
Scaling Message Passing
Algorithms for

Distributed Constraint
Optimization Problems

in Signal/Collect

Genc Mazlami
of Bilten GL, Switzerland

Student-ID: 09-923-061
genc.mazlami@uzh.ch

Bachelor Thesis October 10, 2013

Advisor: Mihaela Verman

Prof. Abraham Bernstein, PhD
Institut für Informatik
Universität Zürich
http://www.ifi.uzh.ch/ddis

Acknowledgements

This thesis constitutes the final step towards the completion of my bachelor studies
in computer science. The subject of the thesis, as well as the used frameworks,
languages and techniques were new for me and were quite of a challenge. Hence,
the help of some persons was very essential and should be credited.
Here, I would like to take the chance to thank all persons that contributed to the
completion of this thesis in some way.
My biggest gratefulness goes to Mihaela Verman, PhD candidate at the Dynamic
and Distributed Information Systems Group (DDIS) at the Department of Com-
puter Science of the University of Zurich. She coached me during the months of the
work on this thesis and never hesitated to help with useful tips and comments as well
as help in technical or algorithmical questions. Without her effort and continuous
support, the completion of the thesis would not have been possible.
A special appreciation goes to Daniel Strebel for his useful tips in programming
questions and especially to Philip Stutz for his continuous support and help related
to Signal/Collect specific questions and questions with respect to the distribution
of the algorithm on a multiple machine cluster. His help has contributed a lot to
the successful completion of the thesis.
I would like to thank the Dynamic and Distributed Information Systems Group at
UZH, and especially its head, Prof. Dr. Abraham Bernstein, for giving me the
opportunity to work in a professional environment on an interesting and challenging
subject.
Last but not least, I’d like to thank my friends and family, who helped in the com-
pletion of the thesis through their ongoing motivational speeches and their critical
eyes while proofreading the chapters of the thesis.

Genc Mazlami, Bilten GL, Switzerland.
October 10, 2013

Abstract

The concept of Distributed Constraint Optimization Problems (DCOPs) is becoming
more and more relevant to research in fields such as computer science, engineering,
game theory, and others. Many real world problems, such as congestion manage-
ment in data communication or traffic, and applications on sensor networks, are
potential application fields for DCOPs. Hence, there is a need for research on dif-
ferent algorithms and approaches to this class of problems.
This thesis considers the evaluation and distribution of the Max-Sum algorithm.
Specifically, the thesis first illustrates a detailed example computation of the algo-
rithm in order to contribute in the understanding of the algorithm. The main con-
tribution of the thesis is the implementation of the Max-Sum algorithm in the novel
graph processing framework Signal/Collect. Also, a theoretical complexity analysis
of said implementation is performed. Based on the implementation, a second contri-
bution of the thesis follows: The benchmarking of the Max-Sum algorithm and its
comparison to the DSA-A, DSA-B and Best-Response algorithms. The benchmark
first tries to reproduce the results found in [Farinelli et al., 2008] by analyzing the
conflicts over the execution cycles and the cycles until convergence. Then, the the-
sis contributes new empirical results by evaluating and comparing synchronous and
asynchronous Max-Sum with respect to conflicts over time and time to convergence.
Also, the analysis of the relation between the execution cycles and the execution
time will be part of the novel contribution.
Another main contribution of the thesis is the distributed evaluation of the algo-
rithm on a multiple machine cluster. The benchmarks on multiple machines first
compare the solution quality of asynchronous and synchronous Max-Sum on multi-
ple machines. This is followed by an analysis of how the number of machines used in
the execution impacts the results for the conflicts over time. The thesis also adresses
performance questions raised by the theoretical complexity analysis by analyzing the
influence of the average vertex degree on the solution quality.

Zusammenfassung

Das Konzept der Distributed Constraint Optimization Problems (DCOPs) gewinnt
immer mehr an Relevanz in Forschungsgebieten wie der Informatik, Ingenieurwis-
senschaften, Spieltheorie oder anderen. Viele Probleme aus der realen Welt, wie z. B.
Überlastkontrolle in Kommunikationstechnologien oder Verkehrssystemen, und An-
wendungen in Sensornetzwerken, sind potenzielle Anwendungsgebiete für DCOPs.
Daher besteht ein Bedarf and Forschung an verschiedenen Ansätzen und Algorith-
men in dieser Problemklasse.
Diese Arbeit beschäftigt sich mit der Evaluation und Verteilung des Max-Sum Algo-
rithmus (auf mehreren Maschinen). Die Arbeit leistet einen Beitrag zum Verständnis
des Max-Sum Algorithmus indem sie eine detaillierte Beispielberechnung darlegt.
Der wissenschaftliche Hauptbeitrag dieser Arbeit ist jedoch der Entwurf und die
Implementierung des Max-Sum Algorithmus in einer modernen Graph-Processing
Umgebung namens Signal/Collect. Des Weiteren leitet die Arbeit eine theoretische
Komplexitätsanalyse der besagten Implementierung her. Mit Hilfe der Implementa-
tion wird der zweite Hauptbeitrag dieser Arbeit realisiert: Die Evaluation des Max-
Sum Algorithmus im Vergleich zu den DSA-A, DSA-B und Best-Response Algorith-
men. Die Experimente versuchen zum Einen die Resultate aus [Farinelli et al., 2008]
zu reproduzieren, indem die Konflikte pro Zyklus und die Anzahl Zyklen bis zur
Konvergenz gemessen wird. Zum Anderen wird ein neuer Beitrag geleistet in Form
von empirischen Resultaten bezüglich der Konflikte pro Zeiteinheit und bezüglich
der Zeit bis zur Konvergenz. Verglichen werden dabei die synchrone und asynchrone
Version des Max-Sum Algorithmus. Ausserdem wird die Beziehung zwischen einem
Zyklus und der Ausführungszeit analysiert.
Ein weiterer Hauptbeitrag dieser Arbeit ist die verteilte Ausführung und Evaluation
des Max-Sum Algorithmus auf mehreren Maschinen. Die verteilte Evaluation ver-
gleicht zuerst die Lösungsqualität vom synchronen und asynchronen Max-Sum Al-
gorithmus auf mehreren Maschinen. Danach wird der Einfluss der Anzahl benutzter
Maschinen auf die Lösungsqualität analysiert. Zu guter Letzt werden Fragen welche
durch die theoretische Komplexitätsanalyse aufgeworfen werden durch empirische
Versuche bearbeitet. Diese Versuche analysieren den Einfluss des mittleren Grades
der Knoten im Graph auf die Lösungsqualität.

Table of Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Goals . 3

2 Background and Related Work 5

2.1 Distributed Constraint Optimization Problems 5

2.1.1 Definition . 8

2.1.2 Extensions . 10

2.2 Related Work . 10

2.2.1 Game-theoretic View . 11

2.2.2 Approaches and Algorithms 12

2.2.3 Evaluations and Performance 14

3 The Max-Sum Algorithm 17

3.1 Derivation and Definition . 17

3.2 Example Computation . 23

4 Implementation 35

4.1 Frameworks . 35

4.2 Signal/Collect . 38

x Table of Contents

4.3 Implementation Design . 39

4.3.1 Vertex and Edge Mapping . 40

4.3.2 Unique Ids and Messages . 42

4.3.3 Message Computation . 43

4.3.4 Complexity Analysis . 48

5 Benchmarks 51

5.1 Outline . 51

5.2 Infrastructure . 52

5.3 Candidate Algorithms . 52

5.3.1 Distributed Stochastic Algorithm 53

5.3.2 Best-Response Algorithm . 55

5.4 Metrics and Measurements . 56

5.4.1 Conflicts . 57

5.4.2 Convergence . 59

5.5 Data Sets . 64

5.6 Evaluation . 65

5.6.1 Conflicts Over Steps . 65

5.6.2 Conflicts Over Time . 70

5.6.3 Execution Steps To Convergence 76

5.6.4 Execution Time To Convergence 77

6 Scalability 83

6.1 Infrastructure . 83

6.2 Considerations on Distributability . 83

6.3 Data Sets . 85

x

Table of Contents xi

6.4 Evaluation . 85

6.4.1 Conflicts Over Time . 85

6.4.2 Influence of the Number of Machines 89

6.4.3 Influence of the Average Vertex Degree 94

7 Conclusion 99

7.1 Summary and Conclusions . 99

7.2 Limitations and Future Work . 103

xi

1

Introduction

In modern information technology and computing, distributed concepts and systems

have become widespread. Among the great variety of tasks and problems that this

family of systems tries to solve, there are problems or categories of problems that

attract high attention because they are finical and of particular interest in nowa-

days distributed computing. For example, the tasks of optimally configuring a large

scale system in a distributed fashion [Chapman et al., 2011] or a cooperative situ-

ation where multiple participating entities aim to achieve a common goal through

cooperation [Shoham and Leyton-Brown, 2009] are such problems. This family of

problems can be formalized under the term of distributed constraint optimization

problems (DCOPs), which is a generalization of the distributed constraint satisfac-

tion problems.

Distributed constraint optimization problems are finical because the goal in those sit-

uations is shared among various agents [Shoham and Leyton-Brown, 2009]. Hence,

since a central coordinator is not available and the system designers want to make

good use of distributed resources [Chapman et al., 2011], DCOPs pose additional

difficulties compared to centralized constraint optimization problems. Also, com-

munication restrictions and / or complicated system topologies make it difficult or

costly to collect all the necessary information at a location where a solution can be

computed [Chapman et al., 2011]. This adds more complexity to these distributed

2 CHAPTER 1. INTRODUCTION

problems and encourages system designers to take the fully-distributed approach

which is provided by some DCOP solutions. The interest in DCOPs is also moti-

vated through the wide range of real-world problems they can support and solve.

Examples of such real-world applications for DCOPs are congestion management

and scheduling in traffic [van Leeuwen et al., 2002] or applications in sensor net-

works [Zhang and Xing, 2002].

While there are multiple approaches to solve distributed constraint optimization

problems - these approaches will be covered briefly in the following chapter, as well

as a formal definition of DCOPs - this thesis is mainly intended to cover one of these

approaches, namely the local iterative message passing algorithms. More precisely,

the Max-Sum algorithm [Farinelli et al., 2008], which is one of the main representa-

tives of the mentioned group, shall be investigated in detail.

1.1 Motivation

Unlike classical approaches in distributed constraint optimization, which mostly try

to achieve provable optimal and complete solutions to DCOPs, the family of local it-

erative message passing algorithms delivers only approximate solutions for problems

in the distributed constraint optimization field (cf. chapter 2). While the complete

algorithms deliver optimal solutions to the problems, they have essential drawbacks

in terms of time, computational complexity and memory overhead (cf. chapter 2),

which makes these unsuitable for a wide range of applications.

With the advent of the ubiquitous computing paradigm [Weiser, 1991] and the grow-

ing importance of embedded systems, multiagent systems or sensor networks, the

requirements posed to distributed algorithms have changed. Since the uprising com-

puting paradigms mentioned in Weiser’s work have lead to highly embedded and

2

1.2. GOALS 3

low-price computing entities, microprocessors and memory modules are integrated

into various devices, sensors and systems, thus forming the internet of things. As a

consequence, the computing entities (devices, processors etc.) in such systems pro-

vide only limited computational power and are also limited in terms of memory size

and power consumption. Since most of the aforementioned systems have a highly

distributed nature, there is clearly a need for distributed coordination between the

participating entities. In other words, these new styles of computing are a primary

application field for distributed constraint optimizations. Hence, distributed con-

straint optimization algorithms that are intended to operate in such an environment

with weak hardware resources have to take into account the limits set by the under-

lying technology.

This fact shows that the complete distributed constraint algorithms are not suitable

for the above-mentioned application fields. These new needs and requirements de-

mand a different approach to DCOPs and motivate the research on other algorithms,

such as the local iterative message passing algorithms.

1.2 Goals

In the following, the concrete goals of this thesis will be outlined. The goals include

the implementation and evaluation of a chosen algorithm of the local iterative mes-

sage passing category.

Implementation

For local iterative message passing algorithms, the solution quality is an important

measure, but since many of the real-world applications have limited decision-times,

time is also an important aspect. Therefore, it would be interesting to evaluate

3

4 CHAPTER 1. INTRODUCTION

the performance of such algorithm in terms of time versus solution quality. To be

able to do such evaluations, an iterative message passing algorithm, such as the

Max-Sum algorithm, will be implemented. An implementation would benefit from

being done in an appropriate large-scale graph processing frame work, such as the

Signal/Collect framework (cf. chapter 4).

Evaluation

The implemented algorithm should be evaluated in practice. It makes sense to

evaluate the Max-Sum algorithm against other local algorithms while leaving out

the complete solutions. Therefore, local-iterative best-response algorithms, such as

best-response [Chapman et al., 2011] and distributed stochastic algorithms

[Zhang et al., 2005] will be used as candidates. The evaluation should concentrate

on appropriate performance indicators and measures. A first evaluation will be

done on a single machine. A stretch goal for the evaluation would be to execute and

benchmark the implementation distribute on multiple machines and analyze scaling

properties.

4

2

Background and Related Work

In order to implement and evaluate an algorithm that solves distributed constraint

optimization problems, an understanding about what a DCOP is has to be estab-

lished. This chapter aims to clearly define DCOPs and deliver an overview of the

current state-of-the-art research in the discipline of DCOPs. Besides that, the focus

will be set on a particular group of DCOP algorithms, namely the local iterative

messsage passing algorithms.

2.1 Distributed Constraint Optimization Problems

A term often used in the field of distributed systems, multiagent systems or dis-

tributed coordination is the term of distributed constraint satisfaction. It is im-

portant not to confuse distributed constraint satisfaction with distributed constraint

optimization although these two terms sometimes are used interchangeably. Hence,

a definition and distinction of both is necessary.

The distributed constraint satisfaction problem (DisCSP) is a concept that models

interactions and decisions in a distributed or multiagent setting [Modi, 2003]. In a

DisCSP model, there is a group of agents interacting to achieve a global goal. Each

agent has control over a subset of the global set of variables for the corresponding

problem. [Modi, 2003] modeles the global goal of the problem as a set of constraints

6 CHAPTER 2. BACKGROUND AND RELATED WORK

where each of the agents only has knowledge of the constraints which have influence

on the agents controlled variables. The solution to the problem - e.g. achieving the

global goal defined in this global function - is then found by having the agents choose

values for their variables which lead to a global satisfaction of the objective func-

tion [Modi, 2003]. [Modi, 2003] notes that the constraints used in such a problem

setting have to be strictly propositional (as in propositional logic). This means, the

constraint can only have true or false results. A solution of a DisCSP is considered

valid if all constraints participating in the global objective function are satisfied by

the chosen values [Modi, 2003].

This model is inherently discrete and thus, may be too limited for many real-world

problems. In most real-world problems, there is no binary decision whether a solu-

tion is true or false but solutions in real-world settings tend to have gradual degrees

of quality [Modi, 2003]. This aspect can not be mapped onto the classical DisCSP

model. A possible solution to this is to generalize real-world problems where it is

impossible to satisfy all constraints. An optimal solution for such a problem can

then be found by minimizing the number of unsatisfied constraints, or stated in a

different way, by maximizing the reward for satisfying as many constraints as possi-

ble. An often used model in DCOPs follows the idea of a utility function (sometimes

also referred to as cost function or valued constraint). A utility function is a function

that computes a number which expresses how good the constraints in the problem

setting of a DCOP are satisfied. Hence, a utility function is - in contrast to the

presented binary and constant nature of constraints - a reward or a penalty that

says how good a certain assignment or solution is [Modi, 2003].

Following the idea of a utility function, a DCOP paradigm has been proposed in

[Modi, 2003] and is usually used as a standard definition for distributed constraint

6

2.1. DISTRIBUTED CONSTRAINT OPTIMIZATION PROBLEMS 7

optimization problems (DCOPs) in later literature and research.

7

8 CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.1 Definition

The presented definition of DCOPs in this section mainly follows [Chapman et al., 2011]

which gives a clear definition and introduction of DCOPs.

A DCOP is a tuple

< V,A, δ, C, ug >

where

V := {v1, v2, ..., vk}

is a finite set of variables, all of them having the same importance to the general

problem, and

A := {a1, a2, ..., an}

is a finite set of agents, each independently controlling the value of a subset of the

variables in V , and

δ := {D1, D2, ..., Dk}

is a finite set of discrete and finite domains from which the variables in V can take

values, and

C := {c1, c2, ..., cl}

is a finite set of constraints.

