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Abstract

Many real world problems, such as network congestion control, can be mapped to the
concept of a distributed constraint optimization problem (DCOP). By analyzing a class of
DCOP algorithms known as local iterative approximate best-response (LIBR) algorithms,
[Chapman et al., 2011b] constructed a framework enabling the study and modular design
of new hybrid algorithms. In [Chapman et al., 2011a], several classical, as well as new
hybrid algorithms, were benchmarked in a series of graph coloring experiments. It was
found that the modular approach to algorithm design allowed the creation of new, better
performing algorithms.

In this thesis a similar approach was taken: selected existing LIBR algorithms, such
as the distributed stochastic algorithm and distributed simulated annealing, were im-
plemented and benchmarked using a graph processing framework called Signal/Col-
lect [Stutz et al., 2010], with which no such benchmark has ever been conducted. As a
further contribution, an existing, non-distributed algorithm from computer science lit-
erature called tabu search [Nurmela, 1993] was modularized and distributed in the same
manner.





Zusammenfassung

Viele Probleme in der Informationstechnologie, wie zum Beispiel das Stausteuerungsprob-
lem in Computernetzwerken, lassen sich als verteilte Bedingungsoptimierungsprobleme
darstellen. [Chapman et al., 2011b] erstellten ein Rahmenwerk zur Analyse und mod-
ularen Konstruktion von neuen Hybridalgorithmen zum Lösen solcher Probleme. In
[Chapman et al., 2011a] wurden mehrere solche Hybridalgorithmen in einer Serie von
Graphfärbungsexperimenten auf ihre Leistungseigenschaften untersucht. Es wurde fest-
gestellt, dass die modulare Konstruktionsweise die Erstellung von besseren Algorithmen
ermöglicht.

In dieser Arbeit wurde ein ähnlicher Ansatz gewählt: Ausgewählte klassische Algorith-
men wie der distributed stochastic algorithm und distributed simulated annealing sowie
mehrere Hybridalgorithmen wurden anhand eines Programmierungsmodells namens Sig-
nal/Collect [Stutz et al., 2010] in einem bislang nicht existierenden Benchmark-Test
evaluiert. Als ein weiterer Beitrag wurde ein zentraliserter Algorithmus namens tabu
search in der gleichen Weise modularisiert und getestet.
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1

Introduction

1.1 Motivation

In classical optimization, a problem of interest is generally modeled as a function of
specific parameters. The process of optimization then consists of finding a value as-
signment to these parameters such that the value of the function is maximal. Classical
optimization is a well studied subject and therefore a plethora of techniques exist for
solving even computationally demanding problems.

However, many problems, e.g. network congestion control, involve geographically
dislocated variables and thus the classical approach to optimization becomes unwieldy: in
order to utilize classical optimization techniques, the values of all variables values have to
be available to some central entity. In a widely distributed setting, a central aggregation
of information is, however, often impractical due to the high costs of communication.

If such a problem can be formulated as a distributed constraint optimization problem
(DCOP), distributing the process of optimization across multiple nodes in a computer
network becomes feasible. Since a DCOP can be divided into multiple subproblems, a
multi-agent system, in which each agent controls the value assignment of one variable,
allows solving the problem at hand in a completely distributed manner.

[Chapman et al., 2011b] proposed a framework to modularize a class of DCOP al-
gorithms known as local iterative best-response (LIBR) algorithms. By identifying the
components of existing algorithms, they were able to create and analyze new hybrid
algorithms.

Given the contributions of said framework, the goal of this thesis was to analyze the
performance of existing LIBR algorithms using a graph processing framework called Sig-
nal/Collect1 [Stutz et al., 2010]. By abstracting a problem to a graph wherein vertices
and edges form the computational components, Signal/Collect allows for a clean imple-
mentation of a multi-agent system and is, therefore, a promising environment for the
execution of LIBR algorithms.

The second goal was to apply the previously mentioned modularization process to
existing centralized algorithms. This enabled the creation of a distributed version of a
centralized optimization algorithm called tabu search [Nurmela, 1993].

1http://uzh.github.io/signal-collect/



2 CHAPTER 1. INTRODUCTION

The implementations of the algorithms and all resources related to the benchmark are
made available online2 under the Apache license3 version 2.0.

1.2 Structure

The content of this thesis is structured as follows:
In chapter 2, a formal introduction to the topic of DCOPs is given. Additionally, the
programming model Signal/Collect is introduced and set in the context of related tech-
nologies. The distributed version of tabu search, as well as the other hereinafter bench-
marked algorithms, are presented in chapter 3. Chapter 4 then provides a description
of the benchmark and shows the results obtained from it. Following the presentation of
the result, chapter 5 contains interpretations of all findings and discusses the insights
they provide. The thesis closes with a description of potential future work in chapter 6
and a concluding statement in chapter 7.

2https://github.com/hafenr/benchmarking-libr-algs-signal-collect
3http://www.apache.org/licenses/LICENSE-2.0.html



2

Background and Related Work

The following sections provide an overview of the two main topics to which the content of
this thesis relates. First, the concept of a constraint problem (CP) and the more specific
notion of a distributed constraint optimization problem will be explained. Second, a short
overview of the graph processing framework Signal/Collect, which will later be used to
evaluate various algorithms in the context of DCOPs, will be given.

For each of the two topics important terminology will be established and references
to existing works will be provided.

2.1 Distributed Constraint Optimization

The notion of a constraint problem can be applied to problems of various kinds. In
general, a constraint problem involves many different variables and the solution of the
problem is constrained by a set of requirements involving these variables.

It is important to differentiate between constraint satisfaction problems (CSPs) and
constraint optimization problems (COPs). In the former case, the goal is to find a value
assignment for each of the involved variables, such that all constraints are met. In the
latter case, however, there must exist some numeric measure of “how good” a given value
assignment for the variables is. The goal then becomes finding a set of values that yields
the highest measure of “goodness”.

This chapter progresses with a more complete formal description of constraint opti-
mization problems. Additionally, an outline of related work that has been done in this
field will be provided.

2.1.1 Formal Description

As defined by [Arshad and Silaghi, 2004], a constraint satisfaction problem can formally
be described as:

A formal construct P involving

• a set of variables V = {x1, x2, · · · , xn}, each of which has an associated domain
from the
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• set of domains D = {d1, d2, · · · , dn}, and

• a set of constraints C = {c1, c2, · · · , ck}, of which each involves a subset of V .

In the case of a constraint optimization problem, a problem like this – involving n
variables – can be regarded as finding the global optimum of a function from a n-
dimensional domain to the set of real numbers. The target value then corresponds to
some measure of “how good” or “how bad” a given assignment of values to the variables
of the problem is. This measure is, of course, dependent on the context in which a
solution is to be found. In existing literature, the terms cost function (less is better) or
utility function (less is worse) are often used. A straightforward approach in the context
of COPs is to define a utility function as the number of satisfied constraints depending
on the value assignment of the variables. Before explaining what a distributed constraint
optimization problem is, I will try to picture it with a simplified example of congestion
control.

Example: In a network of routers, each node has a limit of amount of data it can process
without beginning to lose packages and causing long delays. The goal is to find the
amount of data each of the routers has to process, such that the least amount of routers
deteriorate in quality of service, while still maximizing the system throughput1.

In a non-distributed setting, where the whole state of the system is available to a central
entity, a problem such as this could readily be modeled as a classical optimization prob-
lem. In the case of a computer network, however, such an approach would require that
each of the nodes has to inform a centralized entity about its current state. A solution
attempt like this is suboptimal due to various reasons:

For example, the reliance on a centralized entity is known to be a bad design decision
in a distributed system. Furthermore, the number of long distance messages that were
needed to be exchanged is by itself bad for system throughput. Hence, the nodes them-
selves should be able to communicate with their direct neighbors and decide how much
data they accept for processing. The variables – corresponding to the maximum load of
each router – therefore have to be controlled by local entities.

The previously established formal description of a constraint problem P must therefore
be augmented by:

• a set of n agents I = {1, 2, · · · , n}, each of which controls exactly one variable
xi ∈ V and each variable is controlled by exactly one agent i ∈ I.

It has to be noted that in existing literature an agent is often defined as being in control
of a subset of all variables. However, the extended definition in which each agent controls
one variable maps more naturally to the way Signal/Collect operates, while not intro-
ducing any loss in generality [Chapman et al., 2011a]. An extensive study of distributed
constraint satisfaction is given by [Yokoo et al., 1992].

1The term throughput refers to the average rate of successful message deliveries over a communication
channel. System throughput is the analogous term for all communication channels in a computer
network.
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2.1.2 Local Iterative Approximate Best-Response Algorithms

The class of algorithms that is suited for DCOPs is known as distributed constraint
optimization algorithms. [Chapman et al., 2011b] split this class into three subclasses.
The subclass that is of special importance in the context of this thesis is known as the
one of local iterative approximate best-response (LIBR) algorithms. These algorithms
are defined as having two restrictions that make them interesting for solving DCOPs in
a completely distributed manner:

• First, agents in these algorithms may communicate only with other agents if there
exists a constraint involving the variables of both agents.

• Second, an agent is allowed to send only messages that contain information about
himself (e.g., the current value of the variable he controls).

These restrictions ensure that the usage of such algorithms leads to relatively small com-
munication costs. If the goal is to find the optimal solution to a DCOP, algorithms from
another subclass known as distributed complete may provide better results. However,
these algorithms are generally more complex and computationally demanding. Further-
more, as pointed out by the authors of these definitions, in many applications it is often
more important to find a value assignment for the variables that yields a utility that is
“good enough” in a small amount of time than to find the global optimum.

2.1.3 DCOPs as Potential Games

[Chapman et al., 2011b] took a concept from game theory2 known as potential games
to construct a framework for studying and designing LIBR algorithms.

From the game theoretic point of view, a potential game can informally be described
as a set of players wherein each player – or agent – tries to maximize its own utility by
playing a certain strategy. The decision of what strategy the agent plays depends on
what strategies other players employ. Additionally, no player will play a strategy that
lowers the global utility, because it is defined as the sum of utilities over all players. There
may exist certain strategy configurations such that no agent has an incentive to change
its strategy since no increase in global utility can be achieved. Such configurations are
known as Nash equilibria and can be seen as the maxima of the local utility functions.

Furthermore, for each potential game, there exists a finite sequence of state changes
such that the global utility increases with every step – ultimately resulting in a Nash
equilibrium. This property is known as the finite improvement property and was ex-
tensively analyzed by [Monderer and Shapley, 1996]. The finite improvement property
assures that an algorithm will ultimately find a solution corresponding to a Nash equili-
birum, provided that players change states only if the change does not result in a worse
utility.

In the previously established formulation of a DCOP, each agent i ∈ I was defined as
being in control of a variable xi ∈ V . With the intent of uniting all concepts presented

2Game theory refers to the study of decision making using mathematical models.
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thus far, the formal construct of a DCOP is extended by associating each agent i with
a utility function

ui :
∏

j∈Ni ∪ {xi}

dj → R

where Ni corresponds to the set of variables that are involved in a constraint with xi
and dj denotes, as defined earlier, the domain of the variable xj . These utility functions
therefore associate each agent’s local variable configuration with some real number –
henceforth simply called the “utility”.

