
Department of Informatics, University of Zurich

BSc Thesis

Learning Value Evolution on
Real-world Temporal Data

Andreas Albrecht
of Affoltern am Albis, Switzerland

Matrikelnummer: 09-722-067

Email: andreas.albrecht@uzh.ch

July 31, 2013
supervised by Prof. Dr. Michael Böhlen and Pei Li

dedicated to my family

Acknowledgements

I would like to thank all people who were supporting me in any way during my work. First of
all, I thank Prof. Dr. Michael Böhlen for the opportunity to work on my bachelor thesis at the
Database Technology Group of the University of Zurich. Moreover, I appreciate Pei Li for her
guidance and feedback as well as our discussions regarding my work. Finally, many thanks
go to my family, my friends and my girlfriend.

3

Abstract

Temporal record linkage studies the problem of identifying records that refer to the same real-
world entities over time. This is a challenging task because (1) real-world entities may change
their attribute values as time goes by (e.g., a researcher may move from one affiliation to
another) and (2) different entities may share the same value over time (e.g., two researchers
with the same name). In order to address these challenges, the concept of time decay aims at
capturing how information of entities evolves over time to improve linkage quality of records.

This thesis proposes two methods for learning time decay and further investigates several
string matching approaches on a real-world data set. Moreover, we consider the efficiency of
the algorithms and propose an inverted index based approach to improve efficiency. The ex-
periments on real-world data sets show that the two learning decay algorithms provide similar
results on multiple sampled data sets. Furthermore, our algorithms improve the brute-force
solution by at least two orders of magnitude.

Zusammenfassung

Temporale Duplikaterkennung (Temporal Record Linkage) versucht Datensätze über die Zeit
hinweg zu identifizieren, die sich auf dasselbe Objekt beziehen. Dies ist herausfordernd, da (1)
reale Objekte ihre Attributwerte verändern können (z.B. ein Wissenschaftler wechselt die Uni-
versität und damit seine Zugehörigkeit) und (2) unterschiedliche Objekte können den gleichen
Attributwert aufweisen (z.B. zwei Wissenschaftler haben den gleichen Namen). Die Verfall-
szeit (Time Decay) versucht zu beschreiben, wie sich auf Objekte beziehende Informationen
über die Zeit hinweg verändern. Ziel ist es, die Duplikaterkennung zu verbessern.

Diese Arbeit behandelt zwei verschiedene Methoden, um die Verfallszeit von Attributwerten
zu lernen. Des Weiteren werden verschiedene Ansätze untersucht, um Attributwerte realer
Datensätze mit Hilfe von Ähnlichkeitsmassen ungefähr zu vergleichen. Zusätzlich wird die
Effizienz der Algorithmen untersucht, die mit einem invertierten Index (Inverted Index) verbessert
wird. Die an realen Datensätzen durchgeführten Experimente zeigen, dass die zwei vorgeschla-
genen Methoden zu ähnlichen Ergebnissen führen und dass die Effizienz der Algorithmen im
Vergleich zum brute-force Vorgehen um mindestens zwei Grössenordnungen verbessert wer-
den kann.

5

Contents

1. Introduction 11

2. Related Work 13
2.1. Approximate String Matching Techniques 13
2.2. Record Linkage and Temporal Aspects . 14

3. Problem Statement 15
3.1. Definition . 15
3.2. Learning Time Decay . 16

3.2.1. Learning Disagreement Decay . 16
3.2.2. Learning Agreement Decay . 18

4. Solution 20
4.1. Approximate String Matching Techniques 20
4.2. Learning Decay Methods . 23

4.2.1. Pairwise Method . 23
4.2.2. Groupwise Method . 27

4.3. Efficiency . 30
4.3.1. Improving Algorithms for Learning Decay 30

5. Experimental Evaluation 36
5.1. Data Set . 36

5.1.1. Labeled Data Sets . 36
5.1.2. Random Data Sets . 36
5.1.3. Data Analysis and Data Quality . 37

5.2. Evaluation of Similarity Techniques . 38
5.2.1. Implementation . 38
5.2.2. Measurement . 38
5.2.3. Results . 39

5.3. Learning Decay . 41
5.3.1. Implementation . 41
5.3.2. Results . 42

5.4. Improving Efficiency . 45
5.4.1. Implementation and Measurement 45
5.4.2. Results . 46

6. Conclusions 48

6

Appendices 49

A. Details Experimental Evaluation 50
A.1. Approximate String Matching Techniques 50

A.1.1. Attribute: Name . 50
A.1.2. Attribute: Affiliation . 53

B. Technical Documentation 55
B.1. Project Overview . 55
B.2. Tools and Libraries . 55

C. Contents of the CD-ROM 57
C.1. CD-ROM . 58

7

List of Figures

3.1. Life spans for Affiliation for each entity. 17
3.2. Life spans for Name for each entity. 19

4.1. Approximate string matching process . 20

5.1. Histogram with F-measure, precision and recall for attribute name 40
5.2. Histogram with F-measure, precision and recall for attribute affiliation 40
5.3. Performance of Soft TFIDF with Jaro-Winkler for attribute name 41
5.4. Performance of Soft TFIDF with Jaro-Winkler for attribute affiliation 41
5.5. Disagreement decay for attribute affiliation (Groupwise) 43
5.6. Disagreement decay for attribute name (Groupwise) 43
5.7. Average decay for attribute affiliation . 44
5.8. Average decay for attribute name . 45
5.9. Comparison of brute-force and indexed approach 47

A.1. Performance of Levenshtein for attribute name 50
A.2. Performance of Jaro-Winkler for attribute name 50
A.3. Performance of Smith-Waterman for attribute name 51
A.4. Performance of Token Intersection for attribute name 51
A.5. Performance of Monge-Elkan with Levenshtein for attribute name 51
A.6. Performance of Monge-Elkan with Jaro-Winkler for attribute name 51
A.7. Performance of Monge-Elkan with Smith-Waterman for attribute name . . . 52
A.8. Performance of Monge-Elkan with Smith-Waterman for attribute affiliation . 52
A.9. Performance of Levenshtein for attribute affiliation 52
A.10.Performance of Jaro-Winkler for attribute affiliation 52
A.11.Performance of Smith-Waterman for attribute affiliation 53
A.12.Performance of Token Intersection for attribute affiliation 53
A.13.Performance of Monge-Elkan with Levenshtein for attribute affiliation 53
A.14.Performance of Monge-Elkan with Jaro-Winkler for attribute affiliation . . . 53

8

List of Tables

1.1. Temporal records . 11

3.1. Disagreement decay of Affiliation . 18
3.2. Agreement decay of Name . 19

4.1. Attribute values representing Kiel University 21
4.2. Overview of string similarity metrics . 22
4.3. Groups of records representing life spans 27
4.4. Inverted index . 33

5.1. Statistics of the data sets . 38
5.2. Number of changes for each random data set 42
5.3. Number of matching pairs for each random data set 43
5.4. Sample records for pairwise and groupwise decay 46
5.5. Data sets to evaluate efficiency . 46
5.6. Adjacent records of the full data set . 47

9

List of Algorithms

4.1. LEARNDISAGREEDECAYPAIRWISE . 24
4.2. LEARNAGREEDECAYPAIRWISE . 26
4.3. GROUPWISEMATCH . 27
4.4. LEARNDISAGREEDECAYGROUPWISE . 28
4.5. LEARNAGREEDECAYGROUPWISE . 29
4.6. LEARNAGREEDECAYGROUPWISEINDEXED 34
4.7. ADDTOINVERTEDINDEX . 35
4.8. LOOKUPINVERTEDINDEX . 35
4.9. CLEANUPINDEX . 35

10

1. Introduction
The activity of finding records that describe the same real-world entities is called record link-
age. Record linkage is an important task in data integration and data cleaning systems because
records usually do not have a unique identifier, which links each record to the entity it refers
to. A common approach is to cluster records based on the similarity of their attribute values.
However, this may not work for temporal data.

Consider the records in Table 1.1. Each record represents a publication of an author including
the name and affiliation of the author and the year in which the paper was published. The set
of records describes three entities. That is, the records {r1 − r7} refer to entity E1, {r8, r9}
refer to E2 and {r10, r11} refer to E3. If we require high similarity on the attributes Name
and Affiliation, we may split the entities E1 and E3 because there are multiple different values
for either Affiliation or Name. For example, E1 moved from Dartmouth College to MIT in
2000. In this case we produce false negatives. A possible solution that addresses this problem
is to lower the restrictions of record comparison and require high similarity only on attribute
Name. In this case, we may merge entities E1 and E2 and introduce false positives because
they have similar names (April Lehman and A. Lehman). To summarize, we observe that
entities may change their attribute values as time goes by, and they may share attribute values
with other entities.

The concept of time decay proposed by Li et al. [LDMS11] addresses this problem and cap-
tures the effect of time on the evolution of the attribute values of entities. The intuition is

Entity Id Name Affiliation Year

E1

r1 April Rasala Lema Dartmouth College 1999
r2 April Rasala Lema MIT 2000
r3 April Rasala Lema MIT 2002
r4 April Rasala MIT 2004
r5 April Rasala MIT 2005
r6 April Lehman Google 2006
r7 April Lehman Google 2007

E2
r8 A. Lehman University of California 1995
r9 A. Lehman University of California 1996

E3
r10 Brian Smith Georgia Inst. of Tech. 2004
r11 Brian Smith Cornell University 2006

Table 1.1.: Temporal records

11

that if we compare records over a long time period, different values should not be considered
as strong indicators that the records refer to different entities. Likewise, sharing the same
attribute value over a long time period does not necessarily indicate that the records refer to
the same entity. This work focuses on evaluating the concept of time decay proposed by Li et
al. [LDMS11] and makes the following contributions:

• We propose two methods of learning time decay: pairwise and groupwise method. The
pairwise approach compares only pairs of consecutive records with each other, while
the groupwise approach compares consecutive groups of records.

• In order to determine whether two strings represent the same value, we provide an ex-
haustive comparison of state of the art similarity metrics on real-world data sets.

• We further propose an inverted index based approach for learning decay, and improve
the brute-force algorithm by reducing the number of value comparisons.

The remaining part of this thesis is structured as follows. In chapter 2, related work on record
linkage and approximate string matching is discussed. The concept of time decay is defined in
more detail in chapter 3. In chapter 4, we present our solutions, focusing on approximate string
matching, alternative ways of learning decay and efficiency of learning decay. The results of
the experiments are presented in chapter 5. Finally, concluding remarks follow in chapter 6.

12

2. Related Work

In this section, we present the literature of several topics that are important to our work: string
similarity techniques, duplicate record detection and temporal aspects of data.

2.1. Approximate String Matching Techniques
Research activities regarding string similarity and string matching are influenced by many
different fields of research, such as text processing for spell checking, information retrieval
(similarity search), or in database research for similarity joins, duplicate record detection or
data integration [VB12, SHG12, MM07].

The work of [MU11, MLS06, MM07] all focus on matching company names. This is related
to our work as a large number of values in the attribute affiliation of our data set are company
names. Thus, some parts of the data set we use might be very similar to the data sets used by
the previously mentioned researchers and hence, we benefit from their investigations.

Medvedev and Ulanov [MU11] investigated the problem of lexical heterogeneity in the col-
lection of US patents. Their goal was to improve patent search by clustering patents according
to the company who owns it. They focused on finding the best string similarity measure as
well as clustering technique by evaluating several existing approaches. They observed that the
metric Soft TFIDF performs best on average on various input data sets.

Magerman et al. [MLS06] addressed the problem of heterogeneous company names in
patent data sets by implementing a harmonization scheme. In order to develop this solution,
they investigated patent data sets and analyzed the structure and characteristics of patentee
names. This relates to the company names in our data set as well.