8

2.1. DISTRIBUTED CONSTRAINT OPTIMIZATION PROBLEMS 9

Each constraint has an associated function uck(sck) where sck is the configuration

of states of the variables vck involved in the constraint ck. The function uck(sck)

computes a penalty for violating or a reward for satisfying the constraint ck. By

combining these functions, the global utility function ug can be formed as in:

ug(s) = uc1(sc1)⊕ ...⊕ uck(sck)⊕ ...⊕ ucl(scl) (2.1)

The operator ⊕ in equation (2.1) can be an arbitrary, commutative and associative

binary operator. Furthermore, the aggregation operator ⊕ has to also ensure that

an increase in the number of satisfied constraints results in an increase in the global

utility function ug [Chapman et al., 2011]. Hence, the operator has to be strictly

monotonic:

∀a, b, c ∈ D : a < b⇒ c⊕ a < c⊕ b

For the sake of simplicity, in this thesis, the arithmetic addition will be used as

an aggregation operator, yielding a global utility function of the form:

ug(s) =
∑
ck∈C

uck(s) (2.2)

The goal of a DCOP is then to maximize the reward for satisfying constraints by

letting the agents find a variable configuration s∗ such that:

s∗ ∈ argmax
s ∈D ∈ δ

ug(s)

Expressed in words, the DCOP can be solved by letting the agents ai ∈ A jointly

maximize the global utility function ug(s) [Chapman et al., 2011].

9

10 CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.2 Extensions

In the presented definition, all constraints have the same importance. While this

concept is sufficient for most research and theoretical work, real-world use cases

may demand different levels of importance for the different constraints. This can

be mapped into the DCOP definition in equation (2.1) and (2.2) by simply having

multiplicative coefficients ci ∈ R used as weights for the corresponding constraints

according to their importance for the global problem [Chapman et al., 2011].

Another property of the definition above which might not be optimal for real-world

applications of DCOPs is the fact that, in this definition, there are no hard con-

straints, which by all means would have to be fulfilled. If an application would have

such hard constraints as a part of the global problem, they could be introduced into

the DCOP description by inserting a multiplicative element in the equation (2.2) as

follows [Chapman et al., 2011]:

ug(s) =
∏

hck ∈HC

uhck(s)

(∑
sck∈SC

usck(s)

)

HC denotes the set of hard constraints, whereas SC denotes the set of soft con-

straints.

Please note that these extensions will not be used in the remainder of the thesis,

as for the rest of the work, the thesis will use the definition in (2.1) or respectively

(2.2) .

2.2 Related Work

This section aims to provide an overview over the state of the research in the area

of DCOPs. Different views, approaches to DCOPs and algorithms will be briefly

10

2.2. RELATED WORK 11

discussed. Since this is only an overview, interested readers who want to take deeper

looks into the mentioned subjects may refer to the cited papers.

2.2.1 Game-theoretic View

In other sections, the topic was presented as it is described mainly in computer

science literature. On a second thought, it is clear that DCOPs are not only a con-

cept known to computer science or engineering, but are open for a broader range of

disciplines and applications.

For example, [Maheswaran et al., 2005] presents a definition which categorizes DCOPs

in terms of game-theoretic concepts. This insight is not a novel thing; since the be-

ginning of research in the field of DCOPs, researchers have always reasoned about

DCOPs in concepts of game theory. From a game theoretic perspective, the agents

participating in a DCOP can be seen as players in a strategic game, trying to

maximize their own utility function. [Maheswaran et al., 2005] introduces a way to

decompose a DCOP into an equivalent graphical game. The concept of a graphical

game was introduced in [Kearns et al., 2001] and constitutes a graph-based repre-

sentation of a game. A graph G represents a game, where the nodes represent the

players. Each player is assumed to have a utility function that depends on the player

itself, and on some of the neighbouring players. This relation is represented through

an edge connecting two nodes, if and only if their respective utility functions are

dependent on the strategy the connected node or player chooses. By using tech-

niques and algorithms exchanging messages locally, it is possible to compute locally

optimal solution to DCOPs. [Maheswaran et al., 2005] proves that, when mapped

onto game-theory concepts, the optimal solution of a DCOP is a Nash-Equilibrium.

This perspective of DCOPs opens a variety of applications and questions for DCOPs.

Distributed constraint optimizations are not limited to computer science, but are

11

12 CHAPTER 2. BACKGROUND AND RELATED WORK

available for a broader range of research areas such as economics, social sciences and

others. This can be a chance for the research field to profit from high-quality solu-

tions derived in other domains, e.g. solutions of DCOPs adapted from game-theory,

economics or social sciences or vice versa.

2.2.2 Approaches and Algorithms

As mentioned in the introductory chapter of this thesis, DCOP algorithms can be

classified into groups depending on the technique they are using to find a solution.

[Chapman et al., 2011] provides a classification which takes into account the most

recent algorithms and developments in the field of DCOPs. It is depicted in Fig-

ure 2.1. It is important to note that the categories only cover the fully distributed

algorithms and leaves aside centralized approaches to DCOPs. The taxonomy in

[Chapman et al., 2011] separates DCOP algorithms in two main groups, the dis-

tributed complete algorithms algorithms and the local iterative algorithms.

The distributed complete algorithms are characterized by the fact that all of its

representants provide globally optimal solutions for DCOPs. According to

[Chapman et al., 2011], the algorithms in this category are said to always find the

optimal solution. This class is also characterized through the inherent complexity

of their algorithms in terms of computation, messages or memory. Most of the algo-

rithms in this class have exponential complexity in either computation or message

size. Some examples of such algorithms are the ADOPT algorithm (Asynchronous

Distributed Optimization) [Modi, 2003] or the DPOP algorithm (Dynamic Program-

ming Optimization) [Petcu and Faltings, 2005]. The ADOPT and DPOP algorithms

both solve DCOPs by creating a constraint graph as a first step. In other words,

they represent the dependencies between agents, constraints and variables in form of

a mathematical graph where agents, constraints and variables are mapped onto the

12

2.2. RELATED WORK 13

Figure 2.1: Categorization of DCOP algorithms according to [Chapman et al., 2011]

nodes of the graphs, and the dependencies between them are modeled as edges be-

tween the nodes. Then the procedure continues by restructuring and arranging the

constructed graph into a depth first search (DFS) tree, over which the actual com-

putation according to the respective algorithms is executed [Farinelli et al., 2008].

The second group, the local iterative algorithms, are divided in Chapman’s work

further into two smaller groups, the local iterative best-response algorithms and the

local iterative message-passing algorithms. The algorithms in this group are not ca-

pable of finding globally optimal solutions to DCOPs. Nevertheless, the algorithms

of this category are deployed in real-world applications and systems since they are

applicable in situations where it is reasonable to trade timeliness against optimality

of the solution [Chapman et al., 2011].

The local iterative best-response algorithms all work by having the participating

agents exchange messages containing the state of the agent itself. In addition to

the messages containing the states of the agents, agents can observe the strategies

13

14 CHAPTER 2. BACKGROUND AND RELATED WORK

of their neighbors in the problem graph. This makes this category of algorithms

applicable for game-theoretic views and applications of DCOPs, such as maximizing

social welfare among a group of independent agents (cf. section 2.2.1). Hence, it

is not surprising that some of the most known algorithms of this group have their

origin in game-theory. Examples of such algorithms are the fictious play algorithm

[Brown, 1951] and the adaptive play algorithm [Young, 1993]. A common approach

in this category of algorithms is based on randomness or stochastic

[Chapman et al., 2011]. A prime example of such an approach is the distributed

stochastic algorithm (DSA) [Zhang et al., 2005] , [Zhang and Xing, 2002].

The second subgroup of the local iterative algorithms, the local iterative message-

passing algorithms, are the most interesting with respect to this thesis, since one of

its main representatives, the Max-Sum algorithm [Farinelli et al., 2008], shall be im-

plemented and investigated. As the name implies, in local iterative message-passing

algorithms agents exchange messages to find solutions to DCOPs and DisCSPs. The

messages usually contain data structures representing the local variable configura-

tions of the sender agents. Receiving agents use these messages to construct new

messages to pass on to other agents [Chapman et al., 2011]. Another example of an

algorithm of this category (besides the Max-Sum algorithm) is the distributed arc

consistency algorithm [Cooper et al., 2007].

2.2.3 Evaluations and Performance

In the introductory sections of this thesis, the importance of performance and scala-

bility for DCOP algorithms was motivated. This thesis aims to evaluate the perfor-

mance of certain algorithms, hence it is interesting to investigate briefly what kinds

of results related research has found when evaluating DCOP solutions. A standard

use case for evaluating algorithms in distributed systems, multiagent systems or

14

2.2. RELATED WORK 15

sensor networks is the distributed graph coloring problem.

In distributed graph coloring problems, typically an undirected graph G =< V,E >

with V := {v1...vn} the set of vertices and E := {e1...em} the set of edges and a set

of globally possible colors C = {c1...ck} are given as inputs to the problem. It is

then a goal of the distributed graph coloring problem to assign to each vertex vi a

color cj in such a way that the number of conflicts with other vertices is minimized.

A conflict occurs when two vertices vi and vj connected through an edge are colored

with the same color. The described problem can be mapped to a DCOP where

the vertices to be colored are agents that have to select their respective color. The

DCOP’s goal is then to find a global coloring of the vertices / agents such that the

overall number of conflicts is minimized.

In [Farinelli et al., 2008] the Max-Sum algorithm is derived from the Sum-Product

[Kschischang et al., 2001] and the Max-Product algorithm [Farinelli et al., 2008],

and its usage to solve DCOPs is illustrated. The work is concluded by an evalua-

tion of the Max-Sum algorithm against the distributed stochastic algorithm (DSA),

a best-response (BR) algorithm and the DPOP algorithm on a distributed graph

coloring problem. A first evaluation measured the number of conflicts after 50 ex-

ecution cycles of the algorithms. The results of [Farinelli et al., 2008] show that

the Max-Sum algorithm outperforms DSA, BR and DPOP when evaluated on a

set of random colorable graphs. The number of conflicts that Max-Sum produces

in this test case is around 1/5 of the number of conflicts for the other candidate

algorithms. Despite being superior in tests on random graphs, the Max-Sum algo-

rithm has shown to be performing less well when executed on the ADOPT graph

dataset1. Especially for a small number of agents, [Farinelli et al., 2008] have found

out that Max-Sum performs worse than the other candidates. The authors base the

1http:// teamcore.usc.edu/ dcop/

15

16 CHAPTER 2. BACKGROUND AND RELATED WORK

decrease in performance on this dataset on the fact that the graph datasets from

the ADOPT repository have a more complex structure than the other datasets, es-

pecially in terms of the number and size of the loops occurring in the graphs. This

may have lead to cyclic behavior of the messages being passed by the Max-Sum

algorithm, resulting in non-convergence. This issue has been addressed and fixed

in [Farinelli et al., 2008] through a modification of the algorithm’s utility function.

Besides the solution quality (number of conflicts), [Farinelli et al., 2008] have evalu-

ated the performance in terms of execution cycles until convergence occurs. In their

results, the Max-Sum algorithm delivers the weakest performance with the highest

number of steps needed until convergence. It will be interesting to see if the evalu-

ations in this thesis will reproduce these results.

In the next section, a formal definition of the Max-Sum algorithm follows.

16

3

The Max-Sum Algorithm

The concept on which the Max-Sum algorithm and its relatives are based on is

widely used in fields like information theory, artificial intelligence or signal pro-

cessing. The concept is sometimes referred to as the generalized distributive law

[Aji and McEliece, 2000]. It uses the fact that the functions involved in the compu-

tations can be factorized to be expressed as products of simpler functions in order

to simplify the computation by decomposing it [Farinelli et al., 2008].

The Max-Sum algorithm is in fact only a modification of the Sum-Product algorithm

[Kschischang et al., 2001] or respectively, the Max-Product algorithm

[Farinelli et al., 2008].

3.1 Derivation and Definition

The following derivation mainly follows [Farinelli et al., 2008] and

[Waldock et al., 2008] and will begin by introducing the Sum-Product algorithm,

from which the Max-Sum algorithm will be derived. All formulas have their origin

in [Farinelli et al., 2008] and for the sake of readability, there will be no citations on

the formulas or the corresponding description text.

Let F be a function that is dependent on N variables x = {x1...xN}. The function

18 CHAPTER 3. THE MAX-SUM ALGORITHM

Figure 3.1: Example of a factor graph from [Farinelli et al., 2008]

F is analog to the global utility function ug(s) mentioned in the previous chapter

(c.f. equation 2.2). F is defined as a product of M factors such that:

F (x) =
M∏
m=1

fm(xm) (3.1)

Each of the factors fm(xm) is a function defined over a subset of the variables in

x, called xm . Functions of this form can be visualized through a factor graph. A

factor graph is a bipartite graph that has two kinds of nodes: function nodes and

variable nodes.

Example: Figure 3.1 shows a factor graph representation of a function F (x) =

f1(x1, x2)f2(x2, x3) with x = {x1, x2, x3}. The rectangular vertices always represent

a function node, while the circled vertices represent variable nodes [Farinelli et al., 2008].

The Sum-Product algorithm allows to compute the total dependency of the global

function F (x) on a single variable xn ∈ x. This dependency is called the marginal

function.

The Sum-Product algorithms computes the marginal functions of all variables si-

multaneously. It does so by iteratively exchanging messages between the nodes of

the factor graph. The algorithm has two types of messages: messages from func-

tion nodes to variable nodes and messages from variable nodes to function nodes.

18

3.1. DERIVATION AND DEFINITION 19

In order to define the format of the messages being passed, let M(n) be the set

of indexes of functions connected to the variable xn in the factor graph. Let then

N (m) be the set of indexes of variables connected to the function fm in the factor

graph. For example, in figure 3.1, M(2) = {1, 2} and N (1) = {1, 2}. Also, let

xm\n = {xn′ : n′ ∈ N (m)\n} be the set of variables attached to function m, except

for variable xn. The messages are then defined as follows:

Variable → function:

qn→m(xn) =
∏

m′∈M(n)\m

rm′→n(xn) (3.2)

The message from variable to function is defined as the product of all messages the

current variable has received from its neighboring functions except for the message

from the function to which the currently computed message is intended to be sent.

Function → variable:

rm→n(xn) =
∑
xm\n

fm(xm) +
∏

n′∈(N)(m)\n

qn′→m(xn′)

 (3.3)

The message from function to variable is defined as a sum over all variables connected

to the current function. In each step of the summation, the value of the current

function fm(xm) plus the product of the messages received from all neighboring

variables except for the variable to which the current message is being sent, are

aggregated to a sum.

The leaf nodes initiate the algorithm with the following initial messages:

qn→m(xn) = 1 rm→n(xn) = fm(xn)

After the exchange and receipt of all messages from neighbors, a variable node can

19

20 CHAPTER 3. THE MAX-SUM ALGORITHM

compute its marginal value by taking the product of all messages it has received:

zn(xn) =
∏

m∈M(n)

rm→n(xn)

[Farinelli et al., 2008] note that the convergence of sum-product algorithm has

been proved only on acyclic graphs [Pearl, 1988]. There is a theoretical risk for the

algorithm to oscillate or fail to converge when applied on cyclic graphs. This applies

also to the derivations of the Sum-Product algorithm, the Max-Product and Max-

Sum algorithms. Despite this fact, it is common to apply the algorithms also on

cyclic graphs in practice, since empirically, the algorithms often converge well on all

types of graphs; a technique which is known as loopy belief propagation [Pearl, 1988].

When translated to DCOPs, the goal in such a setting would be to maximize the

global function F (x) by finding an optimal configuration of the variable state of the

functions fm(xm). In other words, the goal is to find arg maxx F (x)

[Farinelli et al., 2008]. Since the Sum-Product algorithm computes the marginal

functions only, it is not suitable for this kind of problem. [Farinelli et al., 2008]

propose the use of a derivation of the Sum-Product algorithm: The Max-Product

algorithm [Pearl, 1988].

For the Max-Product algorithm, the format of the function-to-variable message in

equation 3.3 has to be modified by replacing the summation with a maximization

function:

rm→n(xn) = max
xm\n

fm(xm) +
∏

n′∈(N)(m)\n

qn′→m(xn′)

Through this modification, zn(xn) represents the maximization of the function

F (x):

20

3.1. DERIVATION AND DEFINITION 21

zn(xn) = max
xm\n

M∏
m=1

fm(xm)

Thus, it is possible to find x∗ = argmaxx
∏M

m=1 fm(xm) since each component of

the vector of variable configurations x∗ is given by:

x∗n = argmax
xn

zn(xn)

This way, a global maximization task is solved through local message passing

[Farinelli et al., 2008].

