
Bachelor Thesis
June 7, 2013

Project Awareness
and Software Quality

A Customized Visualization for Software Project
Awareness Based on Stakeholder Roles

Michael Kündig
of Wetzikon, Switzerland (09-737-552)

supervised by
Prof. Dr. Harald C. Gall

Sebastian Müller

software evolution & architecture lab

Bachelor Thesis

Project Awareness
and Software Quality

A Customized Visualization for Software Project
Awareness Based on Stakeholder Roles

Michael Kündig

software evolution & architecture lab

Bachelor Thesis

Author: Michael Kündig, michael.kuendig@uzh.ch

Project period: 10.12.2012 - 10.06.2013

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

I would like to thank Prof. Harald Gall for giving me the opportunity to write this thesis at the
software evolution and architecture lab. Many thanks also go to Sebastian Müller for his inputs
and valuable assistance. Moreover, I would like to thank Siddhartha Arora for reviewing this
thesis and everyone who took part in the evaluation.

Abstract

Being aware of a project’s status and its software quality is an important factor in the decision
making process of a project manager. There are a number of existing tools that are designed to
support and analyze software projects, but most of them focus on development tasks and fail to
provide a high level project overview.
The goal of this thesis is to assess the information needs of a project manager focused on software
development and create a mobile prototype application that is able to assist him in his decision
making process. The application that is developed in connection with this thesis is built on the
Android platform and focuses on a high level project overview. On the one hand, it concentrates
on project awareness and makes use of a collaboration tool called Rational Team Concert. On the
other hand, a service developed by the software evolution & architecure lab at the University of
Zurich is used to receive software metrics and give an impression about the software quality of a
project. A formative evaluation of the application concludes this thesis.

Zusammenfassung

Den Status und die Software Qualität eines Projektes zu kennen, ist ein wichtiger Faktor im
Entscheidungsprozess eines Projekt Managers. Es existieren bereits mehrere Applikationen, die
darauf abzielen, Software Projekte zu unterstützen. Da diese Programme allerdings hauptsäch-
lich Arbeiten von Entwicklern unterstützen, liefern sie ein mangelhaftes Gesamtbild eines Soft-
ware Projektes.
Das Ziel dieser Arbeit ist, den Informationsbedarf von Projekt Managern zu bemessen und eine
Prototyp Applikation für Mobilgeräte zu erstellen. Diese soll fähig sein, den Projekt Manager in
seinen Entscheidungsprozessen zu unterstützen. Die Applikation, die in Verbindung mit dieser
Arbeit erstellt wurde, wurde auf der Android Platform entwickelt und liefert einen Gesamtüber-
blick eines Projektes. Einerseits fördert die Applikation das Wahrnehmen des Projektstatus und
nimmt dabei das Kollaborationstool Rational Team Concert in Anspruch. Andererseits liefert ein
Service, welcher am software evolution & architecture lab der Universität Zürich entwickelt wurde,
Software Metriken. Diese werden genutzt, um die Software Qualität eines Projektes aufzuzeigen.
Eine formative Evaluation der Applikation schliesst die Arbeit ab.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goal . 1
1.3 Thesis Outline . 2

2 Related Work 3
2.1 Analytics for Software Development . 3

2.1.1 Reasons for Analytics in Software Development 3
2.1.2 Project Management . 4
2.1.3 Goals of Software Development Analytics 4

2.2 Software Metrics . 5
2.3 Software Project Awareness . 6

3 Background 7
3.1 The Overview Pyramid . 7

3.1.1 Thresholds . 7
3.1.2 Structure . 8

3.2 SOFAS Metrics Services . 10
3.2.1 Service Input and Output . 10
3.2.2 Interaction with the Service . 11

3.3 IBM Rational Team Concert . 11
3.3.1 Access to the Server . 11
3.3.2 Usage of Dashboard and Feeds . 12

3.4 Tablet Development . 12
3.4.1 Technology Evaluation Process . 13
3.4.2 Android Tablet Development . 14

4 Project Status Awareness and Software Quality Application 15
4.1 Stakeholder Role . 15
4.2 Dependencies . 16

4.2.1 Rational Team Concert Server . 16
4.2.2 SOFAS Metrics Service . 16

4.3 User Interface . 16
4.3.1 Project Overview . 16
4.3.2 Overview Pyramid . 17
4.3.3 Method and Class Metrics . 18
4.3.4 Work Item Queries . 20

viii Contents

4.3.5 Team . 22
4.3.6 E-Mail Notification . 22

4.4 Used Technologies and Frameworks . 23
4.4.1 AChartEngine . 23
4.4.2 QDox . 23

4.5 Use Case . 24
4.5.1 Detecting a critical Method . 24
4.5.2 Sending E-mail Notification . 24
4.5.3 Refactoring . 25
4.5.4 Keeping Track of the Work Item Status . 25
4.5.5 Limitation . 25

5 Implementation Details 27
5.1 Internal Structure . 27

5.1.1 Receiver Classes . 27
5.1.2 Fragments . 28
5.1.3 Data Container Classes . 28
5.1.4 Data Management Classes . 29

5.2 Receiving Data from the Metrics Services . 29
5.2.1 SPARQL Query . 29
5.2.2 Response Receiving . 30
5.2.3 Response Parsing . 31

5.3 Connect RTC with the Metrics Service . 31
5.3.1 Finding a Change Set by the Name of a Java class 31

6 Evaluation 33
6.1 Setup . 33
6.2 Results . 34

6.2.1 Task Success . 34
6.2.2 Usability Rating . 36
6.2.3 Open Questions . 37
6.2.4 Suggestions for Improvement . 37

6.3 Limitations . 38

7 Conclusion 39
7.1 Summary . 39
7.2 Future Work . 39

A Evaluation Form 41

B Content of the CD-ROM 49

Contents ix

List of Figures
3.1 Statistical thresholds of 45 Java and 37 C++ systems [LM06] 8
3.2 Example of the Overview Pyramid characterizing the open source project ArgoUML