Magnani and Montesi [MM07] proposed solutions to improve existing matching techniques
in the context of database integration and record linkage. In addition, they described their data
preparation and name harmonization steps as well as how to process large data sets efficiently.
Finally, they experimented on two real-world patent data sets and demonstrated their work.
They used a matching scheme similar to our scheme and test the matching results similar to
our heuristic rules to improve matching quality using domain knowledge.

Cohen et al. [CRF03] conducted experiments on various data sets (e.g., animals, personal
names, restaurant names, and others) and evaluated several edit distance metrics, token-based
metrics, and hybrid metrics by matching names of entities. They observed that Soft TFIDF is
the best overall metric with respect to their data sets. Furthermore, they proposed a technique
to improve the efficiency of the matching task. They match a given value only with candidate
values that share at least a substring with the given value. This technique is very similar to our
inverted index based approach. Furthermore, Bilenko et al. [BMC+03] proposed methods for

13

combining metrics in the context of information integration. They proposed algorithms that
can be adapted to the domain they are used in.

Christen [Chr06] reviewed the characteristics of personal names and existing string simi-
larity metrics for matching personal names, followed by an evaluation of these metrics. His
observations relate to the name attribute of our data set. Varol and Bayrak [VB12] developed a
hybrid matching strategy for personal names which they called ’Personal Name Recognizing
Strategy (PNRS)’. The matching strategy uses not only approximate string matching tech-
niques, but also phonetic information, statistical information and even considers the language.
This relates to our work because multiple languages occur in our data set. However, we do not
differentiate between languages as we match value pairs.

2.2. Record Linkage and Temporal Aspects
Record linkage refers to the activity of finding records that describe the same real-world enti-
ties. Elmagarind et al. [EIV07] surveyed overall aspects of duplicate record detection. Their
survey covers the steps that are usually part of a linkage solution: (1) data preparation and
cleaning activities prior linkage, (2) techniques for matching single record attributes as well
as how to compute record similarity using multiple attribute values. These steps relate to our
work as we pre-process data and match attribute values. However, we only use the information
stored in one field at a time for learning decay. Furthermore, they investigated existing tech-
niques regarding scalability and efficiency. First, they considered techniques that reduce the
number of comparisons and second, they focused on techniques that improve the efficiency
of a single comparison. We only consider the total number of value comparisons and do not
consider the cost of comparing a value pair.

Benjelloun et al. [BGMM+08] studied general aspects of record linkage and proposed a
generic framework. They divided record linkage into two parts: (1) the functions that match
and merge records and (2) the algorithms that invoke these functions. The aim of this approach
is to develop generic linkage algorithms that solve the linkage problem efficiently. We adopt
the solution of match and merge functions in the decay learning algorithms.

Li et al. [LDMS11] investigated the record linkage problem in the context of temporal data
sets that contain records over time. They proposed using temporal information for improving
the quality of record linkage by taking into account that values may evolve over time and
that the same value may describe not only one entity, but multiple entities as time goes by.
According to themselves their approach considers temporal information to improve linkage
quality in contrast to other existing solutions. This thesis is based on the concept of time
decay studied by [LDMS11].

14

3. Problem Statement
The common approach of record linkage is to compute the similarity between records. Thus,
high similarity between attribute values of records is considered as an indication that the
records refer to the same entity and low similarity that the records refer to different enti-
ties. If records over a long period of time are compared with each other, this assumption may
not be true. For instance, authors change their affiliation or share the same name as we have
seen in chapter 1. The concept of time decay proposed by Li et al. [LDMS11] addresses this
issue. Time decay follows the intuition that entities change their attributes as time goes by and
that it is likely that two different entities may eventually share the same value - however, not
necessarily at the same time.

The linkage of temporal records is adapted accordingly and takes into account this intuition.
If records over a long period of time are compared with each other (1) value difference between
attribute values is not considered as an indicator that the records refer to different entities and
(2) high similarity between attribute values is not considered as an indicator that the records
refer to the same entity. Therefore, the temporal linkage technique reduces the penalty of
different values and reduces the reward of value similarity depending on the time gap between
the compared records. In the following texts, we first introduce the concept of time decay in
section 3.1. Then, we illustrate how decay can be learned from temporal records in section
3.2.

3.1. Definition
We adopt the definitions and terminology as proposed by Li et al. [LDMS11] who investigated
temporal record linkage techniques.

Linking of Temporal Records Consider a set of entities E, a set of attributes A describ-
ing the entities and a set of temporal records R. Given a record r of R, we denote by r.t the
time point t and by r.A the value of attributeA. Each record r ∈ R reflects the set of attributes
A of an entity E ∈ E at a specific time point t.

Temporal record linkage clusters the temporal records r ∈ R over time such that the records
in the same cluster refer to the same entity and records in different clusters refer to different
entities.

Disagreement Decay As time elapses, entities may change their attribute values. For
instance, a researcher may change from one university to another university. Disagreement
decay tries to capture that entities change their attribute values within a period of time and is
defined as follows:

15

Definition 3.1 (Disagreement Decay) Let ∆t be a time distance and A ∈ A be a single-
valued attribute. Disagreement decay of A over time ∆t on sample data set R, denoted by
d 6=(A,R,∆t), is the probability that an entity changes its A-value within time ∆t. [LDMS11]

Agreement Decay Over a long period of time, we may observe entities that share the
same attribute values. For instance, it may happen that two authors have the same name. Ac-
cordingly, agreement decay looks at values shared between entities and is defined as follows:

Definition 3.2 (Agreement Decay) Let ∆t be a time distance and A ∈ A be a single-valued
attribute. Agreement decay ofA over time ∆t on sample data set R, denoted by d=(A,R,∆t),
is the probability that two different entities share the sameA-value within time ∆t. [LDMS11]

3.2. Learning Time Decay
In order to learn time decay, a set of sampled records R is required, where we know (1) to
which entity each record r ∈ R refers to and (2) whether the strings of two attribute values
represent the same value. The cluster of records describing an entity E is denoted by C. We
further assume that (1) the attribute for learning decay is a single-valued attribute with a single
value at any time, (2) the values correctly describe the entities and (3) the set of records is
complete in the sense that each attribute value of each entity is reflected by some records.

3.2.1. Learning Disagreement Decay
As defined in Definition 3.1, disagreement decay considers changing attribute values and is
the probability of an entity to change its value on an attribute A within a time distance ∆t.
Thus, we have to find the time period in which each value v of an entity is observed. We
can compute the time for which a value is observed by ordering the records in time order and
finding changes. Assume that the cluster of records C describing an entity E is ordered in
increasing time order, i.e. r1, r2, . . . r|C|. Furthermore, we consider decay of attribute A. We
next collect the information needed for learning decay.

Change Point A change point is a time point t where either an entity changes its attribute
value or that of the first record. With this information, we can calculate the time span in which
the value holds, i.e. the time between two consecutive change points.

Life Span A life span for a value v can be computed using change points. If t is not the last
change point, the life span is computed as [t, tnext) where tnext denotes the next change point.
This is called a full life span, as we know exactly the time span in which value v is observed.
Otherwise, if t is the last change point, the life span is computed as [t, tend + δ) where tend is
the time stamp of the last record and δ denotes one time unit. As we do not know whether the

16

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Dart
mou

th
Coll

eg
e

M
IT Goo

gle

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Univ
. of

Cali
for

nia

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Geo
rgi

a Ins
t. of

Tec
h.

Corn
ell

Univ
.

Figure 3.1.: Life spans for Affiliation for each entity.

E3

E2

E1

value will change in the future and for how long a value will be valid, this is called partial life
span.

The length of either partial or full life span [t, t′) is defined as t′ − t. All lengths of full and
partial life spans form a bag of lengths, denoted by L̄f for the lengths of full life spans and L̄p

for the lengths of partial life spans.

Example 3.1 (Life Spans of Affiliation Attribute) Consider the records listed in Table 1.1
and the attribute Affiliation. The change points for entity E1 are 1999 (r1), 2000 (r2), and
2006 (r6). This leads to the life spans [1999, 2000) for the value Dartmouth College, [2000, 2006)
for the value MIT and [2006, 2008) for the value Google. The first two life spans are full life
spans. The latter is a partial life span because 2006 is the last change point and 2008 is the
latest time stamp (r7) for E1. In this example, one time unit is one year, i.e. δ = 1. Figure
3.1 illustrates the life span of each value of attribute Affiliation for each entity. By computing
the change points and life spans respectively the length of each life span for each entity, we
obtain the bag of full life spans and the bag of partial life spans, which are L̄f = {1, 2, 6} and
L̄p = {1, 2, 2}

Disagreement Decay Disagreement decay is the fraction of observed changes of each
entity within time ∆t. The disagreement decay of attributeA on sample data set R is computed
as follows:

d6=(A,R,∆t) =
| {l ∈ L̄f |l ≤ ∆t} |

| L̄f | + | {l ∈ L̄p|l ≥ ∆t} |
(3.1)

17

We consider the full life spans less than or equal to ∆t representing the changes within ∆t.
Furthermore, we consider the partial life spans greater than or equal to ∆t representing life
spans for which we know that the values hold at least for time ∆t.

Example 3.2 (Learn Disagreement Decay of Affiliation Attribute) For computing the dis-
agreement decay for Affiliation, we consider full and partial life spans as previously calculated
in Example 3.1. The decay is dependent on the attribute A, in this case Affiliation and a time
span ∆t as shown in Equation 3.1. According to the formula, we take into account full life
spans less than or equal to ∆t and partial life spans greater or equal ∆t. Table 3.1 lists the
disagreement decay of Affiliation. In this example, the probability that an author changes its
Affiliation within 2 years is 0.4.

∆t d6=(Affiliation,R,∆t)

0 0
3+3

= 0

1 1
3+3

= 1
6

2 2
3+2

= 2
5

3 2
3+0

= 2
3

4 2
3+0

= 2
3

5 2
3+0

= 2
3

≥ 6 3
3+0

= 1

Table 3.1.: Disagreement decay of Affiliation

3.2.2. Learning Agreement Decay
As defined in Definition 3.2, agreement decay considers values shared between two entities
and is the probability that two entities share a value on an attribute within a time distance.
Thus, first, we have to find the life spans of each entity. Second, we compare all values
between entity pairs and find shared values. The second step works as follows.

Span Distance Assume that we have two entities E and E ′ sharing an attribute value v of
attribute A. The life spans for v are [t1, t2) for entity E and [t2, t3) for entity E ′. Furthermore,
assume t1 ≤ t3, i.e., the life span of E starts before the life span of E ′. The span distance
∆t for v is defined as max(0, t3 − t2 + δ), where δ denotes one time unit, which means that
within at least ∆t, the entity pair E,E ′ share the same value v. In addition, the span distance
between two entities that do not share any values on A is ∞. The bag of all span distances
between entity pairs is denoted by L̄.

Example 3.3 (Span Distances of Name Attribute) Consider the records listed in Table 1.1
and the attribute Name. We first compute the life spans as illustrated in Figure 3.2 for each en-
tity. Second, we compare the observed values between entity pairs. Assuming that the strings

18

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Apri
l R

asa
la

Lem
a

Apri
l R

ase
la

Apri
l L

eh
man

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

A. L
eh

man

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Bria
n Smith

Figure 3.2.: Life spans for Name for each entity.

E3

E2

E1

April Lehman and A. Lehman represent the same value, entity E1 and E2 share their names.
Thus, we calculate the span distance using the life spans [2006, 2008) for April Lehman and
[1995, 1997) for A. Lehman. Accordingly, the span distance ismax(0, 2006−1997+1) = 10.

As the other entities do not share any names, we skip the computation of life spans and
span distances in this example. The span distance, however, is∞ between E1, E3 as well as
between E2, E3. Hence, we obtain the bag of span distances L̄ = {10,∞,∞}.

