOL]HU�
5HVXOW�+DQGOHU

+773 :HE6RFNHW

Figure 4.9: Visualizer architecture overview.

The client side of the visualizer is implemented as a browser-based web application as

shown in the screen shot in figure 4.10. The client application is composed of three areas

that each serve a di↵erent purpose. In the upper right part of the application a number

of reported components are listed. The components in the list are represented by some

key indicators about it. The user can select any component that he is interested in and

have it been drawn on the canvas in the middle of the screen. Depending on whether the

43

44 CHAPTER 4. SYSTEM DESIGN AND IMPLEMENTATION

user decides to display the component as an account or a transactions graph the vertices

in the visualizations represent accounts or transactions. New transactions that were

sent from the server are automatically appended to the list of reported components.

The application also provides basic import and export functionality to interact with

the components in the reports list and a progress bar that shows the current state of

processing. The upper left side of the client application consists of a HTML5 canvas

where the graph visualization is drawn. The current implementation includes a series

of di↵erent coloring and sizing schemas to semantically highlight the properties of the

underlying graph but their exact properties go beyond the scope of this description. The

lower section of the application contains an inspector tab, which displays information

about graph elements if the user clicks on transactions or accounts.

Figure 4.10: Display of a reported component in the visualizer.

Apart from just being a result handler that processes the reported results, the visual-

44

4.2. RESULT HANDLING 45

ization component also provides an editor that allows the user to specify an execution

and start it from the web application. The editor can be accessed by clicking on the tab

left to the inspector tab and is shown in figure 4.11. A detailed description of the syntax

of the execution description is given in the next section.

Figure 4.11: Execution description editor in the user interface.

4.2.3 Database Interface

The visualization handler described above is targeted towards online visualization of

patterns that were reported. Depending on the use case and the volume of reported

transactions this form of processing the results might not be appropriate or overwhelm-

ing for the user. Additionally the visualizer only visualizes the reported components but

does not automatically store the results that were found. If a reported result needs to be

analyzed at a later point in time the user would have to manually export and re-import

the reported components. To simplify this process we decided that the system should

also support a persistent storage option where the results can be written to a database.

As the system supplies the results in JSON format, mapping the results to a relational

database schema would require additional information and schema definitions. It is in-

tuitively clear that a schema less database would be a better fit for our requirements

than the more strict SQL based database. Consequently we decided to implement a

MongoDB backed result handler that allows the storing of the reported components in

45

46 CHAPTER 4. SYSTEM DESIGN AND IMPLEMENTATION

JSON format without further processing or mapping e↵ort. MongoDB is a document-

oriented database, which means that no explicit schema is required. The MongoDB

result handler automatically creates a separate collection for each execution of the de-

tection system. During the execution of the detection system the detected components

are continuously added to the current collection as a separate DBObject. Storing the

reported components in the document oriented database also allows for querying of the

results e.g. to test whether a transaction was reported as a member of an interesting

component. The MongoDB driver is currently configured to store the components on a

MongoDB instance running on the local machine but it can also be parametrized to use

externally hosted or sharded MongoDB instances.

4.3 Execution Description Language

The transaction matching system was designed with an emphasis on creating an imple-

mentation that is generic enough to be able to match transactions in various use case

scenarios. Such a generic system, however, comes at the cost of more parameterization,

because the implementation has to be configured in order to perform as required. Apart

from the system being extensible and generic, another desirable property is, that the

system should be open to a broad range of users. This means that the system should

be designed in a way that it does not require advanced programming expertise or a

deep understanding of the matching process. This is achieved by extracting the funda-

mental configuration steps into a separate set of instructions that act as the execution

description (ED). Because the ED contains a number of instructions that are specific to

orchestrating the components of our system, we decided to use YAML as the underlying

format of the ED rather than trying to map it to an extended syntax of an existing

query language such as SQL or SPARQL. Other benefits of YAML are its concise syntax

while maintaining a high level of readability.

Listing 4.3 shows an example of an ED that contains all the necessary entries to

46

4.3. EXECUTION DESCRIPTION LANGUAGE 47

perform a matching execution and report the results that were found. The ED can be

logically split into three distinct sections. The first section (in lines 1-7) specifies the

loading of transactions from an input file. The source value specifies the path of the

source file on the server that contains the transactions. The parse entry explains, how the

entries in the source file should be represented on the transaction vertex. For example,

line 7 instructs the parser to parse the fifth entry of the input as a long value integer and

store it as the transactions time stamp. The parser hereby allows the specification of

arbitrarily named fields of primitive type. As already described in table 4.1 a number of

entries are mandatory and need to be listed with their respective value. In our case we

added an optional entry value to the loading script, which will be used in this scenario

for matching financial transactions. As this example illustrates, the parse statement also

allows the exclusion of entries in the input file, e.g. here we excluded the entry at index

one by not listing that index in the parse list.

The second set of instructions (lines 9-14) describes the matching process itself. The

matcher statement instructs the system to use the matcher for financial transactions as

illustrated in figure 4.6. For other matching strategies one could register other matcher

implementations and use their name within the ED. The start and end entries spec-

ify the interval that should be processed by the system. All transactions that have a

time stamp, which lies within this interval, are eventually processed by the matcher. The

window entry tells the system how many transactions should be loaded before the loader

stops and awaits the convergence of the computation. After the computation has con-

verged, the loading is resumed. As described in the matcher description, transactions

are only accepting associations with other transactions for a certain amount of time.

This maximum interval between transactions that can be associated with one another is

specified by the transactionInterval entry. The last entry of the matcher specification

section describes all the conditions that have to be met by connected components in

order to be considered as significant to the user. The filters entry therefore consists of

a list of conditions of the form (Algorithm, Boolean Comparator, Value) for algorithms

that are evaluated against a statically compiled value, e.g. an integer, or (Algorithm,

47

48 CHAPTER 4. SYSTEM DESIGN AND IMPLEMENTATION

Boolean Comparator, Algorithms) for two algorithms that are evaluated against each

other.All algorithms that are used within a filter need to be previously registered with

the system or already be present as one of the default implementations.

The ED ends with a description of the result handlers that are activated to process

the reported components. As for the matcher or the filter entries, the handlers also need

to be registered with the system if additional result handlers are being used. By default

all three result handlers described in the previous section are already registered with the

system and can be used with the respective entry in the handlers list.