2.2 Signal/Collect

One of the goals of this thesis is to analyze the performance of selected LIBR algorithms
using the programming model Signal/Collect together with its official implementation3.
As stated in the introduction, Signal/Collect provides a natural way of modeling a multi-
agent system and thus lends itself as a suited environment for the execution of LIBR
algorithms. Due to the choice of this specific framework, a small introduction to its
programming model and some of the features of its implementation is in order.

The following sections therefore try to provide insight on how Signal/Collect operates
and why its model of computation is suited for the execution of LIBR algorithms. In
the remainder of this chapter, some notable other programming models are presented in
order to provide rationale for choosing Signal/Collect over related technologies.

The current implementation of Signal/Collect is written in the Scala4 programming
language. Implementation-specific code will therefore be written in Scala-like pseu-
docode using typewriter font. Algorithms that can be understood in a more general
context are, however, presented in typical imperative pseudocode.

2.2.1 Overview

Signal/Collect was originally created to provide a way to oppose the immense growth
of available data specifically in the context of the Semantic Web. [Stutz et al., 2010]
pointed out that some graph problems had to be shoehorned to programming models
that were not specifically designed for such tasks. As a concrete example, the pipeline-
like processing of key-value pairs employed by MapReduce5 was mentioned. In contrast,
Signal/Collect was created from the ground up to provide a more natural way of handling
web-related data, which is inherently graph-like in structure.

In Signal/Collect, a compute graph G, consisting of a set of vertices V and a set of
their connecting edges E, forms the basis of a computation.

The general idea is that vertices can send messages – called signals – along their
connecting edges. Neighboring vertices receive these signals, use the therein stored

3The framework Signal/Collect is licensed under the Apache License 2.0 and is available at
http://uzh.github.io/signal-collect/.

4http://www.scala-lang.org/
5http://research.google.com/archive/mapreduce.html
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information to compute some value, and, again, pass new messages along their edges.
This process can be divided into two consecutive phases:

The signal phase in which vertices send messages to their direct neighbors.

The collect phase in which vertices gather all received signals to compute some value,
possibly altering their internal state.

Given this short overview of Signal/Collect, some details about the actual implementa-
tion are necessary since many of the later presented algorithms make use of its features.
For the following sections, it has to be kept in mind that the terms “actor”, “player”,
“vertex”, and “node” can be understood as representing the same concept. Similarly,
the terms “message” and “signal” may be regarded as synonyms.

2.2.2 A Closer Look

As previously mentioned, a computation in Signal/Collect consists of two consecutive
phases – signal and collect – which are repeated until a certain termination condition is
met.
A vertex has the following properties6:

id: a unique identifier in the graph.

state: the current state representing an intermediate result in the computation.

mostRecentSignalMap: a map from the ids of all neighboring vertices to the most recent
signals they sent to this vertex.

Additionally, a vertex must implement the abstract method collect: State7 which,
when invoked by the framework, alters the state of the vertex. Of course, an actual
change of state happens only if collect returns a state different from the previous one.
The second basic unit of computation is the edge, which has among others the following
properties:

sourceVertex: the source vertex where it originates.

targetVertex: the target vertex to which it connects.

Edges further have to implement the abstract method signal: Signal, which is also
invoked by the framework and returns the message that is to be passed to the vertex
targetVertex.

An important fact regarding vertices and edges is that Signal/Collect allows typed
graphs. This means that each vertex and edge has a specific type, which is definable
by means of inheritance. Since the framework is defined on the interfaces provided by

6This list is not exhaustive, but should provide enough information to picture how a computation in
Signal/Collect works.

7The colon in this notation indicates the type of the function’s value and can be read as “has type”.
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the type-parameterized base classes Vertex[+Id,State] and Edge[+TargetId]8, graphs
with different vertex and edge types can be constructed, thus allowing great flexibility
when modeling a DCOP. Furthermore, a graph in Signal/Collect does not have to be
static. During a computation, the topology of the compute graph may be altered at will
by adding and removing edges or vertices. This feature is a strong point of Signal/Collect,
considering the fact that the problems to be modeled are often very dynamic in nature.

Modes of execution

Signal/Collect was designed with the possibility of both synchronous and asynchronous
execution in mind. For a program in Signal/Collect an execution mode can be speci-
fied. These execution modes include Synchronous, PureAsynchronous, and Optimized-

Asynchronous. In synchronous executions, the signal and collect phases are globally
synchronized. During each phase all vertices signal or collect in parallel. Such a program-
ming model is known as the bulk synchronous parallel (BSP) model and was introduced
by [Valiant, 1990].

In contrast, asynchronous execution mode does not provide globally synchronized
signal and collect phases. While the signal and collect phases of each vertex are still
consecutive, no guarantee exists that any two vertices are in the same phase at the same
time. The default execution mode, OptimizedAsynchronous, is a slight alteration of
PureAsynchronous in that it consists of one single globally synchronized step which is
followed by asynchronous execution.

As will be shown later, the underlying execution modes of Signal/Collect can be used
to construct new execution modes, each tailored for a specific family of LIBR algorithms.

Termination conditions

A Signal/Collect computation terminates when certain conditions are met. These condi-
tions can be set prior to starting the computation by means of specifying the maximum
number of signal and collect steps (in the case of synchronous execution) or a by cer-
tain time limit (in the case of asynchronous execution). Another possibility is to utilize
the methods scoreSignal: Double and scoreCollect: Double along with their as-
sociated thresholds signalThreshold and collectThreshold. These functions can be
implemented inside the vertex and edge class, respectively. Prior to invoking the collect
method of a vertex, its scoreCollect function is called. If its returned value is below
the associated threshold, the vertex will not collect. Analogously, an edge will not signal
if its score is below signalThreshold. The rescoring of a vertex is done when a new
signal is received. An edge is rescored if the collect method of its source vertex was
invoked9. Automatic termination is triggered when there are no more active vertices

8In Scala, types stated in brackets are type parameters. The + sign in front of a type parameter marks
it as covariant. This basically means that given two types A, B, a parameterized type F[+T] with a
covariant type parameter T, and a subtype relation denoted A <: B (read “A is a subtype of B”), the
assertion F[A] <: F[B] holds.

9Altering the graphs topology during runtime triggers rescoring as well. Additionally, the user may
trigger rescoring manually. These mechanisms, however, are not essential in the context of this thesis.
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and edges, i.e., all scoring functions returned values below their respective thresholds.
All afterwards presented algorithms use an implementation of scoreSignal identical to
the one in listing 2.1. Additionally, signalThreshold is set to a number greater than 0.

Listing 2.1: The scoreSignal function

override def scoreSignal: Double =

if (allConstraintsSatisfiedWith(currentState) && !stateHasChanged)

0

else

1

Another possible way of forcing termination, which is also used in the implementation of
the hereinafter presented algorithms, is the use of global termination conditions: after a
certain interval of time (or steps), termination can be triggered by repeatedly checking
if, given the current state of the graph, a user-definable predicate holds. To make use of
this functionality, the user has to define what information is to be extracted from each
vertex and how this information is to be aggregated. The “current state of the graph”
can therefore be defined in the context of a specific algorithm.

2.2.3 Related Technologies

There exist various other frameworks with different programming paradigms for paral-
lelized information processing. The reasons that motivate the use of Signal/Collect in
the context of DCOPs are best explained by highlighting how Signal/Collect compares
to other frameworks. For this reason, an overview of two other frameworks will be given.

MapReduce

MapReduce is a programming model made famous by its use in the data center infras-
tructure of Google. Apart from the Google File System [Ghemawat et al., 2003] and
BigTable [Chang et al., 2008], MapReduce10 is one of the core components of Google’s
massive data processing infrastructure11 [cnet2008google, 2008].

As the name suggests, the algorithm of MapReduce mainly consists of two functions
called Map and Reduce, whose names are inspired by the functions map and reduce12

which exist in many functional programming languages. The algorithm consists of mul-
tiple consecutive steps:

Upon initialization, a large and possibly widely distributed data set (the problem) is
split into separate chunks by a centralized entity – the so called master node. These
chunks get assigned to a number of worker nodes that may split the data sets even
further. After the process of splitting, worker nodes process the – now much smaller –

10https://developers.google.com/appengine/docs/python/dataprocessing/overview
11Although patented by Google, open-source implementations of MapReduce and associated technologies

exist in the form of Apache’s Hadoop project (http://hadoop.apache.org/).
12In some programming languages the function corresponding to reduce is called fold.
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data sets by applying a user-defined Map function to them. The data returned by Map is
then sent back to the master node which sorts it and distributes it again among multiple
reducer nodes. These nodes process their assigned data by the, also user-defined, Reduce
function. Eventually, the MapReduce system aggregates the final data to produce the
output of the algorithm.

Modelling a DCOP as a graph of interacting agents leads to an inherently non-linear data
flow. The pipeline-like way of data processing that MapReduce employs is thus a rather
unnatural way of approaching such a problem. According to [Malewicz et al., 2010],
using MapReduce on large graphs ”can lead to suboptimal performance and usability
issues”. Furthermore, the reliance on a central entity like the master node of MapReduce
is disadvantageous in the context of completely distributed algorithms.

In contrast, the already graph-based programming model of Signal/Collect maps much
closer to the concept of a DCOP and should therefore be better suited for the task at
hand.

Pregel

Pregel is a scalable platform designed by Google for processing large graphs. It was
designed to have a degree of fault-tolerance that allows it to run on ”clusters of thousands
of commodity computers” [Malewicz et al., 2010].

The most basic unit inside the compute graph of Pregel is – much like in Signal/Collect
– a vertex. In accordance with general graph theory, each vertex may have several edges
which connect it to neighboring vertices. Pregel uses a model of computation similar
to the bulk synchronous parallel model, which is also employed by the synchronous
execution mode of Signal/Collect. The synchronous part of a Pregel computation is
given by a sequence of iterations called supersteps. During each superstep S, vertices can
– as in Signal/Collect – pass messages along their edges which are received at superstep
S + 1.

User-definable functions decide for each vertex and superstep what messages are to
be sent, how to process the received messages sent at S − 1, and how the state of each
vertex should be changed. These functions are invoked in parallel for each vertex at each
superstep. In contrast to the signal and collect functions, the behavior of changing
state and messaging neighbors is therefore merged into a single procedure.

The separation of these functionalities into distinct components eases the modular
construction of algorithms. This fact is a strong plus factor for the usage of Signal/Collet
since the modular construction of LIBR algorithms is a core subject in this thesis.

Also note that – in contrast to Signal/Collect – Pregel does not support custom
vertex types. Although a typed graph can be emulated in Pregel by means of simple
programming constructs, the inheritance-based approach of Signal/Collect enables a
conciser and type safe way of modularizing algorithms.

The topic of termination detection highlights a further similarity between the two
models: in Pregel vertices can ”vote” to halt upon which they are deactivated until they
receive a new message. When all vertices in the graph are deactivated, the algorithm
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terminates. This is similar to the functionality of the scoring functions scoreSignal

and scoreCollect used in Signal/Collect.
In Pregel, subsets of vertices get assigned to partitions which are then, in turn, assigned

to threads. The assignment of a vertex to a partition is done (by default) purely by
id. The assignment of partitions to actual machine workers (computers) can also be
customized to, for example, exploit vicinity between certain machine workers.

As previously mentioned, Pregel tries to achieve a high degree of fault tolerance. Its
main mechanism for providing fault-tolerance relies on checkpointing : at the beginning
of each superstep, the workers running the partitions get instructed to save their state
to persistent storage. By consecutively pinging each worker thread, the system detects
crashed partitions and – in case they will not reboot – will assign the dead partition to
a new worker thread.