Agreement Decay Agreement decay is the fraction of shared value pairs between enti-
ties. Therefore, it depends on the time differences of shared values. The agreement decay of
attribute A on sample data set R is computed as follows:

d=(A,R,∆t) =
| {l ∈ L̄|l ≤ ∆t} |

| L̄ |
(3.2)

Example 3.4 (Learn Agreement Decay of Name Attribute) For computing the agreement
decay of attribute Name, we consider the span distances as previously calculated in Example
3.3. According to Equation 3.2, we take into account span distances less than or equal to ∆t.
Table 3.2 lists the agreement decay of Name. In this example, the probability that two authors
share their names within 10 years is 1/3.

∆t d=(Name,R,∆t)

[0, 10) 0
3

= 0

≥ 10 1
3

Table 3.2.: Agreement decay of Name

19

4. Solution

In this chapter, we discuss how we decide whether two strings represent the same value (sec-
tion 4.1). Furthermore, we illustrate two ways of learning decay: pairwise and groupwise
method (section 4.2). In section 4.3, we focus on the efficiency of learning decay.

4.1. Approximate String Matching Techniques
We consider two strings s, t representing the same value if they are the same or highly similar,
i.e., the similarity sim(s, t) ≥ θ where θ is a predefined threshold.

There are mainly three reasons for value diversity: (1) spelling errors (e.g., Untiversity
of Michigan), (2) lack of formatting standards (e.g., John Smith instead of Smith, John)
[Chr06, MLS06], (3) inconsistencies may occur if data is extracted from multiple sources
and is integrated into a single database (e.g., one source includes titles and affiliation in name
field and others do not, for instance, Prof. John Smith, University of Michigan and John Smith)
[MM07, EIV07].

Case Study: Real-world Data Table 4.1 shows diverse values representing the Univer-
sity of Kiel in a DBLP subset. The differences between various representations can be reflected
by e.g., omitting hyphens, adding several words, abbreviating strings and mixing multiple lan-
guages (e.g., German and English).

Next, we discuss the data cleaning process where we normalize strings and conduct similarity
comparison. Figure 4.1 shows how we proceed in general.

String Preparation String preparation is a pre-processing step that removes noise in strings,
such as special characters, punctuation characters and abbreviations. We prepare the attribute
values as follows:

• In order to remove possible penalties due to lowercase or uppercase characters, we con-
vert all strings to lowercase.

Data
Preparation

Similarity
Computation Heuristics

Decision:
match or

mismatch?

Figure 4.1.: Approximate string matching process

20

Affiliation

Universität Kiel
Christian-Albrechts-University of Kiel
Institute for Computer Science, Christian-Albrechts-Universität zu Kiel
CAU of Kiel
Christian-Albrechts-Universität zu Kiel
Christian Albrechts University
Christian-Albrechts-Universität Kiel
Christian Albrechts University Kiel
Christian-Albrechts-Universitätzu kiel
CAU Kiel
Christian-Albrechts-University Kiel
OFFIS - Institute for Computer Science, Christian-Albrechts-Universität zu Kiel
University of Kiel
Christian-Albrechts-University
Univ. Kiel
Christian-Albrechts-Universität
Universität zu Kiel
Math Seminar der University Kiel
Christian-Albrechts University
Univ. of Kiel
Christian-Albrechts-Univ.
Christian-Albrechts-Universität of Kiel
Christian-Albrechts Univ. Kiel
Christian-Albrechts University of Kiel
Kiel University
University Kiel
Christian-Albrechts-University Kiel Computer Science Institute Olshausenstrasse 40
24098 Kiel Germany
Christian-Albrechts-Universität zu Kiel Institut für Informatik und Praktische Mathe-
matik Preußerstr.1-9 D-24105 Kiel

Table 4.1.: Attribute values representing Kiel University

• Multiple consecutive white space characters are removed, as well as white spaces at the
beginning or end.

• Special characters such as punctuation characters are removed (e.g., ’"’, ’.’) or replaced
with white spaces (e.g., ’/’, ’-’).

• All strings are converted to ASCII. Thus, characters not present in the English language
such as German umlauts or French accents, are converted to their ASCII equivalents
according to the unicode standard [Uni].

21

• English stop words and titles are removed either because they occur frequently in our
data set or they are not relevant for comparison (e.g., of, Prof., PhD).

• We replace some known expressions with their abbreviations (e.g., Limited → Ltd.,
Corporation→ Corp.) as well as known abbreviations with their full word (e.g., Univ.
→ University) in order to reduce the penalty due to mismatching abbreviations and their
full words.

Similarity Computation After data preparation, the similarity of strings is measured
using a string similarity metric. We group similarity metrics into two classes, depending
on whether they operate on token level (e.g. words) or character level. Table 4.2 shows
an overview of the similarity metrics proposed in the literature [NH10, BMC+03, EIV07,
CRF03].

Type Algorithm Description

Character-based

Levenshtein

Considers the cost of transforming string s into
string t. Depends on insertion, deletion, replace-
ment of characters. The cost for each operation
is 1.

Jaro-Winkler

Considers characters in the strings s and t which
are close and takes into account the order of the
characters within s and t. Rewards matching pre-
fixes of s and t.

Smith-Waterman

Similar to edit distance, but with additional opera-
tions such as extending a string. Furthermore, ig-
nores mismatches at the beginning and at the end
of strings s and t. Cost is not necessarily 1 for each
operation.

Token-based

Monge-Elkan

Takes into account the similarity between each pair
of wordws of s andwt of t using an additional sim-
ilarity metric such as Levenshtein, Jaro-Winkler,
etc.

Token Intersection
Intersects words of the strings s and t using a sec-
ondary similarity metric such as Levenshtein to
match the words instead of exact matches.

Soft TFIDF

Uses the number of occurrences of tokens in the
data set for weighting tokens. Additional similar-
ity metric used on the tokens in order to cover ty-
pographical variations of each token.

Table 4.2.: Overview of string similarity metrics

22

Heuristics To prevent false positives in matched value pairs, we apply the following heuris-
tic rule after similarity comparison in order to distinguish between universities and state uni-
versities.

There are many universities in the United States that have a name like University of Michigan1

or Michigan State University2. The strings are highly similar, because they share two out of
three words. However, they refer to different universities. For instance, Soft TFIDF measures
a score of 0.86 for these two universities because the words of, state have very low weights as
they occur often in our data set and thus, are not sufficient to correctly distinguish between the
strings. Therefore, we manually set such pairs to mismatch, because they occur frequently,
but can be prevented easily.

4.2. Learning Decay Methods
Learning decay involves the comparison of attribute values in order to find life spans of at-
tribute values and common values between entity pairs. We can either compare value pairs,
or compare two sets of values. Based on this, we extend the algorithms for learning decay
proposed by Li et al. [LDMS11], and present two learning decay approaches.

4.2.1. Pairwise Method
A straightforward way for comparing attribute values is to focus on two records at a time.
Hence, we call this type of learning decay pairwise method.

Disagreement Decay Algorithm 4.1 shows the pairwise method of learning disagreement
decay. The input is a set R of labeled records that contains a set C of real-world entities. The
disagreement decay of attribute A is computed as follows:

1. Initialize the bag of full life spans L̄f , and the bag of partial life spans L̄p, where L̄f = φ
and L̄p = φ.

2. For each entity C ∈ C, sort the records in C in increasing time order to r1, r2, . . . , r|C|.
We assign label start to record r1 that has the earliest time stamp in C and compute full
and partial life spans in C as follows.

a) Assign label end to the next record of rstart in time order.

b) Compare rend with its predecessor rend−1. If sim(rend.A, rend−1.A) ≥ θ, assign
label end to the next record in time order and go back to the beginning of step b).

If sim(rend.A, rend−1.A) < θ and rend is not the last record, put ∆t = rend.t −
rstart.t into L̄f , assign label start to rend and go back to step a); otherwise, put
∆t = r|C|.t− rstart.t+ δ into L̄p.

1http://www.umich.edu/
2http://www.msu.edu/

23

3. When full and partial life spans of all entities in C are proceeded, compute disagreement
decay as in Equation 3.1.

The algorithm LEARNDISAGREEDECAYPAIRWISE runs in time O(|R|) where R is the
sample set of records.

Algorithm 4.1 LEARNDISAGREEDECAYPAIRWISE(R, A)
Input: A set R of labeled records that contains a set C of real-world entities and an attribute A.
Output: Disagreement decay d6=(A,R,∆t).

1: L̄f ← φ . Bag of full life spans
2: L̄p ← φ . Bag of partial life spans
3: for all C ∈ C do
4: sort records in C in increasing time order to r1, ..., r|C|
5: start← 1
6: while start ≤ |C| do . Find life spans
7: end← start+ 1
8: while sim(rend−1.A, rend.A) ≥ θ and end ≤ |C| do
9: end← end+ 1

10: if end > |C| then
11: insert r|C|.t− rstart.t+ δ into L̄p . Partial life span
12: else
13: insert rend.t− rstart.t into L̄f . Full life span

14: start = end

15: for ∆t = 0, . . . ,maxl∈L̄f∪L̄p
{l} do . Calculate disagreement decay

16: d6=(A,R,∆t) =
|{l∈L̄f |l≤∆t}|

|L̄f |+|{l∈L̄p|l≥∆t}| . Equation 3.1

Example 4.1 (Compute Life Spans Pairwise) Consider the records in Table 1.1 and the at-
tribute Name. As the records are already sorted in increasing time order, we can start com-
puting the life spans by comparing the consecutive record pairs of each entity. We start with
E1. The algorithm matches the record pair (r1, r2) and continues with (r2, r3), etc. Assume
that the strings April Rasala Lema and April Rasala match and the strings April Rasala and
April Lehman mismatch. Therefore, the first mismatch is observed for the pair (r5, r6), which
results in a full life span [1999, 2006) of length 7. Continuing with (r6, r7), we find a partial
life span [2006, 2008) of length 2, because r7 is the last record of E1.

Proceeding with entities E2 and E3, we find a partial life span [1995, 1997) for value A.
Lehman of E2 and a partial life span [2004, 2007) for value Brian Smith of E3. At the end,
Lf = {7} and Lp = {2, 2, 3}.

Agreement Decay Algorithm 4.2 shows the pairwise method of learning agreement de-
cay. The input is a set R of labeled records that contains a set C of real-world entities. The
agreement decay of attribute A is computed as follows:

1. Initialize the set G = ∅ for storing the records of each life span of each entity.

24

2. For each entity C ∈ C, initialize the set GC = ∅ that stores the group of records
representing the life spans. Moreover, sort the records in C in increasing time order to
r1, r2, . . . , r|C|. We assign label start to record r1 that has the earliest time stamp in C
and compute full and partial life spans in C as follows.

a) Initialize the group of recordsGL = {rstart} that contains the records of the current
life span and assign label end to the next record of rstart in time order.

b) Compare rend with its predecessor rend−1. If sim(rend.A, rend−1.A) ≥ θ, add rend
toGL, assign label end to the next record in time order and go back to the beginning
of step b).

If sim(rend.A, rend−1.A) < θ and rend is not the last record, we set GL.tmin =
rstart.t and GL.tnext = rend.t (full life span). Furthermore, we add GL to GC,
assign label start to rend and go back to step a). Otherwise, we set GL.tmin =
rstart.t and GL.tnext = r|C|.t+ δ (partial life span) and add GL to GC.

When full and partial life spans for C are proceeded, we add the set GC to G.

3. When full and partial life spans of all entities in C are proceeded, we initialize the bag
of span distances L̄ = φ and compute the span distances. For each pair of entities
C,C ′ ∈ C, we proceed as follows.

a) Set the label same to false and compare each pair of groups G ∈ GC, G
′ ∈ GC′

representing the life spans of entity C respectively C ′.

