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Zusammenfassung

Signal/Collect ist ein Programmiermodell und System zur Ausführung von Algorithmen
auf Graphen. Wird ein Graph auf mehrere Rechner verteilt, erhöht die Kommunikation
zwischen den Knoten des Graphen die Laufzeit des Systems. In dieser Arbeit wird
Signal/Collect erweitert, um Algorithmen zu ermöglichen, welche die Knoten während
der Laufzeit zwischen den ausführenden Rechnern so verschieben, dass die Zahl der
Nachrichten zwischen den Rechnern reduziert wird. Von mehreren Algorithmen wird der
beste eingehend diskutiert. Weiterführende Evaluationen zeigen, dass jener Algorithmus
die Laufzeit in einem von zwei Fällen reduziert. Allerdings sind die durchgeführten
Untersuchungen nicht ausreichend, um ein abschliessendes Urteil zu fällen.





Abstract

Signal/Collect is a vertex-centric programming model and framework for graph process-
ing. The communication between the vertices of a graph impairs the performance of
distributed framework executions due to message serializations and network limitations.
In this thesis, Signal/Collect is extended to support algorithms that reduce the number
of remote messages by moving vertices between compute nodes during the computa-
tion. Several algorithms are evaluated and the best performing candidate is discussed
in detail. The evaluation results indicate an improvement of the runtime performance
in one of two cases. However, the performed evaluations are not sufficient to draw final
conclusions about the implemented approach.
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Introduction

Signal/Collect [Stutz et al., 2010][Stutz et al., 2013] is a programming model and frame-
work for scalable synchronous and asynchronous graph processing. Graph processing
means that an algorithm is executed on a graph. The vertex-centric programming model
of Signal/Collect exploits the fact that most graph algorithms can be expressed in two
operations on a vertex. First, a vertex signals its state to neighboring vertices along the
edges. Second, a vertex collects the incoming signals and computes its new state based
on them. Both the signal and the collect steps are executed repeatedly for each vertex
until a termination condition is fulfilled. In a synchronous execution, all the vertices are
at the same time either in the signal phase or in the collect phase. An asynchronous
execution overrides this restriction and executes the signal and collect steps for each
vertex independently. The Signal/Collect framework is scalable because it is able to use
additional resources to speed up the execution of algorithms. Parallelism is exploited
by distributing the vertices of a graph to multiple workers, which then process their
assigned vertices in parallel. Distributed workers running on different compute nodes
are also supported [Freitas, 2011].

The most recent version of the Signal/Collect framework1 distributes the vertices to
the workers by using a simple function mapping vertex identifiers to worker identifiers.
The resulting sets of vertices, each of which is assigned to one worker, are balanced
and random. The sets are balanced because the number of vertices in each set is ap-
proximately equal. They are random because a vertex is assigned to a specific set by
hashing its identifier and not using any additional information. For example, the edges
interconnecting a vertex with other vertices are not considered when assigning a vertex
to a set. As a result, there might be few edges between vertices in the same set and a
lot of edges between vertices in different sets. Because each set is assigned to one worker
and the signals sent by the vertices travel along these edges, the communication time
and in the end the runtime of the computation are increased. This effect is amplified in
a distributed environment, for example in a cluster or in the cloud, where the network
latency is high, the network bandwidth is low, and the data to be sent to other compute
nodes needs to be serialized and afterwards deserialized. It is therefore reasonable to

1The most recent version of Signal/Collect can be found at https:// github.com/uzh/
signal-collect . At the moment of this writing, the identifier of the most recent revision is
5fd6cec5a51296986e41f252d27408b07f4e8149.
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assume that more sophisticated approaches to distributing the vertices to the workers
would improve the runtime performance of the Signal/Collect framework by reducing
communication between different workers and compute nodes.

Two solutions are apparent. The first consists in replicating vertices on multiple work-
ers. When a vertex is present on a worker due to replication, the need to send a signal
to the original worker of the vertex is eliminated. Instead, the signal can be sent locally
to the replicated vertex. In the literature, replication-based approaches are explored
in the context of graph query processing systems, for example in [Yang et al., 2012].
However, this solution has several drawbacks. The most severe one is that the states of
the vertices are updated very frequently in Signal/Collect. Although replication might
eliminate the need to send signals to remote workers, the consistency between replicated
vertices needs to be maintained, which requires communication between the workers.
Furthermore, vertex replication will increase the memory consumption of the system.
Because Signal/Collect is designed to also handle very large graphs, this is a significant
drawback. Out of these two reasons it can be concluded that a replication-based ap-
proach is not well-suited to improve the runtime performance of Signal/Collect and is
not considered further in this thesis.

The other solution lies in distributing the vertices to the workers in a more sophis-
ticated way. Instead of distributing the vertices by hashing their identifiers, the edges
between the vertices could be taken into account to minimize interconnections between
vertices on different workers. The underlying theoretical problem is that of graph par-
titioning. The problem of graph partitioning consists in finding a specified number of
distinct subsets of the set of vertices of a graph. Usually, these subsets have to be of
approximately equal cardinality and the number of edges between the different subsets
has to be minimized [Bichot and Siarry, 2011]. Graph partitioning is a well-researched
field and is surveyed in Chapter 2. However, there are significant differences between
graph partitioning as discussed in the literature — called classical graph partitioning
hereafter — and the problem of distributing vertices to workers in Signal/Collect. First,
graphs in Signal/Collect might be very large and global knowledge, which is centralized
knowledge about the whole graph, might not be available due to the graph’s size and
the distributed nature of the system. In contrast, algorithms for classical graph parti-
tioning very often assume a global view on the graph [Rahimian et al., 2013]. Second,
graphs in Signal/Collect are dynamic. The structure of a graph might change over time
by adding or removing vertices and edges. They are also dynamic in the sense that
during an execution, certain edges might not transport any signals whereas others might
be active in each step. Furthermore, this messaging patterns might change over time.
Most algorithms for classical graph partitioning do not deal with such dynamic graphs.
Third, the primary goal of graph partitioning in the context of Signal/Collect is not to
find a perfect partitioning, which might take a lot of time, but to improve the runtime
performance of the system. From this discussion, it can be concluded that most of the
classical graph partitioning algorithms are not appropriate to solve the present problem.

Figure 1.1 shows that in graph processing systems like Signal/Collect, the partitioning
of the graph can happen before, during, or after the computation. Based on these phases,
we differentiate between static and dynamic graph partitioning. This terminology is also

2
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Static Graph Partitioning Static Graph PartitioningDynamic Graph Partitioning

Computation starts Computation ends

Time

Figure 1.1: Static and dynamic graph partitioning

used in related literature, for example in [Salihoglu and Widom, 2012].

Static graph partitioning is executed before a computation is started or after it is
ended. Partitioning the graph after a computation is ended is reasonable in case the
graph is executed again with the same or a different algorithm. Static partitioning
is a pre- or postprocessing step to the execution of a graph and does not modify the
partitions during the computation. It is straightforward to integrate into the system,
because not many changes to the core of Signal/Collect are necessary. Furthermore,
numerous methods and established tools are available to statically partition a graph,
e.g. METIS [Karypis and Kumar, 1998]. However, static graph partitioning has two
significant drawbacks. It increases the time until the graph is loaded and the computation
can be started. Also, static graph partitioning is by definition not able to react to changes
in the graph during the computation.

On the other hand, dynamic graph partitioning runs after the computation is started
and before it is ended. The preeminent advantage of this approach is that it is able
to adjust the partitions continuously during the computation. Compared to the static
approach, it is, however, more difficult to integrate into the system as it affects the core
of the Signal/Collect system and cannot be implemented as a pre- or postprocessing step
to the execution of the graph.

Dynamic graph partitioning can be further categorized into serial and parallel parti-
tioning. Figure 1.2 shows that in case of serial dynamic graph partitioning, the compu-
tation is paused to partition the graph. Parallel dynamic graph partitioning partitions
the graph while the computation is running, as Figure 1.3 shows.