The creators of Pregel argue that the synchronicity of their programming model makes
reasoning about the correctness of a program easier and also eliminates all possibilities
for race conditions. Due to the similar nature of the two frameworks, these statements
can readily be applied to Signal/Collect as well.

It has to be noted that the algorithms benchmarked in this thesis solely use the
synchronous execution mode of Signal/Collect. However, in contrast to Pregel, Signal/-
Collect provides the possibility of asynchronous execution. This fact is a further strong
point since asynchronicity enables the construction of a whole new set of algorithms that
may be studied in potential future works.
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Algorithms

If the previously established definition of a DCOP is simplified by the change that, now,

• each constraint involves exactly two variables xi, xj ∈ V , where i 6= j and further
states that xi 6= xj ,

the problem can be understood as a loop-free graph in which pairs of agents and the
variables they control correspond to vertices and constraints can be seen as undirected
edges. The problem that arises by the introduction of this change is the famous vertex
coloring problem, in which an assignment of colors to vertices is to be found such that
no two adjacent vertices are colored alike.

As a further simplification, the domains of all variable di are equal to some set D.
In the context of vertex coloring, this means that every vertex has the same finite set
of colors it can be colored with. For purposes of easier implementation, colors are
represented by integers. Therefore, the domain for each variable can be defined as a set
of integers {0, 1, 2, . . . , |D| − 1}.

3.1 Modularizing LIBR Algorithms

As mentioned in section 2.1.3, [Chapman et al., 2011b] created an analytical framework
for studying and designing LIBR algorithms. An important aspect of this framework is
that it allows the specification of an algorithm in terms of its components or modules.
These modules are as follows:

• First, a target function, which evaluates a given state according to a utility function.
The value returned by this function is then referred to as the payoff of this state.
In its most simple version, the target function corresponds to the utility of a state
assumed the neighboring vertices do not alter their state. In this case, the target
function is known as immediate payoff.

• Second, a decision rule that returns – given some evaluated states – the state that
matches some specific criterion.

• Third, an adjustment schedule that decides if a vertex should compute a new state.
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These modules can be expressed naturally in Scala in terms of traits, which can be used
as a way to extend a class with certain functionalities. Compared to other program-
ming constructs, traits are similar to mixins or interfaces that allow the specification of
behavior.

The modules defined above are further extended by a function called prospectiveStates

that enables a vertex to consider only a subset of its domain as possible new states. List-
ing 3.1 outlines how these modules fit together. The colon notation is to be read as “has
type”.

Listing 3.1: The components of a LIBR algorithm

trait TargetFunction {

def utility(state: State): Utility = {

return numberOfConstraintsSatisfiedWith(state)

}

def evaluate(state: State): (State, Payoff) = {

return (state, utility(state))

}

def evaluateAll(states: List[State]): List[(State, Payoff)] = {

val evaluatedStates = for (state <- states) yield {

evaluate(state)

}

return evaluatedStates

}

}

trait DecisionRule {

def decisionRule(currentEvaluatedState: (State, Payoff),

otherEvaluatedStates: List[(State, Payoff)]): State

}

trait AdjustmentSchedule {

def shouldComputeNewState: Boolean

}

trait ProspectiveStates {

def prospectiveStates(allStates: List[State]): List[State]

}

In section 2.2.1 it was explained that vertices in Signal/Collect compute their states by
means of their collect function and that edges use their signal function to pass signals
between adjacent vertices.

Having defined the components of LIBR algorithms in terms of extendable traits, the
implementation of collect and signal can be generalized to the one shown in listing 3.2
and 3.3, respectively.
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Listing 3.2: The generalized collect function

def collect: State = {

if (shouldComputeNewState) {

val statesToEvaluate = prospectiveStates(domain)

val evaluatedOtherStates = evaluateAll(statesToEvaluate)

val evaluatedCurrentState = evaluate(state)

val chosenState = decisionRule(evaluatedCurrentState,

evaluatedOtherStates)

return chosenState

} else {

return state

}

}

In the case of signal, the standard behavior is to simply inform adjacent vertices of
their neighbors’ states.

Listing 3.3: The generalized signal function

def signal: Signal = return sourceVertex.state

3.2 Considerations in Algorithm Design

Making an optimization algorithm distributed poses several difficulties that have to be
addressed when designing such an algorithm. Two of the most important characteristics
of LIBR algorithms are described below.

• If neighboring agents are allowed to change their state at the same time, they can
not know how their state change will affect the global utility, i.e., the number of
constraints satisfied. Consider a scenario involving two neighboring vertices whose
domains consist of the colors green and red. If both the vertices are colored green
at time t, both of them want to change their color. Since – from their point of view
– a change to color red would satisfy their constraint, both of them change to color
red. At time t+1 both vertices are colored red and in the same situation as before.
This oscillatory process can go on indefinitely and is known as thrashing. Reducing
the number of vertices that are allowed to change their state simultaneously can
minimize the risk of thrashing. However, less simultaneously computing vertices
also lead to less utilized computing power. This issue is approached differently by
many of the algorithms presented in section 3.3.

• Another important characteristic of an algorithm is a property known as anytime.
An algorithm is said to be anytime if it can be stopped at any instant during its
runtime and it will return the best solution found up to that point in time. The
famous optimization algorithm gradient ascent1 or its twin gradient descent are

1Gradient ascent is a simple optimization algorithm that gets its name from the fact that it tries to
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anytime since they – by design – always move in the right direction and therefore
never deteriorate in solution quality they produce. Many of the simpler anytime
algorithms are prone to get stuck in local optima. For this reason, many algorithms
employ stochastic mechanisms that help them to get out of optima at the cost of not
being anytime. With non-distributed optimization algorithms, a straightforward
approach would be to have the algorithm remember the best solution it found thus
far, which – in case it is terminated prematurely – will be returned. However, in the
context of DCOPs this is not easily done. For this claim I provide three reasons:
Some vertex i can not know if the solution that was best for itself is also the best for
some vertex j 6= i. The approach of having the vertices negotiating which solution
was best falls short due to the prohibitively large amount of messages it would
require. Also, designating special vertices as “book keepers” may work but would
defeat the purpose of distributed constraint optimization due to the existence of
centralized entities.

In the following sections, the algorithms whose performance will later be analyzed are
presented and their respective components identified. In cases where it serves the purpose
of clarity, the components are outlined in pseudocode. It has to be kept in mind that
these components are implemented by simply subclassing the previously mentioned traits
and overriding their respective functions.

3.3 Presentation of Algorithms

The following algorithms were introduced in various research papers but were never
mapped to the framework presented in [Chapman et al., 2011b] using Signal/Collect.
The specific algorithms were chosen on account of their good performance identified in
existing works, historic significance, and/or their property of representing a non-standard
approach to optimization.

3.3.1 Distributed Stochastic Algorithm

[Zhang and Wittenburg, 2002] found that the family of distributed stochastic algorithms
(DSA) showed better performance in vertex coloring problems than an algorithm known
as distributed breakout, which was previously considered the top contender in this disci-
pline.

A plethora of DSA variants has been proposed in existing literature. The benchmark of
this thesis includes DSA-A, as well as DSA-B, a variant which promises good performance
on vertex coloring problems, as shown by [Zhang et al., 2002].

DSA-A and DSA-B both use their utility function to evaluate prospective new states
without adding additional complexity. As mentioned before, the utility of a given state
for some vertex i is equal to the number of constraints in which i is involved that were

find the maximum of a function by simply following its gradient, i.e., the direction of its greatest rate
of increase.
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satisfied if i was to choose said state and its neighborhood would not change. In the
context of vertex coloring this corresponds to the number of neighbors with different
colors.

This kind of target function is called immediate payoff because the payoff of some
state is simply the utility an agent would achieve with said state assumed the state
configuration of its neighborhood does not change.

In the case of DSA-B, the procedure that is used to decide which of the evaluated
states to choose is known as argmaxB. argmaxB is – as the name implies – related to the
mathematical operator argmax which yields the set of argument values for which the
value of a given function is maximal. The main differences between the two are: First,
argmaxB yields only one value. Second, in the case that multiple such argument values
are found, argmaxB selects one of these values randomly. An outline of the argmaxB

procedure is shown in algorithm 1.

DSA-A uses a slightly different member of the argmax family, namely argmaxA (al-
gorithm 2). In contrast to argmaxB, argmaxA chooses a new state only if its payoff is
strictly greater than the payoff of the current state. In the case that multiple such states
are found, the state is – just like in argmaxB – chosen randomly.

Algorithm 1 The decision rule argmaxB

procedure decisionRule argmaxB(currentPayoff, otherPayoffs)
allPayoffs← {currentPayoff} ∪ otherPayoffs
pMax← { p ∈ allPayoffs | p = max(otherPayoffs) ∧ p ≥ currentPayoff }
if pMax = ∅ then

return stateOf(currentPayoff)
else

return stateOf(randomElementIn(pMax))
end if

end procedure

Algorithm 2 The decision rule argmaxA

procedure decisionRule argmaxA(currentPayoff, otherPayoffs)
pMax← { p ∈ otherPayoffs | p = max(otherPayoffs) ∧ p > currentPayoff }
if pMax = ∅ then

return stateOf(currentPayoff)
else

return stateOf(randomElementIn(pMax))
end if

end procedure

All variants of DSA use an adjustment schedule known as a parallel random schedule
which allows a vertex to compute a new state only with a certain probability p – known
as the degree of parallel executions. In [Chapman et al., 2011b], the parameter p is
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defined slightly differently: instead of being the probability of a vertex computing a new
state, p is defined as the probability of a vertex changing to an already computed state.
The altered definition is used in this thesis since I consider the process of evaluating a
possibly large amount of states, only to forbid the vertex to acquire a subsequently chosen
state to be wasteful in terms of computational resources. Using this altered definition,
a parallel random schedule can easily be implemented using the synchronous execution
mode of Signal/Collect and a procedure similar to the one shown in algorithm 3. As
mentioned in the beginning of this chapter, thrashing poses a difficulty in algorithm
design. Restricting the number of vertices that may change their state at the same time
by a probabilistic process can lessen the risk of thrashing. Its occurrence, however, can
not be ruled out completely.

Algorithm 3 The parallel random adjustment schedule

procedure shouldComputeNewState
if randomElementIn( [0, 1) ) < p then

return true
else

return false
end if

end procedure

3.3.2 Spatial Adaptive Play

SAP [Young, 2001] too uses immediate payoff as its target function. Its decision rule is,
however, quite unlike the argmax* family. SAP decides which state to pick according
to a probability distribution which generally assigns states with higher payoff a higher
probability. Although the probability of such an event is relatively small, even a state
with a payoff lower than the payoff of the current state can be chosen as the new state.

The probability mass function2 which describes said distribution is called a multino-
mial logit function and is given by:

Pη(s) =
e

1
η
ui(s)∑

k∈di e
1
η
ui(k)

, s ∈ di

where di is the set of considered states (the domain of the vertex) and ui the utility
function over it. The parameter η determines the shape of the distribution substantially,
as can be seen in figure 3.1.