Until now, it was assumed that the utility function F (x) has the form of equation

3.1. If the utility function has a form as in:

M∑
m=1

Um(xm)

the Max-Product algorithm is not suitable anymore, since it is a summation that

is being maximized and not a product as before. As mentioned in equation 2.2, this

thesis uses the summation as an aggregation operation. This makes changes to the

algorithm necessary and leads to the Max-Sum algorithm. The Max-Sum algorithm

is the result of taking the Max-Product algorithm to the logarithm space. This is

done through the usage of the following identities [Farinelli et al., 2008]:

Rm→n = log rm→n

Qn→m = log qn→m

Zn(xn) = log zn(xn)

21

22 CHAPTER 3. THE MAX-SUM ALGORITHM

Um(xm) = log fm(xm)

[Farinelli et al., 2008] notice that, since the algorithms presented here are applied

also on cyclic graphs, it is possible for messages to continue propagating in loops and

thus growing indefinitely. Thus, [Farinelli et al., 2008] to introduce a normalization

for the message formats. Hence, the messages for the Max-Sum algorithm are defined

as follows:

Variable → function:

Qn→m(xn) = αnm +
∑

m′∈M(n)\m

Rm′→n(xn) (3.4)

where αnm is a normalization scalar chosen such that:

∑
xn

Qn→m(xn) = 0

Function → variable:

Rm→n(xn) = max
xm\n

Um(xm) +
∑

n′∈(N)(m)\n

Qn′→m(xn′)

 (3.5)

The marginal functions represent solutions to the maximization problem:

Zn(xn) = max
xm\n

M∑
m=1

Um(xm)

and can be computed through:

Zn(xn) =
∑

m∈M(n)

Rm→n(xn)

22

3.2. EXAMPLE COMPUTATION 23

Thus, by finding argmaxxn Zn(xn), each agent is able to determine which state it

should adopt such that the global utility function is maximized [Farinelli et al., 2008].

3.2 Example Computation

In order to illustrate the Max-Sum algorithm on a problem, in this section, an exam-

ple execution of the Max-Sum algorithm on a three-agent two-color graph coloring

problem will be illustrated. The example is according to [Farinelli et al., 2008], but

the level of detail is much greater because this thesis aims to contribute in the under-

standing of the Max-Sum algorithm in practice. Hence, some of the computations

are shown in an extended presentation in contrast to [Farinelli et al., 2008].

Let’s assume we have three agents connected to each other as illustrated in figure

3.2.

Figure 3.2: Formation of the agents for the example [Farinelli et al., 2008]

In figure 3.2, A1,A2,A3 represent the agents involved in the problem, U1, U2, U3

represent the agent’s utility functions, and x1, x2, x3 represent the variables on which

the connected utility functions depend.

As explained in section 2.2.3, in distributed graph coloring problems it is our goal

to assign to each agent a color in such a way that the global number of conflicts

(e.g. two neighbors having the same color) is minimized. The utility function in

23

24 CHAPTER 3. THE MAX-SUM ALGORITHM

this setting is defined as [Farinelli et al., 2008]:

Um(xm) = γm(xm)−
∑

i∈N (m)\m

xm ⊕ xi (3.6)

where:

xi ⊕ xj =

1, if xi = xj.

0, otherwise.

and γm(xm) << 1 is the agent’s preference for a certain color when there is no

conflict. In short, Um(xm) equals the agents preference depending on the value of xm

minus the sum of the conflicts with the neighbors, where the neighbors color takes

a value coming from the maximization variables in 3.5. γm(xm) is a vector with the

length equal to the number of possible colors in the graph coloring problem. The

first element of the vector indicates the preference for the first color, the second

element indicates the preference for the second color and so on.

The initial preferences for a color of the three agents are as follows:

A1 : γ1(x1) = [0.1,−0.1]

A2 : γ2(x2) = [−0.1, 0.1]

A3 : γ3(x3) = [−0.1, 0.1]

We compute the messages from variables to functions, and from functions to

variables, and the marginal function for each of the three agents, step-by-step.

Agent A1:

24

3.2. EXAMPLE COMPUTATION 25

The initial messages from variables to functions are all set to zeros:

Q1→1(x1) = [0, 0]

Q2→1(x1) = [0, 0]

The messages from functions to variables can then be computed through equation

3.5:

R1→1(x1) = max
x2

(U1(x1, x2) +Q2→1(x1))

= max
x2

(γ1(x1)− (x1 ⊗ x2) +Q2→1(x1))

The easiest way to see how the values for the elements of the message are com-

puted, is by inspecting the maximization tree being followed:

The vector R1→1(x1) represents the resulting message containing the preference

for each color configuration for variable x1, and hence the result is composed of the

max value of R1→1(x1) for x1 = 0 and for x1 = 1. The corresponding values are

25

26 CHAPTER 3. THE MAX-SUM ALGORITHM

shown in boxes at the end of the decision tree above and hence the result for R1→1

is:

R1→1(x1) = [0.1,−0.1]

The computation of R1→2(x2) follows the same steps:

R1→2(x2) = max
x1

(U1(x1, x2) +Q1→1(x1))

= max
x1

(γ1(x1)− (x1 ⊗ x2) +Q1→1(x1))

Also, for R1→2(x2) a decision tree helps in the computation:

Since R1→2(x2) is dependent on x2 the result can be computed by finding the

maximum values for x2 = 0 and x2 = 1 in the decision tree. Hence the result is:

R1→2(x2) = [−0.1, 0.1]

The marginal function Zn for the first agent is defined as:

26

3.2. EXAMPLE COMPUTATION 27

Z1(x1) = R1→1(x1) +R2→1(x1)

And since the message R2→1(x1) has not been computed yet, it is assumed to be

equal to [0, 0]. Hence the marginal function for agent A1 can be computed according

to equation 3.1:

Z1(x1) = R1→1(x1) +R2→1(x1) = [0.1,−0.1]

The vector resulting is [0.1,−0.1] and the color of the variable x1 owned by agent

A1 is set to 0, since the element at index 0 in the resulting vector has the greatest

value.

Agent A2:

From variable to function:

Again, the messages R2→2 and R3→2 have not yet been computed but they are in-

volved in the computation of the messages from variable to function for the second

agent. Hence, R2→2 and R3→2 are also assumed to be equal to [0, 0]. So the messages

result in:

Q2→3(x2) = R1→2(x2) +R2→2(x2) = [−0.1, 0.1]

Q2→1(x2) = R2→2(x2) +R3→2(x2) = [0, 0]

Q2→2(x2) = R1→2(x2) +R3→2(x2) = [−0.1, 0.1]

From function to variable:

27

28 CHAPTER 3. THE MAX-SUM ALGORITHM

In the computation of R2→3, R2→1 and R2→2 a decision tree as for R1→2 and R1→1

is helpful for the understanding. The computation for R2→3 would be:

R2→3(x3) = max
{x1,x2}

[γ2(x2)−
∑
i∈{1,3}

xi ⊗ x2] + [Q1→2(x1) +Q2→2(x2)]

Since for R2→3 the max is taken over both x1 and x2, the computation follows

two trees.

For x2 = 0:

R2→3(x3) = max
{x1,x2}

([−0.1− ([x1 ⊗ 0] + [x3 ⊗ 0])] + [Q1→2(x1)− 0.1])

And hence, the decision tree when x2 = 0 is:

For x2 = 1:

R2→3(x3) = max
{x1,x2}

([0.1− ([x1 ⊗ 1] + [x3 ⊗ 1])] + [Q1→2(x1) + 0.1])

28

3.2. EXAMPLE COMPUTATION 29

and the decision tree when x2 = 1 is:

Since R2→3(x3) represents a preference vector for the configurations of x3, the

result of R2→3(x3) is found by taking the maximum value of the decision tree for

x3 = 0 and the maximum value for x3 = 1. The respective values are surrounded

by boxes in the two decision trees above. Hence:

R2→3(x3) = [0.2,−0.2]

Since it would be an unnecessary repetition that wouldn’t contribute in the under-

standing of the algorithm, the decision trees for the messages R2→1(x1) and R2→2(x2)

are left out and just the results are shown:

R2→1(x1) = [0.2,−0.2]

R2→2(x2) = [−0.1, 0.1]

The marginal function results in:

29

30 CHAPTER 3. THE MAX-SUM ALGORITHM

Z2(x2) = R1→2(x1)+R2→2(x2)+R3→2(x3) = [−0.1, 0.1]+[−0.1, 0.1]+[0, 0] = [−0.2,0.2]

Hence the color of the variable x2 in control of agent A2 is 1.

Agent A3:

From variable to function:

Q3→2(x2) =
∑

m′∈M(3)\2

Rm′→3(x3) = R3→3(x3)

and since R3→3(x3) = [0, 0] (because it has not yet been computed and is assumed

to be all zeros):

Q3→2(x2) = [0, 0]

and the second message from variable to function for agent A3 equals:

Q3→3(x3) =
∑

m′∈M(3)\3

Rm′→3(x3) = R2→3(x3) = [0.2,−0.2]

From function to variable:

R3→2(x2) = max
x3

(γ3(x3)− (x2 ⊗ x3) +Q3→3(x3))

again, the computation follows a decision tree:

30

3.2. EXAMPLE COMPUTATION 31

The values in the boxes are the maximum values of the tree for x2 = 0 and x2 = 1,

and hence:

R3→2(x2) = [−0.1, 0.1]

The equation for R3→3 is:

R3→3(x3) = max
x2

(γ3(x3)− (x2 ⊗ x3) +Q2→3(x2))

and the decision tree is:

31

32 CHAPTER 3. THE MAX-SUM ALGORITHM

and hence the result is:

R3→3(x3) = [0, 0]

Having computed the messages, the last marginal function Z3 can be computed:

Z3(x3) = R2→3(x3) +R3→3(x3) = [0.2,−0.2]

The resulting color configuration can then be derived from the marginal of each

variable:

Z1(x1) = [0.1,−0.1]→ variable x1 has color 0

Z2(x2) = [−0.2,0.2]→ variable x2 has color 1

Z3(x3) = [0.2,−0.2]→ variable x3 has color 0

And as can be easily seen, there are no conflicts between the color configurations

of the variables, hence the Max-Sum algorithm has found the optimal solution to

32

3.2. EXAMPLE COMPUTATION 33

the graph coloring problem.

33

4

Implementation

In the previous chapters, the aims of the thesis were outlined and motivated, an

overview of the current related research in the area of distributed constraint opti-

mizations was given, and the main aspect of the thesis, the Max-Sum algorithm,

was introduced and defined. The following chapter covers one of the main contribu-

tions of this thesis: The design and implementation of the Max-Sum algorithm in

an appropriate distributed graph computing framework.

First, the choice of the framework is motivated. In the following sections, the soft-

ware design and mapping aspects are discussed, while in the later sections imple-

mentation details are described.

4.1 Frameworks

Distributed problems pose sensitive requirements when it comes to the implemen-

tation. Scalability is a main concern [Tanenbaum and Van Steen, 2007] and thus,

engineers and researchers have to find methods to speed up distributed computa-

tions even when they are performed across thousands of nodes. While the compu-

tational power of hardware devices and processors increases at high rates, and is

expected to continue in this fashion [Schaller, 1997], it is not a valuable option to

36 CHAPTER 4. IMPLEMENTATION

rely on a progress in hardware performance in order to build and implement large-

scale distributed systems to solve scientific problems [Stutz et al., 2010]. Hence, the

speed-up of such systems has to be achieved by building frameworks that exploit

properties such as parallelism, asynchronicity of computation, and others. In the

context of large-scale distributed graph problems, there are some existing frame-

works that provide useful approaches to large-scale problems.

A well-known and broadly used framework in this context is the MapReduce frame-

work [Dean and Ghemawat, 2008]. MapReduce consists mainly of a Map-function

and a Reduce-function which both take key-value pairs as input and produce key-

value pairs as output. The distribution of the computational task is achieved by

parallelizing the Map-invocation across multiple machines (real or virtual) by split-

ting the input data into M split parts, where M is the number of distributed ma-

chines [Dean and Ghemawat, 2008]. The Reduce-function is distributed in a similar

fashion, and a more detailed presentation of it is offered in

[Dean and Ghemawat, 2008]. Because of its strict key-value orientation, computa-

tions may have to be mapped to this key-value model in order to be executable on

MapReduce [Stutz et al., 2010], and hence, it may not be suitable for problems such

as DCOPs.

A framework that tries to overcome the mentioned drawback of MapReduce is the

GraphLab framework [Low et al., 2010]. GraphLab allows its users to issue com-

plex computational problems by providing a data model that makes it possible to

map complex graph structures in contrast to MapReduce’s key-value structure. The

data model consists of a data graph and a shared data table [Low et al., 2010]. Al-

though GraphLab provides better means of mapping graph-based problems, it has

non-obvious efficient distribution [Bernstein, 2012] and hence may not be optimal

for the goal of this thesis.

36

4.1. FRAMEWORKS 37

Another interesting candidate is the Pregel-framework [Malewicz et al., 2010].

Pregel is a Google development and executes in discrete, synchronous computa-

tion steps, which are called supersteps in Pregel-terminology. The user specifies a

function that will be executed concurrently on every single vertex at a superstep S

[Malewicz et al., 2010]. Functions on vertices have access to messages received by

the vertex in the superstep S − 1 and send messages to other vertices that will be

processed at superstep S+1 [Malewicz et al., 2010]. Pregel achieves great results in

terms of performance and has proven scalability and error recovery [Bernstein, 2012].

Despite its nice properties, Pregel has the essential drawback of being inherently syn-

chronous as well as the fact that the framework is not open-source [Bernstein, 2012].

A very promising candidate is the Signal/Collect framework [Stutz et al., 2010].

Signal/Collect is a programming model for synchronous and asynchronous graph

problems. It provides the possibility to define multiple vertex types and can be

used in synchronous, as well as in asynchronous modes. Furthermore, it provides

useful mechanisms to aggregate statistics over the processed graphs and detect al-

gorithm convergence by built-in mechanisms. These properties make Signal/Collect

the most suitable one among the here-mentioned frameworks, especially with re-

spect to distributed constraint optimization problems. A DCOP algorithm such

as the Max-Sum algorithm, may profit from being implemented in the Signal/Col-

lect framework since the asynchronous possibilites of Signal/Collect allow a further

speedup of the computation [Stutz et al., 2010]. The possibility to introduce mul-

tiple user-defined vertex types makes it suitable for the Max-Sum algorithm, where

one has to deal with multiple vertex types such as function and variables nodes. Also

the mechanisms to measure graph-wide statistics and the possibility to implement

convergence detection through built-lin structures come in handy in a task as the

one this work deals with. Due to these considerations, the implementations in this

37

38 CHAPTER 4. IMPLEMENTATION

thesis will be done in the Signal/Collect framework, which will be described in more

detail in the next section.

4.2 Signal/Collect

In the Signal/Collect programming model, all computations are executed on a graph

where the vertices are treated as the main computational units. The vertices may

have internal state and can interact through messages - signals in Signal/Col-

lect terminology - which are sent along the edges of the graph to other vertices

[Stutz et al., 2010]. The vertices can collect incoming signals from their neighbors,

perform any computation involving received information and / or internal state, and

then continue signaling to their neighbors [Stutz et al., 2010]. Formally, a compute

graph in Signal/Collect is defined as a directed graph G =< V,E >, where V is the

set of vertices and E is the set of edges.

Every edge e ∈ E has the following attributes:

• e.source: The source vertex (or a pointer to it)

• e.sourceId: Id of the source vertex

• e.targetId: Id of the target vertex

Every vertex v ∈ V has attributes:

• v.id: A unique Id for every vertex

• v.state: The internal state of the vertex

• v.outgoingEdges: A list of all edges e ∈ E where e.source = v

38

4.3. IMPLEMENTATION DESIGN 39

• v.signalMap: A map data structure that stores key-value pairs with the Id’s

of the neighbor vertices as keys and the most recently received signals from

the corresponding vertices as values

• v.uncollectedSignals: A list containing the signals that arrived since the last

execution of the collect operation on v

In addition to the attributes, vertices v ∈ V also have an abstract procedure

named v.collect while edges e ∈ E have an abstract signal procedure e.signal. A

user can express an algorithm in the Signal/Collect model by specifying the signal

and collect procedures.