1 source: /path/to/transactions.csv

2 parse:

3 id: [0,Int]

4 src: [2,Int]

5 target: [3,Int]

6 value: [4,Long]

7 time: [5,Long]

8

9 matcher: financial

10 start: 01/09/2009 02:50:00

11 end: 18/08/2013 17:30:00

12 window: 1d

13 transactionInterval: 1w

14 filters: [SIZE > 5,SINKS = 1,SINKVALUE > 10000000000,DEPTH > 3,

COUNTRYHOPS > 2]

15

16 handlers: [WEBSERVER, CONSOLE]

Listing 4.3: Example of an execution description in YAML

48

5

Evaluation

This chapter evaluates our implementation with regard to its capabilities of expressing

and retrieving interesting financial fraud patterns along with key performance measure-

ments of the computation. For the lack of availability of real-world financial data sets,

which include ground truth with regard to whether a transaction or a set of connected

transactions should be considered fraudulent, this evaluation is performed on two unla-

beled data sets. One data set analyzed in this section was synthetically constructed to

resemble the typical structure of account interactions within banks. The other data set

consists of real-world transactions that were obtained by reconstructing the transactions

found in the Bitcoin Blockchain. Because the Bitcoin use case is is based on publicly

available data and provides a larger set of transactions, it is used as the main data set

for this evaluation. The synthetic bank transactions are used in a second step in order

to validate the general applicability of the results obtained from the Bitcoin evaluation.

To construct the data set for our Bitcoin evaluation we used the Bitcoin Blockchain and

deanonymized the public addresses, as described in section 3.1.2. By merging common

input addresses we were able to obtain a transaction log between users of the Bitcoin

system that consists of 50 million transactions. According to a study presented by the

Bank of America (Chang et al. 2007), this size is comparable to the amount of wire

transfers that are handled by large American banks on a daily basis. Because of the

increasing popularity of the Bitcoin currency, the number of transactions per day has

steadily grown during the analyzed time period between January 9, 2009 and July 10,

50 CHAPTER 5. EVALUATION

2013. As shown in figure 5.1, the number of transactions per day di↵ers by three orders

of magnitude during this time period. This non-uniform distribution of transactions

provides the opportunity to analyze the detection system’s performance on varying scales

of input data rates. Because the data set does not provide pre-labeled fraud patterns and

not enough fraud cases are reported to manually label the transactions, the goal of this

evaluation section is not to detect historic fraud cases in the Bitcoin transaction graph.

Instead we show that the system is able to detect patterns, which correspond to patterns

reported as part of real world financial fraud cases, within this data set. The detection

procedure as well as the patterns used in this evaluation are therefore not specific to a

Bitcoin use case but rather designed to enable the detection of more general financial

transaction patterns. The capability of the system to capture structures of real-world

fraud patterns is evaluated in the first section of this chapter. The subsequent sections

will then analyze the performance of the system with respect to the matching complexity

as well as the matching duration used in the execution.

0"

50000"

100000"

150000"

200000"

250000"

1/9/09" 7/9/09" 1/9/10" 7/9/10" 1/9/11" 7/9/11" 1/9/12" 7/9/12" 1/9/13" 7/9/13"

#"
Tr
an

sa
c)
on

s"

Figure 5.1: Bitcoin transactions per day.

5.1 Expressiveness of the System

To support the claim that the described process of matching transactions is an appro-

priate method for detecting meaningful transaction patterns, this section focuses on the

expressiveness of the system. The desired expressiveness can be formulated as two re-

50

5.1. EXPRESSIVENESS OF THE SYSTEM 51

quirements that the system has to fulfill. In a first step, the system has to be able to

let the user formulate his interest in the structure of transaction patterns. The second

requirement concerns the recall of the system and requires that the system returns all

transaction patterns that fulfill the conditions that the user expressed.

5.1.1 Expressiveness of the Query Language

To evaluate the expressiveness of the query language, we first have to define a set of

classes of fraud cases that we should be able to describe with the help of the query lan-

guage. As previously described, our data set of Bitcoin transaction provides no labeled

fraud patterns. Apart from a number of reported thefts there is also no external infor-

mation available that could be used as ground truth for such an analysis. Additionally,

we require the system to be able to detect transaction patterns independently from the

Bitcoin scenario. For this reason, our definition of interesting fraud cases needs to be

of a more general nature as well. To gather information about di↵erent classes of finan-

cial fraud, we analyzed a report (Egmont Group 2000) of a hundred reported money

laundering and financial fraud cases. This report was published by the Egmont group,

which is a global network of financial intelligence units (FIU). In this report the di↵erent

FIUs published anonymized case studies of various illegal financial activities that they

had detected. Since this report contains a variety of di↵erent fraud cases ranging from

simple theft cases to very complex money laundering schemas, we first classified the

reported cases with respect to their detection criterion in order to assess their suitability

for applying the proposed detection system.

Figure 5.2 shows how the case studies can be split in four classes. The visualization

shows each class together with the portion of the cases that fall in each of them. Ap-

proximately a third of the reported cases were either only detectable using additional

information, i.e. information outside the transaction logs, or were not described in

enough detail. A use case is described in not enough detail if it is not possible to decide

what detection criterion could have let to the detection of this case. In addition to that,

a significant portion of the reported cases was detected using simple flag conditions.

51

52 CHAPTER 5. EVALUATION

Detectable(by(
analyzing(
transac0on(
pa3erns(
36%(

Detectable(with(
flag(condi0ons(on(

accounts/
transac0ons(

27%(

Only(detectable(
using(addi0onal(
informa0on(

26%(

Unclear(/(Not(
enough(

informa0on(about(
laundering(
schema(is(
available(
11%(

Figure 5.2: Classification 100 Egmont fraud cases by detection criterion.

In these cases simple heuristics were used to raise suspicion upon unusual behavior on

individual accounts or transactions. The last group of cases consists of reports, where

fraud was detectable by looking at more sophisticated structures that involved multi-

ple accounts and transactions. Naturally, this last group will be in the focus of this

expressiveness evaluation. This class is particularly interesting, because it allows us to

assess the capabilities of the system and the query language with respect to their ability

to capture patterns with a complex transaction structure. Based on the characteristic

properties of the transaction patterns of the use cases in that group, the cases were

further classified into six distinct scenarios. A list of the scenarios, together with the

number of reports that fall into each one of them, can be found in table 5.1. A detailed

classification for all Egmont use cases can be found in appendix A.3.

As described in the implementation section in chapter 4, the specification of the con-

nected components that should be returned to the user can be specified as a filter con-

dition in the execution description. This filter allows the user to express his interest

in the returned components based on a concatenation of desired component properties.

52

5.1. EXPRESSIVENESS OF THE SYSTEM 53

Use Case # Reports
UC 1: Cash in, X-Country 11
UC 2: Single Transaction Channeling 7
UC 3: Split Equal 3
UC 4: Account Cycle 5
UC 5: Cash Washer 3
UC 6: Multi Country Hops 1
Not Supported 6

Table 5.1: Classification of Egmont transaction patterns in use cases.

All properties that are used to specify the components that correspond to the identi-

fied Egmont use cases are explained in table 5.2. These properties can either be directly

available to the master of a connected component or require an execution of an algorithm

on that component.

Table 5.2 lists all the properties that can be used to assemble the six filter conditions

that are able to capture the use cases derived from the Egmont report. The six filter

conditions are listed in listing 5.1 together with a short comment, which describes the

nature of the components that this filter is intended to find. For all use cases we required

the total flow of the pattern to be above 100 Bitcoin. Because of the lack of ground

truth the execution of these filter conditions can not be evaluated by the usual means

of precision, recall and accuracy. However they demonstrate how the system and the

complementary execution description language are able to express di↵erent patterns of

relevant structure. Since the set of properties, which can be used in a filter condition, is

extensible and can be tailored to suit a use case or data set, filter conditions provide a

powerful and flexible way to assess the relevance of a component.