The higher the value of η is, the closer the distribution is to an uniform one. In
contrast, if η gets closer to 0 the probability that non-maximal payoffs are chosen gets
continuously smaller. Therefore, at η = +∞ the decision rule of SAP randomly chooses

2A probability mass function pX(x) of some random variable X yields the probability that its associated
random variable acquires a value equal some x, i.e., pX(x) = P (X = x).
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Figure 3.1: The multinomial logit function with various values for η.
The y-axes indicates the probability of choosing a state dependent on the payoff

associated with that state. Note that the dotted lines are solely for purposes of clarity.

its values, regardless of their payoff. At η = 0, however, the decision rule resembles the
behaviour of argmax* in which only the value with the highest payoff is chosen.
The value η can either be set to a constant value or gradually be altered over time. In
the following benchmark η is kept constant at various values. The mechanic of gradually
lowering η is employed by an algorithm named distributed simulated annealing, which is
presented shortly after.

As an adjustment schedule, SAP uses a sequential random schedule. Again, this sched-
ule uses Signal/Collect’s synchronous execution mode. In contrast to the parallel random
schedule employed by the DSA family of algorithms, only one vertex is randomly chosen
and allowed to compute a new state at each globally synchronized collect step.

3.3.3 Greedy Spatial Adaptive Play

As previously shown, by lowering the parameter η in the decision rule of SAP, its be-
haviour approaches that of argmax*. To analyze how an immediate payoff algorithm like
DSA performs with a sequential random schedule, a “greedy”3 version of SAP (hence-
forth called gSAP) is added to this list of algorithms.

The excellent performance of gSAP was underlined by the findings of [Chapman et al.,
2011a] which further qualifies it as a good candidate for benchmarking in Signal/Collect.

3.3.4 Maximum-Gain Messaging

Up until this point, all of the presented algorithms simply passed their newly computed
state along their edges during a signal step. Maximum-gain messaging (MGM), how-
ever, uses two different types of signals.

As the name of the algorithm suggests, a vertex in MGM informs its neighbors about
the maximum payoff – or gain – it could achieve if it was allowed to acquire some state.

3The term greedy refers to the fact that, unlike SAP, gSAP tries to maximize its payoff each collect

step without considering states that would result in a lower utility.
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A vertex is allowed to change its state only if it could achieve the greatest payoff of
all its neighbors. This mechanism ensures that no thrashing can occur since no two
neighboring vertices can change their state at the same time. Furthermore, the fact
that each vertex only changes to states of higher payoff leads to the algorithm being
anytime [Maheswaran et al., 2004].

Although the maximum-gain mechanic is an adjustment schedule, the functionality
was implemented in terms of overriding signal and collect. However, the same effect
could have been achieved by providing a special version of shouldComputeNewState. As
can be seen in algorithm 4, MGM uses the immediate payoff target function to evaluate
its prospective states and argmaxB as its decision rule. The modularity is therefore
retained.

Algorithm 4 The maximum-gain schedule

procedure mgmCollect
if phase = maxGainExchange then

phase ← stateInform . change phase
gains ← gains(recievedSignals) + myGain
maxGains ← maxValues(gains)
maxGain ← breakTiesByVertexId(maxGains)
if maxGain.id = myId then . vertex ids are sent along with messages

return candidateState . acquire the computed best state
else

return currentState . keep the current state
end if

else if phase = stateInform then
phase ← maxGainExchange . change phase
neighborStates ← states(recievedSignals)
payoffs ← { utility(st, neighborStates) | st ∈ domain }
myGain ← argmaxB(payoffs) . the chosen highest payoff
candidateState ← stateOf(myGain) . the state which yields myGain
return currentState

end if
end procedure

procedure mgmSignal . invoked for each outgoing edge
if sourceVertex.phase = maxGainExchange then

return sourceVertex.myGain . send the computed gain to neighbor
else if sourceVertex.phase = stateInform then

return currentState . send the computed gain to neighbor
end if

end procedure
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3.3.5 Weighted Regret Matching with Inertia

An approach of giving an algorithm a notion of memory is having each vertex remember
a measure of “regret” for not having taken a certain state in the past. This measure
is calculated as the difference between the payoff of a state that was not chosen and
the payoff of the actually chosen state. For each state in its domain the algorithm
remembers the average regret. Each time the algorithm evaluates new states using its
target function, the average regret for each state is updated. These averages may be
interpreted as the regret of a vertex for not having chosen this state during the last
collect step.

The mechanic of having an algorithm remembering regrets is known as regret matching,
of which several variants have been proposed in existing literature. [Marden et al., 2007]
proposed a modification to regret matching called weighted regret matching (WRM) in
which the regret of past state changes is weighed by some pre-defined factor. Since the
regrets are updated each collect step, weighing past steps by some factor M ∈ [0, 1)
results in the fact that regrets from the distant past have less impact on the decision of
a vertex since their contribution to the total average regret was more often multiplied
by some value ∈ [0, 1).

The target function of WRM-I is given in algorithm 5.

Algorithm 5 The target function of WRM-I

procedure evaluate wrm-i(state)
i← currentStep
currentRegret ← utility(state) - utility(currentState)
discountedRegret ←M · currentRegret + (1−M) · pastRegret(state)
finalRegret← max(0, discountedRegret)
pastRegret(state) ← 1

i (discountedRegret + (i− 1) · pastRegret(state))
return (state, finalRegret)

end procedure

In the actual implementation, the weighing factor is called fadingMemory. This name
resembles the fact that a higher value of fadingMemory results in stronger disregard of
past events. If fadingMemory had a value of 1, only the current regret would influence
the decision of a vertex.

After evaluating its potential new states by means of its regret mechanic, the algorithm
chooses the next state according to the argmaxBI function (algorithm 6). argmaxBI is
almost identical to argmaxB except for the fact that there exists some probability – called
inertia – that the current state is kept even if a better state has been found. Since WRM
was extended by inertia, it is called WRM-I. The reason for employing a mechanic like
inertia has to do with the adjustment schedule employed by WRM-I:

The adjustment schedule WRM-I uses is known as the flood schedule. This schedule
uses the synchronous execution mode of Signal/Collect and always allows the vertices to
compute a new and possibly better state. Although a flood schedule does not add any-
thing to the synchronous execution mode of Signal/Collect, the terms are used separately
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to comply with existing terminology.

A flood schedule is essentially the same as a parallel random schedule with p = 1.
As was mentioned in the description of DSA, the parameter p has to be adjusted to
minimize thrashing while still allowing a high enough degree of parallel computation. In
the case of WRM-I, however, a parallel random schedule can not be used since if the
vertices were forbidden to collect, they could not update their average regrets. By using
inertia as defined in the context of argmaxBI, thrashing can also be minimized while
still allowing the vertex to conduct its computation.

Algorithm 6 The decision rule argmaxBI

procedure decisionRule argmaxBI(currentPayoff , otherPayoffs)
allPayoffs ← {currentPayoff } ∪ otherPayoffs
pMax ← { p ∈ allPayoffs | p = max (otherPayoffs) ∧ p ≥ currentPayoff }
if pMax = ∅ then

return stateOf (currentPayoff )
else if randomElementIn( [0 , 1 ) ) < I then

return stateOf (currentPayoff )
else

return stateOf (randomElementIn(pMax ))
end if

end procedure

As another way of countering the risk of multiple vertices acquiring a new state at the
same time, a hybrid algorithm called MGM-WRM is benchmarked as well. Like its name
suggests, MGM-WRM leaves the mechanic of inertia out in favor of the maximum-gain
adjustment schedule. To test how this schedule would affect convergence speed, [Chap-
man et al., 2011a] benchmarked an algorithm very similar to MGM-WRM. The difference
between both algorithms is merely that theirs did not make use of the fadingMemory

mechanic. The benchmark of MGM-WRM should therefore provide insight on how both
of these algorithms differ in performance.

3.3.6 Joint Strategy Fictitious Play with Inertia

In a family of algorithms known as fictitious play (FP), each player keeps track of its
neighbors’ histories of state changes. While evaluating possible new states by means of
its target function, FP takes these historic records into account.

In FP, an agent assumes that, first, its neighbors behave independently from each
other. Second, it assumes that they play randomly according to the frequency of states
they were in in the past. It has to be noted that these assumptions are clearly false but
they are made to approximate the behavior of neighboring vertices.

A complete description of FP is provided by [Marden et al., 2009]. To understand
how FP works, the following description shall suffice. The payoff for some state s is
computed as follows:
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If the neighbors of some vertex i are denoted by Ni = 〈1, 2, · · · , J〉 and each of those
neighbors has a domain dj for j ∈ Ni, then the possible state configurations in the
neighborhood of i are: Ci = d1 × · · · × dJ . With this in mind, the payoff pi(s) for some
possible state s is given by:

pti(s) =
∑
c∈Ci

ui(s, c)
∏
j∈Ni

P (”j is in state cj at time t”)

where, in the context of this thesis, ui(s, c) is the number of constraints satisfied with the
theoretical state configuration c of the neighborhood. The fact that each vertex has to
store the relative frequencies of states for each one of his neighbors is often not feasible
for larger systems. As a less computationally demanding version of FP, an algorithm
called joint-strategy fictitious play with inertia (JSFP-I) is analyzed in this benchmark.

[Marden et al., 2009] introduced JSFP-I as a lighter version of FP, alleviating the “in-
formational and computational burden” that is an inherent problem with most learning
algorithms that have some kind of memory. This problem, of course, can be severe in
large-scale systems where the average degree of the graph is high.

As an earlier try to counter the computational demand of FP, [Lambert et al., 2005]
designed a variation of FP called sampled FP in which each node only recorded the
history of a subset of past state frequencies for each neighbor. However, it was found
that for fast convergence, the sample size needed grew impractically fast with respect to
number of nodes in the graph under consideration.

In contrast to FP and sampled FP, JSFP-I only keeps track of the frequencies of its
neighbors’ “joint strategies” which translates to a state configurations of neighboring
vertices.

In terms of actual implementation, this means that each vertex has to store a hash ta-
ble which associates for each possible state configuration of its neighborhood a frequency
value that gets updated every time a new state configuration is observed.

Using the same notation as before, the target function of FP can therefore be simplified
to:

pti(s) =
∑
c∈Ci

u(s, c)P (”the neighbors of i have the configuration c at time t”)

As shown by [Chapman et al., 2011a], this equation is equivalent with having each vertex
updating a record of the average utility of each state. At the beginning of each collect
step, the vertices update their record of average utilities. The set of all average utilities
are then passed together with their respective states to the decision rule. Much like
WRM-I, JSFP-I uses a flood schedule. Due to the same reasons WRM-I is in need of
a mechanic that could minimize thrashing, JSFP-I as well has to make use of inertia.
Thus the decision rule argmaxBI complements JSFP-I.

3.3.7 Distributed Simulated Annealing

As shown previously, the shape of the probability distribution that underlies the decision
rule of SAP can be altered by changing the value of η. Distributed simulated annealing
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(DSAN) makes use of the fact that if η is gradually lowered during the runtime of the
algorithm, the decision rule gets “greedier” until it reaches – at η = 0 – the behaviour
of the argmax* family. If DSAN considers a state that would be worse than its current
state, there is still a certain probability than DSAN acquires this state. This probability
is dependent on η.

The term “simulated annealing” stems from a process similarly called “annealing”
used in material sciences. By heating metals above a certain temperature, molecules
break their intramolecular bonds and then – while gradually cooling off – reform them,
resulting in an often more “fine-tuned” molecular structure.