[LM06] . 10
3.3 Screenshot of Rational Team Concert’s Eclipse plugin 12
3.4 Screenshot of a dashboard in Rational Team Concert’s web client 13
3.5 Example of Fragment usage in Android [and] . 14

4.1 Screenshot of the project overview in the application 17
4.2 Screenshot of the Overview Pyramid in the application 18
4.3 Screenshot of the method metrics part in the application 19
4.4 Screenshot of the query definition part in Rational Team Concert 20
4.5 Screenshot of the work item queries in the application 21
4.6 Screenshot of a work item in the application . 21
4.7 Screenshot of a user in the application . 22
4.8 Screenshot of the e-mail notification user interface in the application 23
4.9 Screenshot of an automatically created e-mail template 23
4.10 Screenshot of the methods with a critical high nesting value 24

5.1 Flowchart of a user input scenario . 27
5.2 The application’s fragment structure . 29

6.1 Bar chart showing the success rate of each task . 34
6.2 Line chart showing the difficulty of each task . 35
6.3 Usability rating of the application . 36

List of Listings
3.1 Sample output of the SOFAS Object Oriented Metrics Service 10
5.1 Example XML file that defines a user interface . 28
5.2 Example SPARQL query of the average method weight metric 30
5.3 Implementation of communication with the metrics service 30
5.4 Parsing the content of a response from the metrics services 31
5.5 Finding the latest change set which is related to a given Java class 32

x Contents

Chapter 1

Introduction

1.1 Motivation
Despite the fact that software development is an activity that is considered to be highly mea-
sureable and analyzable, it remains difficult to predict and has an overall high rate of project
failure [EK08]. One reason for software project failures is that decision making is still primarly
based on past experience and intuition of project managers, as assistant tools fail to deliver useful
information or are too difficult to interpret [BZ11].

The task of a project manager, who is the main decision maker in a software project, consists
of different tasks, i.e. communicating with stakeholders, staying aware of the project’s status, or
task planning. To execute his tasks he is dependent on information from assistant tools that mea-
sure and analyze these areas. There are a number of existing tools that are designed to support
the software development process, though most of them focus on low level tasks of developers
and fail to provide a higher level overview for project managers. In addition, none of the existing
tools are designed for mobile devices, but rather for desktop computers.

Sales of desktop computers are declining and predicted to decline even more in the future [gar].
In contrast, the sales quantity of mobile devices has increased heavily and is predicted to do so
moving on. In this context, the preconditions were ideal to exploit the advantages of a mobile
device application that assists the decision making tasks of a project manager.

1.2 Goal
The goal of this thesis is to assess the information needs of a project manager that focuses on
software development and create a prototype application for mobile devices that is able to assist
him in his decision making process. The application focuses on project awareness by providing
an overview over current tasks and activities of team members. Additionaly, software metrics are
used to give an impression about the software quality of the whole project and indicate critical
code areas.
In order to achieve these goals, the information needs of a project manager, as well as existing
tools that help to foster awareness and analyze source code, are analyzed. Thereupon, a concept is
created how to connect these tools to use it in combination with the prototype mobile application.
Finally, the prototype application is evaluated by conducting a formative study.

2 Chapter 1. Introduction

1.3 Thesis Outline
Chapter 1 gives a short introduction and defines the goals of this thesis. In Chapter 2, related work
in the field of software project awareness and analytics as well as software metrics is discussed.
Chapter 3 presents required background information about the visualization of a software system
in form of an overview pyramid as well as the tools that were used in connection with the pro-
toype application. The dependencies of the application as well as its user interface is presented
in Chapter 4 along with the used technologies and a brief use case. Chapter 5 presents and ex-
plains informative implementation details of the prototype application and Chapter 6 covers the
findings of the user evaluation. Chapter 7 concludes the thesis with a summary and an outlook
on future work.

Chapter 2

Related Work

This Chapter presents related work in the areas of analytics for software development, software
metrics, and software project awareness.

2.1 Analytics for Software Development
Davenport and Harris describe analytics as "the extensive use of data, statistical and quantitative
analysis, explanatory and predictive models, and fact-based management to drive decisions and actions"
[DH07]. Analytics consists of a set of technologies and processes that use data to help deciscion
makers understand and analyze business processes. The following Section describes the reasons
and goals for analytics in the field of software development and who can profit from it.

2.1.1 Reasons for Analytics in Software Development
Software development is considered to be an activity that is data rich. Almost every aspect in
software development, from code repositories to testing environments, can be measured and an-
alyzed. Despite a high degree of measurability, software projects remain unpredictable and have
an increased risk of failure [BZ10]. This observation implies that there may be a disconnect be-
tween information that is needed for decision making and the information that is delivered by
existing analysis tools [BZ11].

Buse and Zimmermann state that software engineering has many qualities that lend them-
selves well to a business analytics process [BZ11]:

• Data-rich: Software development delivers large amounts of data to analyze. Analytics
works best with lots of data to analyze.

• Labor intensive: Software engineering is a labor intensive activity, needs a long period
of education of engineers and has a short supply of graduates [Sha00]. Analytics enables
correct expertise to be leveraged and helps to manage human resources.

• Time dependent: Analytics supports time dependent business processes by enabling deci-
sion makers to look at the past and predict future schedules.

• Dependent on consistency and control: In unusual circumstances analytics can help to
make consistent and controlled decisions.

4 Chapter 2. Related Work

• Dependent on distributed decision making: Software development projects, in particular
open source projects, have often geographically distributed teams. Analytic tools help to
analyze and understand the overall state of projects with distributed teams.

• Low average success rate: Areas where failure rates are high have a larger chance to benefit
from analytics. Although failure rates of software development projects have decreased in
the past years, still every fifth software project gets cancelled [EK08].