Computation starts Computation ends

Time

Partitioning

Computation pauses Computation pauses

Partitioning

Figure 1.2: Serial dynamic graph partitioning

In this thesis, the Signal/Collect framework is extended to support both serial and
parallel dynamic graph partitioning. The goal of the graph partitioning functionality is

3
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Computation starts Computation ends

Time

Partitioning

Figure 1.3: Parallel dynamic graph partitioning

the improvement of the runtime performance of Signal/Collect.
The structure of this thesis is as follows. Chapter 2 presents the related work. In

Chapter 3, the design of the partitioning functionality and its necessary prerequisites
are explained. Different partitioning algorithms are described in Chapter 4. In Chapter
5, the evaluation of the approach is presented and the results are discussed in Chapter
6. In Chapter 7, ideas for future work are described. Finally, the thesis closes with a
summary in Chapter 8.
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Related Work

This chapter presents the related work originating from different areas. The underly-
ing theoretical problem of this thesis is that of graph partitioning. Methods for graph
partitioning are used for load balancing in distributed systems. Graph databases store
large graphs and need to distribute the vertices and edges to different compute nodes.
Finally, the largest part of the related work can be found in the area of graph processing
systems. All of these topics are surveyed in the following sections.

Graph Partitioning Graph partitioning has been a widely researched subject for
decades and an accordingly large amount of literature exists. An overview on the
problem, proposed algorithms, different fields of application, and available software
packages can be found in [Bichot and Siarry, 2011]. [Fjällström, 1998] is an older,
but more compact and focused survey. Despite the large amount of literature in
the area of graph partitioning, suitable algorithms for the present problem are rare,
as discussed in the previous chapter. Decentralized algorithms for graph partition-
ing can be found in [Gehweiler and Meyerhenke, 2010], [Rahimian et al., 2013], and
[Ramaswamy et al., 2005]. Their need for extensive communication between vertices,
and therefore workers and compute nodes, makes them unusable for the present prob-
lem. A dynamic graph partitioning extension for Signal/Collect should not interfere
with the execution of the actual algorithm, because then the reduction of the runtime
achieved by the partitioning could be eliminated by the time needed to process the
additional messages and calculate the partitioning.

A special class of graph partitioning algorithms are the streaming graph partitioning
algorithms, which are investigated in the context of graph processing systems. The
basic idea is to determine the responsible worker for each vertex according to simple
heuristics while loading the graph. Two recent papers that investigate such algorithms
are [Stanton and Kliot, 2012] and [Tsourakakis et al., 2012]. However, streaming graph
partitioning is a form of static graph partitioning, which is not investigated in the present
thesis.

Whereas in graph partitioning the number of partitions is known beforehand, graph
clustering methods try to find communities in graphs without being restricted by a
specified number of communities [Fortunato, 2010]. Due to this fact, graph clustering
methods are not well-suited for the present problem in which the number of workers,
each of which stores exactly one partition, is specified before the graph is loaded.
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Load Balancing The goal of load balancing in distributed systems is to minimize
communication cost between compute nodes while balancing workload between them. A
survey can be found in [Devine et al., 2006]. Modelled as a graph, this problem can be
solved by applying graph partitioning algorithms. These methods are discussed in the
previous section and no other significant contribution from the field of load balancing to
the present problem has been found.

Graph Databases Graph database systems are database systems specialized in stor-
ing graphs. In case of large graphs, these database systems have to distribute the
vertices and edges to multiple compute nodes. Furthermore, the stored graph might
be modified over time, because edges and vertices are added or removed. Therefore,
graph databases face similar challenges like Signal/Collect. However, Averbuch and
Neumann [Averbuch and Neumann, 2013] mention that existing literature about par-
titioning graph databases is scarce. In their thesis, they extend the Neo4j database1

with the already mentioned distributed graph partitioning algorithm presented in
[Gehweiler and Meyerhenke, 2010].

Graph Processing Systems In recent years, many graph processing systems have
been developed and discussed in the literature. In this section, they are surveyed with
emphasis on their support for graph partitioning.

The Graph Processing System (GPS) [Salihoglu and Widom, 2012] is a system for
the execution of algorithms on large graphs. GPS supports static and dynamic graph
partitioning mechanisms. The static graph partitioning is customizable. The authors use
both random partitioning and the graph partitioning tool METIS in their experiments.
The dynamic graph partitioning mechanism, which is not customizable, works as follows.
Each worker constructs a set of potentially transferable vertices for each other worker.
The selection of vertices is based on the number of messages a certain vertex sends to
vertices of the other worker. Afterwards, each pair of workers compares the sizes of the
two sets. The smaller number of vertices is then exchanged to maintain a balance between
the number of vertices on each worker. The dynamic graph partitioning mechanism leads,
however, only to modest improvements in the runtime performance of GPS.

Khayyat et al. developed the graph processing system Mizan. This system supports
static and dynamic graph partitioning methods. In [Khayyat et al., 2012], the authors
describe Mizan as a layer between a graph processing system and the physical computing
infrastructure. Mizan offers advanced static graph partitioning mechanisms involving the
usage of METIS, vertex replication, and message passing in a virtual overlay ring. In
[Khayyat et al., 2013], Mizan is enhanced by dynamic load balancing of communication
and computation across all compute nodes. In contrast to their first paper, the authors
herein describe Mizan as a graph processing system. Each worker records for each of
its vertices the number of incoming messages, the number of outgoing messages, and
the processing time. Workers exchange summaries of these statistics among each other.
After each superstep, a vertex migration plan is generated on each worker based on these

1http://www.neo4j.org
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statistics. After the next superstep, the migration plans are executed and the vertices
are transferred. Interestingly, the Mizan system does not take the graph structure into
account when moving vertices, as the decision is based on load balancing considerations
only. The authors report large performance gains for highly dynamic workloads.

Shang et al. [Shang and Yu, 2013] built a graph processing system supporting dy-
namic graph partitioning on top of Apache Hama2. Each worker decides by itself how
many, and which vertices it moves to the other workers. The selection of vertices is based
on the following rules. First, overloaded workers send vertices to underloaded workers.
Second, a vertex is moved to the worker which communicates most intensively with the
vertex. In contrast to GPS, the present system considers both incoming and outgoing
messages to a vertex. Third, a vertex is not moved frequently, but only if a significant
improvement is to be expected. This means that the target worker should communi-
cate much more intensively with the vertex to be moved than the source worker. The
authors report a slight improvement of the runtime performance when using dynamic
graph partitioning.

Grace [Prabhakaran et al., 2012] is a graph management system built for real-time
queries and iterative computations on multicore systems. With hash-based partitioning,
heuristics-based partitioning, and spectral partitioning it supports different algorithms
for static graph partitioning. Grace also offers dynamic load balancing between threads,
but, as a shared memory system, it differs significantly from Signal/Collect and the
previous three systems.

Unlike the approaches discussed so far, most of the related work discusses static graph
partitioning only.

Pregel [Malewicz et al., 2010] is a system developed for large-scale graph processing at
Google. In this framework, a graph is divided into partitions which in turn are assigned
to workers. The default partitioning function is a hash function on the identifiers of the
vertices. This function can be replaced by the users of the framework and, for example,
colocate vertices representing pages of the same web site in case of the Web graph on
the same compute node. Thus, Pregel supports customizable static graph partitioning,
but it does not offer dynamic graph partitioning. However, dynamic graph partitioning
is mentioned as a challenge likely to be addressed.

Chen et al. [Chen et al., 2012] investigate graph partitioning for graph processing
systems in cloud environments. Their system, Surfer, statically partitions the graph
taking the network topology of the executing compute nodes into account. For example,
partitions with a lot of edges to other partitions are assigned to compute nodes with a
high bandwidth.

HipG [Krepska et al., 2011] offers customizable static graph partitioning using a hash
function by default.