Simulated annealing is a popular heuristic in optimization problems, since it allows –
intuitively speaking – an algorithm to explore its search space without greedily climbing
the next local maximum. As the algorithm progresses, η – which is often called temper-
ature – is lowered according to function of the current iteration number4 to speed up its
convergence.

A distributed version of simulated annealing for solving DCOPs has been introduced
by [Arshad and Silaghi, 2004]. In its introductory paper, DSAN was matched against
various DSA variants and exhibited – especially on heavily constrained problems – good
performance. Also shown in its authors’ experiments, the η parameter has a huge in-
fluence on its behavior: they found that in order to compete with DSA, η had to reach
values close to 0 relatively quickly. Also, if η was too high initially, the algorithm was
too random in its decision what values to pick next and was not able to produce good
solutions as quickly as DSA. They found that ηck(i) = c

ik
where i is the number of the

current iteration and c is some constant, is a good temperature function if c is close to
1 and k is set to 2.

In contrast to all other algorithms presented here, DSAN has a different prospective-
States component. Whereas other algorithms evaluate their whole domain, DSAN only
evaluates one state that is chosen randomly from its domain. This design decision was
made since, first, the authors of DSAN specified the algorithm this way and, second,
the choice of a different prospectiveStates component allows for more insight on how
these components work together.

The evolution of the probability for choosing a state of a given payoff depending on
c can be seen in figure 3.2. Note that the target function of DSAN returns simply the
utility of the current state minus the utility of the considered state – denoted ∆ in
the previously mentioned figure. The complete decision rule of DSAN is outlined in
algorithm 4.8.

Regarding its adjustment schedule, DSAN, just like many other algorithms, uses a
parallel random schedule to counter thrashing.

3.3.8 Tabu Search

As a novel addition to the set of algorithms that were modularized and distributed, an
algorithm known as tabu search (TS) is presented. Tabu search was first introduced

4Other measures such as the quality of the current solution are also possible.
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Algorithm 7 The decision rule of DSAN

procedure decisionRule dsan(payoff)
if payoff < 0 then

p← e payoff / ηck=2(currentStepNumber)

if randomElementIn( [0, 1) ) < p then
return stateOf(payoff)

else
return currentState

end if
else

return stateOf(payoff)
end if

end procedure
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Figure 3.2: The probability of DSAN choosing a state with negative ∆ depending on the
number of iterations.

by [Glover and McMillan, 1986] and amongst others analyzed by [Nurmela, 1993], on
whose descriptions this implementation is based.

Tabu search is related to the family of optimization algorithms that use an argmax*

decision rule. A problem with algorithms that use the argmaxB decision rule is that they
allow state changes even if they do not increase the utility. This leads to the possibility
of them “jumping” back and forth between states with the same utility. This problem
is solved in tabu search by introducing a tabu list that stores previously made moves. If
the algorithm changes its state si to sj where i 6= j, the inverse of this move, sj → si,
is added to the tabu list. If the algorithm wants to change back from sj to si, the tabu
criterion forbids it and the algorithm has to consider another new state.

This mechanism was slightly altered in the herein used implementation: Instead of
just adding the reversed move, both moves, i.e., si → sj and sj → si, are added to the
tabu list. The reason for this decision is the fact that in the paper on which TS is based,
the algorithm considered only one state that is close to its current state. However, to
test whether TS performed better than its closest relative, DSA-B, TS had to have the
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same prospectiveStates component. Therefore, if the algorithm was to add only the
reversed move, a vertex could still change its state in a cyclic manner: 1 → 2 → 3 →
1→ 2→ . . . and so forth.

[Nurmela, 1993] mentioned that the tabu criterion may be too restrictive. For this
reason, they extended the classical TS algorithm by providing the possibility of defining
an aspiration level. If the payoff for some state is higher than the aspiration level, the
move is allowed even if it is contained in the tabu list. In preliminary experiments con-
ducted, it was found that defining an aspiration level had indeed a significant impact on
the performance of the algorithm. The mechanic of the aspiration level is included by
means of an overridable function called overruleTabuList. Two of the more promising
implementations for overruleTabuList that were tested are: A procedure that per-
mitted a move only if its application resulted in a payoff that was higher than the one
gotten during the most recent application of the same move. Inspired by the process
of simulated annealing, another version overruled the tabu criterion with a probability
of 1

i , where i corresponds to the current iteration number. However, a time-invariant
function that overruled the tabu criterion with a time-invariant probability of 1

10 led to
the highest increase in performance.

Algorithm 8 shows the decision rule as well as the default version of overruleTabuList
of TS. As can be seen by the implementation of TS, a parameter called stepsToRemember

is used to restrict the number of moves that are kept in the tabu list, thus disabling the
tabu criterion for moves made in the (distant) past. Like DSA-B, tabu search uses
immediate payoff as its target function as well as a parallel random schedule.
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Algorithm 8 The decision rule of TS

function overruleTabuList(move)
if randomElementIn( [0, 1) ) < 0.1 then

return TRUE
else

return FALSE
end if

end function
procedure decisionRule ts(currentPayoff , otherPayoffs)

bestAllowedMoves ← ()
for all p in otherPayoffs do

move ← (currentState, stateOf(p))
isBetterOrEqualCurrent ← p ≥ currentPayoff
isHigherThanCandidate ← bestAllowedMoves = () ∨ p ≥ bestAllowedMoves0

tabuListIsOverruled ← overruleTabuList(move)
notInTabuList ← ¬contains(tabuList, move)
if isBetterOrEqualCurrent ∧ isHigherThanCandidate then

if notInTabuList ∨ tabuListIsOverruled then
if p > bestAllowedMoves0 then

bestAllowedMoves ← (move)
else

append(bestAllowedMoves, move)
end if

end if
end if

end for
if bestAllowedMoves = () then

return currentState
else

chosenMove ← randomElementIn(bestAllowedMoves)
append(tabuList, chosenMove)
append(tabuList, reverse(chosenMove))
if size(bestAllowedMoves) > stepsToRemember then

removeFirst(tabuList)
end if
return targetState(chosenMove)

end if
end procedure





4

Benchmark

It was shown in chapter 3 that the presented algorithms are customizable by different
parameters. These parameters include, for example, inertia or the degree of parallel
executions. Due to the relatively large amount of algorithms, each with its different
possible parameter settings, the best configuration for each algorithm had to be deter-
mined before a more comprehensive benchmark could be started. For this reason, a
preliminary benchmark was conducted. The following sections present the effects that
different parameter values had on their respective algorithms.

The results of the second, more comprehensive benchmark, in which the top contenders
of each algorithm family competed against each other, can be found in the second half
of this chapter.

4.1 Design

The benchmark to test the effects that values for the various parameters was designed
as follows:

All graphs on which the algorithms were run were made of 80 vertices. Since a DCOP
consists of many local subproblems involving neighboring vertices, larger graphs with
similar topologies should not affect the performance of an algorithm. This was also
asserted by preliminary tests. Further, to account for uncertainty due to the probabilistic
nature of some algorithms, 5 repetitions were conducted on respectively 10 graphs with
slightly different topologies.

Every graph had a mean degree of approximately 14 and thus about 558 edges. The
individual degrees of all vertices in the graph were approximately normally distributed1.
The reason for using a normal degree distribution is that it provides an even field for all
algorithms. In contrast, if one consider a graph with a degree distribution following a
power law3, then certain vertices are more involved in the computation than others.

1All graphs were generated by a sequence of normally distributed degrees with mean 14 using the igraph
package developed for the R programming language2.

3In a graph with a degree distribution following a power law, the fraction of vertices with degree k is
given by k−γ , where 2 < γ < 3. In such graphs, most vertices have a very small degree whereas a
small number of vertices disproportionally high degrees and thus form central hubs.
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With a graph density4 D of approximately 0.18 the graphs are rather sparse in struc-
ture.

D =
2|E|

|V |(|V | − 1)
≈ 0.18

The domain size of each algorithm was set to 8 and the maximum iteration number to
250. In preliminary tests it was found that these values allowed algorithms that con-
verged more slowly to find the global optimum while still providing results that allowed
a clear distinction between runs of algorithms with different parameter configurations.

The metrics to evaluate the performance of each algorithm are the same as used
by [Chapman et al., 2011a] in their benchmark of LIBR algorithms. These metrics are
as follows:

First, to visualize the convergence behavior of an algorithm, the average solution
quality at each time step (iteration number) t – denotedQt – was recorded and visualized.
Qt is calculated as the sum over the actual utilities of the vertices divided by the number
of constraints they are involved in.

Qt =
1

|V |

|V |∑
i=1

uti
|Ni|

Qt was measured after every single signal/collect cycle. Since all vertices collect simul-
taneously, their view of their neighbors’ states does not correspond to the graphs actual
state. For this reason, each vertex was queried about the utility of its previous state
given its current view of its neighborhood.

In addition to the plots, the averaged metrics for each algorithm are given in table
form. The average solution quality over the whole runtime of an algorithm – denoted
by Q.. – favors algorithms that converge quickly but may ultimately find a lower-quality
solution than other algorithms.

Q.. =
1

T + 1

T∑
τ=0

Qτ

To highlight algorithms that converge more slowly but find higher-quality solutions even-
tually, the solution quality at the termination point of an algorithm is measured and
denoted by QT . Additionally, the ratio of runs in which the algorithm reached the
global optimum and the ratio of runs in which it found a Nash equilibrium are denoted
by Ropt and Rnash, respectively. Of the runs in which the algorithm reached the global
optimum/any Nash equilibrium, the average number of steps needed to do so is recorded
in the form of Nopt and Nnash. It has to be noted that Rnash is calculated by the number
of steps after which every vertex in the graph announced that it was not able to satisfy
more constraints despite not having satisfied all of its constraints.

As a last measure, the average number of messages each vertex received is given by
the metric Mavg.

4The graph density is a measure of how densely connected a graph is. A completely connected undi-
rected graph has graph density D = 1.



4.2. RESULTS – PART ONE 31

For each algorithm, these metrics were averaged over all its individual runs and are
therefore denoted by an additional horizontal bar. The best values are written in bold-
face. This excludes, however, metrics involving Nash equilibria since the information
they provide is dependent on other values. For example, a low value for Nnash does
not necessarily hint to a good performance since a low value might be due to an early
confinement in a local maxima. Furthermore, the occurrence of ’ - ’ indicates that the
algorithm did not converge in any of its runs and therefore no value for the respective
metric could be calculated.

Where appropriate, qualitative comparisons to the benchmark conducted in [Chapman
et al., 2011a] are made. It has to be kept in mind that the therein used graphs were of
much sparser structure.

4.2 Results – Part One

4.2.1 Distributed Stochastic Algorithm

In section 3.3.1 the family of DSA algorithms was introduced. All versions of DSA use
a parallel random adjustment schedule which is parameterizable by its degree of parallel
executions p – the probability of a vertex computing a potential new state.

DSA-A

The results of DSA-A are given in table 4.1 and figure 4.1(a). In terms of average solution
quality per step, the variant with p = 0.0125 is clearly very different from the others.
Only after about 150 steps starts DSA-A p = 0.0125 approaching Q.. = 1. It has to be
noted that in the case of p = 0.0125, p equals 1

|V | and thus leads to only one vertex being
allowed to compute a new state on average. In contrast, the second smallest p value,
0.15, led to much faster convergence. A relatively small difference of ∆p = 0.1375 seems
to make a big impact in terms of convergence speed. The slow convergence of DSA-A
p = 0.0125 also resulted in a rather low average solution quality. On the other hand,
higher p values resulted in very high but also very similar average solution qualities. On
the other end of the spectrum, DSA-A p = 1.0 with its low Ropt almost never converged
to the global optimum.