1 # Use Case 1: Cash input is split across multiple countries

2 filters: [SOURCETRANSACTIONS=CASHSOURCES,

COUNTRYHOPS>=2,SINKVALUE>10000000000]

3 # Use Case 2: Large portion of the component’s input value is

channelled through a single transaction

4 filters: [SOURCETRANSACTIONS>1, MAXTRANSACTIONVALUE ⇠=10% SOURCEVALUE,

53

54 CHAPTER 5. EVALUATION

Attribute Description
CASHSOURCES Number of source transactions that were executed

in cash.
CYCLEMEMBERS Number of accounts participating in a circular

transaction path.
COUNTRYHOPS Number of transactions within a path spanning

multiple countries.
DEPTH Longest transaction path between a source and a

sink transaction
FAIRSPLITS Number of transactions that were split in equal

parts.
MAXTRANSACTIONVALUE Largest value of all transactions in the component.
SAMEDAYSPLITS Number of transactions that were split within 24h
SINKVALUE Aggregated value of sink transactions.
SIZE Number of transactions within a component.
SOURCETRANSACTIONS Number of transactions that are sources for the

components.
SOURCEVALUE Aggregated value of source transactions.

Table 5.2: Explanation of filter attributes used in the Egmont use case.

SINKVALUE>10000000000]

5 # Use Case 3: Transaction is split into 2 or more splits of

approximately equal size.

6 filters: [FAIRSPLITS>0, SINKVALUE>10000000000]

7 # Use Case 4: The list of accounts in a transaction flow path contains

cycles.

8 filters: [CYCLEMEMBERS>0, SINKVALUE>10000000000]

9 # Use Case 5: Cash input is split within 24h.

10 filters: [SOURCETRANSACTIONS=1, CASHSOURCES=1, SINKVALUE>10000000000,

SAMEDAYSPLITS>0]

11 # Use Case 6: A transaction path contains a large number of cross

country transactions.

12 filters: [COUNTRYHOPS>2, SINKVALUE>10000000000]

Listing 5.1: Filter conditions for all evaluated Egmont use cases.

54

5.1. EXPRESSIVENESS OF THE SYSTEM 55

5.1.2 Recall of Injected Components

As mentioned above, our Bitcoin data set lacks ground truth with respect to whether

it contains patterns, which correspond to any of the previously defined six use cases.

In order to be able to evaluate whether the filter conditions are capable of identifying

relevant components, we first have to ensure that they are contained in the input data.

For this reason, we manually injected five patterns for each use case in a set of one

million transactions and tried to retrieve them by executing a detection algorithm with

the corresponding filter condition. In addition to injecting the patterns, our Bitcoin data

set also had to be modified in order to contain additional information on the transactions,

which was used by the di↵erent filter conditions. Therefore we labeled transactions as

cash or cross-country with a probability of 10 percent each for each property. Figure

5.3 shows the components that were returned by issuing the filter condition for use case

1. The use case is characterized by components, where assets that originated from cash

transactions were subsequently transferred to foreign jurisdictions. The cash transactions

are displayed as a yellow lines whereas the cross-country transactions are visualized

in blue. As shown at the top of the illustration, the system correctly returned the

five injected components. However, the lower part of this illustration shows that the

result also includes patterns, which already existed in the data set and fulfilled the filter

conditions.

,QMHFWHG

2WKHU�5HFDOO

Figure 5.3: Account graphs of the retrieved components for use case 1.

55

56 CHAPTER 5. EVALUATION

Use Case 1 2 3 4 5 6

Example
Reports 9 172 12 145 7 30

Recall Inj. 100% 100% 100% 100% 100% 100%

Table 5.3: Recall of injected components.

Table 5.3 shows, that for all six use cases, the system was able to return the complete

set of the five injected components together with a number of other, already existing,

components. The amount of additional components that were retrieved varies signif-

icantly between the use cases. Because no ground truth is available to classify these

patters as true or false positives, a direct correlation with the precision of the returned

results can not be made based on these numbers.

5.2 Performance depending on Matching Complexity

In a first step towards assessing the performance of the detection system, this section

analyzes its performance with respect to the matching complexity. We show that already

a small change in matching complexity a↵ects the performance of the system in all

three analyzed dimensions. As already described in the implementation description in

section 4.1.6, the matching of dependent transactions is limited in its complexity i.e.

the number of input and output transactions that will be matched against each other.

This number of transactions that take part on each side of the matching process is

represented by the matching complexity factor. Depending on the use case and the

available infrastructure, the matching complexity of the system can be specified in the

execution description, as shown in listing 5.2. The maximum matching duration that

is allowed between dependant transactions is fixed at a value of one week. This means

that only transactions, which happened within a week after each other, are considered

by the matcher. The e↵ect of a variable matching duration will be analyzed in the next

56

5.2. PERFORMANCE DEPENDING ON MATCHING COMPLEXITY 57

section of this chapter. The complete execution description configuration, which was

used for this evaluation and the evaluation of the matching duration in the next section,

is listed for reproducibility in appendix A.2. Both evaluations were performed on the

previously data set consisting of 50 million transaction records from the Bitcoin block

chain. All performance evaluations were run on a single machine with two twelve-core

AMD OpteronTM 6174 processors and 66 GB RAM. All executions were repeated five

times for each parameter setting and reported as the arithmetic mean over all five runs.

1 matchingComplexity: 10

Listing 5.2: Matching complexity specified in the execution description.

5.2.1 Execution Time

In a first step, we analyze the e↵ect of a varying matching complexity on the running

time of a pattern detection execution. As an increase in matching complexity increases

the search space from which the sets of matching transactions are selected, the running

time naturally increases with an increased matching complexity. As shown in figure

5.4, the total running time of an execution only increases by a relatively small factor

for matching complexities between 4 and 10. However, the running time almost triples

when the matching complexity is increased from 10 to 12. As indicated by the lower

line in the graph, the e↵ort that is spent in the garbage collection of the Java Virtual

Machine (JVM) shows an increase with a similar factor and increases its share on the

total running time with higher matching complexities. For a matching complexity of 12

already half the running time is spent in garbage collection.

The increasing influence of garbage collection time on the running time can also be seen

in the running time of the individual streaming windows, as shown in figure 5.5. While for

matching complexities below 12 the running times of the individual streaming windows

only vary very little for neighboring intervals, the running times for the executions

with a matching complexity of 12 have a large variance. Based on garbage collection

57

58 CHAPTER 5. EVALUATION

0"

1000"

2000"

3000"

4000"

5000"

6000"

7000"

4" 6" 8" 10" 12"

Ti
m
e%
(s
ec
)%

Matching%Complexity%

Time"in"GC"

Total"Processing"Time"

Figure 5.4: Execution time for di↵erent matching complexities.

statistics from the JVM it can be shown that the collection is accountable for most of this

increased variance in the execution times for the loading windows. In addition to that

the matching complexities also require more comparisons in the transaction matching

process and through that, increases the computational e↵ort.