GraphLab [Low et al., 2012] uses a two-stage technique to implement static graph
partitioning. First, the graph is partitioned by a customized partitioning, random par-
titioning, or a tool like METIS, whereas the number of partitions exceeds the number
of available workers. Second, the partitions from the first step themselves form a graph

2http:// hama.apache.org
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which is then again partitioned and these partitions are finally assigned to the workers.

GraphInc [Cai et al., 2012] is a graph processing system supporting real-time graph
mining built on top of Apache Giraph3. The user specifies vertex-centrix algorithms,
which are then converted into incremental algorithms suitable for real-time processing
by the system. GraphInc partitions the vertices randomly.

Trinity [Shao et al., 2012] is a distributed database and computation platform that
supports online query processing and offline graph analytics. For static graph partition-
ing, it partitions vertices by using a hash function.

Horton [Sarwat et al., 2012] is a query execution engine for large graphs. Although
the graphs are partitioned into several partitions, the mechanisms used for this process
are not discussed more in depth. The authors propose the usage of graph partitioning
algorithms or hash based partitioning.

Ho et al. [Ho et al., 2012] describe a two-layered system consisting of a graph process-
ing layer and an underlying graph storage layer. The system uses METIS to statically
partition the graph. When a vertex is added later, it is not immediately inserted into
a partition but first cached and observed with regard to its communication patterns.
Based on these observations, it is then assigned to a suitable partition.

Najork [Najork, 2009] describes the Scalable Hyperlink Store, which is a distributed
in-memory database for storing large parts of the web graph. The web graph is statically
partitioned by using portions of the URIs.

In [deLorimier, 2013], static graph partitioning in the form of reducing edges between
partitions and balancing workload is discussed as an optimization technique to a graph
processing system.

Redekopp et al. [Redekopp et al., 2013] discuss graph processing in the cloud. Having
built a system similar to Pregel, they also investigate the effect of graph partitioning to
the runtime performance of the system. They found out that static graph partitioning
methods might decrease the runtime of algorithms, because the barrier in synchronous
execution lets the system wait for the slowest worker. They do not discuss dynamic
graph partitioning, however.

In contrast to other systems, the PowerGraph system [Gonzalez et al., 2012] assigns
each edge to one partition and allows vertices to span multiple compute nodes. Another
system following this approach is [Xin et al., 2013] based on [Zaharia et al., 2010]. Both
systems implement static graph partitioning only.

There are other graph processing systems that do not address the problem of
partitioning at all. These include [Haller and Miller, 2011], [Bykov et al., 2011], and
[Gregor and Lumsdaine, 2005]. The authors of LFGraph [Hoque and Gupta, 2013]
claim to have eliminated the need for graph partitioning by leveraging techniques for
reducing the communication between compute nodes.

Some of the graph processing systems are based on the MapReduce
[Dean and Ghemawat, 2008] programming model. Expressing graph algorithms in
this model is challenging and graph partitioning is one aspect that needs to be taken
care of [Lin and Schatz, 2010].

3http:// giraph.apache.org

8



9

GBASE [Kang et al., 2011] is a graph management and mining system built on top
of Apache Hadoop4, a framework that implements the MapReduce programming model.
GBASE allows any graph partitioning method to be used for the initial static graph
partitioning.

PrIter [Zhang et al., 2011] uses and extends iMapReduce [Zhang et al., 2012]. Whereas
the latter does not address graph partitioning, PrIter is able to automatically partition
a graph or to use a method supplied by the user of the system.

Choi et al. [Choi et al., 2012] discuss graph partitioning by using a semi-clustering
algorithm specifically for the execution of the PageRank algorithm on Apache Hadoop.

MapReduce based graph processing systems that do not discuss partitioning at
all include PEGASUS [Kang et al., 2009], HaLoop [Bu et al., 2010], and Twister
[Ekanayake et al., 2010].

The importance of the graph partitioning problem can be reduced by implement-
ing the graph processing system as a shared memory architecture. Such approaches
are described in [Shun and Blelloch, 2013], [Kyrola et al., 2012], [Low et al., 2010], and
[Wang et al., 2013].

Graph processing systems that are not covered by literature include Apache Giraph,
Apache Hama, GoldenOrb5, JPregel6, Phoebus7, and Bagel8.

Other Related Work Fard et al. [Fard et al., 2012] discuss issues regarding time
evolving graphs. They notice that three aspects should be considered with regard to
graph partitioning of time evolving graphs. The first aspect is the nature of the com-
putation. While some computations like PageRank might benefit from minimizing the
communication between compute nodes, other algorithms like Single Source Shortest
Path (SSSP) will not. The second aspect is the dynamic structure of the graph. In
time evolving graphs, vertices and edges are added and deleted over time. To deal with
this issue, dynamic graph partitioning might be applied. However, the authors explicitly
point out the expensiveness of this operation. The third aspect is the way the compute
nodes are configured. The authors advise to generate more partitions than available
compute nodes.

4http:// hadoop.apache.org
5http:// goldenorbos.org
6http:// kowshik.github.io/ JPregel
7https:// github.com/ xslogic/ phoebus
8https:// github.com/mesos/ spark/wiki/Bagel-Programming-Guide
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Design

In this chapter, the design of the dynamic graph partitioning functionality in Signal/Col-
lect is described. First of all, Section 3.1 gives an overview on the existing Signal/Collect
architecture, necessary to understand the subsequent sections. Section 3.2 describes how
vertices can be localized. The displacement of vertices between workers is explained in
Section 3.3. After having introduced the prerequisites, the dynamic graph partitioning
functionality is finally presented in Section 3.4.

3.1 Signal/Collect

The Signal/Collect framework can be logically split up into several parts. The following
list enumerates its most important components:

• The driver initializes the system and offers an interface to the client of the Sig-
nal/Collect framework. Using this interface, the graph can be constructed and
modified. It also offers methods to execute the graph and to shut it down after-
wards.

• The coordinator is responsible for observing the workers and the node controllers.
It collects status messages from those entities, which are used to determine whether
the execution of an algorithm has finished.

• Each node controller controls the lifecycle of a set of workers. The workers are
created and shut down by their node controllers.

• Each worker processes a set of vertices.

All of these components are present in each execution of the framework. An execution
consists of one or more instances of the Signal/Collect framework. In case of a local
execution, there is only one instance comprising the driver, the coordinator, one node
controller, and at least one worker. This case is illustrated in Figure 3.1. In contrast, a
distributed execution consists of several instances. There is one master instance, which
accommodates the driver and the coordinator, and at least one normal instance consist-
ing of a node controller and at least one worker. Figure 3.2 shows a distributed execution
consisting of several instances each running on a different compute node. One of these
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Signal / Collect

Driver

Coordinator

Node Controller

Worker 1

Worker 2

Worker ...

Figure 3.1: Local Signal/Collect execution

instances is the master instance, as shown in Figure 3.3. The other instances are normal
instances, as illustrated by Figure 3.4. Although it would be possible to run several
instances on one compute node, the usual case is to run one instance on one compute
node. Therefore, we use the terms instance and compute node interchangeably in the
following.

In general, all of the listed entities can communicate with each other. Notable commu-
nication channels are between the workers, which exchange signals for their vertices, and
between the coordinator, the workers, and the node controllers, which exchange status
messages.

The subsequent sections describe how the existing architecture of Signal/Collect is
extended to support dynamic graph partitioning.

3.2 Vertex Localization

To send a message to a particular vertex, a worker needs to know the identifier of the
worker responsible for that vertex. So far, Signal/Collect has used a simple function to
calculate the worker responsible for a certain vertex. This function is first used when a
vertex is added to the graph and the system needs to assign it to a particular worker.
The same function is called afterwards, whenever the worker responsible for that vertex
is looked up, for example when a vertex sends a message to another vertex.