If there is a pair of records r ∈ G, r′ ∈ G′ such that sim(r.A, r′.A) ≥ θ (see
Algorithm 4.3), set the label same to true and calculate the span distance ∆t: if
G.tmin ≤ G′.tmin, we add ∆t = max{0, G′.tmin − G.tnext + δ} to L̄; otherwise,
we add ∆t = max{0, G.tmin −G′.tnext + δ} to L̄

If the label same is false, add ∞ to L̄ because C,C ′ do not share at least one value.
Continue with the next entity pair.

4. When the computation of span distances is finished, we compute agreement decay as in
Equation 3.2.

The algorithm LEARNAGREEDECAYPAIRWISE runs in time O(|R|2) where R is the sam-
ple set of records.

Example 4.2 (Compute Span Distances Pairwise) Consider the records of Table 1.1 and
the life spans calculated in Example 4.1. Computing the life spans is similar to disagreement
decay, however, instead of computing only the length of each life span, the records within
a life span are stored in a group of records as listed in Table 4.3. Then, we compare the
groups between entity pairs and compute the span distances. GL2 and GL3 match due to the
record pair r6, r8 and hence, the span distance is ∆ = max(0, GL2 .tmin − GL3 .tnext + 1) =
max(0, 2006 − 1997 + 1) = 10. As the other groups do not match, we add∞ to L̄ for entity
pair E1, E3 as well as for E2, E3. At the end, L̄ = {10,∞,∞}.

25

Algorithm 4.2 LEARNAGREEDECAYPAIRWISE(R, A)
Input: A set R of labeled records that contains a set C of real-world entities and an attribute A.
Output: Agreement decay d=(A,R,∆t).

1: G← ∅ . Clusters of life span groups for each C ∈ C
2: for all C ∈ C do
3: sort records in C in increasing time order to r1, ..., r|C|
4: GC ← ∅ . Set of life span groups of C
5: start← 1
6: while start ≤ |C| do . Find life spans
7: GL ← {rstart} . Records of current life span
8: end← start+ 1
9: while sim(rend−1.A, rend.A) ≥ θ and end ≤ |C| do

10: add rend to GL

11: end← end+ 1

12: if end > |C| then
13: GL.tmin = rstart.t
14: GL.tnext = r|C|.t+ δ . Partial life span [rstart.t, r|C|.t+ δ)
15: else
16: GL.tmin = rstart.t
17: GL.tnext = rend.t . Full life span [rstart.t, rend.t)

18: add GL to GC

19: start = end

20: add GC to G

21: L̄ = φ . Bag of span distances
22: for all C,C ′ ∈ C do . Find span distances between entity pairs
23: same = false
24: for all G ∈ GC do
25: for all G′ ∈ GC′ do
26: if GROUPWISEMATCH(G, G′, A) = true then . Algorithm 4.3
27: same = true . Found matching groups (life spans)
28: if G.tmin ≤ G′.tmin then . Compute span distance
29: insert max{0, G′.tmin −G.tnext + δ} into L̄
30: else
31: insert max{0, G.tmin −G′.tnext + δ} into L̄
32: if !same then . No pair of groups match
33: insert∞ into L̄
34: for ∆t = 0, . . . ,maxl∈L̄{l} do . Calculate agreement decay
35: d=(A,R,∆t) = |{l∈L̄|l≤∆t}|

|L̄| . Equation 3.2

26

Algorithm 4.3 GROUPWISEMATCH(G, G′, A)
Input: A pair of groups G, G′ and an attribute A
Output: Returns true if G and G′ match on attribute A, otherwise false

1: for all r in G do
2: for all r′ in G′ do
3: if sim(r.A, r′.A) ≥ θ then
4: return true . At least one record pair matches on A
5: return false . No record pair matches on A

Entity Life Span Group tmin tnext

E1
GL1 = {r1 − r5} 1999 2006
GL2 = {r6, r7} 2006 2008

E2 GL3 = {r8, r9} 1995 1997

E3 GL4 = {r10, r11} 2004 2007

Table 4.3.: Groups of records representing life spans

4.2.2. Groupwise Method
In contrast to pairwise method of learning decay, groupwise method considers not only the
similarity of two consecutive records, but also compares non-consecutive records. Instead of
scanning the records in increasing time order and focus on a pair of records, it merges matched
records to a group and compares a record with a group of records. This method is based on an
linkage solution proposed by Benjelloun et al. [BGMM+08]. The rationale for this approach
is that it may lead to additional matches because not only a pair of consecutive records is
considered. Next, we show how groupwise match and merge is integrated into the process of
learning decay.

Disagreement Decay Algorithm 4.4 shows the groupwise method of learning disagree-
ment decay. In contrast to the pairwise method (Algorithm 4.1), we merge matched pairs as
we compute the life spans. Thus, we adapt step 2 of the algorithm as follows:

2. For each entity C ∈ C, sort the records in C in increasing time order to r1, r2, . . . , r|C|.
We assign label start to record r1 that has the earliest time stamp in C and compute full
and partial life spans in C as follows.

a) Initialize the group of recordsGL = {rstart} that contains the records of the current
life span and assign label end to the next record of rstart in time order.

b) Compare {rend} with GL, i.e., with all its predecessors of the current life span
(Algorithm 4.3). If there exists a record r′ ∈ GL such that sim(rend.A, r

′.A) ≥ θ,
add rend to GL, assign label end to the next record in time order and go back to the
beginning of step b).

27

If sim(rend.A, r
′.A) < θ for all records r′ ∈ GL and rend is not the last record,

put ∆t = rend.t− rstart.t into L̄f , assign label start to rend and go back to step a);
otherwise, put ∆t = r|C|.t− rstart.t+ δ into L̄p.

The algorithm LEARNDISAGREEDECAYGROUPWISE runs in time O(|R| ∗Cavg) where R
is the sample set of records and Cavg is the average number of records per entity.

Algorithm 4.4 LEARNDISAGREEDECAYGROUPWISE(R, A)
Input: A set R of labeled records that contains a set C of real-world entities and an attribute A.
Output: Disagreement decay d6=(A,R,∆t)).

1: L̄f ← φ . Bag of full life spans
2: L̄p ← φ . Bag of partial life spans
3: for all C ∈ C do
4: sort records in C in increasing time order to r1, ..., r|C|
5: start← 1
6: while start ≤ |C| do . Find life spans
7: GL ← {rstart} . Records of current life span
8: end← start+ 1
9: while GROUPWISEMATCH(GL, {rend}, A) = true and end ≤ |C| do . Algorithm 4.3

10: add rend to GL

11: end← end+ 1

12: if end > |C| then
13: insert r|C|.t− rstart.t+ δ into L̄p . Partial life span
14: else
15: insert rend.t− rstart.t into L̄f . Full life span

16: start = end

17: for ∆t = 0, . . . ,maxl∈L̄f∪L̄p
{l} do . Calculate disagreement decay

18: d6=(A,R,∆t) =
|{l∈L̄f |l≤∆t}|

|L̄f |+|{l∈L̄p|l≥∆t}| . Equation 3.1

Example 4.3 (Compute Life Spans Groupwise) We compute the life spans for the records
in Table 1.1 of attribute Name. Consider the records of E1 and assume that April Rasala
Lema matches April Rasla and April Rasala Lema matches April Lehman. However, April
Rasala does not match with April Lehman.

We start with GL = {r1} and match it with {r2}. Due to high similarity, we merge GL and
{r2} by adding r2 to GL. Likewise for records r3− r5. Consider r6 and GL = {r1− r5}. Even
though r6, r5 mismatch, we can add r6 to GL and extend the life span due to the matching
record pair r6, r3. We further add r7 to GL and obtain a partial life span [1999, 2008) of
length 9. We skip the computation of the life spans of E2 and E3 because there is no difference
between groupwise and pairwise method. This results in an empty bag of full life spans L̄f

and L̄p = {2, 3, 9}.

Agreement Decay Algorithm 4.5 shows the groupwise method of learning agreement de-
cay. The only difference between the pairwise method (Algorithm 4.2) and groupwise method

28

is that we compare rend with the current life span group GL (see line 9) instead of its prede-
cessor record rend−1.

The algorithm LEARNAGREEDECAYGROUPWISE runs in time O(|R|2) where R is the
sample set of records.

Algorithm 4.5 LEARNAGREEDECAYGROUPWISE(R, A)
Input: A set R of labeled records that contains a set C of real-world entities and an attribute A.
Output: Agreement decay d=(A,R,∆t).

1: G← ∅ . Clusters of life span groups for each C ∈ C
2: for all C ∈ C do
3: sort records in C in increasing time order to r1, ..., r|C|
4: GC ← ∅ . Set of life span groups of C
5: start← 1
6: while start ≤ |C| do . Find life spans
7: GL ← {rstart} . Records of current life span
8: end← start+ 1
9: while GROUPWISEMATCH(GL, {rend}, A) and end ≤ |C| do . Algorithm 4.3

10: add rend to GL

11: end← end+ 1

12: if end > |C| then
13: GL.tmin ← rstart.t
14: GL.tnext ← r|C|.t+ δ . Partial life span [rstart.t, r|C|.t+ δ)
15: else
16: GL.tmin ← rstart.t
17: GL.tnext ← rend.t . Full life span [rstart.t, rend.t)

18: add GL to GC

19: start = end

20: add GC to G

21: L̄ = φ . Bag of span distances
22: for all C,C ′ ∈ C do . Find span distances between entity pairs
23: same = false
24: for all G ∈ GC do
25: for all G′ ∈ GC′ do
26: if GROUPWISEMATCH(G, G′, A) = true then . Algorithm 4.3
27: same = true . Found matching groups (life spans)
28: if G.tmin ≤ G′.tmin then . Compute span distance
29: insert max{0, G′.tmin −G.tnext + δ} into L̄
30: else
31: insert max{0, G.tmin −G′.tnext + δ} into L̄
32: if !same then . No pair of groups match
33: insert∞ into L̄
34: for ∆t = 0, . . . ,maxl∈L̄{l} do . Calculate agreement decay
35: d=(A,R,∆t) = |{l∈L̄|l≤∆t}|

|L̄| . Equation 3.2

29

Example 4.4 (Compute Span Distances Groupwise) We compute the span distances for the
records in Table 1.1 of attribute Name. Consider the life spans previously calculated in
Example 4.3. There are three groups GL1 = {r1 − r7} of E1, GL2 = {r8, r9} of E2 and
GL3 = {r10, r11} of E3.

Thus, we compare (GL1 , GL2), (GL1 , GL3) and (GL2 , GL3). Assuming that the values A.
Lehman and April Lehman match, we find the span distance between E1, E2 that is ∆t =
max{0, GL1 .tmin − GL2 .tnext + 1} = max{0, 1999 − 1997 + 1} = 3. The resulting bag of
span distances is L̄ = {3,∞,∞} because the other groups do not match.

4.3. Efficiency
In order to learn decay of an attribute A, we need to match pairs of records r, r′ and decide
whether r.A represents the same value as r′.A. However, most values of an attribute A within
a data set are most likely not similar at all. For instance, most authors probably have different
names and the comparison of their names would result in a low similarity score. Therefore,
we want to reduce the total number of comparisons by computing the exact similarity score
only for roughly similar value pairs. As a consequence, the time required for learning decay
is reduced because we omit the comparison of different value pairs. Next, we illustrate how
we search for roughly similar values and how fast access to those values is provided.

4.3.1. Improving Algorithms for Learning Decay
Inverted Index

An inverted index is a data structure that links keywords to records. This relationship allows
fast access to the set of records that are associated with a given keyword. In order to build
the inverted index, a set of keywords is required that describes the record to be indexed. The
simplest way for describing the records is to consider the words of the attribute values as
keywords. We define keywords and the inverted index as follows:

Definition 4.1 (Keywords) Given a record r and an attribute A, the set of keywords KA
r

describing r is the set of words in value r.A. Furthermore, given a group of records G, the set
of keywords KA

G describing G is the union of all sets KA
r′ , r

′ ∈ G.