0"

10"

20"

30"

40"

50"

60"

70"

80"

1" 42
"

83
"

12
4"

16
5"

20
6"

24
7"

28
8"

32
9"

37
0"

41
1"

45
2"

49
3"

53
4"

57
5"

61
6"

65
7"

69
8"

73
9"

78
0"

82
1"

86
2"

90
3"

94
4"

98
5"

10
26
"

10
67
"

11
08
"

11
49
"

11
90
"

12
31
"

12
72
"

13
13
"

13
54
"

13
95
"

14
36
"

14
77
"

15
18
"

15
59
"

16
00
"

16
41
"

Ti
m
e%
(s
ec
)%

Loading%Window%(days)%

C4"

C6"

C8"

C10"

C12"

Figure 5.5: Running time per loading window for di↵erent matching complexities.

58

5.2. PERFORMANCE DEPENDING ON MATCHING COMPLEXITY 59

5.2.2 Memory Usage

As observed in the analysis of the running time, the time used in garbage collection

overtakes the computation time with increasing matching complexity. The cause for

this increase in garbage collection time is shown in figure 5.6. The steep increase in

memory usage around day 1000 shows the e↵ect of the space complexity of O(2c) of the

data structure being used to hold the partial matches of transactions at the accounts.

Since the memory is measured as the current heap usage and no garbage collection was

manually enforced, the memory usage of the di↵erent complexities can not directly be

compared to each other because they are highly influenced by when garbage collections

were performed.

0"

10000"

20000"

30000"

40000"

50000"

60000"

1" 401" 801" 1201" 1601"

M
em

or
y'
U
sa
ge
'(M

B)
'

Loading'Window'(days)'

C12"

C10"

C8"

C6"

C4"

Figure 5.6: Memory usage for varying matching complexities.

5.2.3 Recall

The last factor that is evaluated with respect to its dependence on the matching complex-

ity, is the recall i.e. how many components are reported for a certain query. Interestingly,

the evaluation runs show a decrease in reported components, when running the artificial

and very generic query shown in listing 5.3 on the set of Bitcoin transactions. Figure 5.7

shows how the number of reported components can also be reduced with an increase in

matching complexity. This finding appears counter intuitive at first, but an analysis of

59

60 CHAPTER 5. EVALUATION

the reported components confirms, that while the number of pairwise associated transac-

tions still increases with a higher matching complexity factor, the number of components

that are reported decreases. The absolute number of components is decreased, because

new connections are found that associate smaller components with each other. This

finding could, however, depend on the fact that the Bitcoin system contains a very high

number of matchable transactions because of its structural di↵erence to traditional bank

transactions, as described in section 3.1.2. The Bitcoin system issues transactions by

splitting and aggregating previous transactions, whereas a traditional banking system

transactions do not require the reference of previous transactions in order to be executed.

For su�ciently large matching complexities and matching durations our system would

therefore connect all dependent transactions in the Bitcoin block chain.

1 filters: [SIZE > 5,SINKVALUE > 10000000000,DEPTH > 3,COUNTRYHOPS > 2]

Listing 5.3: Filter condition used to measure the number of reports for varying matching

complexities.

0"

1000"

2000"

3000"

4000"

5000"

6000"

4" 6" 8" 10" 12"

#"
Co

m
po

ne
nt
s"R

ep
or
te
d"

Matching"Complexity"

Figure 5.7: Number of reported components for varying matching complexities.

5.3 Performance depending on Matching Duration

After having shown that an increase in matching complexity can have a significant impact

on the memory that is being used to store partial matches of transaction, we also analyze

60

5.3. PERFORMANCE DEPENDING ON MATCHING DURATION 61

the e↵ect of varying the matching durations. A matching duration can be informally

described as the maximal time that is allowed between two transactions to be associated

with each other. Listing 5.4 shows, how also this property can directly be specified in

the execution description language. Apart from the matching complexity being fixed

at a value of 10 transactions, the execution parameters as well as the infrastructure

remain unchanged compared to the previous complexity evaluation. In the following we

highlight the e↵ect of di↵erent matching durations on the execution time as well as on

the memory usage. Because a longer matching duration also means that components

take longer to time out and are therefore also reported later, a comparison of recall

would yield time shifted results and is therefore not reported here.

1 transactionInterval: 4w

Listing 5.4: Matching duration specified in the execution description.

5.3.1 Execution Time

As seen in figure 5.8 a change in duration only has a very moderate e↵ect on the total

execution time. The lower line also suggests, that the total garbage collection times

are approximately equally low over all analyzed matching durations. This makes sense,

since the amount of data resulting from timed out intermediary data structures is depen-

dent on the matching complexity but not on the matching duration. Even though the

garbage collection e↵ort remains unchanged for all matching durations, the total pro-

cessing time still by 59% when the matching duration is changed from 1 week to 12 weeks.

The reason for this increase in the total processing time on longer matching windows,

can be seen in figure 5.9. As seen in the graph the base lines of all matching durations

are approximately equal, however, the number of processing windows with a processing

time that is considerably higher than the base line increases both in frequency and

in duration. As the garbage collection times remained almost unchanged for analyzed

61

62 CHAPTER 5. EVALUATION

matching durations, this increase in processing time must have resulted from additional

e↵ort spent in the matching of transactions.

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

4000"

1"week" 4"weeks" 8"weeks" 12"weeks"

Ti
m
e%
(s
ec
)%

Matching%Dura3on%

Time"in"GC"

Total"Processing"Time"

Figure 5.8: Execution time for di↵erent matching durations.

0"

20"

40"

60"

80"

100"

120"

1" 40
"

79
"

11
8"

15
7"

19
6"

23
5"

27
4"

31
3"

35
2"

39
1"

43
0"

46
9"

50
8"

54
7"

58
6"

62
5"

66
4"

70
3"

74
2"

78
1"

82
0"

85
9"

89
8"

93
7"

97
6"

10
15
"

10
54
"

10
93
"

11
32
"

11
71
"

12
10
"

12
49
"

12
88
"

13
27
"

13
66
"

14
05
"

14
44
"

14
83
"

15
22
"

15
61
"

16
00
"

16
39
"

Ti
m
e%
(s
ec
)%

Loading%Window%(days)%

12"weeks"

8"weeks"

4"weeks"

1"week"

Figure 5.9: Running time per loading window for di↵erent matching durations.

5.3.2 Memory Usage

Keeping transactions available for matching for a longer amount of time directly requires

that more transactions are kept in memory at every point in time. Figure 5.9 shows,

how the memory usage of the system developed over the analyzed period of streaming

windows. The graph shows nicely how a longer matching duration requires more memory

and that the memory usage develops approximately linearly with the matching duration.