Concretely, Signal/Collect uses a vertex localization function m, which maps a vertex
identifier to a worker identifier by calculating a hash value of the vertex identifier and
relating it to the total number of workers in the system. Let W = {0, 1, 2, ...} be the set
of worker identifiers. Given a hash function h : V→ Z, mapping vertex identifiers in V

12
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Compute Node

Signal/Collect

Compute Node

Signal/Collect

Compute Node

Signal/Collect

Compute Node

Signal/Collect

Figure 3.2: UML deployment diagram of a distributed Signal/Collect execution

to integers in Z, m can be defined as follows:

m :V→W
v 7→ |h(v) mod |W||

(3.1)

To support dynamic graph partitioning — or more general, arbitrary assignments of
vertices to workers — this approach is not sufficient. Although m can be implemented
efficiently, it prohibits arbitrary assignments by restricting the set of possible workers
for a certain vertex to a single one.

Arbitrary assignments of vertices to workers could be implemented by storing the ver-
tex identifier and its corresponding worker identifier in a table. However, this approach
does not scale to large graphs with millions of vertices. A different solution is to extend
the existing lookup function by a preceding table. That table does not store the loca-
tion for each vertex, but only for those vertices which are not located on their default

13
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Signal / Collect

Driver

Coordinator

Figure 3.3: Signal/Collect master instance in a distributed execution

Signal / Collect

Node Controller

Worker 1

Worker 2

Worker ...

Figure 3.4: Signal/Collect normal instance in a distributed execution

worker. The default worker is given by the existing lookup function. Thus, the table
stores exceptional placements of vertices and is therefore called exception table. This
approach uses less memory than storing the location for all vertices. However, even this
solution is likely to encounter performance issues when the number of vertices which
are not located on their default workers is very large. Algorithm 1 shows a concrete
implementation of this lookup procedure.

To integrate this approach into the Signal/Collect architecture, it is sufficient to store
one exception table on each instance of the Signal/Collect framework. Each worker of
a certain instance can then access this table, whereas the management of the table —
updating and removing entries — is reserved to the node controller of that instance.

14
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Algorithm 1 Returns the identifier of the worker responsible for a vertex identifier.

function WorkerIdentifier(exceptionTable, numberOfWorkers, vertexIdentifier)
if exceptionTable.contains(vertexIdentifier) then

return exceptionTable.get(vertexIdentifier)
else

return |vertexIdentifier.hashCode() mod numberOfWorkers|
end if

end function

3.3 Vertex Displacement

In order to support dynamic graph partitioning, the system has to offer a mechanism
to move vertices between workers. When a vertex is moved from the worker W0 to the
worker W1, W0 is called the source worker and W1 is called the target worker. The
vertex displacement functionality is implemented in terms of the two worker methods
moveVertex and takeVertex.

The first step in the vertex displacement process is a call to the moveVertex method
on the source worker. It moves the vertex to the target worker and removes it from
the source worker. Algorithm 2 shows this method. The moveVertex method accepts
a vertex and a target worker. First, an asynchronous request to take the vertex is sent
to the target worker. In a second step, the vertex is removed from the source worker.
Finally, the source worker’s exception table is updated to store the new location of the
worker. The last step causes any message for the vertex just removed to be forwarded
to the target worker. In case the target worker has already fulfilled the asynchronous
request to add the vertex, it accepts the message. On the other hand, if the vertex is
not yet available on the target worker, the message is routed back to the source worker.
There, this cycle starts again until the target worker finally adds the vertex to its store
and accepts corresponding messages.

Algorithm 2 Moves the vertex to the target worker.

function moveVertex(vertex, targetWorker)
targetWorker.takeVertex(vertex)
removeVertex(vertex)
nodeController.setVertexLocation(vertex.identifier, targetWorker.identifier)

end function

The takeVertex method is called on the target worker. It adds a vertex to the target
worker and updates all exception tables in the system. An implementation of this method
is shown in Algorithm 3.

First, the vertex is added to the target worker. Second, all node controllers are sent a
request to update the location of the vertex to its new worker. After the execution of the
takeVertex method, the worker having added the vertex accepts corresponding messages
and the other workers send messages to the vertex directly to its new worker, because

15
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Algorithm 3 Adds the vertex to the worker.

function takeVertex(vertex)
addVertex(vertex)
nodeControllers.setVertexLocation(vertex.identifier, workerIdentifer)

end function

all the exception tables in the system have been updated to store the new location of
the vertex.

Given these two methods, vertices can be moved from one worker to the other.

3.4 Dynamic Graph Partitioning

After having presented all necessary prerequisites, this section describes the design of the
dynamic graph partitioning functionality in detail. Architecture, protocol, scheduling,
and partitioner aspects are discussed separately.

3.4.1 Architecture

Given the architecture of Signal/Collect as described in Section 3.1, there are several
possible approaches to integrate dynamic graph partitioning. Three different models
have been identified and are discussed in the following subsections.

Centralized Model

In the centralized model, there is one entity in the system that is responsible for parti-
tioning the graph. The first advantage of this model is that the partitioning process is
easier to reason about and to control, because it is centralized. Furthermore, the central-
ized partitioner might have global knowledge of the graph and use existing partitioning
tools like METIS. However, the main disadvantage of the centralized model is that the
data necessary to find suitable partitions needs to be transferred from the workers to the
central partitioner. In the worst case, these transfers happen frequently and the amount
of data is large. This significant disadvantage disqualifies the centralized model as a suit-
able solution to the partitioning problem in Signal/Collect. No other graph processing
system implements the centralized model for dynamic graph partitioning, either.

Worker Model

In the worker model, the workers are responsible for the partitioning process. Each
worker has access to its own internal state and calculates vertex displacement requests
based on this information. Besides the requests, workers might periodically send each
other status messages. In contrast to the centralized model, not much information is sent
around. The worker model has the disadvantage that the computation, which takes place
in the workers, is interrupted when the partitioning occurs. Furthermore, partitioning

16
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is an additional responsibility for the workers. Therefore, the worker model is not an
optimal solution for the Signal/Collect framework. Nevertheless, this model is used in
the approaches described in [Khayyat et al., 2013], [Salihoglu and Widom, 2012], and
[Shang and Yu, 2013].

Node Controller Model

In the node controller model, the node controllers are responsible for partitioning the
graph. The node controllers have access to the internal states of the workers for which
they are responsible. To gain information about remote workers and nodes, the node
controllers can send each other summary messages. Therefore, the amount of infor-
mation sent around is limited compared to the centralized model. In contrast to the
worker model, the node controller model does not interrupt the workers to calculate the
partitioning. Furthermore, node controllers are otherwise idle as their only function in
the current architecture of Signal/Collect is to create workers. It can be concluded that
the node controller model is well-suited to integrate dynamic graph partitioning into the
Signal/Collect framework. So far, no other system has implemented the node controller
model for dynamic graph partitioning.

3.4.2 Protocol

The partitioning mechanism uses a one-way protocol in which the vertex request is the
only message type. A vertex request contains a vertex identifier, the identifier of the
source worker, the identifier of the target worker, and a weight. A vertex request is either
a vertex pull request or a vertex push request. In case of a pull request, the message is a
request to move the vertex given by its identifier from the target worker to the source
worker. In case of a push request, the message is a request to move the vertex given by its
identifier from the source worker worker to the target worker. In both cases, the weight
can be used to prioritize multiple vertex requests. Vertex requests are sent between node
controllers and the receiving node controller decides whether a vertex request should be
executed. Executing a vertex request means that the displacement of the vertex denoted
in the request is initiated.

In contrast to the other systems supporting dynamic graph partitioning, the present
framework is the first to support both pulling and pushing vertices. In the other
known solutions, vertices are always pushed from one worker to the other. It is
unclear whether the GPS system [Salihoglu and Widom, 2012] implements a one-way
or multiple-ways protocol. The dynamic graph partitioning mechanisms discussed in
[Khayyat et al., 2013] and [Shang and Yu, 2013] do not know the concept of a request,
because in those systems vertices are sent directly without any form of negotiation at
all.