Example 4.5 (Keywords) Consider records of Table 1.1 and the attribute Name. The set
of keywords describing r1 is KName

r1
= {April, Rasala, Lema}. Furthermore, consider the

group G = {r1, r7}. The set of keywords describing G is KA
G = {April, Lehman,Rasala,

Lema}.

Definition 4.2 (Inverted Index) Let R be a set of records and r be a single record r ∈ R.
Furthermore, let K be the set of all keywords describing all records r ∈ R and k be a single
keyword k ∈ K. The inverted index I links k ∈ K to r ∈ R if and only if k describes record
r. The set of records associated with a keyword k is denoted by I[k]. The set I[k′] is empty for
keywords k′ /∈ K.

30

Given a set of records R and an attribute A, the inverted index allows accessing sets
I[k], k ∈ K in which all records share at least the word k on attribute A and thus, are roughly
similar. In addition, we call the set that contains all records sharing any keyword k ∈ KA

r with
a given record r on attribute A the set of adjacent records.

Definition 4.3 (Adjacent Records) The set of adjacent records of r, denoted by Adj(r), con-
tains records such that each r′ ∈ Adj(r) shares at least one keyword with r.

The size of each set I[k], k ∈ K may vary depending on how frequently a keyword k is used
and appears in the input data. Since we use the inverted index to search for similar records,
we do not want to consider the most common keywords that do not help the search. For
instance, many authors may be affiliated with a university. However, it does not contribute to
the search because it is a general word and does not help to differentiate between two names of
different universities (e.g. neither ’University’ nor ’of’ help to distinguish between University
of Michigan and University of Zurich).

To address this problem, we define a set of stop words which we ignore as we create the
inverted index. Furthermore, this reduces the size of possibly large sets of adjacent records
because the sets I[kfreq] of frequent keywords kfreq are empty in the index.

In addition to frequently used keywords, there may be keywords that appear only once. For
instance, consider record r and a keyword k that describes only r and no other record r′. Then,
I[k] = {r}. Since we use the inverted index to search records similar to record r (but not r
itself), we can remove the mapping between k and r.

Note that all concepts regarding the inverted index apply also to groups of records. Instead
of linking keywords to records, we link keywords to groups of records. Two groups of records
G,G′ are matched with each other if there is a pair of records r ∈ G, r′ ∈ G′ that have at
least one word in common. Next, we will show how the inverted index is integrated into an
algorithm for learning decay.

Improve Learning Agreement Decay Groupwise

Using an inverted index, we can improve the algorithms for learning decay in section 4.2.
Given a set of records R and an attribute A, the attribute values of a pair of records r, r′ ∈ R
are matched approximately using a similarity metric if r.A and r′.A have at least one word in
common.

We will illustrate how Algorithm 4.5 for learning agreement decay (groupwise) is extended
with an inverted index. In addition, we call the algorithm that does not use an inverted index
brute-force algorithm and the algorithm that uses an inverted index indexed algorithm . Algo-
rithm 4.6 shows the indexed algorithm for learning agreement decay based on the brute-force
algorithm. We proceed as follows:

1. Create the inverted index I and initialize the set G = ∅ for storing the records of each
life span of each entity.

2. Find life spans for each entity as in Algorithm 4.5 and 4.4 with one adaption: For each
partial or full life span, add the group of records GL to the inverted index I (line 20).
We add GL to I as follows (Algorithm 4.7):

31

a) Initialize the set of keywords KA
GL

= ∅. For each record r ∈ GL, we split the
attribute value r.A by white spaces and add the words to KA

GL
.

b) When all records are proceeded, we remove the set SW containing predefined stop
words from KA

GL
.

c) For each k ∈ KA
GL

, we add GL to the set I[k]. When all keywords are proceeded,
we set GL.K = KA

GL

3. When full and partial life spans are proceeded, empty each set I[k] for each k ∈ K that
contains only one group of records (Algorithm 4.9).

4. Initialize the bag of span distances L̄ = φ and compute the span distances as follows:
For each entity C ∈ C, compare each group G ∈ GC representing the life spans of
entity C with adjacent groups G′ ∈ Adj(G). We compute the set of adjacent records as
follows:

a) Initialize Adj(G) = ∅. For each keyword k in G.K, add the set I[k] that contains
groups associated with k to Adj(G) (Algorithm 4.8).

b) Subtract GC from Adj(G) in order to remove the groups of records that refer to
C.

If G,G′ are not marked compared yet, we mark the pair as compared. If there is a pair
of records r ∈ G, r′ ∈ G′ such that sim(r.A, r′.A) ≥ θ, we mark the pair as matched
and compute the span distance ∆t: ifG.tmin ≤ G′.tmin we add ∆t = max{0, G′.tmin−
G.tnext + δ} to L̄; otherwise, we add ∆t = max{0, G.tmin −G′.tnext + δ} to L̄

5. For each entity pair C,C ′ ∈ C, add ∞ to L̄ if there does not exist a pair of groups
G ∈ GC, G

′ ∈ GC′ that is marked matched.

6. Learn agreement decay as in Equation 3.2.

LEARNAGREEDECAYGROUPWISEINDEXED runs in time O(Adjavg ∗ |R|) where Adjavg
denotes the average number of adjacent records.

Example 4.6 (Indexed Algorithm) Consider the records in Table 1.1 and attribute Name.
We already computed life spans and groups of records in Example 4.4. We add the three
groups GL1 = {r1 − r7} of E1, GL2 = {r8, r9} of E2 and GL3 = {r10, r11} of E3 to
the inverted index I . KName

GL1
= {April, Rasala, Lema, Lehman}. Thus, GL1 is added

to I[April], I[Rasala], and so on. Likewise for GL2 with keyword set {Lehman} (assum-
ing that A is a stop word) and GL3 with keywords {Brian, Smith}. Since the keywords
Ksingle = {April, Rasala, Lema,Brian, Smith} are associated only with one group, we
empty those sets. The final inverted index is illustrated in Table 4.4. Next, we compute the
span distances.

We first consider groups ofE1. The set of adjacent groups ofGL1 isAdj(GL1) = {GL1 , GL2}
because the inverted index states thatGL1 , GL2 share the keywordLehman. As we do not want
to compare groups of the same entity, we remove GL1 from Adj(GL2). Hence, we mark the
pair GL1 , GL2 as compared because we did not compare it yet. Furthermore, they match due

32

Keyword Associated groups

Lehman GL1 , GL2

Table 4.4.: Inverted index

to r6 ∈ GL1 and r8 ∈ GL2 . Thus, we can calculate the span distance between GL1 , GL2 of
length 3 (see Example 4.4 for details). Moreover, GL1 , GL2 is marked as matched.

Continuing with entity E2 and GL2 , we get adjacent groups Adj(GL2) = {GL1 , GL2} and
remove GL2 because it refers to E2. Since the pair GL1 , GL2 is marked compared, we skip
comparing this pair.

Next, we consider E3 and its group GL3 . Since GL3 does not have any adjacent groups,
there are no groups to compare with.

Finally, we have to consider entity pairs that do not share any value. In this case, E1, E3 as
well as E2, E3 do not have a pair of groups that was marked matched. As a result, we add∞
to the bag of span distances for both pairs, which results in L̄ = {3,∞,∞}.

33

Algorithm 4.6 LEARNAGREEDECAYGROUPWISEINDEXED(R, A)
Input: A set R of labeled records that contains a set C of real-world entities and an attribute A.
Output: Agreement decay d=(A,R,∆t).

1: I ← Inverted index
2: G← ∅ . Clusters of life span groups for each C ∈ C
3: for all C ∈ C do
4: sort records in C in increasing time order to r1, ..., r|C|
5: GC ← ∅ . Set of life span groups of C
6: start← 1
7: while start ≤ |C| do . Find life spans
8: GL ← {rstart} . Records of current life span
9: end← start+ 1

10: while GROUPWISEMATCH(GL, {rend}, A) and end ≤ |C| do . Algorithm 4.3
11: add rend to GL

12: end← end+ 1

13: if end > |C| then
14: GL.tmin ← rstart.t
15: GL.tnext ← r|C|.t+ δ . Partial life span [rstart.t, r|C|.t+ δ)
16: else
17: GL.tmin ← rstart.t
18: GL.tnext ← rend.t . Full life span [rstart.t, rend.t)

19: add GL to GC

20: ADDTOINVERTEDINDEX(I , G, A) . Algorithm 4.7
21: start = end

22: add GC to G

23: CLEANUPINDEX(I) . Algorithm 4.9
24: L̄ = φ . Bag of span distances
25: for all C ∈ C do . Find span distances between entity pairs
26: for all G ∈ GC do
27: for all G′ ∈ LOOKUPINVERTEDINDEX(I , G) \GC do . Algorithm 4.8
28: if G, G′ not marked as compared then
29: mark the pair G,G′ as compared
30: if GROUPWISEMATCH(G, G′, A) = true then . Algorithm 4.3
31: mark the pair G,G′ as matched
32: if G.tmin ≤ G′.tmin then . Compute span distance
33: insert max{0, G′.tmin −G.tnext + δ} into L̄
34: else
35: insert max{0, G.tmin −G′.tnext + δ} into L̄
36: for all C,C ′ ∈ C do
37: if there is no pair G ∈ GC, G′ ∈ GC′ that is marked matched then
38: add∞ to L̄
39: for ∆t = 0, . . . ,maxl∈L̄{l} do . Calculate agreement decay
40: d=(A,R,∆t) = |{l∈L̄|l≤∆t}|

|L̄|

34

Algorithm 4.7 ADDTOINVERTEDINDEX(I , G, A)
Input: An inverted index I , grouped records G and an attribute A
Output: G added to the inverted index I using keywords extracted from attribute A

1: SW ← a set of predefined stop words
2: KA

G ← ∅
3: for all r ∈ G do
4: split r.A by white spaces and add words to KA

G

5: KA
G ← KG \ SW . remove stop words from KA

G

6: for all k ∈ KA
G do

7: add G to I[k]

8: G.K = KA
G . save set of keywords KA

G describing G

Algorithm 4.8 LOOKUPINVERTEDINDEX(I , G)
Input: An inverted index I , grouped records G
Output: A set of groups Adj(G) containing groups adjacent to G regarding keywords G.K

1: Adj(G)← ∅
2: for all k ∈ G.K do
3: Adj(G)← Adj(G) ∪ I[k]

4: return Adj(G)

Algorithm 4.9 CLEANUPINDEX(I)
Input: Inverted index I
Output: Remove sets I[k], k ∈ K that contain only one group.

1: for all keywords k ∈ K of the inverted index I do
2: if I[k] contains only one group then
3: remove G ∈ I[k] from I[k] . I[k] = ∅

35

5. Experimental Evaluation

This section describes our experimental evaluation on a real-world data set. We discuss the
results of the evaluation of similarity metrics, show how we learned and calculated decay of
the attributes Name and Affiliation and compare our approach with the brute-force algorithm
in terms of efficiency.

5.1. Data Set
For the experimental evaluation, we used real-world data derived from bibliographic infor-
mation provided by DBLP [DBL]. DBLP offers bibliographic information about computer
science publications such as journals, proceedings papers, and others. Our data set, which we
call full data set, consists of a total of 539 469 records, each describing an author’s publication.
They refer to 193 879 entities according to the provided label. Table 5.1 shows the statistics of
the data sets we experimented on. The data sets Random 1-5 are used for the decay learning
experiments whereas the two labeled data sets Labeled Name and Labeled Affiliation are used
for the evaluation of the similarity metrics on attributes Name respectively Affiliation. These
are subsets of the full set and are described in more detail in the following sections 5.1.1 and
5.1.2. Furthermore, section 5.1.3 gives insights regarding the content of the real-world data as
well as the observed quality.