After ≈ 1.5 steps, all vertices of this variant reported that they could not increase
their utility anymore and thus got stuck in a state configuration from which they were
not able to escape. This observation is in coherence with the low number of average
messages exchanged per cycle: since the vertices did not change their state, no state
update was issued to their neighbors. Due to the fact that p = 1 resulted in all vertices
collecting simultaneously, this behavior was to be expected.

The best performing variants were the ones with 0.3 ≤ p ≤ 0.80 of which especially
0.6 and 0.8 stood out due to their low average number of steps they needed to reach
the global optimum. [Chapman et al., 2011a] found that p = 0.4 led to the best overall
performance of DSA-A. They further reported that a high degree of thrashing occurred
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with p > 0.8. A reasonable assumption might be that the combination of domain size
and mean degree used in this benchmark leads to a smaller fraction of vertices acquiring
the same state at the same time, thus reducing the effect of thrashing.
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Figure 4.1: DSA parameterized by p

Table 4.1: Experimental results for DSA-A

p Q.. QT Ropt Rnash Nopt Nnash Mavg

1.0 0.9910 0.9930 0.04 1.00 13.5000 1.4808 2.4672
0.8 0.9991 0.9994 0.68 1.00 8.4706 7.3333 7.1797
0.6 0.9983 0.9986 0.50 1.00 8.6800 7.9067 5.8198
0.45 0.9982 0.9986 0.50 1.00 11.0000 9.7600 5.3787
0.3 0.9977 0.9988 0.54 1.00 15.9630 14.7662 4.9789
0.15 0.9930 0.9987 0.60 1.00 27.5667 26.9500 4.6355
0.0125 0.8454 0.9948 0.10 0.18 228.4000 218.6429 5.0033

DSA-B

The plot of DSA-B, shown in figure 4.1(b), is quite different from DSA-A. Unlike its
counterpart, DSA-B p = 1 was not able to reach a high solution quality at termination
point and deteriorated in oscillatory motions – the characteristic trait of thrashing. Just
like in the case of DSA-A, the vertices of DSA-B p = 1 reported that an increase in
utility is impossible right from the start.

Like with DSA-A, DSA-B p = 0.0125 converged the slowest – although a little faster
than in the case of DSA-A. Whereas in DSA-A all variants with higher p values had ap-
proximately equal average solution qualities, the variants of DSA-B exhibit a noticeable
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pattern: starting from p = 1, Q.. and QT increase while p decreases until, at p < 0.3, this
effect starts to reverse. Additional tests confirm that p = 0.3 proves to be the variant
with the best performance in case of DSA-B.

Table 4.2: Experimental results for DSA-B

p Q.. QT Ropt Rnash Nopt Nnash Mavg

1.0 0.7616 0.7642 - 1.00 - 1.0000 12.7852
0.85 0.9109 0.9164 - 0.56 - 122.1786 9.4624
0.6 0.9771 0.9779 0.10 0.68 85.0000 90.2820 5.5487
0.45 0.9950 0.9996 0.98 1.00 90.1429 69.6263 4.7708
0.3 0.9978 1.0000 1.00 1.00 32.9200 30.4600 5.3845
0.15 0.9938 1.0000 1.00 1.00 36.5200 34.1400 5.4567
0.0125 0.8448 0.9958 0.18 0.24 219.5556 207.6667 5.1536
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4.2.2 (Greedy) Spatial Adaptive Play

In section 3.3.2 Spatial Adaptive Play was introduced. As was shown in figure 3.1, the
decision rule of SAP is parameterizable by a parameter η which influences the shape of
the probability distribution that underlies its decision of what state to pick next.

The fact that the sequential random schedule used by SAP and gSAP only allows
exactly one vertex to collect each cycle is clearly visualized by the slow convergence in
figure 4.2. This also resulted in a low average solution quality as well as a high number
for Nopt (table 4.3). At about Qt = 0.7, the different variants started to diverge clearly.
Variants with lower η ascended to solutions of better quality whereas higher values of η
did not show any signs of improvement. SAP η = 0.1 performed the best and reaches
the best possible global utility in the majority of runs, although it requires almost 180
steps to do so.

Compared the other non-parameterized algorithm, MGM, gSAP performed worse on
almost all accounts except for the number of messages exchanged. Furthermore, the best
SAP variant, η = 0.1, generally outperformed gSAP. These observation stand in marked
contrast to the results obtained in [Chapman et al., 2011a] where SAP and gSAP were
considered the best performing algorithms. Such a big difference can only be attributed
to different benchmark parameters.
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Figure 4.3: gSAP

Table 4.3: Experimental results for SAP

η Q.. QT Ropt Rnash Nopt Nnash Mavg

5.0 0.8133 0.8923 - - - - 10.3120
1.0 0.8577 0.9476 - - - - 7.7370
0.5 0.8826 0.9797 - - - - 5.2145
0.25 0.8962 0.9983 0.52 0.62 195.5000 184.4386 4.7642
0.1 0.8980 0.9996 0.84 0.92 180.6429 170.1818 5.0864
0.05 0.8978 0.9995 0.78 0.96 178.6410 172.3333 5.0816
0.0 0.7613 0.8228 - - - - 11.2266

Table 4.4: Experimental results for gSAP

Q.. QT Ropt Rnash Nopt Nnash Mavg

0.8970 0.9979 0.32 0.94 163 159.9841 4.7907
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4.2.3 Maximum-Gain Messaging

The maximum-main messaging algorithm is one of the few algorithms that is not parame-
terized. In contrast to algorithms employing a signaling mechanism that simply forwards
states, MGM needs two cycles for each state change. This characteristic is visualized
by the stairs-like line in figure 4.4. It is also this feature that is in part responsible for
the rather low average solution quality of MGM. Still, the algorithm reached the global
optimum in half of all conducted runs and did so in approximately 32 cycles. The rela-
tively slow convergence of MGM was also observed by [Chapman et al., 2011a]. A big
difference to other algorithms that do not employ the message-intensive maximum-gain
mechanic is – as expected – the big number of average messages per cycle.
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Figure 4.4: Maximum-Gain Messaging Algorithm

Table 4.5: Experimental results for MGM

Q.. QT Ropt Rnash Nopt Nnash Mavg

0.9631 0.9989 0.5 1.00 32.52 32.0933 13.2403
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4.2.4 Weighted Regret Matching with Inertia

WRM-I is parameterizable by its inertia and fadingMemory value. In preliminary tests
it was found that WRM-I showed the best results with an inertia value around 0.4. The
effect of varying its memory parameter can be seen in figure 4.5. M = 0.0 does not weigh
the current regret more strongly than past ones. Table 4.6 shows that this resulted in
a rather low average solution quality and a convergence ratio of 0. All other variants
performed relatively similar with the big exception of their Nopt value. High values for
fadingMemory led to the fastest convergence. Everything considered, I = 0.8 showed
the best results.
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Figure 4.5: WRM-I with I = 0.4 and different values for M

Table 4.6: Experimental results for WRM-I

I,M Q.. QT Ropt Rnash Nopt Nnash Mavg

0.4, 0.0 0.8751 0.8765 - - - - 12.1258
0.4, 0.2 0.9968 0.9975 0.36 0.36 13.2222 13.2222 4.4429
0.4, 0.4 0.9987 0.9999 0.98 1.00 67.5713 67.7071 4.4628
0.4, 0.6 0.9992 1.0000 1.00 1.00 18.4000 18.1000 7.2375
0.4, 0.8 0.9993 1.0000 1.00 1.00 11.6000 10.9000 8.6856
0.4, 0.99 0.9992 0.9999 0.98 1.00 11.9799 11.2828 8.3889



38 CHAPTER 4. BENCHMARK

4.2.5 Maximum-Gain WRM

Figure 4.6 and table 4.7 show the effects a maximum-gain adjustment schedule had on
WRM. As was the case with standard WRM-I, a fadingMemory value of 0 led to thrash-
ing. Variants with values below 0.5 had generally problems reaching the global optimum
often. However, 0.7 ≤ M ≤ 0.9 proved to be exceptional in terms of convergence ratio.
Although the steps needed to reach the best possible global utility were higher than in
the case of standard MGM, they got to it in almost every single run. This observation
is different from the one made in [Chapman et al., 2011a]. The maximum-gain regret
matching algorithm they analyzed does not weigh current regrets stronger than past
ones. They found that it scored worse than standard MGM on all accounts except for
Mavg. The results of MGM-WRM therefore suggest that letting past regrets influence
the decision rule only slightly (i.e., a high value for M) can have a positive effect on
MGM.

Of all variants, M = 0.9 can be regarded as the top contender since it had the best
combination of low Nopt and high Ropt.
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Table 4.7: Experimental results for MGM-WRM

M Q.. QT Ropt Rnash Nopt Nnash Mavg

1.0 0.9606 0.9961 0.66 1.00 41.3636 40.6747 13.2450
0.9 0.9595 0.9999 0.98 1.00 39.3265 38.8788 13.3523
0.8 0.9589 1.0000 1.00 1.00 54.2000 54.1700 13.2638
0.7 0.9597 1.0000 1.00 1.00 81.3200 81.2700 13.2018
0.6 0.9588 0.9998 0.88 0.90 127.0000 127.0786 13.1357
0.5 0.9580 0.9983 0.42 0.42 73.8571 73.8571 13.1135
0.4 0.9542 0.9967 0.24 0.24 118.3333 118.3333 13.0646
0.3 0.9483 0.9942 0.10 0.10 178.2000 178.2000 13.0496
0.2 0.9380 0.9861 - - - - 13.0472
0.1 0.9194 0.9703 - - - - 13.0472
0.0 0.1042 0.1011 - - - - 13.0472
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4.2.6 Joint Strategy Fictious Play with Inertia

JSFP-I was run with different values of inertia in the same conditions as the other algo-
rithms. Figure 4.7 shows quite clearly that inertia did not affect the speed of convergence
very much. Except for the extreme case like JSFP-I I = 0.9, all lines overlap. Looking
at the numbers in table 4.8, there is, however, a notable difference in terms of steps
needed to reach Qt = 1. Without exceptions, lower inertia values led to a lower value
of Nopt, i.e., faster convergence. Although no inertia meant the fastest convergence, the
actual number of runs in which the algorithm reached Qt = 1 is the lowest. The version
of FP benchmarked in [Chapman et al., 2011a] is equivalent with JSFP-I I = 0 and –
like here – performed very strongly in terms of convergence speed. They also found that
FP had a rather low ratio of complete convergence. The results obtained with JSFP-I
I = 0.1 suggest that a small value of inertia helps in terms of the number of runs in
which the algorithm reaches Qt = 1.
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Table 4.8: Experimental results for JSFP-I

I Q.. QT Ropt Rnash Nopt Nnash Mavg

0.0 0.9988 0.9997 0.86 1 16.0698 7.9677 6.7180
0.1 0.9991 1.0000 1.00 1 17.9600 17.0200 7.0262
0.2 0.9990 1.0000 0.98 1 19.2653 19.1111 6.6643
0.3 0.9991 1.0000 1.00 1 21.0600 20.8800 6.4566
0.4 0.9989 1.0000 0.98 1 24.7551 24.7071 6.0112
0.5 0.9988 1.0000 1.00 1 28.5800 28.3600 5.6438
0.6 0.9983 0.9999 0.96 1 36.3125 36.1224 5.1151
0.7 0.9975 0.9999 0.96 1 44.1458 43.9184 4.8040
0.8 0.9950 1.0000 1.00 1 75.2600 72.5400 4.0953
0.9 0.9852 0.9999 0.98 1 136.3469 137.0808 3.6988
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4.2.7 Distributed Simulated Annealing

DSAN is parameterized by its value of p and by its time-dependent temperature param-
eter. As mentioned in section 3.3.7, [Arshad and Silaghi, 2004] found that ηck=2(i) = c

i2
,

where i is the time measured in steps and c is some constant, performed best. Its authors
reported that c ≈ 1 yielded the best results. To test how c affects the performance of
DSAN with the herein used graphs, two extreme cases were tested. First, c was set to 1.
Second, c was set to the maximum number of iterations (250). The second parameter,
p, was varied for each value of c. Results for all runs can be found in figure 4.8 and
table 4.9. It has to be kept in mind that these results can not be compared to the ones
obtained in [Arshad and Silaghi, 2004], since the graphs and domain sizes they used are
different from the ones in this benchmark.