17
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Scheduling
Execution Mode Serial Parallel

Synchronous X
Pure Asynchronous X X
Optimized Asynchronous X X
Continuous Asynchronous X
Interactive

Table 3.1: Signal/Collect execution modes and supported scheduling methods

3.4.3 Scheduling

To use dynamic graph partitioning, the client of the Signal/Collect framework needs
to specify a scheduler, which decides when the next partitioning of the graph should
happen. The framework currently supports scheduling by time, although other criterias,
e.g. the number of signal and collect steps, could be supported, too. Scheduling the par-
titioning by time is a new concept, as the other graph processing systems implementing
dynamic graph partitioning partition the graph after a certain number of computation
steps. Corresponding to the notion of serial and parallel dynamic graph partitioning as
presented in Chapter 1, serial and parallel schedulers were implemented.

In the case of serial scheduling, the partitioning process is controlled by the driver. It
periodically calls the scheduler to check whether a partitioning is necessary. When the
scheduler demands a partitioning, the computation is paused, the node controllers are
requested to partition the graph, and then the computation is restarted.

In the case of parallel scheduling, the scheduler does not reside on the driver, but
each node controller has its own scheduler. The node controllers periodically call their
schedulers to check whether a partitioning is necessary and start it as soon as demanded.
Each node controller partitions the graph independently.

Table 3.1 shows which scheduling methods are supported by the different execution
modes. The interactive execution mode does not support any scheduling method, as it
exists mainly for visualization purposes. Parallel scheduling has not been implemented
for the synchronous execution mode. In contrast, serial scheduling has not been imple-
mented for the continuous asynchronous mode, which is a special execution mode for
computations that do not terminate, e.g. query processing systems. However, the other
asynchronous execution modes support both serial and parallel schedulers.

3.4.4 Partitioner

When executing Signal/Collect with the dynamic graph partitioning functionality, each
node controller has its own instance of the partitioner. A partitioner needs to solve two
tasks. First, it has to decide which vertices to send requests for. Second, it needs to
process the received requests and execute the desired ones. The implemented framework
allows a wide variety of different algorithms. Several possible ones are discussed and
evaluated in the next chapter.

18



4

Partitioning Algorithms

After having described the framework for dynamic graph partitioning in Signal/Collect,
this chapter presents several partitioning algorithms and discusses the best performing
candidate in detail.

4.1 Goal

The goal of dynamic graph partitioning in Signal/Collect is the improvement of the run-
time performance. This goal can be achieved by reducing signals sent between compute
nodes, called remote signals, and balancing the amount of work, called load, among the
workers. However, these two objectives are conflicting. For example, remote signals
could be eliminated completely by assigning all vertices to one worker. But that over-
loaded worker would need a lot of time to process all its vertices while the other workers
would be idle. Of course, memory limitations might also make this approach impossible.
In contrast, an acceptable load balancing could be obtained by assigning all vertices in a
round-robin fashion to the workers. This strategy, however, might increase the number
of remote signals, because it does not take the edges between the vertices into account by
arbitrarily distributing the vertices to the workers. Any partitioning algorithm aiming
to reduce the execution time of algorithms in Signal/Collect has to take both objectives,
reducing remote signals as well as load balancing, into account.

4.2 Approaches

To select a dynamic graph partitioning approach, it is sufficient to look at the reduction
of the number of remote signals a particular algorithm achieves. Any approach can later
be extended with load balancing.

The number of remote signals can be reduced by assigning vertices which commu-
nicate with each other to the same compute node. The choice of a particular worker
on that compute node is largely irrelevant, for workers on the same compute node can
communicate very efficiently with each other. To determine the vertices communicating
with each other, the edges of each vertex could be investigated. However, this method
has two drawbacks. First, it does not consider the actual number of signals sent along
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a certain edge. There might be edges which do not transport any signals and others
which send a lot of signals. Second, in Signal/Collect vertices can send messages to
other vertices even if there is no actual edge connecting them. Both of these drawbacks
can be circumvented by analyzing not the edges, but only the actual number of signals
sent between vertices. To implement this approach, additional data structures keeping
track of these numbers have to be integrated into the system. Therefore, the drawback
of this approach is an increase of memory consumption.

Four partitioning approaches based on the idea of analyzing the number of signals
sent between vertices have been developped:

Push1 This partitioner pushes each vertex to the worker it sent most messages to, if
that particular worker is not on the same compute node as the vertex.

Push2 This partitioner pushes each vertex to the worker to which it sent most messages
to on the compute node to which it sent most messages to.

Pull1 Using this partitioner, vertices are moved to the worker which sent most messages
to this vertex, if that particular worker is not on the same compute node as the
vertex.

Pull2 Using this partitioner, vertices are moved to the worker which sent most messages
to this vertex on the compute node which sent most messages to this vertex.

In the related work, [Salihoglu and Widom, 2012], [Shang and Yu, 2013], and
[Khayyat et al., 2013] partition the graph according to the number of messages between
vertices, too. [Khayyat et al., 2013] attempts to balance the number of received and
sent messages for each worker. The approach described in [Salihoglu and Widom, 2012]
pushes vertices to the workers to which they sent most messages to. This idea is im-
plemented in the Push1 and Push2 approaches. [Shang and Yu, 2013] also consider the
number of received messages by a vertex, which we do not. The number of received
signals cannot be used, because in Signal/Collect a received signal does not necessarily
contain the identifier of the sender.

4.3 Preevaluation

The purpose of the preevaluation is to select an approach which will then be extended by
load balancing and fully evaluated in the next chapter. To evaluate the four approaches,
the following procedure is used:

1. Execute an algorithm.

2. Measure the number of sent remote signals.

3. Partition the graph according to the selected approach.

4. Execute the algorithm again.
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Number of Remote Signals
Partitioner Before Partitioning After Partitioning Ratio

Push1 414739 (20916) 265394 (4871) 0.64
Push2 418333 (19078) 265370 (5597) 0.63
Pull1 424217 (26085) 295870 (9091) 0.70
Pull2 423813 (21140) 279974 (8152) 0.66

Table 4.1: Median number of remote signals and median absolute deviation in paren-
thesis when 4-coloring the vertices of a 100x100 grid graph 50 times using 3
compute nodes each with 1 worker

5. Measure the number of sent remote signals.

The best performing approach is the one which achieves the largest reduction of remote
signals between the two executions of the algorithm.

All approaches are evaluated using two evaluation cases.1 The first evaluation case
is an algorithm for vertex coloring, which assigns each vertex of a graph a color such
that no neighboring vertex has the same color. This algorithm is executed 50 times
before partitioning and 50 times after partitioning on a 100 × 100 grid using 4 colors.
Signal/Collect runs on 3 compute nodes each with 1 worker.2

The results of this evaluation can be seen in Table 4.1. In comparison, the two push-
based approaches perform well. Pull2 achieves almost the same reduction as the two
push-based approaches, but the Pull1 approach is distant fourth in the ranking.

The second evaluation case is TripleRush3, which is a store for Resource Descrip-
tion Framework (RDF)4 triples built on top of Signal/Collect. To evaluate the four
approaches, a subset of the Lubm160 benchmark data set [Zeng et al., 2013] is used
and each of the 7 queries of the benchmark is executed 10 times before and after the
partitioning. Signal/Collect runs on 4 compute nodes each with 24 workers.5

The results of this evaluation can be seen in Table 4.2. It is obvious that the pull-
based partitioners perform worse than their push-based counterparts. As in the vertex
coloring experiment, Pull2 performs significantly better than Pull1. Push1 seems to

1For details on the evaluation environment and the evaluation cases, the reader is referred to chap-
ter 5. The raw evaluation results of all evaluations presented in this chapter are provided on the
accompanying CD-ROM.

2To reproduce the results of this evaluation, the corresponding Git revision identifiers
are af03a58ad76b0aa9a57298eb650a87746bff4f8d for the signal-collect project and
c9ccc66e0af6cdc83f859dfe77c053bd26d6986e for the mte project. The evaluation is contained
in the file VertexColoringBaselineEvaluation.scala in the mte project on the accompanying
CD-ROM.