2.1.2 Project Management
Project managers are the main decision makers in software projects and mainly responsible for
the successful outcome of a project. Therefore, project managers in software development should
have a vested interest in analytics tools that assist them in their decision making process. The
challenge of developing a tool that supports a project manager’s work, is to understand his tasks
and information needs [LHG10].
A project manager’s job includes the monitoring and controling the work of his team of software
developers. A developer mainly focuses on lower level tasks such as coding, performance en-
hancing or refactoring, whereas a project manager is mostly occupied with higher level tasks.
Examples of higher level tasks include: monitoring the direction of the project, allocating re-
sources, cooperating and communicating with stakeholders or fostering the motivation and team
spirit [BZ11].
To perform these tasks a project manager requires information from a wide range of sources. In
a survey by Buse and Zimmermann 110 employees at Microsoft were interviewed; 57 managers
and 53 developers [BZ11]. When asked about the factors which influence their decision making
most, managers rated Data and Metrics as the most important factor, whereas Personal experience
was rated as most important by developers. Project managers also rated Personal experience, Cus-
tomer input, Product vision and Team planning as important to very important factors. From this
study it can be observed that data mining and analyzing holds crucial information for the deci-
sion making task of a project manager. Nevertheless it is important for project managers as well,
to survey the current work of their developers, so that they can manage their teams and allocate
resources properly.

2.1.3 Goals of Software Development Analytics
Software development analytics assists project managers to make decisions by accentuating the
information that they need. Project managers could profit from analytics in the following areas
[BZ11]:

• Project monitoring: Analytics is a powerful means of monitoring the status of a project.
Analytics can analyze large amounts of data and help to visualize the contained information
in an understandable way.

• Efficiency improvement: Analytics helps to detect the efficiency of different working tech-
niques. It can as well discover whether some workflow changes influence the result or the
efficiency.

• Risk management: Large data collections allow one to create risk models. Analytics can
also help to collect qualitative data and deliver output in a coherent way.

• Anticipation of change: Analytics models can help managers to detect and forecast trends
in data.

2.2 Software Metrics 5

• Evaluation of past decisions: Consistent decision making based on data is simpler to eval-
uate than decisions based on intuition. Through data based decision making it is easier to
analyze how a result was caused by a decision.

The overaching goal of analytics is to help managers move beyond information and toward
insight. Analytics is not about answering the question what happened in the past but rather how
did it happen and what is the next best action to take. The complexity of a project manager’s work
is still not entirely understood. There is a lot of research still to be done until project managers
can use analytics tools that come up to their great promises.

2.2 Software Metrics
Software metrics allow characterization and measurement of software products and processes.
The purpose of software metrics is to evaluate and improve the quality and design of software
systems. A lot of metrics have been proposed and validated. There are software metrics that mea-
sure the size, the complexity, the quality, the change history, and many other areas of a software
engineering project [Mil98].

Fenton and Pfleeger classify software metrics into three categories: process metrics, product met-
rics, and resource metrics [FP97].

• Process metrics measure software related activities, e.g. the development process.

• Product metrics measure all artifacts that result from a process activity.

• Resource metrics: measure entities that are required by a process activity.

Furthermore, with each metric there is a distinction between internal and external attributes.
Internal attributes can be measured relating to the proudct, process, or resource itself. An external
attribute can be measured only with the respect how a product, process, or resource relates to its
environment.

Another method is to classify software metrics into static and dynamic metrics. On the one hand,
static metrics are collected only from the source code of a software project and are usually used to
quantify various design or source code complexity aspects. On the other hand, dynamic metrics
capture the complexity and the dynamic behaviour of a software system. They are collected from
the execution traces of the source code’s executable models. To clarify the differences of static and
dynamic metrics, one can say that "static metrics deal with the structural aspects of a software system,
whereas runtime (dynamic) metrics also deal with the behavioural aspects of the system" [KCG10]. The
large advantage of static over dynamic metrics is the fact that they are simpler to collect. The col-
lection of dynamic trace data is far more complex and the data is accessible only late in a software
development lifecycle [KCG10].

Michel Lanza and Radu Marinescu analyzed the usage of object-oriented metrics in practice
[LM06]. In their book, they only deal with static, internal product metrics although they refer
to them as design metrics. Lanza and Marinescu state that metrics are used "for many specific pur-
poses, like quantifying and qualifying the code that has been written, or predicting future development ef-
forts that must be invested into a project." [LM06]. Their focus lies on the purpose to make software
metrics more interpretable. They introduce different approaches that visualize software projects
with the aid of software metrics or introduce characteristics that aim to detect problems in the

6 Chapter 2. Related Work

source code. One of their approaches, the Overview Pyramid, is utilized in this thesis and de-
scribed in more detail in Section 3.1.

2.3 Software Project Awareness
Dourish and Belotti describe awareness as "an understanding of the activities of others, which provides
a context for your own activity" [DB92]. In a software project, awareness includes being aware of the
technical aspects, e.g. source code status, but also being informed about the current and upcoming
tasks and the team members’ workload. Project awareness allows better coordination and control
of work tasks, planning future tasks, and allocating resources. Especially in distributed devel-
opment environments, where face-to-face meetings and synchronous communication is rare, it is
crucial that developers and managers keep track of a project’s status [GPS04].

Project awareness in software development projects is supported by assistant tools. Early aware-
ness assistant tools focused on source code and information that is available from source code.
Some of the tools raise awareness by highlighting code fragments that were recently changed.
For example, FASTDash is a project awareness tool that allows developers to quickly see which
team members checked out source files, what files are being viewed and which methods and
classes are being changed [BCSR07]. Another assistant tool is Seesoft which concentrates on soft-
ware visualization. It maps each source code line to a thin row and indicates changes by using
colors [ESS92].
These tools focus on code changes and current activities in a project. However, "in large projects,
they often fail to provide an overview of the overall status of a project. [TS10].
For this reason, more recent attempts to assist project awareness focus on higher level and more
work related project insights. Software project awareness tools such as Microsoft’s Team Founda-
tion Server and IBM’s Rational Team Concert provide a development environment that keep users
up to date about current work tasks, bug statuses, code modifications, and the team’s productiv-
ity and workload. Section 3.3 describes the Rational Team Concert in more detail. Unfortunately,
these higher level assistant tools fail to give a detailed overview over code related artifacts.