62

5.4. GENERATED SYNTHETIC BANKING TRANSACTIONS. 63

0"

10000"

20000"

30000"

40000"

50000"

60000"

70000"

1" 40
"

79
"

11
8"

15
7"

19
6"

23
5"

27
4"

31
3"

35
2"

39
1"

43
0"

46
9"

50
8"

54
7"

58
6"

62
5"

66
4"

70
3"

74
2"

78
1"

82
0"

85
9"

89
8"

93
7"

97
6"

10
15
"

10
54
"

10
93
"

11
32
"

11
71
"

12
10
"

12
49
"

12
88
"

13
27
"

13
66
"

14
05
"

14
44
"

14
83
"

15
22
"

15
61
"

16
00
"

16
39
"

M
em

or
y'
U
sa
ge
'(M

B)
'

Loading'Window'(days)'

12"weeks"

8"weeks"

4"weeks"

1"week"

Figure 5.10: Memory usage for varying matching durations.

5.4 Generated Synthetic Banking Transactions.

In order to demonstrate that the detection of interesting components can also be applied

to other data sets, than the previously evaluated Bitcoin use case, and to validate our

assess the generalizability of our findings, we also analyzed the behavior of the system

when applied to a synthetically generated set of banking transactions. The generated

set of transactions is constructed to closely resemble the structure of actual financial

transactions without the concealment of sensitive information or linking to actually

existing accounts. A detailed description of how the data set was generated can be found

in (Galliker 2008). In essence, the transactions were generated by gathering information

about the transaction volumes as well as the structure of how accounts are interlinked

and then constructing an arbitrarily large data set with similar properties. The data

set used for this evaluation consists of 346,000 accounts and 1.8 million transactions

that are exponentially distributed amongst them. Figure 5.11 shows that, in contrast to

the previously analyzed Bitcoin transactions, the generated transactions are uniformly

distributed within the time period.

The previous evaluation on the Bitcoin data set suggested a limitation of the system

with regard to handling matching complexities above 10 transactions. By analyzing the

same dimension on the synthetic data set, we want to test the hypothesis, that this limit

63

64 CHAPTER 5. EVALUATION

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

12/31/01" 6/30/02" 12/31/02" 6/30/03" 12/31/03" 6/30/04" 12/31/04" 6/30/05"

#"
Tr
an

sa
c)
on

s"

Figure 5.11: Generated banking transactions per day.

is not a direct result of the implementation of the matching module, but is also influenced

by the transaction structure in the input data. To evaluate the influence of an increased

matching complexity on the synthetic data set, we run the execution description as

listed in listing A.3 with the matching duration fixed at twelve weeks. As shown in

the graph in figure 5.12, we were able to process the simulated data set with a four

times higher matching complexity than the Bitcoin data set allowed for. However, the

graph also shows almost no increase in running time, when the matching complexity was

increased from 30 to 40 transactions. This leads to the conclusion, that, with a matching

complexity of 30, almost all transactions were captured by the matcher. Therefore the

complexity increase to 40 transactions did not require any additional matching e↵ort.

The indicated garbage collection times show that the amount of timed out objects is

again dependent on the complexity factor. However because the maximum amount of

transactions per day is much lower than in the Bitcoin evaluation, the total running time

remains relatively low. The claim that a matching complexity of 30 is already su�cient

to capture all the transactions that were available for matching is also supported by

looking at the memory usage of the di↵erent matching complexities in figure 5.13. Since

the complexity increase from 30 to 40 did not require more memory, we can conclude,

that an approximately equal amount of intermediary matching structures were created

in both cases.

64

5.4. GENERATED SYNTHETIC BANKING TRANSACTIONS. 65

0"

100"

200"

300"

400"

500"

600"

700"

10" 20" 30" 40"

Ti
m
e%
(s
ec
)%

Matching%Complexity%

Total"Processing"Time"

Time"in"GC"

Figure 5.12: Execution time for di↵erent matching complexities.

0"

10000"

20000"

30000"

40000"

50000"

60000"

70000"

1" 401" 801" 1201"

M
em

or
y'
U
sa
ge
'(M

B)
'

Loading'Window'(days)'

C10"

C20"

C30"

C40"

Figure 5.13: Memory usage for di↵erent matching complexities.

Based on the observations on this synthetic data set we conclude that higher matching

complexities than the limit observed in the Bitcoin evaluation are possible depending on

the data set. A smaller number of transactions that are active within the matching win-

dow is evidently beneficial to reduce overall the matching e↵ort and therefore allows for

higher matching complexities. In a practical application this could be directly exploited

by pruning the set of transactions that are considered by the matcher. Apart from the

pure number of transactions in the data set, the structure of the transactions in our

synthetic data set also di↵ers significantly from the Bitcoin transactions. Because our

65

66 CHAPTER 5. EVALUATION

synthetic transactions were generated in order to closely resemble real-world banking

transactions, a dependence of transactions on previous transactions is not required as

in the Bitcoin data set and therefore a lot less components and especially much smaller

components are retrieved. In addition to that, the Bitcoin data set contains many as-

sociations where one incoming transactions is split amongst a large number of outgoing

transactions where most of the outgoing transactions where only a fraction of a cent.

Despite their unimportance they still have to be considered in the matcher when the

matching complexity is chosen high enough. Because our synthetic transactions model

real-world transactions where such micro payments would not be economical such enor-

mous splits are a lot less frequent. For these reasons the synthetic data set allowed us to

operate at a significantly higher matching complexity than in the previous evaluation.

66

6

Limitations and Future Work

The evaluation has shown how the current implementation is capable of identifying a

variety of patterns within the domain of financial transactions and demonstrated the

performance of the system with respect to two parameters of the matching algorithm.

However despite these very positive results the system also presents a number of limita-

tions that shall be addressed in this section together with a suggestion of future work of

how they could be overcome.

6.1 Memory Consumption vs. CPU Time

The first limitation that became apparent when analyzing the memory consumption

with respect to the matching complexity is the relatively large memory footprint of the

matching process. The intermediary matching structures that store combinations of

transactions to be used in the matching process require a significant amount of memory.

On the other hand, they allow the matcher to rely on pre-computed combinations,

which reduces the computational e↵ort when a combination is evaluated repeatedly. The

decision of sacrificing memory for less CPU time also increased the time the system spent

in garbage collection time which adds a third dimension that could be optimized. In order

to reduce the running time of evaluations with a high computational complexity all three

dimensions o↵er potential for optimizations. The most straightforward optimization

targets the JVM garbage collector that could be tuned to reduce the very expensive

collections of the full heap during the computations. Another way of reducing the

68 CHAPTER 6. LIMITATIONS AND FUTURE WORK

garbage collection time would be to reduce the memory footprint in the first place by

allocating less objects or reducing their size. For this reason the intermediary results

could be stored as combinations of subsets instead of storing the subsets redundantly

for each combination where the subset is contained.