Signal/Collect allows to execute algorithms in a variety of execution modes. The

most important with respect to this thesis are the Synchronous execution mode,

to which the text will simply refer to as synchronous or SYNC and the PureAsyn-

chronous execution mode to which the text will refer to as ASYNC or asynchronous.

Signal/Collect1 provides an execution platform developed in Scala, and is released

under Apache License 2.0. It achieves parallelization of its computations through ex-

ploitation of multi-core processor architectures [Stutz et al., 2010]. Worker threads

are each responsible for a certain part of the graph by assigning them the vertices

and their respective edges through a hash function [Stutz et al., 2010].

4.3 Implementation Design

Since it is unsuitable to cover every detail of the implementation, the following

sections of this chapter will cover the most important design decisions in the imple-

mentation of the Max-Sum algorithm.

1http:// www.ifi.uzh.ch/ ddis/ research/ sc, Revision: 1374748765

39

40 CHAPTER 4. IMPLEMENTATION

4.3.1 Vertex and Edge Mapping

The algorithm takes an arbitrary undirected graph as an input. The graph represents

the agents involved in the DCOP and the structure of their communication as can

be seen in figure 4.1.

Figure 4.1: Example of an input graph for the algorithm

The input graph needs to be transformed further in order to be processable by

the Max-Sum algorithm; it needs to be in the form of a factor graph suitable for

graph coloring problems as introduced in section 2.2.3. This is done by expanding

every agent node An into two different vertices, a function vertex, denoted Un, and a

variable vertex, denoted xn [Farinelli et al., 2008]. Each function vertex Un is then

connected to its own variable vertex xn and to the variable vertex of its neighboring

agents. An example is shown in figure 4.2.

Figure 4.2: Transformed input graph

40

4.3. IMPLEMENTATION DESIGN 41

However, the factor graph needs to be mapped on Signal/Collect vertex and edge

types, in order to run the algorithm in the Signal/Collect framework. Since there

are two types of vertices in factor graphs and the Max-Sum algorithm, it is necessary

to define specific vertex types in Signal/Collect in order to be able to map the the-

oretical concepts of the Max-Sum algorithm on a software design. In Signal/Collect

this can be easily done by extending one of the basic vertex classes provided by the

Signal/Collect library.

The design is as follows: Two vertex types (or classes) are defined. The class

FunctionVertex represents the utility function vertices Un in the factor graph,

and the class VariableVertex represents the variable vertices xn, as the name

implies. Both have a common superclass, MaxSumVertex, that provides generic

and common functionality needed in both vertex types. Furthermore, two types

of edges will be defined: FunctionToVariable computing the messages Rm→n and

VariableToFunction computing the messages Qn→m. The reason to have two dif-

ferent edge types to represent undirected graph connections lies in the nature of the

Max-Sum algorithm. The Max-Sum algorithm propagates two types of messages

where the type of the message depends on the direction in which the message is

sent. Hence, in order to compute both types, the implementation needs a separated

view of the bidirectional edges of the factor graph. The message from variable to

function Qn→m (c.f. equation 3.4) will be computed by a VariableToFunction edge

instance, and the message from function to variable Rm→n (c.f. equation 3.5) will

be computed by a FunctionToVariable instance.

Thus, the factor graph that resulted from the transformation of the input graph

needs to be further transformed in order to result in the presented Signal/Collect

vertex and edge structure. Figure 4.3 shows the mapped version of the factor graph

from figure 4.2. The rectangular nodes with the captions FVn denote the instances

41

42 CHAPTER 4. IMPLEMENTATION

Figure 4.3: Resulting mapping of the factor graph on to signal/collect vertex and edge
types

of the class FunctionVertex, while the circle nodes with the captions V Vn represent

instances of the class VariableVertex. The arrows with empty white arrow heads

show the instances of VariableToFunction (V2F) edges and the arrows with bold

black arrow heads represent instances of FunctionToVariable (F2V) edges. The

whole process that transforms the input graph to a factor graph and then to a Sig-

nal/Collect mapping will be done automatically on the startup of the system. The

user only passes a file name and a path to the file containing the unmapped graph

either in edge list format or in ADOPT format.

4.3.2 Unique Ids and Messages

In order to have a concise and practical identification scheme for the vertices in

the implementation, a special id type named MaxSumId had to be defined. A

MaxSumId instance basically has three fields. The most important field is id :

String, a character string that represents the unique identification of a vertex in

the implemented system. A vertex can be either an instance of VariableVertex

or an instance of FunctionVertex, hence id : String will have the form v1234

for VariableVertex instances, or f1234 for FunctionVertex instances. The field

42

4.3. IMPLEMENTATION DESIGN 43

idNumber : Int stores only the id of the vertex without the corresponding prefix

(v or f). This is useful in situations where one wants to find out the id of a variable

that belongs to the same agents as a given function or vice versa. The third field

is isVariable : Boolean determines if the vertex having this id is a variable or

a function vertex. This will also be needed during the execution when the program

has to perform some computations only on one of the two vertex groups. Besides the

presented fields, an instance of MaxSumId also provides two methods equals(other

: MaxSumId) and hashCode(). The equals method overrides the standard Scala

equality check to adapt equality comparison for MaxSumId. The hashCode method

is necessary since instances of MaxSumId are intended to be used as keys in map-like

data structures. As in Java, Scala maps keys in those data structures by computing

their hash code. Hence, an appropriate hash computation method was defined.

The type of the signal being passed along the edges of the graph is a custom type

named MaxSumMessage. A MaxSumMessage is a container class for three things:

the value of the message being passed, the source vertex id where it came from

and the target vertex id where it is intended to arrive. The values in instances

of MaxSumMessage are of the type ArrayBuffer[Double] where the length of the

ArrayBuffer[Double] is equal to the number of colors in the graph coloring prob-

lem. The source and target ids are instances of MaxSumMessage.

4.3.3 Message Computation

The implementation presented in this thesis differs from the theoretical concept in

some points and follows own approaches. One of the issues where the implementation

differs from the concept proposed in [Farinelli et al., 2008] is the computation of the

messages. While in [Farinelli et al., 2008] the vertices act as the main computational

units computing the messages, the implementation in this thesis uses the edges

43

44 CHAPTER 4. IMPLEMENTATION

as main computational units. The messages will be computed through the edge

instances by accessing necessary data from the respective edges source vertex. This

is especially convenient in the Signal/Collect environment, since by definition, edges

compute the signals. Furthermore, each function-variable neighbor pair involves

different variables in the computation, and hence it would be inefficient to perform

the computation on the vertices where one would have to choose the correct variables

first. By letting the edges perform the computation, the implementation ensures that

only the needed neighbor structure is available at the computation location of the

message.

The computation of the messages Qn→m(xn) from variables to functions is executed

on instances of VariableToFunction and is straightforward. The source vertex

aggregates all received messages in its collect method, which then are used by the

edge instance of the V2F class to sum up and compute Qn→m in its signal method,

according to equation 3.4. In order to avoid having the messages grow indefinitely

over execution time, a (negative) normalization factor αnm is added to the sum of

received messages. As mentioned in [Farinelli et al., 2008] and in section 3.1 of this

thesis, the normalization factor αnm should be chosen such that:

∑
xn

Qn→m(xn) = 0

Following equation 3.4, the normalization has to be included in the computation

of the message as in:

Qn→m(xn) = αnm +
∑

m′∈M(n)\m

Rm′→n(xn)

To compute the normalization factor αnm, one has to restructure the equation

from above to:

44

4.3. IMPLEMENTATION DESIGN 45

|C|∑
xn=0

αnm +
∑

m′∈M(n)\m

Rm′→n(xn)

 = 0

|C|∑
xn=0

αnm +

|C|∑
xn=0

 ∑
m′∈M(n)\m

Rm′→n(xn)

 = 0

|C| ∗ αnm +

|C|∑
xn=0

 ∑
m′∈M(n)\m

Rm′→n(xn)

 = 0

And hence, the value of the normalization factor results in:

αnm = −

∑|C|
xn=0

(∑
m′∈M(n)\mRm′→n(xn)

)
|C|

The factor αnm has to be computed separately for each new message Qn→m(xn).

Note that |C| stands for the number of colors involved in the graph coloring problem

being processed.

For the messages Rm→n(xn) from functions to variables, the computation is more

involved in contrast to Qn→m. As can be seen in equation 3.5, the computation of

Rm→n demands a maximization over several variables. In the hands-on example of

the previous chapter, the maximization task was solved by following a tree exploring

all possible variable configurations and solutions of equation 3.5. Hence, the imple-

mentation would have to compute the value of formula 3.5 for every possible variable

configuration of the variables involved in the computation and then store the differ-

ent solutions in a simple data structure, such as a table. One then could easily find

45

46 CHAPTER 4. IMPLEMENTATION

the maximum by inspecting the result values in the table and comparing them. In

the implementation for this thesis, this described task of constructing all possible

configurations and finding the max value among them is achieved through a proce-

dure similar to the backtracking method described in [Sedgewick and Wayne, 2011].

Algorithm 1 The computation of the message Rm→n(xn)

function R m n(neighborVariables)
for i ← 0 to neighborVariables.size - 1 do

varValues[i] = 0
end for
for outerColor ← 0 to numOfColors - 1 do

varValues[0] = outerColor
Rm→n[outerColor] = backtrack(neighborVariables , varValues , 1)

end for
end function
return Rm→n

Algorithm 1 shows the encapsulating function that computes the messageRm→n(xn)

on a FunctionToVariable edge. The function takes an array-type paramater called

neighborVariables holding the ids of all neighboring VariableVertex instances.

An array with the same length as neighborVariables is initialized with zeros and

named varValues. This array represents the current color configuration of the

variables in neighborVariables. The second loop goes over the possible color val-

ues for outerColor. outerColor is the color of the variable on which the mes-

sage Rm→n(xn) being computed depends on. For example, in the computation

of the message R1→2(x2), outerColor would iterate over the possible color val-

ues for x2 and then compute the result of equation 3.5 separately for each value of

outerColor. The separate results are then stored in the final message array Rm→n

with outerColor as an index.

46

4.3. IMPLEMENTATION DESIGN 47

Algorithm 2 The recursive backtracking function

function backtrack(variableNames , variableValues , index)
max = 0.0
if index == variableNames.size - 1 then . Exit condition of the recursion

for color ← 0 to numOfColors - 1 do
max = 0.0
variableValues[index] = color
max = max(max, equation(variableNames , variableValues))

end for
else . Recursive branch

for color ← 0 to numOfColors - 1 do
max = 0.0
variableValues[index] = color
max = max(max, backtrack(variableNames , variableValues , index + 1))

end for
end ifreturn max

end function

The actual computation of the elements of the resulting message vector Rm→n is

performed through the function backtrack, which is shown in Algorithm 2. The

function takes two arrays and one integer as parameters. The arrays variableNames

and variableValues store the ids and the color configuration of the variables in-

volved in the computation. The integer index is used to iterate through the arrays

and determine when the recursion has to stop.

The function will call itself recursively as long as index has not reached the end

of variableNames or variableValues respectively. At each recursion step, max is

computed for every possible color of the variable at position index. Hence, before

calling the backtrack function recursively, the value of the current variable (e.g.

variableNames[index]) is set to the current color. Then, the recursion is called,

which eventually returns a floating value for max. The recursion tree representing

the recursion steps of the backtracking method would be similar to the decision trees

shown in section 3.2.

47

48 CHAPTER 4. IMPLEMENTATION

4.3.4 Complexity Analysis

Although this thesis puts the emphasis on the empirical performance and results

of the Max-Sum algorithm, it is worth analyzing the theoretical complexity of the

implementation. This may help in future implementations and experiments with

the algorithm, by discovering potential room for improvement.

Having the set of possible colors C = {c1, c2, ..., cn} and V = {x1, x2, ..., xk} the

set of involved variable vertices, the recursion tree of the backtracking function in

Algorithm 2 will look as depicted in figure 4.4.

Figure 4.4: Recursion tree of Algorithm 2

One can easily see that the depth of the recursion tree will be equal to the cardi-

nality of the set of variables, |V | . The actual computation of the possible solutions

takes place at the leaves at the bottom level of the recursion tree. Figure 4.4 shows

that the recursion tree has |C||V | leaves. Hence, the computation of equation 3.5

will be executed |C||V | times with different variable configurations. But the actual

48

4.3. IMPLEMENTATION DESIGN 49

computation is not the only work that is done by the recursion. The comparisons

through the max -function should also be taken into account. The max-comparisons

take place at the ”inner nodes” of the recursion tree, that is, at all nodes except for

the root node and the leave nodes. The number of inner nodes in the recursion tree

is:

|C|1 + |C|2 + ...+ |C||V |−1 =

|V |−1∑
k=1

|C|k

Hence the total number of steps (computations and comparisons) of the recursion

then results in:

O(|C||V | +
|V |−1∑
k=1

|C|k) (4.1)

And because the following relation holds:

O(

|V |−1∑
k=1

|C|k) ⊂ O(|C||V |)

the overall worst case complexity term can be reduced to:

O(|C||V |) (4.2)

Equation 4.2 shows clearly that the theoretical complexity and performance of

the implementation of the Max-Sum algorithm depend highly on the number of

involved variable vertices |V | and the number of colors |C| in the graph coloring

problem. The involved variables in V are the neighboring variable vertices of the

source function vertex for the computed message. Because usually |V | >> |C|,

the overall performance will depend mainly on the number of neighboring vertices.

Stated in a graph-theoretical way, the complexity depends on the average degree

49

50 CHAPTER 4. IMPLEMENTATION

deg(v) of the input graph.

50

5

Benchmarks

The previous chapter explained why the Signal-Collect framework was chosen for

the implementation and how the implementation of the Max-Sum algorithm was

conceptually designed. The implementation enables the empirical experiments with

the Max-Sum algorithm. The first part of the experiments consists of a comparison

with other candidate DCOP algorithms using a selected benchmark on a single

machine. The following chapter will demonstrate how the evaluation benchmark is

designed, which algorithms are used, which measurements are taken and on which

input data the benchmarking is performed.

5.1 Outline

The main goal of using this benchmark is to get useful empirical evidence about

the performance of the Max-Sum algorithm in comparison to other local iterative

DCOP algorithms. It is of special interest to get results comparable to the empirical

evaluation of the Max-Sum algorithm in [Farinelli et al., 2008]. A comparison and

conclusion between the results of this thesis and the results in [Farinelli et al., 2008]

may lead to interesting insights. Hence, it makes sense for the design of the bench-

mark to be similar to the one presented in [Farinelli et al., 2008]. On one side, it is

interesting to see if the results can be reproduced, but on other hand, the evaluations

52 CHAPTER 5. BENCHMARKS

presented in this thesis are implemented in a special graph processing framework and

hence one might be interested in differences between the results of the benchmarks

in this thesis and in [Farinelli et al., 2008].

5.2 Infrastructure

All of the following benchmarks and evaluations in this chapter were executed on

a single machine with standard hardware. The machine runs on a single 64 bit

processor consisting of two cores each having a maximum frequency of 2533 Mhz.

The processor works on a x86 architecture instruction set and provides 3012 kB

of L2-cache. The machine has a 1.07 Ghz system bus and has access to 4 GB of

random access memory.

The implementation is programmed in Scala, while the machine uses Scala ver-

sion 2.10.0 and Java version 1.7.0. The incorporated Signal-Collect framework has

revision 1374748765.

5.3 Candidate Algorithms

Since one of the intentions of the benchmark is to be able to make comparisons

to the results in [Farinelli et al., 2008], it is obvious that the candidate algorithms

contesting the Max-Sum algorithm in the benchmark are the same as the ones used

in Farinelli’s work. A slight difference to the benchmark in [Farinelli et al., 2008]

is the fact that in this evaluation the DPOP (Dynamic Programming Optimisation

Protocol) algorithm will not participate in the benchmark. This is because DPOP is

a complete DCOP algorithm (c.f. section 2.2.2) and this thesis concentrates mainly

on the local iterative algorithms. Hence, the candidate algorithms to be evaluated

52

5.3. CANDIDATE ALGORITHMS 53

in the benchmark are:

• Candidate 1: Max-Sum algorithm

• Candidate 2: Distributed Stochastic Algorithm [Zhang and Xing, 2002]

• Candidate 3: Best-Response algorithm [Fudenberg and Levine, 1998]

5.3.1 Distributed Stochastic Algorithm

The distributed stochastic algorithm (DSA) [Zhang and Xing, 2002] describes not

only a certain algorithm, but rather a whole family of algorithms based on the same

concept. To be more precise, the basic algorithm structure and steps are the same

for all DSA variants, but some important decision rules vary depending of the DSA

variant.