5.1.1. Labeled Data Sets
In order to evaluate the similarity metrics listed in Table 4.2 and find the best performing
metric for our data sets and for each attribute, we labeled a subset of the full data set for both
attributes Name and Affiliation. Both sets were manually created and checked. Each label
represents an entity, which is described by one or more records. We only considered one
attribute per labeled data set, in other words, the two sets are two independent subsets of the
full data set and have no relation to each other.

Table 5.1 shows the statistics of the labeled data sets (Labeled Name and Labeled Affilia-
tion). There are 333 labeled entities for the attribute Name, which are described by 2 060
records with a total of 592 distinct names. The labeled data set for Affiliation consists of 491
entities, which are described by a total of 4 090 records with 1 177 distinct values.

5.1.2. Random Data Sets
For evaluating the implementation of decay learning, we selected 5 random subsets of the
full data set. Each subset contains all the records that refer to 500 randomly selected authors,

36

which results in 1 260-1 429 records per set. Since the distribution of publications with respect
to the time stamp is not even, these sets do not cover the maximal time span of 58 years. Note
that there are many authors who only published one publication and thus, there is only a single
record available for that author in the data set. This means that for many entities, there is no
chance that a change point occurs, which is relevant for disagreement decay. Therefore, the
data set needs to have a certain size in order to be reasonable. Otherwise, d 6=(A,∆t) would be
0 for all ∆t. Table 5.1 shows the statistics of the random data sets (Random 1-5).

5.1.3. Data Analysis and Data Quality
Name Attribute The name of an author is stored in a single field in the data set. Therefore,
different parts of a name, such as first name and last name, are not separated and the handling
of middle names is not done in a unified way. Sometimes there is a full middle name present,
but often only the initial or no information at all is available. In addition, it is not guaranteed
that the names follow a well defined way of writing names (e.g. western way is usually: first
name, middle name, last name). Furthermore, names may contain characters not present in the
English language such as German umlauts or French accents. Thus, we convert each string to
ASCII as described in section 4.1.

Affiliation Attribute There are several important points to note. (1) The language is not
unique and standardized within the data set. Even for a specific affiliation, the language may
change from record to record. This applies to many universities which are not located in En-
glish speaking countries. This has the following implications: First, words can contain char-
acters that are not present in the English language, such as French accents or German umlauts.
Second, characters not present in the English language may have been replaced already with
one or more characters such that the word only consists of English characters (e.g., Universität
→ Universitaet, Universitat). Last, words may have been translated (e.g., Technische Univer-
sität → Technical University or Wien → Vienna). (2) There exist many abbreviations such
as {Limited, Ltd.}, {Corporation, Corp.}, {Incorporated, Inc.}, {University, Univ.}. (3) A
company may be present in the data set with various legal forms or subdivisions, e.g., Adobe
Inc., Adobe Corporation, Yahoo Labs, Yahoo Research. (4) Besides such small differences
of few characters or words, it may occur that the field contains the address including street,
city and country. (5) Apart from the various representations of an affiliation, there are also
many records for which the data is incomplete. For instance, there are records with affiliation
Research, Universität, Technical University, State University and others.

To put it in a nutshell, an affiliation entity may have many different representations and the
differences between them vary from small changes of only few characters to major differences
of multiple words and therefore different lengths of the strings.

Year Attribute The time stamp we used for learning decay is the attribute Year, which is
stored as an integer and represents the year in which the paper was published. This means that
(1) the exact time point when a value of an attribute changed is not known, but we assume
that it is the year in which the author published a paper and (2) if an author publishes multiple

37

Data Set #Records #Entities |Name| |Affiliation| Years ∆t

Full 539 469 193 879 203 314 40 562 1954-2012 58
Labeled Name 2 060 333 592 - 1962-2012 50
Labeled Affiliation 4 090 491 - 1 177 1956-2012 56
Random 1 1 363 500 533 528 1962-2012 50
Random 2 1 260 500 530 514 1955-2012 57
Random 3 1 332 500 533 521 1963-2012 49
Random 4 1 272 500 547 523 1961-2012 51
Random 5 1 429 500 548 516 1960-2012 52

Table 5.1.: Statistics of the data sets

papers within one year, there is no order specified by the time stamp since more accurate time
information is missing.

5.2. Evaluation of Similarity Techniques
This section describes our evaluation of the selected string similarity metrics.

5.2.1. Implementation
We considered the metrics listed in Table 4.2 and evaluated each metric for the attributes
Name and Affiliation on the previously introduced labeled data sets. The process was imple-
mented in Java using the 3rd party libraries SimMetrics [Sim] and SecondString [Sec] which
provide the implementation of the similarity metrics. Furthermore, we considered thresholds
θ ∈ [0, 5, 1.0] with a distance of 0.1 between two consecutive thresholds. Soft TFIDF requires
an additional threshold which determines whether a token is taken into account or not for com-
puting the similarity. We used θSoftTFIDF = 0.9 for attribute Name and θSoftTFIDF = 0.8
for Affiliation due to the heterogeneity of values (see analysis in section 5.1.3). Moreover, the
metric Token Intersection uses the Levenshtein metric to compare words between value pairs.

The evaluation itself works as follows. First, the attribute values of interest are prepared for
the matching process as described in section 4.1, i.e. cleansing, word harmonization and stop
words scrubbing. Second, the similarity score for each value pair is computed and compared
to the threshold θ, which eventually results in a match or mismatch. The match or mismatch
is classified depending on whether it is an expected match according to the label and added to
the group of true positives, true negatives, false positives or false negatives.

5.2.2. Measurement
The goal of our evaluation is to find the best metric in terms of accuracy with respect to our
data set. Thus, we want to find out (1) how the metrics are able to correctly match value pairs

38

and (2) with which parameters each metric performs best. We can classify each value pair
into:

• True positives (TP): values match and the result is correct (expected match).

• True negatives (TN): values do not match and the result is correct (expected mismatch).

• False positives (FP): values match and the result is wrong (i.e., there should not be a
match).

• False negatives (FN): values do not match and the result is wrong (i.e., there should be
a match).

The aforementioned classes are used to describe the performance of the similarity metrics for
each threshold. Moreover, we used precision (P), recall (R) and F-measure (F) to describe the
relative test result in contrast to the absolute numbers of the four classes. Precision is defined
as

P =
TP

TP + FP
(5.1)

and thus, is the division of all correct matches and all correct or wrong matches. It is therefore
the percentage of correct matches and is the probability, that a match is also correct. Recall is
defined as

R =
TP

TP + FN
(5.2)

and thus, is the division of all correct matches and all possible matches, whether they matched
or not. It is therefore the percentage of possible matches that are also matched and is the
probability that two values that should match, will be matched. Finally, F-measure is defined
as

F =
2 ∗ P ∗R
P +R

(5.3)

and takes into account precision as well as recall. It is the trade-off between precision and
recall. The value range of the F-measure is [0,1] whereas 0 is the worst and 1 the best score.

5.2.3. Results
In this section, the result of the evaluation is discussed. We concentrate on the comparison of
metrics per attribute as well as on the best performing metric per attribute. Additional Figures
of all other metrics and further remarks are in Appendix A.

Name Attribute The histogram in Figure 5.1 shows the maximal F-measure for each metric
as well as the precision and recall. (1) Soft TFIDF with a threshold of 0.7 works best for
our data set due to the highest F-measure. (2) The metrics Smith-Waterman, Levenshtein,
Token Intersection and Monge-Elkan with Levenshtein also perform well as the gap to Soft
TFIDF is not big. (3) Jaro-Winkler, Monge-Elkan with Jaro-Winkler and Monge-Elkan with
Smith-Waterman follow with a gap, mostly due to the precision or recall (Monge-Elkan with
Smith-Waterman).

39

0

0.2

0.4

0.6

0.8

1

F-measure Precision Recall

Histogram (Name)

MongeElkan SmithWaterman (0.9)
MongeElkan JaroWinkler (0.8)

JaroWinkler (0.9)
MongeElkan Levenshtein (0.8)

TokenIntersection (0.8)
Levenshtein (0.7)

SmithWaterman (0.8)
SoftTFIDF JaroWinkler (0.7)

Figure 5.1.: Max. F-measure sorted from low to high with precision and recall for each metric
for the attribute name. Threshold in parentheses.

0

0.2

0.4

0.6

0.8

1

F-measure Precision Recall

Histogram (Affiliation)

JaroWinkler (1.0)
Levenshtein (0.8)

TokenIntersection (0.8)
MongeElkan SmithWaterman (0.9)

MongeElkan JaroWinkler (0.9)
MongeElkan Levenshtein (0.8)

SmithWaterman (0.9)
SoftTFIDF JaroWinkler (0.8)

Figure 5.2.: Max. F-measure sorted from low to high with precision and recall for each metric
for the attribute affiliation. Threshold in parentheses.

40

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1
Threshold

F-measure / Precision / Recall for SoftTFIDF JaroWinkler

F-measure Precision Recall

Figure 5.3.: Best performing metric for the at-
tribute name: Soft TFIDF with
Jaro-Winkler.

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1
Threshold

F-measure / Precision / Recall for SoftTFIDF JaroWinkler

F-measure Precision Recall

Figure 5.4.: Best performing metric for the
attribute affiliation: Soft TFIDF
with Jaro-Winkler.

Figure 5.3 illustrates F-measure, precision and recall for each threshold for the metric Soft
TFIDF. Precision and recall do not change rapidly, i.e. there are no sudden drops if the thresh-
old is increased or decreased. As a consequence, the F-measure evolves smoothly, which
means that Soft TFIDF is robust regarding the threshold in the range [0.6, 0.8]. Thus, small
changes of the threshold do not lead to completely different matching accuracy.

Affiliation Attribute Figure 5.2 shows the maximal F-measure for each metric as well as
the precision and recall. (1) The best performing metric is Soft TFIDF with a threshold of
0.8. (2) Character-based metrics perform not as good as token based metrics because the cost
for multiple missing tokens is high and as a result, the similarity score is low causing false
negatives and low recall. An exception is Smith-Waterman, which can ignore mismatches at
the beginning or end of the string and increases matching quality by better aligning the strings.
(3) Token-based metrics perform better as they ignore the order of tokens.

As Figure 5.4 illustrates, neither precision nor recall for Soft TFIDF does change rapidly
and the F-measure evolves smoothly. Thus, Soft TFIDF is robust in the range [0.7, 0.9].

The precision and recall and hence, also F-measure, are higher for the attribute Name com-
pared to the attribute Affiliation. In context of the analysis of the data set, it is a reasonable
result, as the values for affiliation differ much more than for personal names. This is reflected
by the recall, which is much lower for affiliation than personal name matching.

5.3. Learning Decay

5.3.1. Implementation
We implemented two learning decay algorithms, pairwise and groupwise, and learned decay
of both attributes independently on all five random data sets Random 1-5 (see Table 5.1). We

41

Attribute Data Set Pairwise Groupwise

#Changes #Values #Changes #Values

Name

Random 1 8 508 6 506
Random 2 7 507 7 507
Random 3 10 510 10 510
Random 4 7 507 7 507
Random 5 7 507 7 507

Affiliation

Random 1 217 717 214 714
Random 2 161 661 161 661
Random 3 178 678 178 678
Random 4 215 715 208 708
Random 5 212 712 211 711

Table 5.2.: Number of changes for each random data set

further calculated the average decay as overall result and for comparing the groupwise and
pairwise method of learning decay. As evaluated in our evaluation of string similarity metrics
regarding the real-world data set, we used the following metrics and thresholds for string
matching:

• Name Attribute: Soft TFIDF with Jaro-Winkler and a threshold of 0.7.