The prototype application developed in conjunction with this thesis connects two existing tools,
IBM’s Rational Team Concert and University of Zurich’s Object Oriented Metrics Service, to combine
source code oriented awareness with work task related awareness.

Chapter 3

Background

In this Chapter all necessary background information that is needed in connection to the proto-
type application is presented. First, an introduction about the Overview Pyramid which is used in
the prototype application is provided. Sections 3.2 and 3.3 present the SOFAS metrics services as
well as IBM’s Rational Team Concert. The last Section gives a brief introduction to tablet application
development.

3.1 The Overview Pyramid
The Overview Pyramid by Michel Lanza and Radu Marinescu is a visualization of an object-
oriented system in its entirety. The goal is to show the most significant measurements about an
object-oriented project in a single place. The Overview Pyramid displays and compares size and
complexity, coupling, and inheritance metrics. The displayed metric ratios are classified using
thresholds that are introduced in the following Section. The Overview Pyramid consists of metric
values and ratios. One option to make the metric ratios of the pyramid interpretable is to give
thresholds that make them comparable. The following Sections describe how the metric thresh-
olds are defined and how the Overview Pyramid is structured.

3.1.1 Thresholds
Software development and design can only benfit from metrics if the metric values can be inter-
preted and evaluated. Thresholds are a fundamental instrument to analyze and compare software
code. A software metric is almost useless in practice if it is not possible to tell whether the calcu-
lated value is too high, too low, or just right. Unfortunately, the typical values of most software
metrics are still unknown [FBB+11]. How is it even possible to determine a threshold? What is
the criteria to tell whether a project is small, large, or even too large?
Lanza and Marinescu state that there are two major sources to identify thresholds: statistical in-
formation and generally accepted semantics. Thresholds based on statistical measurements are
primarily useful for size metrics. For example, a Swiss man has a height of 175.4 cm on aver-
age [CKG+00]. With this piece of information one can tell that every person over 175.4 cm can
be considered tall. The more statistical data there is, e.g. the distribution or height compared to
origin, the more it is possible to tell about a person’s height.
Thresholds based on information that is considered normal are typically also a result of former
statistical observations. The difference is that the information or the result is so widely accepted
that it implicitly classifies the refernce points. For example, if we would measure the number of

8 Chapter 3. Background

meals we consume per day, we would classify 3 as the normality threshold without statistically
measuring our behaviour.

Statistics-Based Thresholds

It is hard to tell beyond which number of code lines a method is considered too large. There are
some factors that need to be considered before this question can be answered. In addition, the
code language that has to be identified, since it has an influence on the number of code lines, it
needs to be defined how the lines will be counted. As soon as a definite method is determined to
collect the metrics, data needs be statistically interpreted. Lanza und Marinescu defined a metric
result to be average if its value was between the stanard deviation subtracted from the average
and the standard deviation accumulated to the average. A result is concerend to be high if it
exceeds the value of the upper limit and very high if it exceeds the upper limit value multiplied
by 1.5. Same applies to the lower margins.

Meaningful Thresholds

The maximum nesting level of a method tells how many conditional statements are nested within
a method. The value 0 illustrates that there is no conditional statement in a method, whereas a
value of 1, 2, or 3 displays that there is some nesting but it is still possible to be overlooked. Values
over 4 indicate that the method has a deep nesting structure and it is hard to follow the control
flow. Hence, there are three thresholds that are not statistics based but they give the desired
information about the metric.

The top four metrics in Figure 3.1 show thresholds that were used for the Overview Pyramid
in the prototype application.

Figure 3.1: Statistical thresholds of 45 Java and 37 C++ systems [LM06]

3.1.2 Structure
The Overview Pyramid is divided into three sections: size and complexity (yellow), inheritance
(green), and coupling (light blue). These sections give an informative insight about how large and
complex the system is, to which extent the classes within the system are coupled, and how much
inheritance was used. The threshold from Figure 3.1 are used to color the calculated metric ratios

3.1 The Overview Pyramid 9

in the pyramid. Dark blue indicates a low, green an average, and red a high value. All ratios are
calculated the same: the metric value in the lower row is divided by the value in the upper row.

Size and Complexity metrics
• Cyclomatic complexity (CYCLO): The total number of possible independent paths summed

from all methods in the system. Based on McCabe’s cyclomatic complexity [McC76].

• Lines of code (LOC): The total number of all user-defined code lines. Only the code lines
that contain functionality are counted (e.g. lines of code belonging to methods).

• Number of methods/operations (NOM): The total number of user-defined methods within
the system.

• Number of classes (NOC): The overall number of defined classes in the system, not count-
ing library classes.

• Number of packages (NOP): The total number of packages that are used to organize the
code.

The metric values only reveal how large the project is, whereas the metric ratios show how
well structured and how complex it is. The ratios let the beholder quickly know the average size
of the methods, classes and packages within the system.

Inheritance metrics
• Average number of derived classes (ANDC): The average number of direct subclasses of

a class, interfaces do not count. The number of subclasses of every user-defined class is
summed up and divided by the number of classes in the system.

• Average hierarchy height (AHH): The avarge height of the inheritance tree of every root
class in the system. A class is a root class if it is not derived from any other class belonging
to the system. The height of a root classes inheritance tree is zero if it has no subclasses.

These two metrics give an overview how inheritance is used in a system. The ANDC metric
shows in how many classes of a system inheritance is used and the AHH tells how deep the
inheritance structure is. For example, if the ANDC value is low and the AHH value is high, then
there are only few but very deep inheritance structures in the project.

