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1 Introduction

In order to cope with the ever-increasing data volume, distributed stream pro-
cessing systems have been proposed. To ensure scalability most distributed sys-
tems partition the data and distribute the workload among multiple machines.
This approach does, however, raise the question how the data and the workload
should be partitioned and distributed. A uniform scheduling strategy—a uniform
distribution of computation load among available machines—typically used by
stream processing systems, disregards network-load as one of the major bottle-
necks for throughput resulting in an immense load in terms of inter-machine
communication.
We propose a graph-partitioning based approach for workload scheduling within
stream processing systems. We implemented a distributed triple-stream process-
ing engine on top of the Storm realtime computation framework and evaluate
its communication behavior using two real-world datasets. We show that the
application of graph partitioning algorithms can decrease inter-machine com-
munication substantially (by 40% to 99%) whilst maintaining an even workload
distribution, even using very limited data statistics. We also find that processing
RDF data as single triples at a time rather than graph fragments (containing
multiple triples), may decrease throughput indicating the usefulness of seman-
tics.

2 Problem Statement and Definitions

A linked data stream processing system essentially continuously ingests large
volumes of temporally annotated RDF triples and emits the results again as data
stream. Such systems usually implement a version of the SPARQL algebra that
has been modified for processing dynamic data. The processing model considered
is a directed graph, where the nodes are algebra operators and data is sent along
the edges. Hence, each query can be transformed to a query tree of algebra
expressions – the topology of the processing graph.
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In order to scale the system horizontally (i.e., executing its parts on multi-
ple processing units concurrently) we may replicate parts (or the whole) of the
query’s topology and execute clones of the operators, i.e., tasks in parallel. The
workload of the system, can then be distributed across several machines in a
compute cluster. We refer to the assignment of tasks to machines as scheduling.

The goal of our approach is to find a schedule (i.e., assignment of tasks to
machines) for a given topology that minimizes the total number of data messages
transferred over the network, whilst maintaining an even workload distribution
across machines in terms of CPU cycles.

Many stream processing platforms attempt to uniformly distribute compute
loads possibly incurring high network traffic. Approaches like Borealis [1] sched-
ule the processors according to the structure of the query, where every operator
is is assigned to one machine. This approach has an upper limit in parallelization
equal to the number of operators and may incur high network traffic between
two machines containing active operators. As Aniello et al. in their recent work
[2], we propose to partition the data, to parallelize the operators, and then to
minimize network traffic allowing for more flexibility for distributing the work-
load. In contrast to previous work, we don’t try to implement a new scheduling
algorithm but much rather make use of existing graph partitioning algorithms to
optimize the amount of data sent between machines.

Hypothesis: Combining data partitioning between tasks with a scheduler
that employs graph partitioning to assign the resulting task instances outperforms
a uniform distribution of data and tasks to machines.

Our hypothesis assumes that different distribution strategies significantly
influence the number of messages sent between the machines.

3 Evaluation and Results
We evaluated our system using two example queries that are built around a real
world streaming use case: SRBench [5], (streams of weather measurements), and
an open government dataset (self-acquired from public sources), which combines
data on public spending in the US with stock ticker data.1 We devised a query
that would highlight (publicly traded) companies, that double their stock price
within 20 days and are/were awarded a government contract in the same time-
frame. The data for both use cases has been converted to and consumed as time
annoated n-triple records.

Procedure First, we partitioned each dataset and compiled the queries into
execution topologies. We then recorded the number of messages that were sent
between tasks at runtime. Second, to test our hypothesis, we needed to partition
the resulting communication graph based on the network load of each chan-
nel. Since the channel loads are not known before running the query we chose
two experimental scenarios. In the first scenario we assume an oracle optimizer
that would know the number of messages that would flow along every channel.
This scenario allows to establish a hypothetical upper bound of quality that our

1 http://www.usaspending.gov, https://wrds-web.wharton.upenn.edu/wrds



Fig. 1. Percentage of messages sent over the network for the uniform distribution and
the graph partitioned setup, using either the test data itself (oracle) or data from the
previous one to three time-slices as input for the graph partitioning algorithm.

method could attain, if it were to have an oracle. In a second scenario we assumed
a learning optimizer that first observes channel statistics for a period of time
and then partitions the graph accordingly. To that end we sliced the SRBench
data into daily and the OpenGov data into monthly slices. We then measured
the the performance of our approach based on learning during the preceding one
to three time-slice essentially providing a adaptively learning system.
Third, to partition the graph we employed METIS [3]. We used the gpmetis in its
standard configuration, which creates partitions of equal size, and only changed
the -objtype parameter to instruct METIS to optimize for total communication
volume when partitioning, rather than minimizing on total edgecut.

The Suitability of Graph Partitioning for Scheduling The critical ele-
ment for optimizing the scheduling using graph partitioning is that the operators
can be parallelized with an adequate data partitioning. The results show that us-
ing a graph partitioning algorithm to schedule task instances on machines does
indeed reduce the number of messages sent over the network (Fig 1). We graph
the number of network messages divided by the number of total messages as a
measure for the optimality of the distribution. The SRBench data can be op-
timally partitioned by the id of the reporting weather station even when using
only the data of the immediately preceeding time slice (left side, Prev.1). Once
this task has been achieved, which we got due to the pre-partitioned datasets,
all computation can be managed on a local machine, as no further joins are
necessary. This clearly indicates that some queries can be trivially distributed
when a good data partition is either known or can be learned.

For the OpenGov dataset (right side) the tested join operation requires a
significant redistribution of messages. First, we find that our approach clearly
outperforms the uniform distribution strategy by a factor of two to three. Second,
even longer learning periods, using two (Prev.2) and even three previous time
slices (Prev.3), do not necessarily improve the overall performance - maybe due
to over-fitting or concept drift [4]. We also found that this only leads to a slightly
less even load distribution.

For the SRBench query we observed a reduction in network usage by over
99%. For the OpenGov query, workload distribution using a graph partitioning
approach yields savings in terms of network bandwidth of over 40%.

Balancing Computation Load In order to make good use of the available
resources, a distributed system should assign equal workloads to all machines.



Fig. 2. Average computation load distribution for all time-slices of each dataset.
RSD = Relative Standard Deviation

For this reason we analyzed how many messages were processed by all tasks of
each partition for the two queries (Figure 2). The load distribution resulting
from the graph partitioned task assignment only differs slightly from the one
found by uniform task distribution (average relative standard deviation (RSD)
OpenGov : 7.04% for partitioning vs. 5.27% for uniform baseline; SRBench: 3.74%
for partitioning vs. 2.68% for uniform baseline).

The most important shortcomings of our study are its limitation to two
datasets and queries and the fixed setup of the distributed system. For the first we
intend to systematically extend our evaluation in the future in terms of number
of datasets and queries. For the latter, is it the interactions between number of
machines and cores available and the degree of parallelism that require further
research. Especially the impact of such interactions on throughput in terms of
messages ingested per second is of interest here. Future work will also investigate
whether the principle of finding the smallest possible data partition given the
desired degree of parallelism is as important as our experiments indicate.

We are confident that our findings help making DSFP systems more scalable
and ultimately enable reactive systems that are capable of processing billions of
triples or graph fragments per second with a negligible delay. It is our firm belief
that the key to addressing these challenges needs to and will have to be revealed
from the data itself.
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