6.2 Distributed Computation

The distribution of the computation presents another solution to overcome the memory

limitations of a single machine. Because the entire matching process is based on the

Signal/Collect framework and its underlying actor system, the distribution of the com-

putation is relatively straightforward. The transaction and entity vertices can be loaded

on multiple machines without changing the current implementation. However the infor-

mation that is exchanged needs to be serialized and no objects may be shared between

instances that reside on di↵erent machines. The current implementation already does

not use shared states between computation instances, however the serialization of the

messages exchanged in the computation would have to be addressed. The distribution of

the computation could further help to increase the overall throughput in scenarios where

large fractions of the transactions are only exchanged within small subgroups of entities.

By partitioning the transaction graph in a way that all the members of a subgroup reside

on the same machine, the matching process would benefit from the additional memory

and CPU strength while keeping the network communication low.

6.3 Recall

As described in the evaluation section we were not able to measure the absolute re-

call of suspicious components in the graph because of the lack of ground truth. Even

though all manually injected components had been retrieved, there are still scenarios

where the detection could miss out on reporting a component. The limitation of the

matching complexity and matching durations as described in the evaluation could cause

68

6.4. LOW LATENCY EXECUTION 69

the matcher to not detect dependencies amongst transactions, which lie outside of these

boundaries. For some use cases, associations of transactions that lie outside of this re-

strictions might be regarded as either too complex or too far from each other, while in

other cases they exclude relevant matches. In order to reduce the number of cases that

fall under this second case, the performance of the system needs to be tuned further to

allow for a broader range of matching durations and complexities. Another limitation

of the matching process is introduced because the system allows transactions to partic-

ipate in multiple matches with other transactions. While this allows capturing a larger

amount of matches between the transactions, it also increases the size and structure of

their connected component. Because the filtering process currently only operates at the

level of the entire component this expansion of the component potentially also influ-

ences the precision and recall of the entire system. A solution for this problem would

be, to evaluate the filters on all sub-graphs of a connected component while unfolding

the ambiguity introduced from transactions that were matched multiple times.

6.4 Low Latency Execution

The last limitation, that is addressed in this section, results from the design choice

that the system waits for all members of a component to time out, i.e. to no longer

be available for matching. In the current implementation components are only checked

against filter conditions and reported once all its members have timed out. For very large

components, this means, that the reporting of sub-components that participate early on

in a component is potentially delayed for a long amount of time. In the worst case, where

the component will continuously be extended with new transactions, the component

could never be reported. The current implementation prevents these infinitely growing

components by enforcing a maximum duration on the components. Even though this

limitation only had to be applied on the atypical transaction structure of the Bitcoin

use case, it introduces the possibility of again missing out on components that were cut

o↵ by this duration limit. A solution the problem would be to continuously evaluate

69

70 CHAPTER 6. LIMITATIONS AND FUTURE WORK

components and report them even when some of its members are still available for

matching. This would require that the transaction vertices would run the algorithms

for matching, component detection and filtering concurrently instead of sequentially.

The current implementation already supports the nesting of algorithms, however the

transaction vertex would have to be adapted to be able to rout the messages it received to

the appropriate algorithm implementation. Together with the validation of sub-graphs of

the connected components, as mentioned above, this would result in an architecture that

is capable of directly identifying all suspicious components that a transaction participates

in, at the time that transaction is added to the graph.

70

7

Conclusions

This thesis introduced a novel approach for identifying interesting patterns in trans-

actional data series. We presented a bottom-up graph algorithm based on matching

dependent transactions at a local level and using these associations as building blocks

for constructing larger components. We described how this approach can be implemented

on top of a generic graph processing framework and used in forensic investigations. Our

implementation targets the domain of financial fraud detection and showed that our

solution is capable of detecting complex money laundering patterns within millions of

transactions. Even though the data sets in our evaluation lacked ground truth, we were

able to show that the matching approach and the flexible filter conditions enable the re-

trieval of patterns that correspond to real-world occurrences of financial fraud. We were

also demonstrated the capability of our system with respect to the goal of being able

to process large amounts of transactional data. The continuous processing of incoming

transaction streams allows us to process more than one million transactions per minute

in the Bitcoin evaluation and over 350,000 transactions in the evaluation of simulated

banking transactions. Despite of these impressive performance benchmarks, our imple-

mentation is designed as a flexible and modular architecture that is open and extensible

to be used in other use case scenarios. With the higher-level execution description lan-

guage and the graphical user interface, to analyze the reported patterns, we also showed

that our matching approach can be integrated in an end-to-end forensic analysis and

used by domain experts.

Bibliography

Amstein, Stefan (2009). “Evaluation und Evolution von Pattern-Matching-Algorithmen
zur Betrugserkennung”. MA thesis. University of Zurich.

Barbieri, Davide Francesco et al. (2009). “C-SPARQL: SPARQL for continuous query-
ing”. In: Proceedings of the 18th international conference on World wide web. ACM,
pp. 1061–1062.

Bhattacharyya, Siddhartha et al. (2011). “Data mining for credit card fraud: A compar-
ative study”. In: Decision Support Systems 50.3, pp. 602–613.

Blakeley, Mike (2008). “SQL as an Audit Tool”. In: EDPAC: The EDP Audit, Control,
and Security Newsletter 37.6, pp. 1–16.

Chan, Philip K et al. (1999). “Distributed data mining in credit card fraud detection”.
In: Intelligent Systems and their Applications, IEEE 14.6, pp. 67–74.

Chandola, Varun, Arindam Banerjee, and Vipin Kumar (2009). “Anomaly detection: A
survey”. In: ACM Computing Surveys (CSUR) 41.3, p. 15.

Chang, Remco et al. (2007). “WireVis: Visualization of categorical, time-varying data
from financial transactions”. In: Visual Analytics Science and Technology, 2007.
VAST 2007. IEEE Symposium on. IEEE, pp. 155–162.

Cortes, Corinna, Daryl Pregibon, and Chris Volinsky (2001). Communities of interest.
Springer.

Derrig, Richard A (2002). “Insurance fraud”. In: Journal of Risk and Insurance 69.3,
pp. 271–287.

Egmont Group (2000). 100 Cases from the Egmont Group. url: http://www.egmontgroup.
org/ library/ download/ 21 (visited on 11/05/2013).

Facebook Inc. (2013). Facebook, Key Facts. url: http:// newsroom.fb.com/ Key-Facts
(visited on 10/29/2013).

Fan, Wenfei et al. (2011a). “Adding regular expressions to graph reachability and pattern
queries”. In: Data Engineering (ICDE), 2011 IEEE 27th International Conference
on. IEEE, pp. 39–50.

Fan, Wenfei et al. (2011b). “Incremental graph pattern matching”. In: Proceedings of
the 2011 ACM SIGMOD International Conference on Management of data. ACM,
pp. 925–936.

Fayyad, Usama, Gregory Piatetsky-Shapiro, and Padhraic Smyth (1996). “From data
mining to knowledge discovery in databases”. In: AI magazine 17.3, p. 37.

74 Bibliography

Gallagher, Brian (2006). “Matching structure and semantics: A survey on graph-based
pattern matching”. In: AAAI FS 6, pp. 45–53.

Galliker, Samuel (2008). “Generierung von synthetischen Banktransaktionsdaten”. BA
thesis. University of Zurich.