Coupling metrics
• Number of called classes (FANOUT): The sum of all fanout values of every class. The

fanout value illustrates how many other classes are called from operations within the class.

• Number of method/operation calls (CALLS): The total number of all distinct method in-
vocations in the system. For example, if a method foo() is called three times by the method
m1(), the metric value for the method foo() is 1. If foo() is called at least once from within
each method m1(), m2(), and m3(), the metric value for method foo() is 3.

To gain an insight about the coupling amount of a system, the calculated metrics have to
be compared with each other. The FANOUT/CALLS ratio is an indicator of how coupling is
used beyond classes. A higher value indicates that there are a lot of calls between classes. The
CLASS/NOM ratio shows the avarge number of method calls from within a method.

10 Chapter 3. Background

Figure 3.2: Example of the Overview Pyramid characterizing the open source project ArgoUML [LM06]

3.2 SOFAS Metrics Services
The SOFAS Size & Complexity Metrics Service and the SOFAS Object Oriented Metrics Service are
RESTful web services provided and developed by the software evolution & architecure lab (s.e.a.l.)
at the University of Zurich. A RESTful web service is a web service implemented using HTTP and
the REST (Representational State Transfer) conventions. The metrics services are part of the Soft-
ware Analysis Services (SOFAS) which wrap already existing software analysis tools exposing
their functionalities and data through a web service [sof].
The SOFAS project was started because no convenient way existed to compare the results of differ-
ent software analysis tools. Existing tools used different meta-models for their input and output
representation, therefore making it complicated and time-consuming to compare the results. Ad-
ditionaly, manual installation and configuration of the analysis tools is avoided, due to the fact
that the software analysis services are available through a web service [sof].

3.2.1 Service Input and Output
Both Metrics Services are similarly constructed. They both accept two types of inputs: raw source
code and FAMIX meta-models. FAMIX is a code language independent meta-model, devel-
oped by Serge Demeyer, that charactarizes the static structure of object-oriented software sys-
tems [DTS99]. The output data is described by the Software Evolution Ontologies (SEON). They
define and represent the consumed and produced data by the Software Analysis Services [sof].
Their goal is "to faciliate the implementation of tools that help software engineers to manage software
systems over their entire life-cycle" [seo]. Listing 3.1 shows a sample output of a system’s ANDC
metric calculated by the SOFAS Object Oriented Metrics Service. It is represented in the SEON
Code Metrics Ontology.

<rdf:Description rdf:about="http://../famixMetrics/analyses/Prototype/ANDC">

<rdf:type rdf:resource="http://../softwaremetrics.owl#SoftwareDesignMetric"/>

<rdfs:label>total ANDC</rdfs:label>

<j.0:hasName>ANDC</j.0:hasName>

<j.0:hasValue rdf:datatype="http://../XMLSchema#double">0.19</j.0:hasValue>

<j.0:isMetricOf rdf:resource="http://../famixParser/analyses/Prototype"/>

</rdf:Description>

Listing 3.1: Sample output of the SOFAS Object Oriented Metrics Service

3.3 IBM Rational Team Concert 11

3.2.2 Interaction with the Service
Both, the SOFAS Size & Complexity Metrics Service and the SOFAS Object Oriented Metrics Service,
provide access through a web interface. The source code is uploaded to the FAMIX meta-model
extractor service in a zipped file. The generated FAMIX meta-model is then used by the metrics
service to analyze the source code and calculate all the metrics. As soon as the analyses com-
pleted, the output is available in a downloadable RDF Schema file. Additionaly, the output is
accessible through SPARQL queries that are sent to the REST interfaces of the services.

3.3 IBM Rational Team Concert
Rational Team Concert (RTC) is a team collaboration tool that was developed by IBM’s Rational
brand and initially released in 2008. It is part of the IBM Jazz Platform which combines tools for
improving collaboration and lifecycle management. RTC’s features such as task tracking, source
control, and agile planning help to improve the software development process [rtc]. In addition,
RTC provides dashboards and feeds that foster project and team awareness.
A main component in RTC is the work item which is used to track the work tasks in a project.
A work item may be a task, a defect, a story, or one of many other types that are provided by
RTC. Usually, a title, description, priority, plan, due date, and user are assigned to a work item. A
newly created work item is automatically added to the user’s unfinished work section. As soon
as the user starts working on an assigned task, he marks the task as his current work item. Once
he has finished the task, he commits the changes in form of a change set to the source control. The
commited change set has to be associated with a work item which will automatically be marked
as resolved and linked to change set.
Rational Team Concert also supports agile, waterfall, or hybrid approached planning that is closely
connected to the work task management. Furthermore, it has a build management functionality
that allows control and traceability of software builds.

There are several reasons why Rational Team Concert was used in connection to the prototype ap-
plication of this thesis. First of all, it was immediately available and free for up to ten developers
which was enough in context of the prototype. It also fulfilled the requirement to be a software
awareness tool whose focus lies on a high level project overview. Most importantly, it offered
various interfaces that allowed integration in the prototype application.

3.3.1 Access to the Server
There are several different ways to interact with the RTC server: through an IDE plugin for Eclipse
and Visual Studio, a web client, a command line interface, a Java and REST API. The following
three ways of interaction were used in the context of this thesis.

Eclipse Integrated Development Environment plugin

The plugin for the Eclipse integrated development environment (IDE) is mainly inteded for devel-
opers. All RTC features are embedded into the Eclipse workbench, including views, editors and
status line trims.