3https:// github.com/uzh/ triplerush
4http://www.w3.org/RDF
5To reproduce the results of this evaluation, the corresponding Git revision identifiers

are af03a58ad76b0aa9a57298eb650a87746bff4f8d for the signal-collect project and
2b8371f9cab7ffccdd3b56e9b4b8f2f96ce92797 for the triplerush project. The evaluation is
contained in the file Lubm160BaselineEvaluation.scala in the triplerush project on the
accompanying CD-ROM.
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No. Vertices 32323 299142
Partitioner Before P. After P. Ratio Before P. After P. Ratio

Push1 7180 5490 0.76 65510 54820 0.84
Push2 7180 5460 0.76 65510 58200 0.89
Pull1 7180 7820 1.09 65510 69600 1.06
Pull2 7180 7330 1.02 65510 63850 0.97

No. Vertices 1407199 2705640
Partitioner Before P. After P. Ratio Before P. After P. Ratio

Push1 306280 284040 0.93 610620 560150 0.92
Push2 306280 271150 0.89 610620 549940 0.90
Pull1 306280 317170 1.04 610620 630680 1.03
Pull2 306280 289050 0.94 610620 572260 0.94

Table 4.2: Number of remote signals when executing each of the 7 queries of the Lubm160
benchmark 10 times on different subsets — 1, 10, 50, and 100 splits — of the
benchmark’s full data set on 4 compute nodes each with 24 workers

perform better than Push2 when the number of vertices is small, but Push2 improves
its performance when the number of vertices increases.

Based on the collected data, it can be said that the push-based approaches perform
better than their pull-based counterparts. This fact is explicable by considering that
a pull-based approach pulls a vertex based on the number of messages it sent to it.
However, it is not able to estimate the messaging patterns of that vertex. Therefore, a
pull-based approach has no possibility to prevent pulling a vertex which itself sends a
lot of messages to other vertices.

Although the pull-based approaches can be ignored due to their bad results in the
experiments, it is difficult to draw a well-funded decision between the Push1 and Push2
approaches. In the evaluations, both approaches perform approximately equally well.
However, Push2 most likely represents the idea of assigning vertices that communicate
with each other to the same compute node. Based on this fact and the evaluation results,
it is reasonable to assume that Push2 will perform equally well as the Push1 approach in
most cases, and in some cases even better. Therefore, the Push2 approach is investigated
in the rest of this thesis.

4.4 Push2

The basic idea of Push2 is to push each vertex to the compute node it sent most messages
to. The purpose of this section is to discuss the algorithm in detail. First, the load
balancing approach is described. The subsequent sections then discuss how Push2 solves
the two fundamental tasks of any partitioning algorithm. First, it has to select vertices
to send requests for. Second, it has to decide which of the received requests to execute.
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N0 N1 N2

Vertex W0 W1 W2 W3 W4 W5

1 2 3 0 1 1 1
2 1 1 4 1 2 2
3 2 1 1 2 0 1
4 0 0 1 2 3 0

Table 4.3: Sample data showing the number of messages from the vertices 1 − 4 to the
workers W0−5 on the compute nodes N0−2

4.4.1 Load Balancing

To balance load among the workers, different approaches are possible. A simple strategy
is to aim for an approximately equal number of vertices on each worker. The underlying
assumption of this approach is that the time needed to process a vertex is comparable
for all vertices. Other approaches could consist of measuring for each vertex the time
needed to process it, or estimating the time needed to process a vertex based on its
number of edges.

The Push2 partitioner supports load balancing using the first strategy. It aims to keep
the number of vertices on each worker in the range [0.9a, 1.1a], where a is the average
number of vertices per worker in the whole system.

4.4.2 Sending Vertex Requests

Each time the Push2 partitioner is called to send vertex requests, it examines a limited
subset of each worker’s vertices. The subset is limited in order to decrease the runtime
of the Push2 algorithm. For each vertex of a certain subset, the Push2 partitioner checks
whether there is a compute node to which the vertex sent more messages to than the
current one. If this is the case, a vertex push request is sent to the worker to which the
vertex sent most messages to on that compute node. The number of vertex requests to
send is limited by two aspects. First, the load balancing scheme restricts the number of
vertex requests to send as explained above. Second, the number of vertex requests to
send is limited by a fixed number of allowed vertex requests equal for all workers of the
system. The latter restriction is necessary to prevent that too many requests are sent in
one partitioning step.

The decision procedure of Push2 is best illustrated using the sample data in Table
4.3. It is assumed that the partitioner is executed on node N0 and all listed vertices are
stored on worker W0. Vertex 1 sends 5 messages to node N0, 1 message to node N1,
and 2 messages to node N2. Thus, this vertex is on the node it sent most messages to
and no further action is taken. Vertex 2 sends 2 messages to node N0, 5 messages to
node N1, and 4 messages to node N2. To put this vertex to the compute node it sent
most messages to, it has to be moved to node N1. Therefore, a vertex request is sent
to worker W2, because this is the worker to which the vertex sent most messages to on
the node to which the vertex sent most messages to. Vertex 3 is not moved, because it
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sends 3 messages to node N0, where it resides, and to node N1. Therefore, there is no
remote compute node to which it sent more messages to than to its current one. Vertex
4 might be moved to node N1 or N2, because it sent 3 messages to each of them and the
algorithm is not deterministic in this regard.

4.4.3 Executing Vertex Requests

When processing the received vertex requests, the Push2 partitioner first calculates for
each worker how many vertex requests it is allowed to execute, while still remaining
within the limits given by the load balancing scheme. For example, given an average
number of vertices per worker of 50, a worker owning 60 vertices is not allowed to execute
any requests. In the same situation, a worker responsible for 40 vertices might execute
up to 15 vertex requests.

After having determined the number of vertex requests allowed to be executed, the
requests are handled in a first-come first-served fashion. Push2 afterwards removes all
remaining vertex requests.
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Evaluation

In this chapter, the Push2 partitioning algorithm is evaluated using two different evalu-
ation cases.1

5.1 Environment

The evaluations were executed on the cluster of the Dynamic and Distributed Informa-
tion Systems Group at the University of Zurich. The cluster consists of 12 machines
each with 2 AMD Opteron

TM

6174 processors and 66 GB RAM. The machines run a
Linux 3.2.0-4 kernel and the IcedTea 2.1.7 64-bit Java virtual machine.

5.2 Vertex Coloring

The first evaluation case for dynamic graph partitioning is vertex coloring. The problem
of vertex coloring consists of finding a color for each vertex of a graph such that no
neighboring vertex has the same color. The algorithm to solve this problem works as
follows.2 Initially, all vertices of the graph have the same color. In the first signal step,
all vertices signal their colors to all neighboring vertices. After that, in each collect step
each vertex checks whether it has received a signal having the same value as its current
color. If this is the case, it randomly decides to randomly choose a new color or to
retain the old one. In the next signal step, it signals its color to its neighboring vertices.
Otherwise, if no signal has the same value as its current color, the vertex does not send
any signals in the next signal step.

This problem is an appropriate evaluation case, because it involves a lot of communi-
cation between the vertices and the messaging patterns change over time. For example,
an area of the graph might be correctly colored while other areas are still being colored.

In the evaluation, 3 compute nodes each with 1 worker are used. The graph to be
colored using 3 colors is a grid graph with the dimensions 10 × 10. The algorithm is
executed 50 times using 4 different versions of Signal/Collect:

1The raw evaluation results of all evaluations presented in this chapter are provided on the accompa-
nying CD-ROM.

2A concrete implementation of this algorithm can be found in the file NaiveVertexColoring.scala in
the mte project on the accompanying CD-ROM.
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• The default version of Signal/Collect.3

• The default version of Signal/Collect, but the vertices assigned to the workers
according to a graph partitioning calculated by METIS.4

• Signal/Collect extended with dynamic graph partitioning and a parallel scheduler
partitioning every 2 seconds.5

• Signal/Collect extended with dynamic graph partitioning and a serial scheduler
partitioning every 2 seconds.6

It is to be expected that the default version of Signal/Collect with the default par-
titioning scheme performs worst. The best performance should result from the default
version of Signal/Collect with the vertices assigned to the workers according to a graph
partitioning calculated by METIS. This version should perform best, because its graph
is partitioned optimally already at the start of the execution and no partitioning process
runs in parallel. Regarding the versions extended with dynamic graph partitioning, the
execution using the parallel scheduler should perform better than the one using the serial
scheduler, because the serial scheduler interrupts the computation completely whereas
the parallel scheduler executes the graph partitioning process in parallel.