Gamma, Erich et al. (1995). Design patterns: elements of reusable object-oriented soft-
ware. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Henzinger, Monika Rauch, Thomas A Henzinger, and Peter W Kopke (1995). “Comput-
ing simulations on finite and infinite graphs”. In: Foundations of Computer Science,
1995. Proceedings., 36th Annual Symposium on. IEEE, pp. 453–462.

Holzschuher, Florian and René Peinl (2013). “Performance of graph query languages:
comparison of cypher, gremlin and native access in Neo4j”. In: Proceedings of the
Joint EDBT/ICDT 2013 Workshops. EDBT ’13. ACM, pp. 195–204.

John Tang Mirco Musolesi, Cecilia Mascolo and Vito Latora (Jan. 2010). “Characterising
Temporal Distance and Reachability in Mobile and Online Social Networks”. In:
ACM SIGCOMM Computer Communication Review 40.1, pp. 118–124.

Kirkland, J Dale et al. (1999). “The NASD Regulation advanced-detection system (ADS)”.
In: AI Magazine 20.1, p. 55.

Kröni, Daniel and Raphael Schweizer (2013). “Parsing graphs: applying parser combi-
nators to graph traversals”. In: Proceedings of the 4th Workshop on Scala. SCALA
’13. ACM, 7:1–7:4.

Low, Yucheng et al. (2010). “GraphLab: A New Framework For Parallel Machine Learn-
ing”. In: UAI, pp. 340–349.

Low, Yucheng et al. (2012). “Distributed GraphLab: A framework for machine learn-
ing and data mining in the cloud”. In: Proceedings of the VLDB Endowment 5.8,
pp. 716–727.

Luell, Jonas (2010). “Employee Fraud Detection under Real World Conditions”. PhD
thesis. University of Zurich, p. 183.

Malewicz, Grzegorz et al. (2010). “Pregel: A System for Large-scale Graph Processing”.
In: Proceedings of the 2010 ACM SIGMOD International Conference on Manage-
ment of Data. SIGMOD ’10, pp. 135–146.

Meiklejohn, Sarah et al. (2013). “A Fistful of Bitcoins: Characterizing Payments Among
Men with No Names”. In: Proceedings of the 2013 Conference on Internet Measure-
ment Conference. IMC ’13, pp. 127–140.

Moll, Linard (2009). “Anti Money Laundering under real world conditions - Finding
relevant patterns”. MA thesis. University of Zurich.

Nakamoto, Satoshi (2008). Bitcoin: A peer-to-peer electronic cash system.
Nayar, Pramod K (2010). “WikiLeaks, the New Information Cultures, and Digital Par-

rhesia”. In: Economic and Political Weekly 45.52, pp. 27–30.
Ngai, EWT et al. (2011). “The application of data mining techniques in financial fraud

detection: A classification framework and an academic review of literature”. In:
Decision Support Systems 50.3, pp. 559–569.

Noble, Caleb C and Diane J Cook (2003). “Graph-based anomaly detection”. In: Pro-
ceedings of the ninth ACM SIGKDD international conference on knowledge discovery
and data mining. ACM, pp. 631–636.

74

Bibliography 75

Prud’hommeaux, Eric and Andy Seaborne (2008). “SPARQL Query Language for RDF”.
In: W3C Recommendation. Working Draft 2009.January, pp. 1–106.

Quandl (2013). Bitcoin Total Number of Transactions. url: http:// www.quandl.com/
BCHAIN-Blockchain/ NTRAT-Bitcoin-Total-Number-of-Transactions (visited on
10/29/2013).

Reid, Fergal and Martin Harrigan (2013). “An analysis of anonymity in the bitcoin
system”. In: Security and Privacy in Social Networks. Springer, pp. 197–223.

Senator, Ted E et al. (1995). “Financial Crimes Enforcement Network AI System (FAIS)
Identifying Potential Money Laundering from Reports of Large Cash Transactions”.
In: AI magazine 16.4, p. 21.

Shao, Bin, Haixun Wang, and Yatao Li (2013). “Trinity: A Distributed Graph Engine
on a Memory Cloud”. In: Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’13. ACM, pp. 505–516.

Stokes, Robert (Oct. 2012). “Virtual money laundering: the case of Bitcoin and the
Linden dollar”. In: Inf. Commun. Technol. Law 21.3, pp. 221–236.

Stutz, Philip, Abraham Bernstein, andWilliamW. Cohen (2010). “Signal/Collect: Graph
Algorithms for the (Semantic) Web.” In: International Semantic Web Conference.
Vol. 6496. Lecture Notes in Computer Science. Springer, pp. 764–780.

Stutz, Philip et al. (2013). “TripleRush: a fast and scalable triple store”. In: 9th In-
ternational Workshop on Scalable Semantic Web Knowledge Base Systems. CEUR
Workshop Proceedings.

Ullmann, Julian R (1976). “An algorithm for subgraph isomorphism”. In: Journal of the
ACM (JACM) 23.1, pp. 31–42.

Wang, Shiguo (2010). “A Comprehensive Survey of Data Mining-Based Accounting-
Fraud Detection Research”. In: Intelligent Computation Technology and Automation
(ICICTA), 2010 International Conference on. Vol. 1.

75

A

Appendix

A.1 Result Exchange Format

1 {
2 "14": {
3 "id": -10000003,

4 "start": 1352267497000,

5 "end": 1352712643000,

6 "flow": 25000000000,

7 "members": [

8 {
9 "id": -10000001,

10 "cash": false,

11 "value": 25000000000,

12 "target": 11110009,

13 "time": 1352407188,

14 "src": 11110029,

15 "component": -10000003,

16 "xCountry": true,

17 "successor": [

18 -10000002

19]

20 },
21 {
22 "id": -10000003,

23 "cash": false,

24 "value": 25000000000,

25 "target": 11110020,

26 "time": 1352712643,

27 "src": 11110019,

28 "component": -10000003,

29 "xCountry": false,

78 APPENDIX A. APPENDIX

30 "successor": []

31 },
32 {
33 "id": -10000000,

34 "cash": true,

35 "value": 25000000000,

36 "target": 11110029,

37 "time": 1352267497,

38 "src": 11110000,

39 "component": -10000003,

40 "xCountry": false,

41 "successor": [

42 -10000001

43]

44 },
45 {
46 "id": -10000002,

47 "cash": false,

48 "value": 25000000000,

49 "target": 11110019,

50 "time": 1352641705,

51 "src": 11110009,

52 "component": -10000003,

53 "xCountry": true,

54 "successor": [

55 -10000003

56]

57 }
58]

59 }
60 }

Listing A.1: JSON serialized reported component.