12 Chapter 3. Background

Figure 3.3: Screenshot of Rational Team Concert’s Eclipse plugin

REST interface

The IBM Jazz platform which underlies the Rational Team Concert is part of the Open Services for
Lifecycle Collaboration (OSLC) community. The goal of the OSLC community is to "standardize
the way that software lifecycle tools can share data with one another" [osla]. Therefore, all products
belonging to the Jazz Platform have to abide the specification defined by the Open Services for
Lifecycle Collaboration. OSLC follows the REST architectural pattern [oslb]. This means that all
services of the OSLC provide a standardized REST interface for communication. Data can be
received and sent to the RTC server through simple HTTP GET and PUT requests.

Web client

The web client only requires a web browser to access RTC. Every user has its own customizable
home screen where dashboards and feeds of interest can be added.

3.3.2 Usage of Dashboard and Feeds
In a survey Christopf Treude and Margaret-Anne Storey asked approximately 150 developers and
project managers at IBM about their usage of dashboard and feeds in their daily work with Ra-
tional Team Concert [TS10]. The survey showed that developers and managers customize their
dashboards for their own advantage. Whereas developers mainly use feeds to stay aware of cur-
rent changes of their work items or work items they subscribed to, managers use dashboards and
feeds to compare developers and teams. Team and project dashboards are also used to reveal the
productivity of different developers and teams. However, managers and developers are aware
that dashboards are only as good as the data that they display.
Treude and Storey also discovered that dashboards and feeds are especially used in critical phases
of a project. Work items are indicated as "mustfix" before a release to indicate their importance.
Dashboard and feeds are then used to observe the status of the critical work items.
Nevertheless, the survey also afforded that about half of the developers do not make use of dash-
boards and about one third do not use feeds.

3.4 Tablet Development
A recent forecast published by the technology research firm Gartner, predicted that by 2017 more
tablet computers will be sold than desk-based computers and notebooks combined [gar]. Whereas
the number of annually sold desktop and notebook computers is going to decrease, the sales
quantity of tablet devices will increase rapidly. This prediction indicates the growing importance

3.4 Tablet Development 13

Figure 3.4: Screenshot of a dashboard in Rational Team Concert’s web client

of tablet application development.
There are two main types of mobile applications: native and web. Native applications use the
mobile platform’s SDK which offers the widest range of functionalities and best utilization of de-
vice resources. The only disadvantage of native applications is that they only run on the platform
they were developed for, whereas web applications run on all platforms with a sufficient mobile
browser. The downside of web applications is their dependency on web technologies which offer
less functionality and performance compared to native developed applications [CL11].

3.4.1 Technology Evaluation Process
In the beginning the goal was to implement a mobile web prototype application for this thesis
with IBM Worklight, a development environment for mobile applications. The main reason to
build a web application was the ability to test and use the application on various platforms and
devices. Worklight allows one to develop a server-side and a client-side part which communicate
through predefined interfaces. Therefore, the possibility existed to develop the client-side mobile
application in JavaScript/HTML5 and the server-side application in Java. For that reason, a large
piece of the coding part could have been written in Java, which was the preferred language.
After about three weeks of testing and developing with Worklight, the decision was made to
switch from web to native application development. The development environment for mobile
web applications did not seem to be technically mature yet. For example, the rendering of web
components within the IDE was oftentimes flawed or not working at all, although the code was
correct and worked perfectly well in a web browser. Debugging was much more cumbersome as
well, since it was only possible through a web browser and not within the development environ-

14 Chapter 3. Background

ment itself.
For these reasons a switch was made to native Android application development. The choice of
Android was obvious, as apps in Android are developed in Java which was the preferred code
language.

3.4.2 Android Tablet Development
With Android 3.0 Honeycomb (API level 11) Google presented the first and last tablet-only Android
version. The main architectural change was the introduction of fragments that allowed better
code reuse and animated effects when dynamically replacing other fragments from the screen.
Since the release of Android 4.0, Google does not distinguish between tablet and mobile develop-
ment anymore. The developer has the possibility to define different user interfaces for different
screen sizes. Depending on what device the application is running, it chooses the user interface
suitable to the screen size [hon].

Design Guidelines

Google proposes to take advantage of extra screen area available on tablets [and]. As poorly devel-
oped tablet applications use a stretched layout style, tablet applications sometimes have exceed-
ingly long line lenghts or a poor use of white space. Figure 3.5 shows an example how Fragment
allows one to build a multi-pane layout to ideally use the whole screen of a device. The size of
fonts, buttons and other UI components needs to optimized for all different screen configurations
as well.

Figure 3.5: Example of Fragment usage in Android [and]

Chapter 4

Project Status Awareness and
Software Quality Application

The following Chapter covers a detailed description of the prototype application. We are going
to describe the dependenies and the user interface of the application, as well as the frameworks
that were used during the development process. In the last part a use case describes how the
functionalities of the prototype application could be utilized.
All the data that is analyzed and displayed by the prototype application was generated in the
context of this thesis. The used code metrics are calculated from the source code of the application
itself and the work items and users were created in the course of the thesis.

4.1 Stakeholder Role

In the beginning of this thesis the information needs of different stakeholders in a software project,
such as software testers, developers, project managers or requirements engineers, were analyzed.
Thereafter, an application for one specific stakeholder was going to be created.
After studying the different stakeholders and researching about available tools to use in connec-
tion with the mobile application, the decision was made to focus on the project manager. The
project manager’s stakeholder role was selected because the tools to cover his information needs
were available right away. Section 2.1.2 covers these findings.

The goal of this application is to provide an assistant tool for project managers. The perceptions
gained from the literature studies were used as a foundation to design the application. Since the
application uses external tools to receive, store and analyze data, it is dependent on their features,
reliance and availability. Moreover, the findings of the literature study had to be reconciled with
the features of the used services.

16 Chapter 4. Project Status Awareness and Software Quality Application

4.2 Dependencies
The application uses two main services which provide data in raw and analyzed form. On the
one hand, there are the SOFAS metrics services that are responsible for the analysis of the project’s
source code. On the other hand, there is the Rational Team Concert server which is used to track
and organize the work tasks and team members.