[Zhang and Xing, 2002] explain the basic structure of DSA. An adapted version for

graph coloring problems is shown in Algorithm 3.

Algorithm 3 The basic structure of DSA

Choose color c ∈ C = {c1, c2, ..., cn} randomly
while termination condition not met do

if c was changed in previous iteration step then
for v ∈ neighbors do

send(c,v) . Send new value to neighbors
end for

end if
for v ∈ neighbors do

collect new values from v (if any)
end for
select and assign new value for c . see next table for different DSA variants

end while

The steps shown in Algorithm 3 are executed by every single agent participating

in the DCOP. First, an agent starts by choosing a random color among the domain

53

54 CHAPTER 5. BENCHMARKS

of possible colors in the problem. Then the agent loops until a certain termination

condition is met. While looping, each agent sends its new color to all neighbors

if it changed since the last iteration. It then collects potential new values for the

colors of its neighbors. In the last step of each iteration, an agent decides stochas-

tically wether to change its color value. [Zhang and Xing, 2002] motivate the idea

of stochastically changing the color value by the fact that a change of the color will

possibly lead to a reduction of the number of conflicts. The agent computes its new

color based on its current color and on the perceived colors of its neighbor agents

[Zhang and Xing, 2002] with the aim of finding a color such that the number of

conflicts is reduced. If it can’t find such a color, the value is not changed, if it finds

such a color, the value may or may not be changed depending on the strategy of the

DSA variant [Zhang and Xing, 2002]. The variants and their strategies are shown

in table 5.1.

Variant ∆ > 0 Conflict, ∆ = 0 No conflict, ∆ = 0

DSA-A v with p - -
DSA-B v with p v with p -
DSA-C v with p v with p v with p
DSA-D v v with p -
DSA-E v v with p v with p

Table 5.1: Strategies for different DSA-Variants [Zhang and Xing, 2002]

[Zhang and Xing, 2002] have analyzed the solution quality of the different DSA

variants from table 5.1. They found out that DSA-A and DSA-B, which are con-

sidered as more ”conservative” variants, deliver a better solution quality on graph

coloring problems. Hence, this thesis will not take into account all of the DSA vari-

ants shown in table 5.1 but will only use DSA-A and DSA-B as candidates.

Explanation of table 5.1: ∆ represents the best possible conflict reduction be-

tween an old color value and a newly chosen one. v is the new color value that yields

54

5.3. CANDIDATE ALGORITHMS 55

∆ whereas p ∈ [0, 1] is the probability for changing the old value to the new value

v. When ∆ > 0, there must be a conflict, otherwise ∆ could not be greater than

zero. DSA-A will change its color value with probability p if the new value leads

to a reduction of the number of conflicts (∆ > 0). If ∆ = 0, there are two possible

situations: Either there are conflicts, but the agent couldn’t find any value reducing

the conflicts, or there are no conflicts at all, and hence there is no potential new

color value that could lead to a lower number of conflicts. In both cases, DSA-A

will not change the value, whereas DSA-B will change the value with probability p

in the first case. This is the only difference between the two variants.

5.3.2 Best-Response Algorithm

The Best-Response strategy is a concept widely used in game-theory

[Fudenberg and Levine, 1998]. In a Best-Response strategy, an agent or a player

chooses its own strategy such that it results in the highest possible response in

terms of utility, given the current strategies or states of its neighboring agents.

Algorithm 4 Best-Response Algorithm [Farinelli et al., 2008]

for v ∈ neighbors do
neighborStates.add(v.state)

end for
newState = chooseBestState(neighborStates)
if newState != oldState then . If the state has changed inform neighbors

for v ∈ neighbors do
sendState(v,newState)

end for
end if

The Best-Response strategy can be applied to our DCOP graph coloring model as

listed in algorithm 4. First, a node chooses its state based on the current states

of its neighbors such that it has the best possible outcome (e.g. the lowest num-

55

56 CHAPTER 5. BENCHMARKS

ber of conflicts) [Farinelli et al., 2008]. If the new state is different from the old

state, all neighbors have to be informed about the state update. This procedure

is executed on all vertices to solve a graph coloring problem. [Farinelli et al., 2008]

note that the Best-Response algorithm represents a lower bound on the performance

of any approximate DCOP algorithm, since it uses the minimum computation and

communication possible.

5.4 Metrics and Measurements

After having explained the infrastructure and candidate algorithms used in the eval-

uation, it is important to choose appropriate and expressive metrics or statistics to

be evaluated in the benchmark.

The measures should allow conclusions about the quality of the solutions an al-

gorithm finds and about the performance of the algorithm (e.g. time to find a

solution). Several measures were chosen in order to cover both performance and

quality aspects. The quality of a solution in a graph coloring setting is mainly char-

acterized by the number of conflicts. Hence, the number of conflicts will be the main

quality aspect evaluated in the benchmark. There will be conflict measurements for

synchronous and asynchronous executions of the algorithms (c.f. list below). The

performance of the algorithms is characterized through the execution time (or num-

ber of execution cycles in a synchronous execution) until the algorithm converges.

One can clearly see that it comes in handy to be using the Signal/Collect framework

since its concise way of expressing asynchronous and synchronous executions of the

same algorithm makes it easy to switch between those two execution modes and

allows for a more detailed evaluation.

• Conflicts:

56

5.4. METRICS AND MEASUREMENTS 57

– Synchronous: Conflicts per execution cycle

– Asynchronous: Conflicts over execution time

– Relation between cycles and execution time

• Convergence:

– Synchronous: Execution cycles until algorithm converges

– Asynchronous: Time until algorithm converges

Note that [Farinelli et al., 2008] evaluate the Max-Sum algorithm against DSA,

Best-Response and DPOP algorithms using a variety of measures, including also

conflicts per execution cycle and cycles until convergence. So the choice of these mea-

sures allows for a possible comparison of results with the results in [Farinelli et al., 2008].

The conflicts over time, time to convergence and time versus cycles were not included

in [Farinelli et al., 2008] and hence are a special contribution of this thesis.

5.4.1 Conflicts

The number of conflicts serves as a quality metric in the benchmark. As mentioned

in section 2.2.3, a conflict in a graph coloring setting is defined as the situation

when two neighboring vertices have the same color. To analyze the change of the

number of conflicts over execution time, the number of conflicts after each algorithm

cycle will be recorded. A cycle is defined by Farinelli as the period in which all ver-

tices have had the opportunity to update their state and have exchanged messages

[Farinelli et al., 2008]. When translating Farinelli’s notion of a cycle into a Signal/-

Collect compatible sense, a cycle is defined as the phase where all vertices have tried

to collect and signal once. Note that a vertex in Signal/Collect may or may not

execute a signal or collect execution during a cycle depending on the implementa-

tion. Since the notion of a discrete cycle only makes sense in a synchronous setting

57

58 CHAPTER 5. BENCHMARKS

where time can be discretized into clear steps, this evaluation will be executed in

Signal/Collect’s synchronous mode. As in [Farinelli et al., 2008], for this measure,

the algorithm will be run for a fixed number of cycles to analyze the number of

conflicts at each step.

In order to make a comparison between the asynchronous and synchronous perfor-

mance of the algorithm, the benchmark will analyze the number of conflicts over

execution time, measured at fixed intervals.

To measure the number of conflicts at each step, Signal/Collect provides a mech-

anism named AggregationOperation, which is an abstract class defining methods

that enable measuring of characteristics of the vertices iteratively at each execution

cycle. It serves as a distributable way to count statistics over the whole Signal/-

Collect graph on which the algorithm is being executed. For each of the candidate

algorithms involved in the benchmark, a subclass of AggregationOperation was

defined and used to take measures. The respective AggregationOperation calls

on each vertex a method returning the number of conflicts at that vertex. For the

benchmarks in this chapter, a central static object was created, to which all vertices

will write their current color during computation of the algorithm. By querying

this central object, all vertices can determine the color of their neighbors and hence

compute their respective number of conflicts in order to return this value to the

AggregationOperation. This approach is necessary since a vertex in Signal/Col-

lect has only access to the IDs of its neighbors, but not to the object reference of the

neighbor itself. Since the Max-Sum algorithm does not exchange the actual states

of the vertices, neighbors do not know the colors of each other. The illustrated use

of a central object circumvents this problem.

58

5.4. METRICS AND MEASUREMENTS 59

5.4.2 Convergence

The convergence properties help in discussing the performance of an algorithm and

hence will be part of the evaluation. This indicator measures the time until the algo-

rithm converges. There are two kinds of convergence in the context of local iterative

DCOP algorithms: Message convergence and state convergence. The messages are

said to converge when an updated message has the same value as the last message

that was sent along the same path [Farinelli et al., 2008]. The convergence for the

state of the vertices is defined analogously. The benchmark will simply count the

number of algorithm cycles (c.f. section 5.4.1) until both all messages and all states

in the algorithm have converged. To check message convergence, the implementa-

tion will look at the marginals of the variable vertices.

To detect convergence, Signal/Collect provides useful termination structures. Each

vertex type has the methods scoreCollect and scoreSignal. Signal/Collect de-

tects convergence of an algorithm based on these two methods and based on the

signalThreshold and collectThreshold constants that are defined globally

[Stutz et al., 2010]. A Signal/Collect computation continues as long as there exists

at least one vertex where scoreCollect will return a value higher than

collectThreshold, or scoreSignal returns a value higher than signalThreshold

respectively

[Stutz et al., 2010]. A specific algorithm implementation in Signal/Collect, such as

the Max-Sum implementation, may define its own convergence rules by overriding

the two scoring methods and setting the corresponding thresholds.

In the implementations of the algorithms and benchmarks in this thesis, the

signalThreshold and the collectThreshold constants are both set to 0.0. Hence

an algorithm will converge when all collect scores and signal scores are below or

equal to this threshold. The scoreCollect method implemented in the vertices used

59

60 CHAPTER 5. BENCHMARKS

to detect convergence for the Max-Sum implementation is shown below:

Algorithm 5 scoreCollect method

if edgesModifiedSinceCollectOperation then
return 1.0

else
if stateHistory.hasConverged ∧ marginalHistory.hasConverged then

return 0.0
else

return 1.0
end if

end if

The method shown in 5 returns 0.0 if the stateHistory and the marginalHistory

of the current vertex have converged. In all other cases, the method returns 1.0 indi-

cating that the vertex should continue to execute collect operations. The two fields

named stateHistory and marginalHistory are references to instances of the type

ConvergenceHistory[T] and MarginalHistory[T], where T is any scala language

type. These types were designed as a helping data structure to support the con-

vergence detection in this thesis. The implementation of ConvergenceHistory is

shown in listing 5.1. The need for such a data structure comes from the fact that the

state and marginal changes do not propagate immediately in the factor graph. For

example, if a variable vertex changes its color, this will lead to different messages

arriving at one of its connected function vertices in the first execution cycle after

the change. Only after a second step, the changed state of the original variable

vertex will have an impact on the next variable vertex, because only now the middle

function vertex will recompute a message with the new state information and send

it to the next variable vertex. Following this logic, it takes multiple steps between

two vertices in order to confirm convergence. This is why a data structure as the

one presented here is needed.

60

5.4. METRICS AND MEASUREMENTS 61

Listing 5.1: The implementation of ConvergenceHistory[T]

class ConvergenceHistory[T](c: Int) extends Queue[T] {

val capacity = c

def push(element: T): Unit = {

if (size < capacity) {

enqueue(element)

} else {

dequeue

enqueue(element)

}

}

def isFull(): Boolean = {

if (size < capacity) {

false

} else {

true

}

}

def hasConverged(): Boolean = {

if (!isFull) {

false

} else {

var converged = true

val list = this.toList

var i = 0

61

62 CHAPTER 5. BENCHMARKS

while ((i < list.size - 2) && converged) {

if (list(i) != list(i + 1)) {

converged = false

}

i += 1

}

converged

}

}

}

ConvergenceHistory[T] is a subtype of the scala language type Queue[T], which

is a simple first-in-first-out data structure holding instances of parameter type T.

ConvergenceHistory[T] extends it by adding a field named capacity to Queue[T],

thus introducing a maximum size for the history. The wrapper method push allows

to add an element to the history. It stores the most recent state entries of a vertex.

If the capacity is reached, the implementation automatically removes an element

from the history according to the FIFO rule. Hence, the history will always contain

the most recent entries. In addition, the type provides a hasConverged function

that checks if the entries in the history indicate convergence. Convergence occurs

when all entries in the history have the same value. It is important to note that the

field marginalHistory in method 5.1 has the type MarginalHistory[T], which is

a subtype of ConvergenceHistory[T]. This design decision was necessary because

marginalHistory keeps track of the convergence of the marginals at a vertex. Due

to the high number of floating point operations involved in the computation of those

marginals, the results may deviate because of rounding errors. Hence, detecting

convergence based on equality is not an option. This is why there is a special

subtype checking convergence for marginals. The implementation is shown in 5.2.

62

5.4. METRICS AND MEASUREMENTS 63

Listing 5.2: The implementation of MarginalHistory[T]

class MarginalHistory[T](c: Int, epsilon: Double)

extends ConvergenceHistory[ArrayBuffer[Double]](c) {

val e = epsilon

override def hasConverged() = {

if (!isFull) {

false

} else {

var converged = true

val list = this.toList

var i = 0

while ((i < list.size - 2) && converged) {

if (compare(list(i), list(i + 1))) {

converged = false

}

i += 1

}

converged

}

}

private def compare(a: ArrayBuffer[Double], b: ArrayBuffer[Double]) = {

var equal: Boolean = true

var i = 0

while (i < a.length && equal) {

if (abs(a(i) - b(i)) > e) {

equal = false

}

63

64 CHAPTER 5. BENCHMARKS

i += 1

}

equal

}

}

MarginalHistory[T] detects convergence not based on value equality, but on an

epsilon-test of the pairs of marginals in the history. Instead of checking if the values

are the same, the function checks wether the absolute difference of the two values

in comparison is smaller or greater than a predefined value ε. This addresses the

rounding errors in the computations of the marginals and leads to a more concise

convergence detection.

5.5 Data Sets

There are 3 different graphs on which the benchmarks will be executed. The graphs

were taken from the USC Distributed Constraint Optimization Problem Repository

1 , sometimes also referred to as ADOPT repository. This repository is used widely

throughout DCOP literature and graph coloring problems. The chosen data set

is a set of undirected graphs prepared for graph coloring problems. It was used

previously in [Modi et al., 2005] and [Modi et al., 2003]. All graphs in the data set

are undirected and intended for graph coloring problems involving three colors.

For the benchmarks in this chapter, three graphs with different number of nodes

were chosen from the mentioned data set: adopt10, with 10 nodes, adopt20 with

20 nodes and adopt40 with 40 nodes. All those graphs can be found under http://

teamcore.usc.edu/ adopt/ problems.tar.gz . All of the graphs contain cycles. Since the

1http:// teamcore.usc.edu/ dcop/

64

5.6. EVALUATION 65

next chapter of this thesis aims to evaluate the scaling properties of the algorithms

on greater graphs and on a cluster infrastructure, there is no need for bigger graphs

in this chapter.

5.6 Evaluation

In the following sections, the execution procedure and details as well as the results

of the benchmarks will be presented.

5.6.1 Conflicts Over Steps

To benchmark the conflicts over steps, the algorithms have to be executed in the

synchronous mode of the Signal/Collect framework. All algorithms were run for 50

execution steps, and then stopped automatically. The number of conflicts at each of

the 50 steps was recorded and stored. This procedure was repeated 4 times for each

algorithm. At the end, the results of the 4 repetitions were averaged. In general,

the Max-Sum algorithm is expected to deliver the best performance in this kind of

benchmark as implied by [Farinelli et al., 2008].

10 Nodes:

The results of the benchmark executed on graph adopt10 are shown in figure 5.1.

As one can see in the plot, DSA-A 2 and DSA-B 3 perform in a very similar fashion,

with DSA-B doing slightly better. The analyses from [Zhang and Xing, 2002] of

different DSA variants have produced similar results. Both DSA variants start with

a rather high number of conflicts at the beginning. With increasing number of

execution steps, the number of conflicts drops in an almost exponential fashion.