The results of this evaluation are presented in Table 5.1 and in Figure 5.1. As expected,
the default version of Signal/Collect with the default partitioning performs worst. Re-
garding the other three partitioning methods, however, the resulting execution times are
too skewed to draw definite conclusions.

Besides this performance evaluation, the listed Signal/Collect version with the Push2
partitioner and the parallel scheduler partitioning every 2 seconds has been used to verify
the correctness of the system by executing the algorithm and afterwards checking the
result manually.

3To reproduce the results of this evaluation, the corresponding Git revision identifiers
are 6650edc04e6dbb88245dcd1b98d9b78a81b17ecc for the signal-collect project and
f8246e99cbc095e1754834076f5e17675444eec6 for the mte project. The evaluation is contained in
the file VertexColoringEvaluation.scala in the mte project on the accompanying CD-ROM.

4To reproduce the results of this evaluation, the corresponding Git revision identifiers
are 3cd7578ec40dd844ff603ae3c6dd565b950b2886 for the signal-collect project and
98613c2e895fbd0f468ba743c54a7a99c78181bc for the mte project. The evaluation is contained in
the file MetisEvaluation.scala in the mte project on the accompanying CD-ROM.

5To reproduce the results of this evaluation, the corresponding Git revision identifiers
are fa2172d31391b5a2db28c479c5863bc9f3fcd206 for the signal-collect project and
e2fddaf6dfeb4379b45c6e89f970e2fe9587bd0f for the mte project. The evaluation is contained in
the file VertexColoringPartitioningEvaluation.scala in the mte project on the accompanying
CD-ROM.

6To reproduce the results of this evaluation, the corresponding Git revision identifiers
are fa2172d31391b5a2db28c479c5863bc9f3fcd206 for the signal-collect project and
12bacce8918177da81bbe452a2caedddf864157a for the mte project. The evaluation is contained in
the file VertexColoringPartitioningEvaluation.scala in the mte project on the accompanying
CD-ROM.
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Partitioning Mean SD Median MAD Min Max

Default 338163 465644 153790 145845 1541 1871059
METIS 20165 21650 10885 5862 1655 97351
Parallel 29002 64900 4697 955 2362 413022
Serial 23143 34851 5354 1690 1636 198717

Table 5.1: Mean, standard deviation (SD), median, median absolute deviation (MAD),
minimum, and maximum execution times in milliseconds of 50 vertex coloring
algorithm executions on a 10 × 10 grid graph with 3 colors using 3 compute
nodes each with 1 worker

Default METIS Parallel Serial
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Figure 5.1: Execution times in milliseconds of 50 vertex coloring algorithm executions
on a 10 × 10 grid graph with 3 colors using 3 compute nodes each with 1
worker. Note that the minimum execution time of all executions is 1541 ms.

5.3 TripleRush

TripleRush7 is a store for Resource Description Framework (RDF)8 triples built on
top of Signal/Collect. As a triple store, TripleRush is a very interesting evaluation
case for dynamic graph partitioning, because this system is long running and as such
offers much potential for dynamic graph partitioning. It has been evaluated without

7https:// github.com/uzh/ triplerush
8http://www.w3.org/RDF
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Number of Compute Nodes
Query 1 4

1 387 27320
2 2200 2463
3 258 402
4 4 9
5 3 227
6 7 34
7 206 10716

Table 5.2: Mean execution times in milliseconds when executing each of the 7 queries
10 times on the Lubm160 data set using different numbers of compute nodes
each with 24 workers

graph partitioning using the Lubm160 benchmark [Zeng et al., 2013]. This benchmark
consists of a synthetic data set of 21347999 triples and 7 queries. Because the data
set, the queries, and the results using the default version of Signal/Collect are already
available, it is appropriate to evaluate the partitioning functionality using this evaluation
case. In chapter 4, it has been shown that the Push2 partitioner achieves a reduction
of the number of remote messages of about 10% using a subset of the the benchmark’s
full data set. In this section, the results of two further evaluations using the Lubm160
benchmark are presented.

The 21347999 RDF triples of the data set result in a total of 47476987 vertices. The
difference between the number of triples and the number of vertices is caused by the index
structures created by TripleRush. In a first step,9 each of the 7 queries of the benchmark
is executed 10 times in an execution setting with 1 compute node and another one with
4 compute nodes. To initialize the executing virtual machines, the query is executed
10 times before the measured executions. The purpose of this experiment is to identify
queries that take a significantly longer time when the data set is distributed over several
compute nodes.

Based on the data in Table 5.2, it can be concluded that the execution times of query
1 and query 7 are significantly greater in the setting with 4 compute nodes than they are
in the setting with only 1 compute node. In absolute numbers, query 1 offers the largest
possibility to be improved by partitioning. Therefore, query 1 is a suitable candidate for
the following evaluations.

9To reproduce the results of this evaluation, the corresponding Git revision identifiers
are 8c0d35a9dd6c4043c868648de7bc6240e8d8de37 for the signal-collect project and
bbfa3cfd0217a232364180cdc39dce0811923bb5 for the triplerush project. The evaluation is
contained in the file Lubm160SingleQueryEvaluation.scala in the triplerush project on the
accompanying CD-ROM.
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Partitionings Mean Execution Time [Milliseconds]

0 26522
1 26221
2 26215
3 26850
4 25741
5 27040
6 25197
7 26379
8 26722
9 26253
10 26603
20 24042
30 26374
40 26581
50 25624

Table 5.3: Mean execution times in milliseconds of 10 executions of query 1 on the
Lubm160 data set when using 4 compute nodes each with 24 workers and
partitioning the graph after each set of executions

5.3.1 Manual Partitioning

In the first evaluation,10 the selected query is first executed 10 times. Afterwards, the
graph is partitioned and the query is again executed 10 times. The last two steps are
repeated 50 times. To initialize the executing virtual machines, the query is executed 50
times before the actual evaluation. Signal/Collect runs on 4 compute nodes each with
24 workers. Because of the repeated graph partitionings, it is to be expected that the
runtime of the query decreases continuously.

The results of this evaluation are shown in Table 5.3 and graphically depicted in
Figure 5.2. Almost all execution times are within 25–27 seconds. The results do not
meet the expectations, because the execution times do not decrease significantly, but
remain within the same range even after 50 partitionings.

10To reproduce the results of this evaluation, the corresponding Git revision identifiers
are 2b5cd6c9dfa16a75bdae219936693628e8a4583b for the signal-collect project and
a4b2cd8ff33f884e011fac22f4a73241319a954f for the triplerush project. The evaluation is
contained in the file Lubm160SingleQueryManualPartitioningEvaluation.scala in the triplerush

project on the accompanying CD-ROM.
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Figure 5.2: Mean execution times in milliseconds of 10 executions of query 1 on the
Lubm160 data set when using 4 compute nodes each with 24 workers and
partitioning the graph after each set of executions

5.3.2 Parallel Partitioning

In the second evaluation,11 the parallel dynamic graph partitioning functionality is used.
Query 1 of the Lubm160 benchmark is executed continuously over a period of one hour,
while the graph is being partitioned in parallel every 10 seconds. To initialize the ex-
ecuting virtual machines, the query is executed 10 times before the actual evaluation.
Signal/Collect runs on 4 compute nodes each with 24 workers. As before, we expect a
continuously decreasing runtime of the query executions.

The results of this evaluation can be seen in Table 5.4 and are plotted in Figure 5.3.
The execution times are not decreasing continuously. In comparison with the previous
evaluation, the distribution of the execution times is higher, which could be explained
by the fact that the query is executed only once. Furthermore, it could be the effect of
the dynamic graph partitioning which runs in parallel.