4.2.1 Rational Team Concert Server
The Rational Team Concert server is used to manage all work items and users as well as the source
control. As soon as the developer installed the Rational Team Concert plugin in his IDE and con-
nected it to the RTC server, he can create new projects or load existing ones. As the prototype
application is only connected to one example project, this exact project has to be loaded in order
to use the tablet application.
The application is thus dependent on the existence and accessability of the example project on the
RTC server. As soon as either the project is archived, the server is not running or has no network
connectivity, the application will fail to load any data.

4.2.2 SOFAS Metrics Service
Even though the SOFAS metrics services are provided and hosted by the University of Zurich,
they are, unlike the RTC server, accessible from the internet. In Section 3.2 the services and the
interaction with them is described in more detail.
The SOFAS metrics services are used to calculate all the software metrics that are presented within
the application. The source code for analysis has to be uploaded to the metrics service manually
in a zip file. As soon as the analysis has finished, the data is available through the REST or the
web interface.
A large part of the application is dependent on the SOFAS metrics services. Without the service,
multiple parts of the application will not display any data. The fact that the user has to upload
the source code manually brings some user dependency to the application as well. The actuality
of the calculated metrics is only given if the source code used for analysis is updated on a regular
basis.

4.3 User Interface
The application consists of six main user interface parts which are available through the applica-
tion’s menu bar on the left. They are introduced in the following Sections.

4.3.1 Project Overview
The project overview part gives a brief survey of the project. The left column shows all work
items in the project that need to be resolved. This list is ordered by the creation date, new work
items appear at the top, older ones at the bottom. A click on a work item displays the work item
view where more information about a work item is available.
To the right there are two bar charts. The upper one shows the work items categorized by priority.
The chart gives an overview over the distribution of the work item priorities. The lower chart
shows the number of resolved work items sorted by users. It is a simple way to get an overview

4.3 User Interface 17

over the productivity of each user. However, it has to be considered that the bare number of
resolved work items does not tell anything about the amount of work behind each work item.
Nonetheless, the chart can be used to get a glimpse on how many work items each user has
resolved. To get more detailed information about a user’s work, the user’s own view which is
described in Section 4.3.5 has to be considered.
The reason why the project overview was implemented, is to give an up-to-date overview over
what is currently happening in the project and see how the team members performed in the last
weeks.
Figure 4.1 shows a screenshot of the project overview in the prototype application.

Figure 4.1: Screenshot of the project overview in the application

4.3.2 Overview Pyramid
This user interface part implements the Overview Pyramid designed by Michel Lanza and Radu
Marinescu. A more detailed introduction is presented in Section 3.1. In the upper right, there is a
scrollable legend that explains the abbreviations and metrics for those who are not familiar with
them.
The metrics abbreviations with a yellow background describe size and complexity metrics, those
with a green background describe inheritance metrics, and those with a blue background describe
coupling metrics. The metric ratios have a short description on top of them and are colored in ei-
ther dark blue, dark green, or red. Dark blue indicates a too low, green an average, and red a too
high value. The thresholds that are used to set the background color of the ratios are the same as
in the original Overview Pyramid and presented in Figure 3.2.
The reason why the Overview Pyramid was selected to be a part of the application, was to show
a high level overview about the source code of a project. Lanza and Marinescu describe that the
basic idea of the Overview Pyramid is "to put together in one place the most significant measurements

18 Chapter 4. Project Status Awareness and Software Quality Application

about an object-oriented system, so that an engineer can see and interpret in one shot everything that is
needed to get a first impression about the system" [LM06]. The idea is that a project manager can get
a good impression of the system as a whole by taking a look at the Overview Pyramid.

As for this project, the Overview Pyramid reveals that it has low inheritance metric values.
A reason why the Average Hierarchy Height and the Average Number Of Derived Classes values are
low, might be because it is an Android project and a lot of the classes in the project extend from
the Android framework. Since only inheritance from user-defined classes is considered, classes
that extend from the Android framework are ignored in the evaluation of the inheritance metrics.
Further, the pyramid shows that there are too many calls per method and that the coupling be-
tween classes (FANOUT/CALL ratio) is too low. The size and complexity metrics ratios are in the
average threshold range or just slightly below.

Figure 4.2: Screenshot of the Overview Pyramid in the application

4.3.3 Method and Class Metrics
This part connects the SOFAS metrics services, introduced in Chapter 3.2, with the Rational Team
Concert, described in Chapter 3.3. The class metrics part consists of five metrics which each dis-
play five classes. The shown classes have the highest metric value of the respective metric in the
entire project. They are ordered by their value. Therefore, the class with the highest and accord-
ingly most crucial value is on top of the list, the class with the fifth highest value at the bottom.
The method metrics part consists of four metrics and is structured in the same fashion.

4.3 User Interface 19

The goal of this user interface part is to see when a class that has, or contains a method with a high
metric value, was last modified, by whom it was modified, and in relation to which work item.
The first column shows a message icon. A click on that item adds the respective line to the e-mail
notification list, which is more precisely described in Chapter 4.3.6. The class or method names
are displayed in the second column. A click on the class or method name shows the Java source
code of the related class. The third column contains the metric value calculated by the metrics
service. The last three columns contain the name of the related work item, the latest modification
date, and the user who changed the work item last.
The following two Sections present the metrics that are displayed in the method and class metrics
part [fam] [jav]. The metrics in the two Sections were chosen to be displayed because they are all
related to the metrics from the Overview Pyramid. Besides, the variety of available metrics about
a single method or class was limited.

Method Metrics

• Maximum nesting level (MAXNESTING): Maximum number of nested conditional state-
ments within a method.

• Coupling intensity (CINT): The number of distinct methods called by the measured method.

• Changing classes (CC): The number of classes in which the methods that call the measured
method are defined in [LM06].

• Changing methods (CM): The number of distinct methods calling the measured method.