2https:// github.com/ hafenr/ benchmarking-libr-algs-signal-collect
3https:// github.com/ hafenr/ benchmarking-libr-algs-signal-collect

65

66 CHAPTER 5. BENCHMARKS

Figure 5.1: Conflicts over execution steps for Max-Sum, DSA-A, DSA-B and Best-
Response algorithms, benchmarked on a 10-node ADOPT graph.

Best-Response 4 shows a nearly linear trend after a slight improvement in the first

execution steps. Surprisingly, in this benchmark, the Max-Sum algorithm behaves

unstable and does not really outperform the other candidates. The expectations

for the Max-Sum algorithm to perform better were not yet fulfilled in the first

benchmark executed on the smallest of the three graphs. The Max-Sum algorithm

starts at a lower conflict level than any of the other candidates, but then instead of

lowering the number of conflicts, it goes on by oscillating irregularly between three

different conflict levels: 18 , 11 - 14 and 4 - 6 conflicts. It reaches several local

minima at steps { 18 , 19} , { 32 , 33 } and { 42 , 43 }. At the right end of the

plot, the number of conflicts starts increasing again up to a local maximum of 14.

After taking a closer look, the oscillating behavior on the 10-node ADOPT graph

is not as surprising. In the conflicts over time benchmark that was performed in

[Farinelli et al., 2008], the authors note that the Max-Sum algorithm performs less

4https:// github.com/ hafenr/ benchmarking-libr-algs-signal-collect

66

5.6. EVALUATION 67

well for small graphs of the ADOPT repository with a low numbers of agents. This

fact was also mentioned in section 2.2.3. In other words, [Farinelli et al., 2008] have

observed the exact same behavior as in this benchmark. The poor performance

observed in this benchmark may come from the fact that cyclic graphs can cause

oscillating behavior in the Max-Sum algorithm [Farinelli et al., 2008]. In the case

of the 10-node benchmark, cycles may have a greater impact on the behavior of the

Max-Sum algorithm, since on a 10-node graph, the probability of messages being

passed in a potential loop is higher than for bigger graphs. This issue has been

adressed in [Farinelli et al., 2008]. The authors claim that this issue can be fixed by

modifying the utility function (c.f. equation 3.6) to consider not only the constraints

with the direct neighbors of a node, but also to include the constraints among these

neighbors [Farinelli et al., 2008]. The utility function shown in 3.6 would have to be

changed to:

Um(xm) = γm(xm)−
∑

i∈N (m)\m

∑
j∈C(i,m)

xm ⊕ xi

where:

C(i,m) = {k ∈ N (m)|k > i ∧ (i ∈ N (k) ∨ k ∈ N (i))}

is the set of neighbors of the current vertices’ neighbors.

20 Nodes:

The results of the benchmark executed on graph adopt20 are shown in figure 5.2.

The benchmark on a graph of 20 nodes (c.f. figure 5.2) shows similar trends for

DSA-A and DSA-B. Both show a great decrease in the number of conflicts over

the first steps. Both DSA variants have almost identical trends towards the end of

the steps scale. The relative difference between the conflicts for the Best-Response

67

68 CHAPTER 5. BENCHMARKS

Figure 5.2: Conflicts over execution steps for Max-Sum, DSA-A, DSA-B and Best-
Response algorithms, benchmarked on a 20-node ADOPT graph.

algorithm and the DSA variants are not as big as in the previous benchmark. Nev-

ertheless, Best-Response again shows generally the highest number of conflicts. De-

spite the mentioned similarities to the first benchmark, the second one exposes a

completely different behavior of the Max-Sum algorithm. In this case, the conflict

trend of the Max-Sum algorithm confirms the results of a similar empirical analysis

in [Farinelli et al., 2008] where the Max-Sum algorithm shows a better quality in

terms of number of conflicts compared to DSA-A, DSA-B and Best-Response. Fig-

ure 5.2 shows that the Max-Sum algorithm starts with a very low number of conflicts

in the first steps, followed by a range of ∼ 20 steps where the number of conflicts

oscillates only very slightly around 10 conflicts. From the 23-th step on, Max-Sum

outperforms all other candidates in the benchmark. The number of conflicts drops

heavily until down to one conflict, and two steps later it arrives at zero, which means

the Max-Sum algorithm has solved the graph coloring problem optimally. DSA-A

remains on 5 and DSA-B on 4 for the rest of the execution steps.

68

5.6. EVALUATION 69

40 Nodes:

Figure 5.3: Conflicts over execution steps for Max-Sum, DSA-A, DSA-B and Best-
Response algorithms, benchmarked on a 40-node ADOPT graph.

The benchmark on 40 nodes, depicted in figure 5.3, shows generally a similar figure

as the benchmark over 20 nodes (c.f. 5.2). Again, DSA-A and DSA-B have a nearly

exponential decrease in number of conflicts with DSA-B performing slightly better

as the steps increase. Both seem to ”converge” to a stable state between 5 conflicts

(DSA-B) and 12 conflicts (DSA-A). Also, the constellation of the Best-Response

algorithm has not changed; it is again the weakest candidate in terms of number of

conflicts. Although the difference in the conflict trends between the other three can-

didates and the Max-Sum algorithm is not as big as in the benchmark before, the

Max-Sum algorithm again outperforms its contestants. Max-Sum shows multiple

slight deviations in the lower conflicts levels towards the end of the steps scale, but

still its number of conflicts is mostly lower than the conflicts of DSA-A, DSA-B and

69

70 CHAPTER 5. BENCHMARKS

Best-Response. Hence, once again, the Max-Sum has achieved to confirm former

results of [Farinelli et al., 2008].

In general, one can say that the Max-Sum algorithm outperforms DSA-A, DSA-

B and Best-Response in terms of solution quality. There is a slight outlier in the

banchmark of 10-nodes, which was discussed and adressed above. Aside from the

mentioned case, the acquired results in the presented conflict benchmarks confirm

the expectation that the Max-Sum algorithm achieves slightly better solution qual-

ity.

5.6.2 Conflicts Over Time

In the previous benchmark, the quality of solution of the Max-Sum algorithm versus

the candidate algorithms was analyzed. This thesis makes an additional contribu-

tion as it looks deeper into the quality properties (e.g. conflicts) of the Max-Sum

algorithm. Instead of comparing Max-Sum to other candidates, this benchmark

executes the Max-Sum algorithm synchronously and asynchronously, and then com-

pares the resulting number of conflicts over a certain execution time t. Again, the

used graph datasets were adopt10 , adopt20 and adopt40 (c.f. section 5.5). The

benchmarks were executed for 10’000 milliseconds and the number of conflicts were

recorded at time t equal to 500, 1’000, 1’500, 2’500, 5’000, 7’500 and 10’000 millisec-

onds. For each graph, the benchmark was executed 4 times, and then the average

of the resulting conflicts was computed. In the following, the results for each t are

presented; for the sake of readability, the synchronous Max-Sum implementation

will be denoted SYNC while the asynchronous one will be denoted ASYNC.

70

5.6. EVALUATION 71

On 10 nodes:

Figure 5.4: Conflicts for synchronous and asynchronous Max-Sum on a 10 node ADOPT
graph.

Figure 5.4 shows the trend for the number of conflicts in the benchmark on

adopt10. SYNC has a much lower initial conflict level than ASYNC. After a rather

high number of conflicts in the beginning, both candidates show an abrupt drop.

The trendline for SYNC is generally lower than the trendline of ASYNC. The dif-

ference between these two is very steady and remains around 10 conflicts for the

whole execution time. After the initial decrease down to a local minimum, the val-

ues for both candidates show an increase with very similar slopes. This behavior

is not what one would expect, since a longer execution time gives the algorithms

greater chance of solving the problem and hence lowering the number of conflicts.

The unnatural behavior observed in figure 5.4 is clearly based on the same cause as

the poor results of Max-Sum in the previous benchmark on the 10 node adopt graph

(c.f. 5.6.1). The poor results are caused by the loop structure in the smaller adopt

71

72 CHAPTER 5. BENCHMARKS

graphs. A more detailed explanation and a modification of the algorithm that sorts

out this problem was presented in section 5.6.1.

On 20 nodes:

Figure 5.5: Conflicts for synchronous and asynchronous Max-Sum on a 20 node ADOPT
graph.

The benchmark results for the adopt20 graph reveal a totally different situation,

as depicted in figure 5.5. Again, ASYNC has a much higher number of conflicts

at the first measuring interval, but then a steep decrease is observed between the

intervals 500 ms and 1000 ms. While SYNC’s number of conflicts was much lower

at the beginning, both candidates arrive at the same number of conflicts at t = 2500

ms. From that point on, the trends for both candidates are very similar; they both

continue to decrease in number of conflicts in a very slight fashion. SYNC has a

slightly lower number of conflicts than ASYNC.

On 40 nodes:

72

5.6. EVALUATION 73

Figure 5.6: Conflicts for synchronous and asynchronous Max-Sum on a 40 node ADOPT
graph.

The benchmark on 40 nodes (c.f. figure 5.6) shows a very similar result as the

one benchmark on 20 nodes: After a high discrepancy in the beginning, both can-

didates’ trend lines draw near each other and continue with a similar development

towards the end of the execution interval. This time, there is no remarkable dif-

ference between the candidates towards the end. All said, this benchmark revealed

three things.

First, the poor performance of the Max-Sum algorithm on small cyclic graphs, that

was already mentioned in the conflicts over steps benchmark and in

[Farinelli et al., 2008], was reproduced and confirmed. SYNC as well as ASYNC

show similar results in the case of said graph (adopt10) and hence, the poor perfor-

mance in that region is not related to the execution mode.

Second, a clear observation from the above figures is the fact that in the first time

intervals after the execution starts, SYNC considerably lowers its number of con-

flicts and shows a much lower level of conflicts than ASYNC in those first intervals.

73

74 CHAPTER 5. BENCHMARKS

In the asynchronous execution of the algorithm, the vertices do not message in a

specific order. There is no guarantee about the order of the nodes that are allowed

to compute messages or compute new states based on received messages. Hence, in

the beginning, a lot of the messages may contain no useful information yet because

needed incoming messages are not available yet. In contrast, SYNC operates in

clearly defined and ordered steps. Hence, all nodes will receive some useful informa-

tion in the messages in the initial phase of the execution. This may be the reason

why SYNC achieves better results at the beginning.

Third, there is no significant difference in the overall performance between the two

candidates. It is not possible to make a clear statement wether SYNC or ASYNC

delivers better results in terms of solution quality based on this benchmark. Given

the results obtained here, asynchronous and synchronous executions of Max-Sum

seem to perform almost equally well. Especially as the execution time increases,

the number of conflicts for both variants settle down on nearly the same level of

conflicts.

To get a connection between the execution cycles used in section 5.6.1 and the execu-

tion time used as a metric for the abscissa in this benchmark, the respective number

of steps for the execution intervals used before has been recorded on the three dif-

ferent graphs. Note that this was only possible on the synchronous implementation,

since for the asynchronous case there is no definition for a discrete execution cycle

or step.

The relation between the number of steps and the execution time ist fairly linear

for all three graphs. A linear function fitting of the form s(t) = a+ b ∗ t for the data

points results in:

74

5.6. EVALUATION 75

Figure 5.7: Relation between the execution time and the execution cycles for synchronous
Max-Sum.

sADOPT−10(t) = 0.512612 + 0.00447166 ∗ t

sADOPT−20(t) = 0.403824 + 0.000800772 ∗ t

sADOPT−40(t) = 0.806587 + 0.000111903 ∗ t

As one can see, the size of the slope of the linear functions above decreases heavily

when the graph size increases. Following this, the relation function sADOPT−10(t)

has a slope that is greater than the slope of sADOPT−20(t) by a factor of 5.58. The

factor between the slopes of sADOPT−20(t) and sADOPT−40(t) is around 7.15.

75

76 CHAPTER 5. BENCHMARKS

5.6.3 Execution Steps To Convergence

In the previous sections the solution quality of the algorithms was benchmarked.

This section aims to benchmark the performance of the algorithms in terms of

execution steps until convergence is reached. The definition of convergence and the

mechanisms to detect it were discussed in 5.4.2. The candidate algorithms were

run in synchronous mode until convergence was detected. After the execution the

number of execution steps was recorded. This was repeated 4 times on each of the

three ADOPT graphs presented in section 5.5 and the averages were computed.

Figure 5.8: Steps to convergence for Max-Sum, DSA-A, DSA-B and Best-Response algo-
rithms on a 10-node ADOPT graph.

The results on the graphs with 10 and 20 nodes are very similar and differ only

in the number of steps for the Best-Response algorithm. Generally, the differences

between the algorithms are very small. The Max-Sum algorithm has the highest

number of steps until convergence for the first two graphs, while DSA-A and DSA-

B achieve results that are very close to each other. Best-Response shows the best

performance of all candidates.

The benchmark on the 40 node ADOPT graph shows also similar results (c.f.

76

5.6. EVALUATION 77

Figure 5.9: Steps to convergence for Max-Sum, DSA-A, DSA-B and Best-Response algo-
rithms on a 20-node ADOPT graph.

figure 5.10). In this case, the differences between the algorithms are slightly larger

than the ones of the benchmarks on 10 and 20 nodes. Again, Max-Sum has the

weakest performance achieving 13 steps until convergence. In contrast to the previ-

ous two benchmarks, DSA-A performs slightly better than DSA-B. Best-Response

again delivers the best results in this benchmark. This is mainly because Best-

Response uses the lowest amount of communication and computation among the

candidates. Hence, the theoretical fact that Best-Response is a lower bound on the

performance of any local DCOP algorithm [Farinelli et al., 2008] was confirmed by

the benchmark.

5.6.4 Execution Time To Convergence

As before, the synchronous and asynchronous versions of Max-Sum were compared.

This time, the focus lies on the performance rather than on the solution quality,

therefore the benchmark recorded the convergence time in milliseconds. Both ver-

sions were run on the presented datasets four times using the same convergence

77

78 CHAPTER 5. BENCHMARKS

Figure 5.10: Steps to convergence for Max-Sum, DSA-A, DSA-B and Best-Response algo-
rithms on a 40-node ADOPT graph.

detection mechanism as in section 5.6.3. The averaged results are presented below.

In the following, SYNC denotes the synchronous version and ASYNC stands for the

asynchronous version.

The figures 5.11, 5.12 and 5.13 illustrate that ASYNC outperforms SYNC on all

data sets by a large magnitude. On adopt10, ASYNC is faster than SYNC by a

factor equal to 4.13. On adopt20, the factor drops down to 2.43, while on adopt40,

it is equal to 3.15. Figure 5.14 compares the trend lines of the convergence times

versus the size of the graphs. The trend line of ASYNC appears to be almost linear

with a steady slope, while SYNC shows a clear increase of the slope when the graph

size is greater than 20 nodes.

In general, ASYNC has proved to perform much better in the computation-speed

benchmarks. This kind of result was expected and the reason for it lies in the fact

that SYNC loses lots of computation time in the blocking phases while waiting for all

vertices to have finished their computation in order to continue the algorithm. The

need for global synchronization inherently slows down algorithms such as SYNC. In

78

5.6. EVALUATION 79

Figure 5.11: Time to convergence for asynchronous and synchronous Max-Sum on a
ADOPT graph with 10 nodes.

contrast to this, ASYNC has no means of ordering between the execution phases

and does not wait or block during the execution. Hence, ASYNC delivered superior

results.

79

80 CHAPTER 5. BENCHMARKS

Figure 5.12: Time to convergence for asynchronous and synchronous Max-Sum on a
ADOPT graph with 20 nodes.

Figure 5.13: Time to convergence for asynchronous and synchronous Max-Sum on a
ADOPT graph with 40 nodes.

80

5.6. EVALUATION 81

Figure 5.14: Trend lines for the convergence times of synchronous and asynchronous Max-
Sum depending on the graph size

81

6

Scalability

The last contribution attempt of this thesis, besides the implementation and the

benchmarking of the Max-Sum algorithm, is to test the scalability of the Max-

Sum algorithm on proper machine infrastructure. This chapter will introduce the

infrastructure on which the scalability benchmarks were run, the data sets that were

used and describe the benchmark criteria and measures.

6.1 Infrastructure

The scalability benchmarks were run on Kraken, a cluster of 12 machines. Each

machine has two twelve-core AMD Opteron
TM

6174 processors and 66 GB RAM.