11To reproduce the results of this evaluation, the corresponding Git revision identifiers
are b03084cb1a8cb909411842955784c6f6b297fb0a for the signal-collect project and
8870714d9da4b2efec0412ed48d29d4c0ce3eade for the triplerush project. The evaluation
is contained in the file Lubm160SingleQueryParallelPartitioningEvaluation.scala in the
triplerush project on the accompanying source code CD-ROM.
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Number of Execution Execution Time [Milliseconds]

1 31344
2 32508
3 29163
4 30254
5 29731
6 30661
7 28292
8 24181
9 23280
10 30068
20 26841
30 15746
40 28239
50 27667
60 19531
70 21105

Table 5.4: Execution times of query 1 on the Lubm160 data set in milliseconds using
4 compute nodes each with 24 workers and partitioning in parallel every 10
seconds
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Figure 5.3: Execution times of query 1 on the Lubm160 data set in milliseconds using
4 compute nodes each with 24 workers and partitioning in parallel every 10
seconds
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Discussion

After having presented the evaluation results in the previous chapter, the purpose of this
chapter is to discuss them and offer answers to arising questions.

6.1 Vertex Coloring

From the results it can be concluded that the usage of the partitioning methods METIS
and Push2 with serial and parallel schedulers improves the runtime performance of Sig-
nal/Collect. However, a quantitative statement is not possible due to the highly skewed
data. For the same reason, it cannot be concluded that the Push2 partitioner performs
better than METIS, although the median execution times would indicate this. The
performed evaluation is not sufficient to make a clear statement about the performance
gains to be achieved by the usage of the Push2 partitioner and how it performs compared
to the graph partitioning tool METIS.

6.2 TripleRush

With regard to the TripleRush evaluations, no improvement of Signal/Collect’s runtime
performance can be observed. There are two general problems with Push2 that could
cause the performance of the Push2 partitioner in the TripleRush evaluations.

The first situation is illustrated by Figure 6.1. There are two nodes N0 and N1 each
with one of the two workers W0 and W1. W0 is responsible for the two vertices 1 and
2, whereas vertex 3 is placed on worker W1. It is also visible that 100 signals were sent
from vertex 1 to vertex 2 and 50 signals from vertex 2 to vertex 3. Given this situation,
Push2 attempts to move vertex 2 to worker W1, because vertex 2 sent more messages
to node N1 than it did to node N0. With regard to the number of remote signals, the
resulting situation is worse because 100 instead of only 50 remote signals will be sent
from worker W0 to worker W1. It is possible that vertex 1 will later be moved to worker
W1, too, but load balancing restrictions might prevent this displacement. Push2 is not
able to recognize this kind of situation, because it only considers the number of sent
messages from a vertex to workers and compute nodes.
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N0 W0

1 2100

N1 W1

350

Figure 6.1: Situation in which Push2 takes a wrong decision

The second problem can be explained by the situation illustrated in Figure 6.2. There
are three nodes N0−2 each with one of the workers W0−2. Vertex 1 sent 50 remote signals
to vertex 2 and vertex 2 sent 50 remote signals to vertex 3. In this situation, the Push2
partitioner might try to move vertex 1 from worker W0 to worker W1. However, the
partitioner on node N1 could at the same time move the vertex 2 to the worker W2.
This means that the reason for vertex 1 being moved is not existing anymore when the
vertex arrives on its target worker, because it has also been moved.

N0 W0

1 50

N1 W1

2

N2 W2

350

Figure 6.2: Problematic situation for Push2 when being executed on multiple compute
nodes in parallel

Both these situations might occur when using the Push2 partitioner. They are possible
explanations for Push2’s performance in case of the TripleRush evaluations and might
serve as hypotheses for further investigations.

6.3 Memory Consumption

In the evaluation cases, the memory consumption has not been explicitely measured.
However, the amount of memory necessary for the data structures storing the number of
signals can become problematic, when the number of vertices and workers is very large.
To store the data used by the Push2 partitioner, a table mapping from vertex identifiers
to an array containing the number of sent signals for each worker has to be maintained
on each worker. For example, given 4 compute nodes with 24 workers, a vertex identifier
size of 8 bytes, and 1 million vertices per worker this results in 147.5 Gigabytes of data
on each compute node. In the TripleRush evaluation case, about 500000 vertices are
stored on each worker.
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Therefore, it can be concluded that the memory consumption will likely become prob-
lematic with larger graphs.
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Future Work

Based on the experiences and evaluation results collected in this thesis, the following
directions for future work can be pointed out.

Further evaluations of Push2 In this thesis, the Push2 partitioner has been evaluated
using two evaluation cases. This is not sufficient to allow a definite verdict about
the partitioner’s performance. In a next step, the partitioner should be evaluated
using other algorithms, different types of graphs, and different execution configu-
rations, e.g. varying numbers of workers and other execution modes.

Partitioning algorithms In chapter 4, several partitioning algorithms have been pre-
sented and the best performing one has been discussed and evaluated in depth.
The underlying framework, however, enables the development of a wide variety of
algorithms due to its modularity. Collecting additional statistics about the ver-
tices, workers, and nodes is simple, which further increases the possibilities for
future algorithms. Therefore, other partitioning algorithms could be developed in
the existing framework.

Execution in the cloud In this thesis, the dynamic graph partitioning functionality has
been evaluated in a cluster system consisting of adjacent, homogeneous compute
nodes. The execution and evaluation of Signal/Collect in a cloud environment
is likely to increase the importance and impact of the partitioning functionality,
because the cost of communication between compute nodes in such environments
is higher.

Static graph partitioning The evaluation results for graphs partitioned by METIS
demonstrate that static graph partitioning methods should definitively be investi-
gated. In this thesis, the exception table approach has been described as solution
for the arbitrary assignment of vertices to workers. Based on this approach, it
is straightforward to integrate static graph partitioning approaches into Signal/-
Collect. Promising ideas are domain-based partitioning, which assigns vertices to
the same workers based on domain knowledge, streaming graph partitioning al-
gorithms, which have been discussed in chapter 2, and the application of graph
partitioning tools, e.g. METIS.
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Comprehensive evaluation Both the dynamic and static partitioning functionalities
should be systematically evaluated. As a result of such a comprehensive evalu-
ation, there should be guidelines on how to use the partitioning functionality in
Signal/Collect with regard to particular problems.

Automatic partitioning Based on the guidelines acquired in a comprehensive evaluation,
Signal/Collect could be enhanced by automatic graph partitioning. This means
that the system decides which partitioning should be applied in a given situation.
Such an approach has already been implemented for static graph partitioning in
[Khayyat et al., 2012].
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Conclusions

In this thesis, Signal/Collect has been extended with dynamic graph partitioning to
improve its runtime performance in distributed environments. In a first step, the adap-
tations to the existing framework have been described. Afterwards, four different parti-
tioning algorithms have been presented and evaluated. The best performing approach,
Push2, pushes vertices to the compute nodes to which they sent most messages to. It
implements load balancing by restricting the range for the allowed number of vertices
per worker dependent on the average number of vertices per worker in the system.

Push2 has been evaluated using two different evaluation cases, vertex coloring and the
RDF triple store TripleRush. The evaluation of the approach led to two main conclu-
sions. First, the approach improves the runtime performance of Signal/Collect in case of
the vertex coloring evaluation case. However, not enough results have been collected to
express the increase quantitatively. Second, the approach does not significantly improve
the performance of query execution in the TripleRush system. Two general shortcom-
ings of the Push2 partitioner have been pointed out and might serve as hypotheses for
further investigations.

Finally, directions for future work have been pointed out. Besides further evaluations
of Push2 and the development of other partitioning algorithms, static graph partitioning
should be investigated. Executions in the cloud might increase the importance and
impact of graph partitioning. The presented steps advance Signal/Collect towards a
system that automatically selects the most sensible partitioning strategy for a particular
problem.
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