• Affiliation Attribute: Soft TFIDF with Jaro-Winkler and a threshold of 0.8.

5.3.2. Results
We first discuss the overall results of both attributes and second, compare pairwise and group-
wise method of learning decay.

Affiliation Attribute Figure 5.7 shows the average disagreement and agreement decay for
the attribute Affiliation for both methods pairwise and groupwise decay. The disagreement
decay shows that 90% of the changes happen within a time span of 11 years. The interpretation
is that with a probability of 90%, a change happens in 11 years. Table 5.2 lists the number of
changes as well as the total number of values observed. On average, there are ≈ 196 changes
and ≈ 696 observed values in total. As shown in Figure 5.5, the disagreement decay curve is
similar learnt from all five random data sets.

The agreement decay in Figure 5.7 is very small, however, it is above zero (d=(Affiliation,
∆t = 60) ≈ 5.6 ∗ 10−3). This means, that we do not have many authors who are affiliated
with the same institution in relation to all entity pairs of the 500 entities in the data set. Table
5.3 lists the number of shared value pairs between entities as well as the total number of value
pairs. On average, there are ≈ 706 shared value pairs out of ≈ 241 258 value pairs in total.

42

Attribute Data Set Pairwise Groupwise

#Matching Pairs #Value Pairs #Matching Pairs #Value Pairs

Name

Random 1 10 128 763 10 127 755
Random 2 3 128 260 3 128 260
Random 3 3 129 776 3 129 776
Random 4 3 128 260 3 128 260
Random 5 5 128 261 5 128 261

Affiliation

Random 1 710 255 889 704 253 765
Random 2 576 217 849 576 217 849
Random 3 558 229 130 558 229 130
Random 4 818 254 656 818 249 728
Random 5 874 252 649 871 251 939

Table 5.3.: Number of matching pairs for each random data set

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

D
ec

ay

Years

Disagreement Decay for Affiliation (Groupwise)

Average Disagreement Decay
Disagreement Decay 1
Disagreement Decay 2

Disagreement Decay 3
Disagreement Decay 4
Disagreement Decay 5

Figure 5.5.: Disagreement decay for attribute
affiliation (Groupwise)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

D
ec

ay

Years

Disagreement Decay for Name (Groupwise)

Average Disagreement Decay
Disagreement Decay 1
Disagreement Decay 2

Disagreement Decay 3
Disagreement Decay 4
Disagreement Decay 5

Figure 5.6.: Disagreement decay for attribute
name (Groupwise)

43

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

D
ec

ay

Years

Agreement and Disagreement Decay (Affiliation)

Average Agreement Decay (Groupwise)
Average Agreement Decay (Pairwise)

Average Disagreement Decay (Groupwise)
Average Disagreement Decay (Pairwise)

Figure 5.7.: Average decay for attribute affiliation

Name Attribute Figure 5.8 shows the average disagreement and agreement decay for the
attribute Name for both methods pairwise and groupwise decay. The disagreement decay
states that approximately half of the changes occur within 20 years. Compared with the dis-
agreement decay for the attribute Affiliation, authors change their names less frequently on the
data sets. Table 5.2 lists the number of changes as well as the total number of values observed.
On average, there are ≈ 8 changes and ≈ 508 observed values in total. Figure 5.6 shows
the disagreement decay on each random data set. In contrast to the decay of Affiliation, the
differences among different data sets get bigger as ∆t increases. This is due to the number of
changes observed on the data sets.

The agreement decay for name is greater than zero as well, however, much smaller than
agreement decay for affiliation (d=(Name,∆t = 60) ≈ 3.8 ∗ 10−5). Therefore, two authors
with matching names occur very rarely in our data sets. Table 5.3 lists the number of shared
value pairs between entities as well as the total number of value pairs. On average, there are
≈ 5 shared value pairs out of ≈ 128 563 value pairs in total.

Pairwise and Groupwise Matching

In general, the difference between pairwise and groupwise matching is small, if any, as Figure
5.7 and 5.8 show. The following examples show how the two algorithms impact the number
of false positives and false negatives.

Pairwise: prevent false positives Consider the records r1 − r5 in Table 5.4 and the
attribute Affiliation. Pairwise decay considers r1 − r3 similar. Due to the similarity of r2 and

44

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

D
ec

ay

Years

Agreement and Disagreement Decay (Name)

Average Agreement Decay (Groupwise)
Average Agreement Decay (Pairwise)

Average Disagreement Decay (Groupwise)
Average Disagreement Decay (Pairwise)

Figure 5.8.: Average decay for attribute name

r4, groupewise decay merges all records to {r1, r2, r3, r4, r5}. Therefore, the number of false
positives is increased with groupewise decay.

Groupwise: reduce false negatives Consider the records r6 − r9 in Table 5.4 and the
attribute Affiliation. Pairwise decay observes two life spans {r6, r7} and {r8, r9}, because the
record pair (r7, r8) does not match. However, groupwise decay is able to merge all records to
a group {r6, r7, r8, r9} representing a single life span due to high similarity of the pair (r6, r9).

The aforementioned cases show that groupwise decay is ’greedy’ and merges as much records
as possible to a single group. As a consequence, it is more tolerant in terms of value differ-
ences, but also prone to errors in the data set in contrast to pairwise decay, which is conserva-
tive.

5.4. Improving Efficiency

5.4.1. Implementation and Measurement
We implemented the indexed algorithm LEARNAGREEDECAYGROUPWISEINDEXED as pro-
posed in section 4.3. To test the efficiency, we created 6 data subsets of different sizes (Table
5.5) by selecting all records of an increasing number of randomly chosen entities. Further-
more, we defined a set of stop words that are ignored by the index. For Name attribute, we
excluded initials (single characters).

45

Id Affiliation Year

r1 University of Munich 1997
r2 Technical University Munich 1998
r3 University of Munich 2005
r4 Technische Universitaet Muenchen 2006
r5 Technische Universität München 2008

r6 University Magna Graecia 2010
r7 Magna Graecia University 2010
r8 University Magna Grae cia Catanzaro 2010
r9 University Magna Graecia Catanzaro 2012

Table 5.4.: Sample records for pairwise and groupwise decay

Data Set #Entities #Records

Efficiency 1 10 000 27 700
Efficiency 2 25 000 70 754
Efficiency 3 50 000 138 468
Efficiency 4 100 000 278 121
Efficiency 5 150 000 415 869
Efficiency 6 193 879 539 469

Table 5.5.: Data sets to evaluate efficiency

We measured the execution time of agreement decay of Name learnt by the algorithms
LEARNAGREEDECAYGROUPWISEINDEXED and the brute-force algorithm LEARNAGREEDE-
CAYGROUPWISE. We executed the experiments on a machine with an Intel Core 2 Duo 3GHz
CPU with 4GB RAM running Debian Linux 7. Even though the CPU has multiple cores, only
one core was used by our implementation.

5.4.2. Results
As described in section 4.3, the number of comparisons is reduced by comparing records only
with adjacent records. The time complexity for the indexed approach isO(Adjavg∗|R|). Since
Adjavg depends on the data set and the heterogeneity of the attribute values, we investigated
the average number of adjacent records. The statistics in Table 5.6 are based on the data set
Efficiency 6 and show that (1) the maximum and average number of adjacent records for both
attributes is much smaller than the total number of records. As a consequence, this is a suitable
approach for reducing the number of comparisons of record pairs. (2) The average number of
adjacent records for Name attribute is much smaller than that for Affiliation attribute. This is
expected as many universities and companies use similar words for naming themselves. For
instance, many university names contain words such as ’University’, ’Technical’ or ’State’.

Figure 5.9 shows the execution time for both algorithms. The indexed algorithm learns

46

0

50

100

150

200

250

300

350

400

100000 200000 300000 400000 500000

Ti
m

e
[m

in
]

Number of Records

Agreement Decay Efficiency (Name)

Brute Force Algorithm Indexed Algorithm

Figure 5.9.: Comparison of brute-force and indexed approach

Attribute Maximum Adjacent Records Average Adjacent Records

Name 17 109 ≈ 1 340
Affiliation 45 392 ≈ 5 069

Table 5.6.: Adjacent records of the full data set

decay of Name on the data set Efficiency 6 in approximately 38 minutes. We aborted the
experiments on the data sets Efficiency 3-6 for the brute-force algorithm after several hours
of computation. Even for the relatively small data set Efficiency 3, the brute-force algorithm
requires more than 7 hours in contrast to 3 minutes required by the indexed algorithm. There-
fore, we improve the brute-force algorithm by at least two orders of magnitude.

47

6. Conclusions

This thesis illustrates two methods of learning time decay: pairwise method, where two con-
secutive records in time order are compared with each other, and groupwise method, where we
compare groups of records. We implemented the algorithms for learning disagreement decay
as well as agreement decay using pairwise and groupwise method. Furthermore, we learned
decay of two attributes on a real-world data set. The experimental evaluation shows that the
difference between the pairwise and groupwise approach is small.

Moreover, we investigated several issues of approximate string matching with respect to our
data set. Our evaluation shows that the similarity metric Soft TFIDF performs best on our data
set and is a robust similarity measure for both attributes Name and Affiliation.

Finally, we considered the efficiency of the algorithms and proposed an inverted index based
approach in order to improve the efficiency of learning decay by reducing the number of
comparisons. The evaluation of our implementation of the indexed algorithm shows that our
approach improves the brute-force algorithm by at least two orders of magnitude.

48

Appendices

49

A. Details Experimental Evaluation

A.1. Approximate String Matching Techniques
The best performing metrics for both attributes, name and affiliation, are shown in the ex-
perimental evaluation in chapter 5 as well as the histogram showing F-measure, precision and
recall of each metric. We show the detailed performance of all other metrics in this section.

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1
Threshold

F-measure / Precision / Recall for Levenshtein

F-measure Precision Recall

Figure A.1.: Performance of Levenshtein for
attribute name

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1
Threshold

F-measure / Precision / Recall for JaroWinkler

F-measure Precision Recall

Figure A.2.: Performance of Jaro-Winkler for
attribute name

A.1.1. Attribute: Name
Levenshtein (Figure A.1) The maximum F-measure is at threshold 0.7. Moreover, the mea-

sure is stable in the range [0.6, 0.8] and there are no extreme drops of precision or recall
as the threshold varies.

Jaro-Winkler (Figure A.2) The maximum F-measure is at threshold 0.9, however, the mea-
sure is not robust as small changes of the threshold immediately have a high impact
on precision or recall and hence, also on the overall performance described by the F-
measure. The precision is very low for lower thresholds. This is due to the way Jaro
measures similarity, which is finding common characters in the string.

Smith-Waterman (Figure A.3) The maximum F-measure is at threshold 0.8. Furthermore,
the metric is robust in the range [0.7, 0.9]. An interesting behavior of the metric is
that although the threshold is 1.0, the precision is not 1.0 as well, but below 1.0. The

50

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1
Threshold

F-measure / Precision / Recall for SmithWaterman

F-measure Precision Recall

Figure A.3.: Performance of Smith-Waterman
for attribute name

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1
Threshold

F-measure / Precision / Recall for TokenIntersection

F-measure Precision Recall

Figure A.4.: Performance of Token Intersec-
tion for attribute name

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1
Threshold

F-measure / Precision / Recall for MongeElkan Levenshtein

F-measure Precision Recall

Figure A.5.: Performance of Monge-Elkan
with Levenshtein for attribute
name

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1
Threshold

F-measure / Precision / Recall for MongeElkan JaroWinkler

F-measure Precision Recall

Figure A.6.: Performance of Monge-Elkan
with Jaro-Winkler for attribute
name

reason for this is that prefixes and suffixes are ignored, in other words, even though the
threshold is 1.0, Smith-Waterman not only considers exact matches.