A.2 Execution Descriptions used in Performance Eval-
uations

1 #path of the input data

2 source: <<INPUT_FILE_PATH>>

3

4 #tells the parser about the semantics of the entries in the

78

A.2. EXECUTION DESCRIPTIONS USED IN PERFORMANCE EVALUATIONS79

5 #input data

6 parse:

7 id: [0,Int]

8 src: [2,Int]

9 target: [3,Int]

10 value: [4,Long]

11 time: [5,Long]

12

13 #interval of the input data that should be processed

14 start: 01/09/2009 02:50:00

15 end: 08/18/2013 17:30:00

16

17 #streaming window duration

18 window: 1d

19

20 #set to the max amount of time between two associated transactions

21 transactionInterval: <<INTERVAL>>

22

23 #set to true if the matcher should follow all possible matching

possibilities

24 exhaustiveMatching: true

25

26 #set the max number of inputs and outputs that are matched against each

other

27 matchingComplexity: <<COMPLEXITY>>

28

29 #sets the max duration of components to prevent them from lasting for

the entire streaming period.

30 maxComponentDuration: 8w

31

32 #conditions that a component has to fulfil to be reported

33 filters: [SIZE > 5,SINKVALUE > 10000000000,DEPTH > 3,COUNTRYHOPS > 2]

34

35 #handlers that receive the reported components

36 #e.g. WEBSERVER, CONSOLE, MONGODB

37 handlers: [WEBSERVER, COUNTING]

Listing A.2: Execution description used in the performance evaluation on Bitcoin data.

1 #path of the input data

2 source: <<INPUT_FILE_PATH>>

3

4 #tells the parser about the semantics of the entries in the

79

80 APPENDIX A. APPENDIX

5 #input data

6 parse:

7 id: [0,Int]

8 src: [1,Int]

9 target: [2,Int]

10 value: [4,Long]

11 time: [3,Long]

12

13 #interval of the input data that should be processed

14 start: 12/31/2001 22:00:00

15 end: 18/08/2006 17:30:00

16

17 #streaming window duration

18 window: 1d

19

20 #set the max amount of time between two associated transactions

21 transactionInterval: 12w

22

23 #set to true if the matcher should follow all possible matching

possibilities

24 exhaustiveMatching: true

25

26 #set the max number of inputs and outputs that are matched against each

other

27 matchingComplexity: <<COMPLEXITY>>

28

29 #sets the max duration of components to prevent them from lasting for

the entire streaming period.

30 #maxComponentDuration: 8w

31

32 #conditions that a component has to fulfil to be reported

33 filters: [SIZE > 5,SINKVALUE > 10000,SINKTRANSACTIONS>SINKACCOUNTS,

DEPTH>3]

34

35 #handlers that receive the reported components

36 #e.g. WEBSERVER, CONSOLE, MONGODB

37 handlers: [WEBSERVER]

Listing A.3: Execution description used in the performance evaluation on synthetic bank
transactions.

A.3 Classification of Egmont Cases

80

A.3. CLASSIFICATION OF EGMONT CASES 81

Case # Use Case Only de-
tectable
using in-
formation
outside
the trans-
action
graph

Flag con-
dition
on single
transac-
tion/ac-
count is
su�cient

Can be
modelled
as a sus-
picious
compo-
nent but
is not
supported

unclear/not
enough in-
formation

1 1
2 1
3 1
4 1
5 4
6 2
7 1
8 2
9 1
10 1
11 1
12 1
13 2
14 1
15 1
16 1
17 1
18 3
19 1
20 4
21 1
22 1
23 1
24 1
25 3
26 1
27 1
28 1
29 1
30 1
31 1
32 1
33 1
34 2

81

82 APPENDIX A. APPENDIX

Case # Use Case Only de-
tectable
using in-
formation
outside
the trans-
action
graph

Flag con-
dition
on single
transac-
tion/ac-
count is
su�cient

Can be
modelled
as a sus-
picious
compo-
nent but
is not
supported

unclear/not
enough in-
formation

35 1
36 1
37 1
38 1
39 1
40 4
41 1
42 1
43 1
44 1
45 1
46 5
47 1
48 1
49 1
50 1
51 5
52 1
53 5
54 1
55 2
56 3
57 1
58 1
59 6
60 2
61 4
62 1
63 1
64 1
65 1
66 1

82

A.3. CLASSIFICATION OF EGMONT CASES 83

Case # Use Case Only de-
tectable
using in-
formation
outside
the trans-
action
graph

Flag con-
dition
on single
transac-
tion/ac-
count is
su�cient

Can be
modelled
as a sus-
picious
compo-
nent but
is not
supported

unclear/not
enough in-
formation

67 2
68 1
69 4
70 1
71 1
72 1
73 1
74 1
75 1
76 1
77 1
78 1
79 1
80 1
81 1
82 1
83 1
84 1
85 1
86 1
87 1
88 1
89 1
90 1
91 1
92 1
93 1
94 1
95 1
96 1
97 1
98 1
99 1
100 1

Table A.1: Complete classification of Egmont case studies

83

List of Figures

3.1 Transaction- vs. user network . 19
3.2 Building blocks of financial fraud patterns. 21
3.3 General transaction matching approach. 23

4.1 High-level view of the transaction matcher module. 28
4.2 Overlap strategies for batch-processing. 29
4.3 Exemplary snapshot of di↵erent processing phases in a streamed execution. 30
4.4 Alternative graph representations for transaction networks. 31
4.5 RepeatedAnalysisVertex with pluggable vertex algorithm. 32
4.6 Matching of transactions at an entity. 36
4.7 Component workflow execution on di↵erent components. 39
4.8 Workflow execution on a component with three members. 42
4.9 Visualizer architecture overview. 43
4.10 Display of a reported component in the visualizer. 44
4.11 Execution description editor in the user interface. 45

5.1 Bitcoin transactions per day. 50
5.2 Classification 100 Egmont fraud cases by detection criterion. 52
5.3 Account graphs of the retrieved components for use case 1. 55
5.4 Execution time for di↵erent matching complexities. 58
5.5 Running time per loading window for di↵erent matching complexities. . . 58
5.6 Memory usage for varying matching complexities. 59
5.7 Number of reported components for varying matching complexities. 60
5.8 Execution time for di↵erent matching durations. 62
5.9 Running time per loading window for di↵erent matching durations. 62
5.10 Memory usage for varying matching durations. 63
5.11 Generated banking transactions per day. 64
5.12 Execution time for di↵erent matching complexities. 65
5.13 Memory usage for di↵erent matching complexities. 65

List of Tables

4.1 Mandatory fields for transaction vertices. 33

5.1 Classification of Egmont transaction patterns in use cases. 53
5.2 Explanation of filter attributes used in the Egmont use case. 54
5.3 Recall of injected components. 56

A.1 Complete classification of Egmont case studies 83

List of Code Snippets

4.1 Simple component query example . 39
4.2 Component member algorithm example 40
4.3 Example of an execution description in YAML 48

5.1 Filter conditions for all evaluated Egmont use cases. 53
5.2 Matching complexity specified in the execution description. 57
5.3 Filter condition used to measure the number of reports for varying match-

ing complexities. 60
5.4 Matching duration specified in the execution description. 61

A.1 JSON serialized reported component. 77
A.2 Execution description used in the performance evaluation on Bitcoin data. 78
A.3 Execution description used in the performance evaluation on synthetic

bank transactions. 79