In the case of c = 1, DSAN p > 0.2 ascends quickly to Qt = 1 whereas the variants
with p ≤ 0.2 do so only much slower. This behavior was to be expected and is in
coherence with all other algorithms. The effect of a higher value for c is clearly seen
in figure 4.8(b): After the big boost in solution quality gained from the initial state
change of all vertices, Qt increased only slowly for about 20 cycles. During this time its
decision rule acquired states with a worse than its current utility with a relatively high
probability.

DSAN converged faster with a low value of c while still having similar convergence ra-
tios. With both values of c, a value of p between 0.4 and 0.7 performed best. Everything
considered, DSAN p = 0.6, c = 1 is the top contender of this family.
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Figure 4.8: DSAN with different values for p and c
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Table 4.9: Experimental results for DSAN with different c and p

p, c Q.. QT Ropt Rnash Nopt Nnash Mavg

0.1,1 0.9704 0.9996 0.84 0.96 176.7619 171.0889 4.7792
0.2,1 0.9879 1.0000 1.00 1.00 118.1200 105.3700 4.6956
0.4,1 0.9942 0.9999 0.98 1.00 78.2245 70.7778 4.6143
0.5,1 0.9948 1.0000 1.00 1.00 78.5800 70.7200 4.4672
0.6,1 0.9949 0.9999 0.98 1.00 73.7551 66.5758 4.6239
0.7,1 0.9931 0.9992 0.94 0.98 102.5745 94.6771 4.2270
0.8,1 0.9908 0.9968 0.80 0.90 103.0500 100.1882 4.2898
0.9,1 0.9820 0.9894 0.38 0.58 159.5263 151.3125 4.2856
1.0,1 0.9732 0.9755 0.18 0.26 149.7778 158.5454 5.1483

0.1,250 0.9091 0.9724 - - - - 8.6320
0.2,250 0.9519 0.9988 0.66 0.78 215.4242 213.2917 6.6159
0.4,250 0.9752 0.9999 0.98 1.00 141.2653 136.8485 6.4099
0.5,250 0.9798 1.0000 1.00 1.00 117.7800 112.7000 6.5281
0.6,250 0.9818 0.9999 0.98 1.00 110.4694 106.5859 6.3454
0.7,250 0.9817 0.9995 0.96 1.00 139.0208 133.5510 5.5985
0.8,250 0.9789 0.9960 0.64 0.82 140.9062 141.3014 5.4067
0.9,250 0.9748 0.9888 0.42 0.60 141.3333 131.9216 5.3354
1.0,250 0.9664 0.9734 0.14 0.18 127.5714 129.2500 5.7583
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4.2.8 Tabu Search

Figure 4.9 shows how the tabuList criterion affects DSA-B. The amount of steps to
remember was chosen very high so that its effect is most visible. After the initial state
change, all variants were roughly in the same position as they were in the case of DSA-
B. Whereas all variants of DSA-B with a high value for p quickly went into oscillatory
motions, TS managed to increase its utility regardless of p. Albeit the increase is very
slow, the fact that TS forbids vertices to repetitively change their states in the same
direction is clearly visible. The average solution quality in table 4.10 supports this
observation as well. In general, however, DSA-B performed better than TS if p was
chosen around 0.15.
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Table 4.10: Experimental results for TS with 200 steps to remember

p Q.. QT Ropt Rnash Nopt Nnash Mavg

1.0 0.9231 0.9836 0.12 1.00 212.1667 23.6250 7.7621
0.85 0.9467 0.9898 0.38 0.48 207.2632 203.2558 6.8919
0.6 0.9734 0.9912 0.46 0.56 186.6087 183.7451 5.3339
0.45 0.9862 0.9969 0.76 0.88 156.0000 149.3293 4.4918
0.3 0.9936 0.9999 0.98 1.00 100.1224 92.6465 4.2243
0.15 0.9928 1.0000 1.00 1.00 54.5800 52.1100 4.8334
0.0125 0.8456 0.9952 0.16 0.18 237.5000 237.5294 5.0893
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4.3 Results – Part Two

With the previous benchmark, the best parameter values for each algorithm were iden-
tified. The algorithms that performed best are:

• SAP η = 0.1

• DSAN p = 0.6, c = 1

• DSA-A p = 0.8

• DSA-B p = 0.15

• MGM-WRM M = 0.9

• WRM-I i = 0.4,M = 0.8

• JSFP-I I = 0.1

• MGM

• gSAP

• TS p = 0.2, R = 100

For the more comprehensive benchmark, the algorithms were run in three different sce-
narios: The first two are similar to the previously done benchmark. Identical to the first
benchmark is the graph size of 80 and the normal degree distribution with mean 14. For
the first scenario of the new benchmark the differences are an increase in the number
of graphs from 10 to 50 and 10 instead of 5 repetitions. Furthermore, the maximum
iteration number was reduced from 250 to 100. These parameters allow a clearer and
more precise distinction between the top contenders of each algorithm family.

To test how the algorithms perform in a harder problem, the second scenario is equiv-
alent to the first one but involves a reduction in domain size from 8 to 7.

The third scenario is quite different from the first two and tries to analyze how the
algorithms behave in an extreme environment which is represented by a fully connected
graph. To reduce the computational effort while still conducting the same number of
repetitions, this graph contains only 50 vertices. The domain size of each vertex is chosen
to be equal to |V | to allow complete convergence.

It has to be noted that the specific parameter configurations listed above serve as a
rough approximation of what parameter values lead to the best performance for each
algorithm. The values that have to be chosen depend, of course, on the structure of
the problem. While the first benchmark is almost identical with scenario 1 and quite
similar to scenario 2, the scenario featuring a fully connected graph is very different.
However, to avoid the immense computational costs of evaluating each algorithm in all
configurations and scenarios, this approximation was necessary.

The results of the first scenario are shown in figure 4.10 and table 4.11. As expected,
the results are very similar to the first benchmark. SAP and gSAP were the slowest to
converge and thus had the worst average solution quality. In contrast to gSAP, SAP
had, however, a rather high convergence ratio. Compared to the first benchmark, gSAP
improved by about 0.15 in terms of convergence ratio.

The second pair of algorithms that performed very similarly were MGM and MGM-
WRM, recognizable by their stairs-like line. MGM managed an increase of about 0.1 in
Ropt. Still, MGM-WRM achieved – as before – a much higher convergence ratio even
though it had a slightly higher Nopt.
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The rest of the algorithms reached high solution qualities very quickly. Both algo-
rithms using argmaxB, DSA-B and TS, needed relatively many cycles to reach the global
optimum. A notable observation is that TS improved its optimal convergence ratio by
almost 0.4, although it was also about 10 steps slower to reach Qt = 1. DSA-A converged
the quickest if it did converge. However, it got seemingly often stuck in local maxima.
WRM-I and JSFP-I performed the best, as recognizable by their low number of steps
needed and high convergence ratio. Especially WRM-I stood out as the clear winner
since it had almost the same convergence speed as DSA-A but managed to reach the
global optimum in almost all runs.
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Figure 4.10: Interfamily benchmark, scenario 1

Figure 4.11 and table 4.12 show the results of the second scenario with domain size equal
to 7. Except for the ones using argmaxB, all algorithms performed worse in this run.
The algorithms that were negatively affected by the smaller domain size lost about 0.3 -
0.5 in terms of convergence ratio. This is to be expected since a decrease in domain size
results in a smaller solution space because fewer state configurations exist that satisfy
all constraints. Also, for many algorithms the reduction in the number of possible paths
that lead to the best possible utility meant a higher chance of getting stuck somewhere
“along the road”. For this reason, the greediest algorithm, DSA-A, was affected the
most by this change. An important observation is that DSA-B performs almost equally



4.3. RESULTS – PART TWO 47

Table 4.11: Experimental results for the interfamily benchmark, scenario 1

algorithm Q.. QT Ropt Rnash Nopt Nnash Mavg

DSA-A (0.8) 0.9989 0.9992 0.6720 1.000 8.4643 7.3900 7.1812
MGM 0.9615 0.9990 0.5840 1.000 33.0274 32.7601 13.2525
SAP (0.1) 0.8970 0.9995 0.8000 0.9680 166.1350 160.0113 5.2454
gSAP 0.8969 0.9987 0.4960 0.9760 158.2742 152.1413 5.0783
WRM-I (0.4, 0.8) 0.9993 0.9999 0.9800 1.000 11.7592 11.1051 8.4952
MGM-WRM (0.9) 0.9601 0.9999 0.9760 1.000 40.8770 39.5162 13.3318
JSFP-I (0.1) 0.9991 0.9999 0.9840 1.000 16.5000 16.2056 7.1668
TS (0.2,100) 0.9885 0.9953 0.6040 0.8200 114.3245 110.3371 4.2200
DSA-B (0.3) 0.9979 1.0000 1.0000 1.000 32.5160 29.4980 5.4861
DSAN (0.6,1) 0.9946 0.9999 0.9913 1.000 82.5504 72.5502 4.3827

well in this run. Also, TS – the other algorithm using argmaxB – shows an increase of
about 0.3 in Ropt and is about 30 cycles faster to reach the best possible utility. However,
the fact that argmaxB allows the exploration of states even if they did not increase the
utility has its downsides. This is best visualized by the results obtained in the scenario
featuring the fully connected graph:

As can be seen in table 4.13, DSA-B and TS both reached a high solution quality very
quickly but failed to satisfy all constraints in every single run. Right before Qt = 1
both algorithms deteriorated in oscillatory movement. Like in the previous benchmarks,
MGM and MGM-WRM both converged steadily but only very slowly. As expected, the
number of messages exchanged in the case of a maximum-gain schedule as roughly equal
to the mean degree of the graph. At the other end of the spectrum, DSA-A clearly
outperformed every other algorithm in terms of convergence speed. Another notable
contender is JSFP-I that, although slower than DSA-A, exchanged the fewest messages.