Token Intersection (Figure A.4) The maximum F-measure is at threshold 0.8. Even though
the F-measure increases smoothly as the threshold is increased towards 0.8, the F-
measure drops quite fast directly after the maximum. Thus, it is sensitive for thresholds
>= 0.8. Hence, the robustness is ambivalent. The reason for this is that a threshold of
0.9 is too restrictive for names with and without middle names or middle initials, e.g.
Laura Haas, Laura M. Haas.

Monge-Elkan (Levenshtein) (Figure A.5) The maximum F-measure is reached at thresh-
old 0.8. The token-based version of Levenshtein behaves very similar to character-based
Levenshtein because the order of words is not that important in the data set, i.e. it does

51

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1
Threshold

F-measure / Precision / Recall for MongeElkan SmithWaterman

F-measure Precision Recall

Figure A.7.: Performance of Monge-Elkan
with Smith-Waterman for at-
tribute name

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1
Threshold

F-measure / Precision / Recall for MongeElkan SmithWaterman

F-measure Precision Recall

Figure A.8.: Performance of Monge-Elkan
with Smith-Waterman for at-
tribute affiliation

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1
Threshold

F-measure / Precision / Recall for Levenshtein

F-measure Precision Recall

Figure A.9.: Performance of Levenshtein for
attribute affiliation

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1
Threshold

F-measure / Precision / Recall for JaroWinkler

F-measure Precision Recall

Figure A.10.: Performance of Jaro-Winkler for
attribute affiliation

not often occur that first name and last name are switched.

Monge-Elkan (Jaro-Winkler) (Figure A.6) As for Jaro-Winkler (not token-based), the pre-
cision is very low for lower threshold. The maximum F-measure is at threshold 0.8 and
is robust up to 0.9. However, precision drops fast below 0.8 due to too many false
positives.

Monge-Elkan (Smith-Waterman) (Figure A.7) The maximum F-measure is at threshold
0.9. As for the character-based Smith-Waterman, precision is never 1.0 and is even
below 0.9 - even for high thresholds. A problem of this metric is the alignment of the
strings which leads to a general poor matching performance in contrast to the other
metrics as small tokens (such as middle initials) may be matched with longer strings
(such as first or last name) with high similarity due to ignored prefixes and suffixes.

52

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1
Threshold

F-measure / Precision / Recall for SmithWaterman

F-measure Precision Recall

Figure A.11.: Performance of Smith-
Waterman for attribute affil-
iation

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1
Threshold

F-measure / Precision / Recall for TokenIntersection

F-measure Precision Recall

Figure A.12.: Performance of Token Intersec-
tion for attribute affiliation

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1
Threshold

F-measure / Precision / Recall for MongeElkan Levenshtein

F-measure Precision Recall

Figure A.13.: Performance of Monge-Elkan
with Levenshtein for attribute af-
filiation

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1
Threshold

F-measure / Precision / Recall for MongeElkan JaroWinkler

F-measure Precision Recall

Figure A.14.: Performance of Monge-Elkan
with Jaro-Winkler for attribute
affiliation

A.1.2. Attribute: Affiliation
Levenshtein (Figure A.9) The maximum F-measure is at threshold 0.8. It is robust in the

range [0.8, 1.0], even though threshold 1.0 only considers exact matches. Therefore,
Levenshtein is not able to considerably increase matching performance apart from sim-
pler typographical variations.

Jaro-Winkler (Figure A.10) Jaro-Winkler is not a suitable metric for matching affiliation.
The maximum F-measure is at threshold 1.0, which is the highest threshold where only
exact matches are considered matches. As a consequence, there are no false positives,
but many false negatives as precision and recall show. Jaro-Winkler is not restrictive
enough as it considers the common characters between strings and weights matching

53

prefixes high. This is not reasonable for strings like University of Zurich or University
of Michigan as they share many characters and have the same prefix as well.

Smith-Waterman (Figure A.11) The maximum F-measure is at threshold 0.9. Due to the
cost rule which states that prefixes and suffixes may be ignored, Smith-Waterman is able
to increase overall matching performance compared to exact matches. It is robust in the
range [0.9, 1.0]. Note, that the precision is not 1.0 at threshold 1.0, as a threshold of 1.0
does not consider only exact matches.

Token Intersection (Figure A.12) The maximum F-measure is at threshold 0.8. Neither
precision nor recall is very high compared to other metrics such as character-based Lev-
enshtein, which means, that the data set does not only contain values with reordered
words, but different words. It is comparable to the performance of Levenshtein.

Monge-Elkan (Levenshtein) (Figure A.13) The maximum F-measure is at threshold 0.8.
The metric is robust for thresholds >= 0.8. The precision is very low and thus is a weak
spot of this metric. It is as low as character-based metrics, but with higher recall.

Monge-Elkan (Jaro-Winkler) (Figure A.14) The maximum F-measure is at threshold 0.9.
As character-based Jaro-Winkler, this metric is not robust and even small changes of
threshold may have a high impact on precision or recall. Thus, it is sensitive to small
changes.

Monge-Elkan (Smith-Waterman) (Figure A.8) The maximum F-measure is at threshold
0.9. It is robust in the range [0.8, 1.0]. However, as the recall decreases continuously,
and is quite small for threshold >= 0.8, the overall performance is not that good. More-
over, the precision rises not until higher thresholds (>= 0.8).

54

B. Technical Documentation

B.1. Project Overview
The project consists mainly of the following packages:

database Database context, Author entity class.

evaluation Evaluation of the similarity metrics.

learndecay Implementation of the algorithms for learning agreement and disagreement de-
cay. Union class for records (i.e. cluster of records).

learndecay.datapreparation Data preparation steps such as StringCleaner, Affiliation-
StringNormalization, StopWordsScrubbing.

learndecay.similarity Wrappers around similarity metric of external libraries. Heuristic
rules. Groupwise matching algorithm and match/merge functions.

main Run configurations for learning decay and for the evaluation of similarity metrics

utils General utilities and tools

B.2. Tools and Libraries
We used several libraries for the implementation of the decay learning algorithms. The most
important libraries are those which provide the implementation of the similarity algorithms.
Other libraries provide helper functionality regarding string manipulation or more general
functionality such as logging and database handling. The following list gives an overview
over the third-party libraries and their usage within the project as well as the source.

SimMetrics
SimMetrics is a collection of string similarity metrics such as Levenshtein, Jaro Winkler,
Monge Elkan and many more. We used the implementations of the similarity algorithms
from this library in our decay learning project, except for SoftTFIDF and Token Inter-
section. The reason for that is that normalized similarity is offered for all metrics, which
makes the comparison of various algorithms easier.
Provided by: University of Sheffield
Source: http://sourceforge.net/projects/simmetrics

55

SecondString
SecondString contains, similar to SimMetrics, many implementations of string-matching
algorithms. We used the implementation of SoftTFIDF from this library.
Provided by: Carnegie Mellon University
Source: http://secondstring.sourceforge.net

Apache Lucene
Lucene is an open-source text search engine library. Even though we did not use the
main functionality of the library, it offers some useful utilities in the context of text
handling and processing. For instance, the conversion of text into a pure ASCII repre-
sentation is provided by this library. The implementation follows the Unicode standard
and therefore ensures the correct replacement of characters with their ASCII represen-
tations.
Provided by: The Apache Software Foundation
Source: http://lucene.apache.org

Apache log4j
log4j is a logging library.
Provided by: The Apache Software Foundation
Source: http://logging.apache.org/log4j

Apache Commons
Apache Commons is a set of libraries which makes life easier for Java developers. It
consists of many reusable components. We used the following libraries: Collections,
DbUtils, Lang, Logging, IO.
Provided by: The Apache Software Foundation
Source: http://commons.apache.org

Guava
The Guava library is a collection of Google’s core libraries. From this library, we used
the multimap collection that maps a key to multiple values (implementation of the in-
verted index).
Provided by: Google
Source: http://code.google.com/p/guava-libraries

Gnuplot
Gnuplot is a graphing utility. All plots in this thesis are made with gnuplot. Due to its
command-driven interface, it is very convenient because it allows the generation of all
plots in an automated way directly from the Java output.
Provided by: Thomas Williams, Colin Kelley and contributors
Source: http://www.gnuplot.info

56

C. Contents of the CD-ROM

The enclosed CD-ROM contains the following content:

Abstract.txt Abstract of this thesis (English).

Zusfsg.txt Abstract of this thesis (German).

Bachelorarbeit.pdf Digital copy of this thesis.

LearnTimeDecay.jar Copy of the Java source code.

Folder plots Full-size version of each plot image of this thesis.

57

C.1. CD-ROM

58

Bibliography
[BGMM+08] Omar Benjelloun, Hector Garcia-Molina, David Menestrina, Qi Su, Steven Eu-

ijong Whang, and Jennifer Widom. Swoosh: a generic approach to entity res-
olution. The VLDB Journal, March 2008. VLDB Journal (Online First) link:
http://dx.doi.org/10.1007/s00778-008-0098-x.

[BMC+03] M. Bilenko, R. Mooney, William Cohen, P. Ravikumar, and S. Fienberg. Adap-
tive name matching in information integration. Intelligent Systems, IEEE,
18(5):16–23, 2003.

[Chr06] Peter Christen. A Comparison of Personal Name Matching: Techniques and
Practical Issues. In Proceedings of the Sixth IEEE International Conference
on Data Mining - Workshops, ICDMW ’06, pages 290–294, Washington, DC,
USA, 2006. IEEE Computer Society.

[CRF03] William W. Cohen, Pradeep D. Ravikumar, and Stephen E. Fienberg. A Com-
parison of String Distance Metrics for Name-Matching Tasks. In IIWeb, pages
73–78, 2003.

[DBL] DBLP Computer Science Bibliography. http://www.informatik.
uni-trier.de/~ley/db. Last access: 2013-06-10.

[EIV07] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Du-
plicate Record Detection: A Survey. IEEE Trans. on Knowl. and Data Eng.,
19(1):1–16, January 2007.

[LDMS11] Pei Li, Xin Luna Dong, Andrea Maurino, and Divesh Srivastava. Linking Tem-
poral Records. PVLDB, 4(11):956–967, 2011.

[MLS06] Tom Magerman, Bart Van Looy, and Xiaoyan Song. Data production methods
for harmonized patent statistics: Patentee name harmonization, March 2006.

[MM07] Matteo Magnani and Danilo Montesi. A study on company name matching for
database integration. Technical report, University of Bologna, May 2007.

[MU11] Timofey Medvedev and Alexander Ulanov. Company Names Matching in the
Large Patents Dataset. Technical report, Hawlett-Packard Development Com-
pany, L.P., July 2011.

[NH10] Felix Naumann and Melanie Herschel. An Introduction to Duplicate Detec-
tion. Synthesis Lectures on Data Management. Morgan & Claypool Publishers,
2010.

59

[Sec] SecondString - Approximate String-matching Techniques. http://
secondstring.sourceforge.net/. Last access: 2013-06-09.

[SHG12] Benno Stein, Dennis Hoppe, and Tim Gollub. The impact of spelling errors on
patent search. In Proceedings of the 13th Conference of the European Chapter
of the Association for Computational Linguistics, EACL ’12, pages 570–579,
Stroudsburg, PA, USA, 2012. Association for Computational Linguistics.

[Sim] SimMetrics - Similarity Metric Library. http://sourceforge.net/
projects/simmetrics/. Last access: 2013-06-09.

[Uni] Unicode Consortium. http://www.unicode.org. Last access: 2013-07-
20.

[VB12] Cihan Varol and Coskun Bayrak. Hybrid Matching Algorithm for Personal
Names. J. Data and Information Quality, 3(4):8:1–8:18, September 2012.

60