Not all of the 12 machines on the cluster were used on all benchmarks. The number

of machines used is indicated in the sections describing the benchmark itself.

6.2 Considerations on Distributability

This section will cover the aspects of the implementation that had to be modified or

improved in order for the implementation to run distributed on multiple machines.

As mentioned in the previous chapter, the colors of the vertices were stored in

a global static object for the AggregationOperation to compute the number of

84 CHAPTER 6. SCALABILITY

conflicts over the entire graph. Obviously, this approach is unsuitable for a dis-

tributed use of the software. Hence, the central color and conflict management

through the static object needs to be distributed and delegated to the vertices.

The basic idea is to let every VariableVertex instance provide a function named

getNumberOfConflicts that returns the number of conflicts at the corresponding

vertex (note that FunctionVertex instances are not relevant to the computation of

the number of conflicts since a FunctionVertex does not have any state or color).

But how can a VariableVertex know the number of conflicts it is involved in?

This is tricky, because in Signal/Collect, a vertex has no access to object references

of its neighbors, but only access to the ids. Hence, vertices can not access the

color of their neighbors in order to compute the number of conflicts they are in-

volved in. This issue was solved by adding a method tellNeighborsAboutColor()

to VariableVertex which sends special messages to all neighbors containing the

vertex’s current color. On the receiving side, the method deliverSignal has to

be overriden since VariableVertex instances now receive two types of messages:

The normal MaxSumMessage and the newly introduced color message. The overri-

den method deliverSignal decides wether a received signal is a MaxSumMessage

or a color. In the latter case, the received color is put into a map data structure

with the id of its sending variable as a key. Based on this map, a vertex can com-

pute its number of conflicts when getNumberOfConflicts is called on it. Then the

AggregationOperation simply extracts the number of conflicts from each vertex

by calling getNumberOfConflicts and aggregates them to the total sum.

Just like the conflicts, the initial preferences and neighborhood structures were

stored to a global static object too. This was overcome by injecting the neces-

sary information during the loading and constructing of the Signal/Collect graph

directly into the edge instances, where the information is needed to compute the

84

6.3. DATA SETS 85

messages.

6.3 Data Sets

The data sets used to evaluate the Max-Sum algorithm on the distributed infrastruc-

ture consist of synthetically generated graphs of different sizes. The graph generation

works as follows: First a fully connected graph of a defined graph size is constructed

and then edges are removed randomly from this graph until a predefined average

degree is reached. The graphs used in the following all have an average degree of ∼

3 and have sizes of 100, 200 and 300 nodes.

6.4 Evaluation

The following sections present the results to the benchmarks run on the multiple

machine cluster. First, an evaluation of the conflicts over time is shown. The second

benchmark analyzes the influence of the number of machines on the solution quality

while the last benchmark evaluates the impact of the average vertex degree on the

solution quality.

6.4.1 Conflicts Over Time

As in the previous chapter, the synchronous and asynchronous execution of the

Max-Sum algorithm were compared. Again, SYNC is used as a an abbreviation for

synchronous Max-Sum and ASYNC is the abbreviation for asynchronous Max-Sum.

In the following, the results are presented. The intervals at which the number of

conflicts was measured were 250, 300, 350, 400, 450, 500, 625, 750, 875, 1’000, 1’500,

2’500, 5’000, 7’500, and 10’000 milliseconds after execution start. The experiments

85

86 CHAPTER 6. SCALABILITY

were run distributed on 4 machines of the cluster.

100 agents:

In the first intervals, the difference of the number of conflicts between SYNC and

ASYNC is very high. But in contrast to the analysis in section ??, where SYNC’s

number of conflicts was lower at the first few measuring intervals, the results in

figure 6.1 show a contrary situation. Asynchronous Max-Sum delivers significantly

better results, especially at the first intervals. As the execution time increases, the

difference between SYNC and ASYNC diminishes.

Figure 6.1: Conflicts over time for synchronous and asynchronous Max-Sum on a 100 node
graph, distributed on 4 machines.

Both SYNC and ASYNC show a trend line that follows the shape of a power

function of the form f(t) = q
t

+ m where q ∈ (0,∞) and m ∈ [0,∞). The fitted

function fSY NC(t) for SYNC is:

fSY NC(t) =
10407

t
+ 4.67

86

6.4. EVALUATION 87

And the function fit for ASYNC equals:

fASY NC(t) =
489.59

t
+ 1.53

Hence, the difference in the number of conflicts between SYNC and ASYNC when

execution time goes on is: 4.67− 1.53 = 3.14.

200 agents:

The results of the evaluation on 200 nodes show a similar picture as for 100 nodes

(c.f. figure 6.2). Again, ASYNC outperforms SYNC, but this time the difference is

a little smaller than it was for 100 nodes.

Figure 6.2: Conflicts over time for synchronous and asynchronous Max-Sum on a 200 node
graph, distributed on 4 machines.

The measured data follow trend lines of the form:

fSY NC(t) =
22685.4

t
+ 5.71

87

88 CHAPTER 6. SCALABILITY

and

fASY NC(t) =
1608.01

t
+ 2.58

Hence, the final difference in the number of conflicts is 5.71 − 2.58 = 3.13. In

comparison with the evaluation on 100 nodes, the final difference has not changed

significantly.

300 agents:

As shown in figure 6.3, SYNC has a much lower number of conflicts than ASYNC

at the first measuring interval (t = 250 ms). But then again, ASYNC shows clearly

lower conflict rates.

Figure 6.3: Conflicts over time for synchronous and asynchronous Max-Sum on a 300 node
graph, distributed on 4 machines.

Nevertheless, the difference between ASYNC and SYNC has again decreased. The

fitted function fSY NC(t) for SYNC is:

88

6.4. EVALUATION 89

fSY NC(t) =
20498.75

t
+ 15.83

And the function fit for ASYNC equals:

fASY NC(t) =
5678.70

t
+ 2.23

The prediction for the difference of the number of conflicts is 15.83 − 2.23 =

13.6. This is a significant increase in comparison to the two values of the previous

evaluations of the same kind on smaller graphs.

Generally, one can deduce that ASYNC starts with a very high number of conflicts

but as the execution goes on, it delivers a significantly lower number of conflicts.

This is a contrast to section 5.6.2, where ASYNC and SYNC showed very similar

results in the benchmarks over number of conflicts.

6.4.2 Influence of the Number of Machines

Since the main difference between the evaluations in the last chapter and this one

is the fact that the benchmarks are run distributed on multiple machines, it is

interesting to analyse if the number of machines has influence on the number of

conflicts over time. The following sections present the conflicts over time for SYNC

and ASYNC, where the evaluations were run on 1, 2, and 4 machines of the cluster.

Asynchronous

100 agents:

As depicted in 6.4, the evaluation on a graph with 100 nodes does not show any

significant differences depending on the number of machines used in the distribution

of the algorithm. The run on 4 machines has the lowest number of conflicts at the

89

90 CHAPTER 6. SCALABILITY

first measuring interval, while the run o 2 machines lies in the middle and the run on

one machine starts with the highest number of conflicts. This is as expected. But

surprisingly, as execution time increases, the differences disappear and the trend

lines for 4, 2, and 1 machine seem to move towards the same level.

Figure 6.4: Conflicts over time for asynchronous Max-Sum on a 100 node graph, depending
on the number of distributed machines.

This may be caused by the fact that, when using multiple machines on a rather

small graph with 100 nodes, there is a trade-off between the increased computation

speed through the distribution and the slowdown through the network communica-

tion required. In other words, the time gained through the speedup of the distri-

bution is lost again because of the network communication between the machines

which is rather slow in comparison to the computation cycles. Hence the number

of the machines that are incorporated in the benchmark does not have a significant

influence on the number of conflicts on small graphs.

200 agents:

Figure 6.5 representing the results for a 200 node graph shows a slightly different

90

6.4. EVALUATION 91

picture. The discrepancy between the values for one machine and the values for 2,

or respectively 4 machines are a little higher than before. Again, after rather high

differences for the values measured at the first intervals, the differences decrease as

the execution time increases. Towards the end, all three runs arrive at almost the

same level of conflicts.

Figure 6.5: Conflicts over time for asynchronous Max-Sum on a 200 node graph, depending
on the number of distributed machines.

Nevertheless, in figure 6.5, the expected differences between the runs on different

numbers of machines are more clearly observable.

300 agents:

The results on the 300 node graph (c.f. figure 6.6) show the most clear trends

among the three presented results for 100, 200, and 300 nodes.

Throughout the execution time, the run on 4 machines shows the lowest number

of conflicts. In the first half of the execution, the run on 2 machines behaves as

expected. It is waker than the run on 4 machines, but outperforms the run on

1 machine. But as the execution time increases, the 2-machine run shows a slight

91

92 CHAPTER 6. SCALABILITY

Figure 6.6: Conflicts over time for asynchronous Max-Sum on a 300 node graph, depending
on the number of distributed machines.

deviation, which leads to almost the same conflict level on one and on two machines.

The clearer differences in this analysis are mainly caused by the size of the graph. As

the graph size increases, the advantage in computation speed that a higher number

of machines provides, compensates and overtakes the disadvantage that it has (

network communication cost).

Synchronous

The same procedure was also performed for the synchronous mode of the Max-Sum

algorithm.

100 agents: Figure 6.7 shows a very odd behavior of the results achieved by

2 and 4 machines on 100 nodes. The number of conflicts for the execution on 4

machines oscillate slightly at the first intervals. After t = 1000 ms, it starts linearly

decreasing its number of conflicts until it has the lowest value of the three runs at

the end of the evaluation interval. The execution on 2 machines shows a similar

92

6.4. EVALUATION 93

oscillating behavior at the first intervals as the run on 4 machines. At t = 1000 ms,

it also starts delivering lower number of conflicts, which leads to a trend-line that is

almost identical to the one for 1 machine.

Figure 6.7: Conflicts over time for synchronous Max-Sum on a 100 node graph, depending
on the number of distributed machines.

As in the asynchronous case before, on 100 nodes, there is no clear influence of

the number of machines used in the number of conflicts produced.

200 agents: The results for the synchronous execution of Max-Sum on different

numbers of machines are depicted in figure 6.8. There is no odd behavior like it was

observed in the results for 100 nodes.

It is remarkable that despite the graph size has increased, the differences between

the results on different numbers of machines have decreased. This is somewhat

counterintuitive. Again, no influence of the number of machines can be deduced

from these results.

93

94 CHAPTER 6. SCALABILITY

Figure 6.8: Conflicts over time for synchronous Max-Sum on a 200 node graph, depending
on the number of distributed machines.

300 agents:

When executed on a 300 node graph, the results (c.f. figure 6.9) do not show

significant changes in comparison to the results for 200 nodes.

The only difference one can observe, is that the execution on 4 machines achieves

the lowest number of conflicts, while the runs on 2 machines and on one machine

remain around the same level.

6.4.3 Influence of the Average Vertex Degree

As illustrated in the implementation chapter, the computation of the messages for

the Max-Sum algorithm has a worts case complexity of O(|C||V |). This means, the

computation complexity will depend on the number of colors in the graph coloring

problem and on the average degree of the vertices. To support this hypothesis, Max-

Sum was run on synthetical graphs generated by the method described in section

6.3. All the following evaluations were performed with a graph coloring problem

94

6.4. EVALUATION 95

Figure 6.9: Conflicts over time for synchronous Max-Sum on a 300 node graph, depending
on the number of distributed machines.

involving 3 colors.

100 agents: Three different versions of the 100 node graph were generated: One

with an average degree of deg = 2, one with deg = 3, and one with deg = 4. On

each of the graphs, an evaluation of the conflicts over time was performed. The

results are presented in figure 6.10.

At the first intervals (250 ms to 450 ms) the behavior is as predicted by the

theoretical complexity analysis: The results on the graphs with higher degrees de-

liver higher numbers of conflicts. As the execution goes on, the differences become

smaller. At the end, the values for all three graphs are on almost the same level.

200 agents:

The results for 200 nodes (c.f. figure 6.11) show almost the same behavior as

the results in figure 6.10. Again, one can see a weak influence of the degree on

95

96 CHAPTER 6. SCALABILITY

Figure 6.10: Conflicts over time for asynchronous Max-Sum on 100 node graphs with dif-
ferent vertex degrees.

the number of conflicts, but since the complexity analysis found an exponential

complexity in the worst case, one would expect a greater impact of the degree on

the results. After taking a closer look, one can see that the computed theoretical

complexity holds only for the messages Rm→n(xn) from function vertices to variable

vertices. For the other type of messages, Qn→m(xn) from variable vertices to function

vertices, the complexity is is linear in terms of vertex degree: O(|V |). Every second

message computation during the execution of the Max-Sum algorithm will be of the

type Qn→m(xn). Hence, the high computation complexity of Rm→n(xn) will have

impact only on 50 percent of the messages being computed. This is why the overall

influence of the degree of the graphs is not as big as expected.

96

6.4. EVALUATION 97

Figure 6.11: Conflicts over time for asynchronous Max-Sum on 200 node graphs with dif-
ferent vertex degrees.

97

7

Conclusion

As this is the last chapter of this thesis, the following sections aim to take a distant

look at what has been done in this work, to mention aspects that may benefit from

further investigation and to review aspects of the work in a critical way in order to

identify strengths and weaknesses of the performed work and the results.

7.1 Summary and Conclusions

After reviewing related literature and research work and giving an overview over the

current state of the art in the field of DCOPs, the thesis introduced the Max-Sum

algorithm in a detailed and formal way. To improve the understanding of the algo-

rithm, a hands-on example was illustrated.

These rather theoretical parts were followed by the main contribution of this thesis,

the implementation of the Max-Sum algorithm in a graph processing framework.

Signal/Collect [Stutz et al., 2010] was chosen as a graph processing environment for

the implementation. Signal/Collect proved to be very useful and powerful during

the implementation of the algorithm. The concept of a factor graph used in the

formal definition of the Max-Sum algorithm could be mapped very easily through

Signal/Collect’s extendable vertex types. The message-passing approach of Max-

Sum fits perfectly into the signaling and collecting scheme of the framework. Also,

100 CHAPTER 7. CONCLUSION

the possibility to switch between synchronous and asynchronous execution modes

proved to be a very essential and useful help. Another feature of the Signal/Col-

lect framework that came in handy during the implementation of the benchmark

infrastructure was the aggregation operation that provided a concise and simple

way to measure statistics over the processed graph and algorithm. The score-guided

computation of Signal/Collect allowed to install convergence detection in just a few

lines of code. All told, Signal/Collect helped a lot in the implementation and was

clearly the right choice for this kind of implementation. An aspect of the Max-

Sum algorithm that posed difficulties was the fact that in contrast to most local

DCOP algorithms, the Max-Sum algorithm never exchanges the actual states of the

vertices. It exchanges messages in a certain format using the internal state of the

vertices. This fact causes difficulties when measuring the number of conflicts and

other statistics.

Having completed the implementation as the main building block of the thesis,

the second important contribution of the thesis was ready to be processed: Bench-

marking the Max-Sum algorithm against the DSA-A, DSA-B and Best-Response

algorithms. The benchmarks should deliver empirical insights about the quality of

solution and the performance of the Max-Sum algorithm. The quality was measured

through the number of conflicts versus execution cycles and execution time, while

the performance was measured by recording the execution time and the execution

cycles until the computation converges. This benchmark is mainly a reproduction

of the results in [Farinelli et al., 2008], but implemented in a modern graph process-

ing framework. The first benchmark, evaluating the number of conflicts per step

on a synchronous execution of the 4 candidate algorithms revealed very similar re-

sults to those found in [Farinelli et al., 2008]. In short, Max-Sum shows unsteady

behavior on small ADOPT graphs, but it outperforms all of its contestants on the

100

7.1. SUMMARY AND CONCLUSIONS 101

other ADOPT graphs. To analyze potential differences between asynchronous and

synchronous computations of the Max-Sum algorithm, the conflicts over time (in mil-

liseconds) were measured for executions of the Max-Sum algorithm in synchronous

and asynchronous mode. This kind of analysis benchmark was not performed in

related work and hence is a contribution of this thesis. On small graphs, the syn-

chronous version delivered better results. On all other used graphs, both versions

showed very similar results and there is no difference in the solution quality of the

asynchronous and synchronous algorithms. After defining and implementing appro-

priate convergence mechanisms, the performance benchmarks were run analogous to

the benchmark in [Farinelli et al., 2008]. First, the Max-Sum algorithm was evalu-

ated against DSA-A, DSA-B and Best-Response algorithms in synchronous mode by

measuring the execution steps until the computation converged. The results showed

that there is no big difference in performance between the DSA variants and the

Max-Sum algorithm. The Max-Sum algorithm was slightly weaker on most graphs.