Table 4.12: Experimental results for the interfamily benchmark, scenario 2

algorithm Q.. QT Ropt Rnash Nopt Nnash Mavg

DSA-A (0.8) 0.9961 0.9966 0.140 1 9.5714 7.5649 3.1283
MGM 0.9585 0.9957 0.100 1 34.6800 32.9164 13.0673
SAP (0.1) 0.8932 0.9978 0.320 0.832 206.9375 188.8750 4.6202
gSAP 0.8924 0.9948 0.080 0.856 178.7500 176.1197 4.4455
WRM-I (0.4, 0.8) 0.9979 0.9990 0.592 1 16.5338 13.9146 5.4960
MGM-WRM (0.9) 0.9583 0.9988 0.532 1 52.0977 44.9008 13.1657
JSFP-I (0.1) 0.9975 0.9989 0.568 1 22.8310 19.7270 4.7713
TS (0.2, 100) 0.9932 0.9998 0.984 1 84.3537 67.5081 4.3341
DSA-B (0.3) 0.9976 1.0000 1.000 1 34.4520 28.5420 5.2656
DSAN (0.6,1) 0.9938 0.9999 0.975 1.000 93.1026 79.9620 4.1656
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Figure 4.11: Interfamily benchmark, scenario 2

Table 4.13: Experimental results for the interfamily benchmark, scenario 3

algorithm Q.. QT Ropt Rnash Nopt Nnash Mavg

DSA-B (0.3) 0.9852 0.986 - - - - 29.86326
DSA-A (0.8) 0.9998 1.00 1 1 12.6 9.4 21.06578
MGM 0.7888 1.00 1 1 99.0 99.0 49.75232
SAP (0.1) 0.8905 1.00 1 1 93.6 93.6 19.25057
gSAP 0.8904 1.00 1 1 84.0 84.0 19.96314
WRM-I (0.4,0.8) 0.9956 1.00 1 1 30.2 29.8 18.10620
MGM-WRM (0.9) 0.7888 1.00 1 1 99.0 99.0 49.75232
JSFP-I (0.1) 0.9958 1.00 1 1 64.6 63.4 10.62861
TS (0.2, 150) 0.9844 0.99 - - - - 26.34560
DSAN (0.6,1) 0.9898 0.9894 - - - - 25.4845
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Discussion

In the previous chapter the results for multiple benchmarks were presented: First, the
parameters with which each algorithm performed best were identified. In a second
phase, the algorithms were run with different domain sizes on 50 graphs with normally
distributed degrees and, ultimately, on a completely connected graph with |V | = 50.
The implications these results have on the design of LIBR algorithms are discussed in
context of their respective components.

Prospective States

Almost all algorithms that were tested used a function called CompleteSearch as their
prospective states component. As the name implies, CompleteSeach lets a vertex eval-
uate all states in its domain. Depending on the problem at hand, this function could,
however, just as well select only a subset of possible states for evaluation. To adhere
to the description of its author, DSAN only evaluated a single random state each cy-
cle. DSAN with c = 1 is otherwise very similar to DSA-B. Comparing the two shows
clearly how the evaluation of a single state leads to slower convergence. However, it is
important to note that such an evaluation strategy also allows for a higher degree of
parallel executions since connected vertices are automatically less likely to acquire the
same state. DSAN generally outperformed algorithms like SAP and gSAP that rely on
a complete search but refrain from parallel execution.

Target Function

Several target functions were used to evaluate the set of prospective states. The simplest
target function, immediate payoff, proved to be very effective and was employed by some
of the best performing algorithms like DSA-B. In the case of JSFP-I, a target function
employing memory led to very fast convergence. The ability of a vertex to predict how
its neighbors are likely to change their states, enabled them to “evade” each other and
thus minimizing thrashing. The observation of fast convergence is also in coherence with
the ones made in [Chapman et al., 2011a].

In the case of WRM-I current regrets were weighed higher according to the chosen
value of fadingMemory. As it turned out, the factor had to be close to one to allow fast
convergence. The biggest contribution of this mechanic to the behavior of the algorithm
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was that it allowed the algorithm to break ties between states with otherwise equal regret
in a non-probabilistic manner. By this process, a vertex was forced in a specific direction
and thus made it possible for its neighbors to adapt and change their states accordingly.

Decision Rule

The decision rules that were tested ranged from very greedy to rather probabilistic. The
greediest decision rule, argmaxA was employed by DSA-A. In contrast, SAP and DSAN
allowed states to be taken that would not immediately maximize their utility. A high
degree of leniency when choosing states was found to be detrimental in both convergence
ratio, as well as average solution quality. DSA-A, with its greedy optimization, managed
to reach much better state configurations in much shorter time. However, its straight
race to the next maximum also got it often caught in state configurations, from which it
was not able to escape. Allowing vertices to take states with sub-optimal payoff proved to
be a good way to escape local maxima if the probability for doing so is not too high: SAP
with η = 0.1 had almost always a higher convergence ratio than DSA-A. Furthermore,
as pointed out by [Chapman et al., 2011a], SAP should theoretically achieve the highest
solution quality if it is allowed to run for a long time. However, if the goal is to find the
solution with the highest quality regardless of the time it takes, other DCOP algorithms
such as those from the distributed complete class may be better suited.

By restricting the domain size to 7, the total number of state configurations that
could satisfy all constraints was reduced. As a further consequence, the number of local
maxima was increased because each vertex had fewer options of changing the global state
configuration. These changes affected the performance of DSA-A the most in terms of
convergence ratio. It has to be noted, however, that if DSA-A found a path leading to
the global optimum, it needed only very few steps to reach it. In the case of a fully
connected graph, no state configurations exist that could trap an algorithm like DSA-
A. Since every vertex knows all its neighbors, they can react to all their changes very
quickly. For problems with such a structure, the straightforward way of optimization
employed by DSA-A is unmatched by any of the other herein tested algorithms.

The effect of argmaxB is best analyzed by looking at DSA-B. The fact that argmaxB

lets vertices change to states that yield a payoff equal to the current one, enabled DSA-B
to have the highest convergence ratio on the more lightly constrained problems. If the
graph was in a state where many vertices evaluate prospective states as having equal
utility, the vertices of DSA-A would simply stop collecting. In contrast, because of the
the way argmaxB works, the vertices of DSA-B would just randomly change states. This
can be a good thing if new graph configurations may lead to better initial positions for
reaching the global optimum. However, as was seen in the case of a fully connected
graph with |V | = 50 and an equally large domain size, if a vertex of DSA-B has many
choices of what state to pick next, its behavior gets very unpredictable for its neighbors.
This ultimately leads to state change loops and no convergence at all. The addition
of a tabuList did not solve this problem. Its effect was, however, clearly positive in
terms of average solution quality. It can not be ruled out that a combination of an
appropriate aspiration level and value for stepsToRemember would greatly decrease the
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looping behavior of DSA-B.

Adjustment Schedule

The degree of thrashing and convergence speed is heavily related to what adjustment
schedule was employed. More complex schedules like the sequential random schedule of
SAP or the maximum-gain schedule were not able to outperform simpler alternatives like
the flood schedule. In the case of a sequential random schedule, allowing only one vertex
at a time to alter its state led to very slow convergence. Especially in problems involving
a large number of variables, such an adjustment schedule may perform poorly. However,
gSAP may still convince due to its anytime property and guarantee of no thrashing. As
previously mentioned, [Chapman et al., 2011a] found the SAP family to be very well
performing. They stated that the reasons for their good performance may lie in their
benchmark setup – the same argument can be applied here.

A maximum-gain schedule led to quite consistent results. By using a decision rule
that disallows changes to states of inferior utility, the usage of a maximum-gain schedule
provides anytime behavior as well as the guarantee of no thrashing. These properties,
however, come at the cost of a high number of messages exchanged. If the cost of
exchanging messages is high, such a schedule is a bad choice for problems corresponding
to dense graphs. Still, many problems are sparse in structure and could be reliably
optimized by a MGM-like algorithm.

The best overall performance was provided by the parallel random schedule or, the
very similar, flood schedule combined with a decision rule making use of inertia. The
values for I and p had to be chosen for each algorithm separately. With all algorithms,
however, values close to 1 or 0 led to either a high degree of thrashing or slow convergence.
[Chapman et al., 2011a] stated:

[. . . ] the random parallel adjustment schedule limits the effects of thrashing,
however this trait is only useful in algorithms that use immediate payoffs
as a target function, as other target functions use averaging techniques (i.e.
beliefs or average regrets) to eliminate thrashing and cycling.

Since the parallel random schedule has the same means of countering the occurrence
of thrashing as the use of inertia, this contradicts the results made here. JSFP-I –
an algorithm employing a memory-based target function – performed better with the
addition of a small inertia value than with I = 0.

Generally speaking, DSA-B, already known for its strong performance in vertex coloring
benchmarks, proved again to be a very strong performer. Its shortcomings were, however,
quite obvious when it was faced with a densely connected graph and a high domain size.
The introduction of a mechanic like the one employed by tabu search was not able to
constrain the chaotic behavior of DSA-B in these cases. The use of different aspiration
levels, may, however, still make a tabu list a valuable addition to algorithms like DSA-B.
Other algorithms that could be considered as having performed the best were WRM-I
and especially JSFP-I.
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Limitations and Future Work

As shown in previous chapters, many algorithms for solving DCOP problems either al-
ready exist or may be newly constructed by combining components identified by [Chap-
man et al., 2011b] and the herein presented ProspectiveStates module.

Furthermore, almost all of these components are parameterizable, thus introducing
even more possibilities for variation. This versatility comes at a price, however. The
sheer number of possible variations make it difficult to thoroughly analyze algorithms
with the goal of detecting algorithms that may prove better at solving DCOPs than
others. Furthermore, to test their general performance, the algorithms have to be run
on a large amount of different graph topologies. With the amount of repetitions needed
for achieving statistically reliable results, the computational intensity increases even
further.

Nevertheless, it is my belief that modularizing algorithms is a powerful way for detect-
ing potential synergies between such components and therefore enabling the possibility
of discovering useful search heuristics. For this reason, I believe that given a computer
system with enough computing power, an evaluation system could be constructed that
tries to discover such synergies in a completely automated way. If new algorithms were
discovered, a formal investigation of their properties could then follow. Of course, many
parameters have no single best value that proves to be the best in all scenarios. Factors
such as graph density, graph topology, domain size, etc., heavily influence the best val-
ues for each parameter. However, if the experiment was to be chosen in an appropriate
manner, data mining techniques could allow to identify non-obvious relations between
problem structure and parameter values.

Signal/Collect proved to be a convenient environment for realizing the modularization
of DCOP algorthms. The possibility of creating typed graphs should further enhance
the possibilities for creating even more variations. Also, in this thesis only adjustment
schedules that map to the bulk synchronous model of computation were explored. The
asynchronous execution mode of Signal/Collect provides an additional, vast domain of
DCOP algorithms to explore.





7

Conclusion

The combination of the framework presented in [Chapman et al., 2011b] and the choice of
Signal/Collect as an environment to execute LIBR algorithms proved to be very powerful.
It was possible to implement algorithms in a modularized and concise manner, while still
providing high performance.

As a further success, the algorithm tabu search was split into its components and made
ready for distributed computing. Although tabu search was not able to outperform
algorithms like DSA in its current configuration, its high degree of extensibility allows
for vast improvements.

Of all possible DCOP algorithms, only a small fraction has been evaluated here. The
amount of hybrid algorithms that could be constructed from individual components is
almost endless. However, it is also this versatility that provides a huge range of research
opportunities. With the contribution of the first comprehensive benchmark of LIBR
algorithms in Signal/Collect, this thesis positions itself as a starting point for many
more research projects.
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