The Best-Response algorithm showed the best performance of the contestants in this

benchmark. As a contribution of this thesis, a similar benchmark was run to com-

pare the synchronous and asynchronous versions of the Max-Sum algorithm. The

results show a significant difference between the performance of the synchronous and

the asynchronous Max-Sum. The asynchronous Max-Sum version converges much

faster, outperforming its contestant by a factor between 2.43 and 4.13. This under-

lines again the qualities of the Signal/Collect framework, providing a very simple

way to switch between synchronous and asynchronous execution modes and com-

paring them.

The third goal besides the implementation and benchmark on a common machine

was to distribute and benchmark the algorithm, to see its behavior when it is run

on a cluster with multiple powerful machines. For this purpose, the implementation

101

102 CHAPTER 7. CONCLUSION

was adapted in order to be distributable. This demanded for fully distributed statis-

tics measuring and aggregation, as well as a fully distributed approach to spread

global information or constants at the vertices and edges. These demands were very

challenging and took quite an effort to satisfy them. The distributed statistics mea-

suring was implemented by introducing a special type of messages exchanging the

necessary statistics information among the edges and by implementing or adapting

the necessary methods to send and receive those messages.

With a distributable implementation, contributions in form of distributed bench-

marks were enabled. These distributed benchmarks were performed and presented

in chapter 6. Again, the conflicts over the execution time were evaluated on different

graphs for the synchronous and the asynchronous Max-Sum modes. In contrast to

the analogous benchmark in chapter 5, there were clear differences in number of con-

flicts between synchronous and asynchronous Max-Sum. The asynchronous mode

achieved generally lower numbers of conflicts. In order to create a link between the

performance of the Max-Sum algorithm in terms of conflicts and the number of ma-

chines used, section 6.4.2 presented an evaluation of conflicts over time depending

on the number of machines on which the algorithm was distributed. The assumption

was that a higher number of machines used leads to a higher computation perfor-

mance and hence to a faster reduction of conflicts in the evaluation. While on the

smallest graph there was no observable influence, the assumption showed to be true

as the graph size increased. The same analysis was performed also for the syn-

chronous case. For the synchronous execution mode, the results were not as clear as

in the asynchronous case. Especially on small graphs, the number of machines used

seems to have no influence at all. Again, as the graph size increases, the influence

increases slightly too. But clearly not to the same extent as in the asynchronous

case. Since the theoretical complexity of the algorithm depends highly on the av-

102

7.2. LIMITATIONS AND FUTURE WORK 103

erage vertex degree of the processed graphs, the thesis contributes an evaluation

of the solution quality depending on the average vertex degrees. The results show

that there is a slight impact of the average vertex degree on the solution quality

and performance, but it is not as high since the complex computation explained

in the complexity analysis is only performed for every second message during the

execution.

7.2 Limitations and Future Work

This section aims to mention some of the points of the work that posed special

difficulties, or should be critically examined. Also, further thoughts and ideas that

didn’t find their way into this thesis will be discussed.

As mentioned in section 5.6.1, Max-Sum showed poor results and unsteady behavior

in the conflicts over steps benchmark on the 10 node ADOPT graph.

[Farinelli et al., 2008] base this behavior on the loop structure of the smaller ADOPT

graphs, and they present a solution to this issue, which was also explained in detail

in section 5.6.1. This suggested improvement was not considered in the implemen-

tation after this issue had been discovered during the benchmark. There are several

reasons for this. One of them is the fact that this work was an ambitious project

and hence had to be clearly limited in terms of scope, and time resources. Second,

as the results in [Farinelli et al., 2008] show, modifying the utility function of the

algorithm to adress the mentioned issue does in fact improve the performance of the

algorithm (in terms of execution cycles) by a factor of around 4. At the same time,

this modification leads to a decrease in solution quality of about the factor that the

performance was improved. So essentially, it is a trade-off between solution quality

and performance. This is a question where this thesis does not answer any results.

103

104 CHAPTER 7. CONCLUSION

Hence, this might be an interesting hook for future work.

The results of the benchmarks on the time to convergence or the conflicts over time

(wether on a distributed execution or not) have to be interpreted carefully. Those

time values in milliseconds are not meant to be understood as absolute performance

indicators. They serve rather as relative comparison tools between the synchronous

and asynchronous versions of the Max-Sum algorithm and hence should be inter-

preted as such.

In the introduction of this thesis, the work on local and efficient DCOP algorithms

was motivated through several scenarios such as large graph processing, distributed

problems and especially embedded computing applications such as sensor networks.

In the context of this application field, the resource efficiency, as well as the per-

formance are of high importance. The Max-Sum algorithm showed good results

in some of the performance benchmarks (c.f. chapter 5) but on the other side, its

computation, especially the computation of the messages from function vertices to

variable vertices is complex. As shown in section 4.3.4, the backtracking procedure

to compute the maxima for the messages is quite involved and has a rather high

worst-case complexity. This may raise the question wether the Max-Sum algorithm

would be suitable for an application on embedded devices with low computational

power and small memory resources. To answer this question, the results in this

thesis are not sufficient, since they were produced on a graph processing frame-

work intended for applications with a large scale on potentially powerful machines.

To get significant empirical data about the adequacy of the Max-Sum algorithm

for embedded devices, evaluations should be performed on appropriate hardware.

[Farinelli et al., 2008] describe a hardware implementation of the Max-Sum algo-

rithm on low-power chip systems.

During the experiments, the Max-Sum algorithm showed a certain sensitivity de-

104

7.2. LIMITATIONS AND FUTURE WORK 105

pending on the initial preferences. This would be an interesting open question for

further research. A question might be, how large is the impact of a certain con-

figuration of the initial preferences on the convergence of the Max-Sum algorithm?

Is there a graph-preference configuration that leads to non-convergence? This and

similar questions would demand for future work.

Because of the limited scope and time resources of this thesis, the benchmarks in

chapter 5 were performed on 3 graphs from the ADOPT repository. For more ex-

pressive results in future work, the benchmarks should consider a greater variety of

input graphs from different sources with different structures. The same holds for

the graphs used in chapter 6. A future work on this subject might achieve interest-

ing results and insights by performing distributed evaluations on significantly larger

scale. Especially with respect to a potential real-world use case, a benchmark on

very large graphs would be beneficial.

105

References

[Aji and McEliece, 2000] Aji, S. M. and McEliece, R. J. (2000). The generalized

distributive law. Information Theory, IEEE Transactions on, 46(2):325–343.

[Bernstein, 2012] Bernstein, A. (2012). Large-scale graph computation. Distributed

Systems Lecture Notes, Dynamic and Distributed Information Systems Group,

University of Zurich.

[Brown, 1951] Brown, G. W. (1951). Iterative solution of games by fictitious play.

Activity analysis of production and allocation, 13(1):374–376.

[Chapman et al., 2011] Chapman, A., Rogers, A., Jennings, N., and Leslie, D.

(2011). A unifying framework for iterative approximate best-response algorithms

for distributed constraint optimization problems. The Knowledge Engineering

Review, 26:4(411-444).

[Cooper et al., 2007] Cooper, M. C., de Givry, S., and Schiex, T. (2007). Optimal

soft arc consistency. In Proc. of IJCAI, volume 7, pages 68–73.

[Dean and Ghemawat, 2008] Dean, J. and Ghemawat, S. (2008). Mapreduce: sim-

plified data processing on large clusters. Commun. ACM, 51(1):107–113.

[Farinelli et al., 2008] Farinelli, A., Rogers, A., Petcu, A., and Jennings, N. (2008).

Decentralised Coordination of Low-Power Embedded Devices Using the Max-Sum

108 References

Algorithm. Proceedings of 7th International Conference on Autonomous Agents

and Multiagent Systems (AAMAS 2008), (639-646).

[Fudenberg and Levine, 1998] Fudenberg, D. and Levine, D. K. (1998). The Theory

of Learning in Games. MIT Press.

[Kearns et al., 2001] Kearns, M., Littman, M. L., and Singh, S. (2001). Graphical

models for game theory. Technical report, Syntek Capital and ATT Labs Research.

[Kschischang et al., 2001] Kschischang, F. R., Frey, B. J., and Loeliger, H.-A.

(2001). Factor graphs and the sum-product algorithm. Information Theory, IEEE

Transactions on, 47(2):498–519.

[Low et al., 2010] Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C.,

and Hellerstein, J. M. (2010). Graphlab: A new framework for parallel machine

learning. CoRR, abs/1006.4990.

[Maheswaran et al., 2005] Maheswaran, R. T., Pearce, J. P., and Tambe, M. (2005).

Distributed algorithms for dcop: A graphical-game-based approach. Technical

report, University of Southern Californa, Los Angeles.

[Malewicz et al., 2010] Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C.,

Horn, I., Leiser, N., and Czajkowski, G. (2010). Pregel: a system for large-

scale graph processing. In Proceedings of the 2010 ACM SIGMOD International

Conference on Management of data, SIGMOD ’10, pages 135–146, New York, NY,

USA. ACM.

[Modi, 2003] Modi, P. J. (2003). Distributed Constraint Optimization For Multia-

gent Systems. PhD thesis, University of Southern Californa.

[Modi et al., 2003] Modi, P. J., Shen, W.-M., Tambe, M., and Yokoo, M. (2003).

108

References 109

An asynchronous complete method for distributed constraint optimization. In

AAMAS, volume 3, pages 161–168.

[Modi et al., 2005] Modi, P. J., Shen, W.-M., Tambe, M., and Yokoo, M. (2005).

Adopt: Asynchronous distributed constraint optimization with quality guaran-

tees. Artificial Intelligence, 161(1):149–180.

[Pearl, 1988] Pearl, J. (1988). Probabilistic reasoning in intelligent systems: net-

works of plausible inference. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA.

[Petcu and Faltings, 2005] Petcu, A. and Faltings, B. (2005). A scalable method

for multiagent constraint optimization. Technical report, Articial Intelligence

Laboratory, Ecole Polytechnique Federale de Lausanne (EPFL).

[Schaller, 1997] Schaller, R. R. (1997). Moore’s law: past, present and future. Spec-

trum, IEEE, 34(6):52–59.

[Sedgewick and Wayne, 2011] Sedgewick, R. and Wayne, K. (2011). Algorithms, 4th

Edition. Addison-Wesley.

[Shoham and Leyton-Brown, 2009] Shoham, Y. and Leyton-Brown, K. (2009). Mul-

tiagent Systems, Algorithmic, Game-Theoretic and Logical Foundations. Cam-

bridge University Press, Cambridge.

[Stutz et al., 2010] Stutz, P., Bernstein, A., and Cohen, W. (2010). Signal/collect:

Graph algorithms for the (semantic) web. In The Semantic Web–ISWC 2010,

pages 764–780. Springer.

[Tanenbaum and Van Steen, 2007] Tanenbaum, A. and Van Steen, M. (2007). Dis-

tributed Systems: Principles and Paradigms. Pearson Prentice Hall.

109

110 References

[van Leeuwen et al., 2002] van Leeuwen, P., Hesselink, H., and Rohling, J. (2002).

Scheduling Aircraft Using Constraint Satisfaction. Electronic Notes in Theoretical

Computer Science, 76(252-268).

[Waldock et al., 2008] Waldock, A., Nicholson, D., and Rogers, A. (2008). Cooper-

ative control using the max-sum algorithm.

[Weiser, 1991] Weiser, M. (1991). The computer for the 21st century. Scientific

American.

[Young, 1993] Young, H. P. (1993). The evolution of conventions. Econometrica:

Journal of the Econometric Society, pages 57–84.

[Zhang et al., 2005] Zhang, W., Wang, G., Xing, Z., and Wittenburg, L. (2005).

Distributed stochastic search and distributed breakout: properties, comparison

and applications to constraint optimization problems in sensor networks. Artificial

Intelligence, 161(1):55–87.

[Zhang and Xing, 2002] Zhang, W. and Xing, Z. (2002). Distributed breakout vs.

distributed stochastic: a comparative evaluation on scan scheduling. Proceedings

of the AAMAS-02 workshop on Distributed Constraint Reasoning, (192-201).

110

List of Algorithms

1 The computation of the message Rm→n(xn) 46

2 The recursive backtracking function 47

3 The basic structure of DSA . 53

4 Best-Response Algorithm [Farinelli et al., 2008] 55

5 scoreCollect method . 60

List of Listings

5.1 The implementation of ConvergenceHistory[T] 61

5.2 The implementation of MarginalHistory[T] 62

List of Figures

2.1 Categorization of DCOP algorithms according to [Chapman et al., 2011] 13

3.1 Example of a factor graph from [Farinelli et al., 2008] 18

3.2 Formation of the agents for the example [Farinelli et al., 2008] 23

4.1 Example of an input graph for the algorithm 40

4.2 Transformed input graph . 40

4.3 Resulting mapping of the factor graph on to signal/collect vertex and

edge types . 42

4.4 Recursion tree of Algorithm 2 . 48

5.1 Conflicts over execution steps for Max-Sum, DSA-A, DSA-B and

Best-Response algorithms, benchmarked on a 10-node ADOPT graph. 66

5.2 Conflicts over execution steps for Max-Sum, DSA-A, DSA-B and

Best-Response algorithms, benchmarked on a 20-node ADOPT graph. 68

5.3 Conflicts over execution steps for Max-Sum, DSA-A, DSA-B and

Best-Response algorithms, benchmarked on a 40-node ADOPT graph. 69

5.4 Conflicts for synchronous and asynchronous Max-Sum on a 10 node

ADOPT graph. 71

116 List of Figures

5.5 Conflicts for synchronous and asynchronous Max-Sum on a 20 node

ADOPT graph. 72

5.6 Conflicts for synchronous and asynchronous Max-Sum on a 40 node

ADOPT graph. 73

5.7 Relation between the execution time and the execution cycles for

synchronous Max-Sum. 75

5.8 Steps to convergence for Max-Sum, DSA-A, DSA-B and Best-Response

algorithms on a 10-node ADOPT graph. 76

5.9 Steps to convergence for Max-Sum, DSA-A, DSA-B and Best-Response

algorithms on a 20-node ADOPT graph. 77

5.10 Steps to convergence for Max-Sum, DSA-A, DSA-B and Best-Response

algorithms on a 40-node ADOPT graph. 78

5.11 Time to convergence for asynchronous and synchronous Max-Sum on

a ADOPT graph with 10 nodes. 79

5.12 Time to convergence for asynchronous and synchronous Max-Sum on

a ADOPT graph with 20 nodes. 80

5.13 Time to convergence for asynchronous and synchronous Max-Sum on

a ADOPT graph with 40 nodes. 80

5.14 Trend lines for the convergence times of synchronous and asynchronous

Max-Sum depending on the graph size 81

6.1 Conflicts over time for synchronous and asynchronous Max-Sum on

a 100 node graph, distributed on 4 machines. 86

6.2 Conflicts over time for synchronous and asynchronous Max-Sum on

a 200 node graph, distributed on 4 machines. 87

6.3 Conflicts over time for synchronous and asynchronous Max-Sum on

a 300 node graph, distributed on 4 machines. 88

116

List of Figures 117

6.4 Conflicts over time for asynchronous Max-Sum on a 100 node graph,

depending on the number of distributed machines. 90

6.5 Conflicts over time for asynchronous Max-Sum on a 200 node graph,

depending on the number of distributed machines. 91

6.6 Conflicts over time for asynchronous Max-Sum on a 300 node graph,

depending on the number of distributed machines. 92

6.7 Conflicts over time for synchronous Max-Sum on a 100 node graph,

depending on the number of distributed machines. 93

6.8 Conflicts over time for synchronous Max-Sum on a 200 node graph,

depending on the number of distributed machines. 94

6.9 Conflicts over time for synchronous Max-Sum on a 300 node graph,

depending on the number of distributed machines. 95

6.10 Conflicts over time for asynchronous Max-Sum on 100 node graphs

with different vertex degrees. 96

6.11 Conflicts over time for asynchronous Max-Sum on 200 node graphs

with different vertex degrees. 97

117

List of Tables

5.1 Strategies for different DSA-Variants [Zhang and Xing, 2002] 54