Figure 4.3: Screenshot of the method metrics part in the application

20 Chapter 4. Project Status Awareness and Software Quality Application

Class Metrics
• Average method weight (AMW): The average of McCabe’s static complexity [McC76] of

the methods of the measured class.

• Weighted method count (WMC): The sum of McCabe’s static complexity of the methods of
the measured class.

• Tight class cohesion (TCC): The cohesion between the public methods of a class. "Two
methods are related through instance variable(s) if both methods use the same instance
variable(s)" [BK95]. The result value ranges between 0 and 1. The higher the value, the
more methods are related through instance variables and the more cohesive is the class.

• Number of attributes (NOA): The number of static and non static attributes of a class.

• Number of methods (NOM): The number of static and non static methods of a class.

4.3.4 Work Item Queries
Rational Team Concert allows to define queries that help to find work items more quickly. Queries
are a powerful tool to keep a clear view over all work items, even if a huge number of them are
defined. Through conditional statements, work items can be filtered in the desired way.
Work item queries are either created through the web client or the IDE plugin of Rational Team
Concert. Any number of conditions can be defined and one can choose if either all of them (AND
operator) or any of them (OR operator) must match. A query is accesible to the user who created
it, but can be shared to the whole team as well.
Figure 4.4 shows how a query is defined through the web interface. There are three conditions
defined for the query Unresolved defects with low priority: T́ype is Defect’, ’Priority is Low’, and
’Status is Unresolved’. A work item must match all conditions in order to be found by the query.

Figure 4.4: Screenshot of the query definition part in Rational Team Concert

In Figure 4.5, a screenshot of the work item queries part from the prototype application is
shown. In the column to the left, all shared and user-defined work item queries are listed and
can be selected. The shared queries appear at the top of the list, whereas the user-defined queries
are found at the bottom. After a query has been selected, the right column displays the title, the
creation date, and the status of the work items that match the conditions of the selected query.
Two work items match the criterias of the query defined above, as Figure 4.5 illustrates: Colors in
Pyramid Overview and Bar chart visualization flickering.

4.3 User Interface 21

Figure 4.5: Screenshot of the work item queries in the application

Figure 4.6 shows how the information about the selected Bar chart visualization flickering work
item is displayed in the prototype application.

Figure 4.6: Screenshot of a work item in the application

The idea behind the work item queries part is to offer a quick navigation through all work
items in the project. The project manager should have the ability to use his own defined queries.
Since the queries are highly customizable, it is possible for the project manager to quickly get an
overview about different specific parts of the project.

22 Chapter 4. Project Status Awareness and Software Quality Application

4.3.5 Team

The team user interface part allows to take a closer look at every single member of the team. In
the team view, the application presents a list with all team members. A click on a user displays
the selected user’s view which is shown in Figure 4.7.
The column to the left presents information about the user as well as a list of unresolved work
items that are assigned to the user. In the right column, there is a bar chart that shows the dis-
tribution of how many work items the user has resolved in the past five weeks. Below the bar
chart there is a scrollable list that shows the user’s resolved work items. The list is descendingly
ordered by the resolve date of the work items.

Figure 4.7: Screenshot of a user in the application

4.3.6 E-Mail Notification

The e-mail notification part allows to send an e-mail containing information about method and
class metrics directly from the application. Every line in the method and class metrics part, which
is described in Section 4.3.3, contains a message icon all to the left. A metric is added to the e-mail
notification list by clicking on the message icon. If the metric has been added to the notification
list, the message icon is replaced by a check mark. Figure 4.3 shows how two different metrics
have been selected. All selected metrics will appear in the e-mail notification list as shown in
Figure 4.8. As soon as all desired metrics have been added to the notification list, a click on the
Send E-Mail button automatically creates an e-mail with information about the desired metrics
and the work items related to them. The idea is that the project manager can use this ability to
send himself or somebody else a reminder about discoveries he made with the application. Figure
4.9 shows an example of a automatically created e-mail template.

4.4 Used Technologies and Frameworks 23

Figure 4.8: Screenshot of the e-mail notification user interface in the application

Figure 4.9: Screenshot of an automatically created e-mail template

4.4 Used Technologies and Frameworks
The following two Sections describe the frameworks that were used in the development of the
prototype application. Both frameworks are not part of the Android API and had to be imported
manually.

4.4.1 AChartEngine
AChartEngine is an open source software charting library for Android. It can be used to build chart
views of many different kinds, for example bar charts, line charts, pie charts, or scatter charts.
The chart is defined all in Java and added to a layout element which can be defined statically or
programmatically [ach].
AChartEngine is used in the prototype application to draw bar charts in the project overview and
the user view. Figure 4.1 shows the user interface of the project overview containing two bar
charts created with AChartEngine to the right.

4.4.2 QDox
QDox is a lightweight parser for extracting class, interface, and method definitions from source
code files. The source code files are skimmed by the parser and categorized by class definitions,
import statements, member declarations, and JavaDoc comments. The result is a document model
containing the useful information about the parsed file [qdo].
In the prototype application, QDox is used to parse the source code received through the REST

24 Chapter 4. Project Status Awareness and Software Quality Application

interface of Rational Team Concert’s source control. QDox parses the plain text source code files
and provides the information from the imported code in a JavaClass. Information about the
Java code can now comfortably accessed through the methods of the JavaClass.

4.5 Use Case
The following Section describes a use case of how the functionalities of the prototype application
could be utilized. The code snippets and metrics used in this use case represent the prototype
application itself.
Assume a small team of software developers and a project manager are working on the develop-
ment of an Android application. The project manager is responsible for the outcome of develop-
ment process, but as a matter of fact, he is engaged a lot with communicating with stakeholders
outside the project and has almost no time to assist the development process himself. To stay
aware of the quality and the status of the project, he uses the prototype application and manages
the developers work through Rational Team Concert.
The tablet application gives him the opportunity to get a view on the source code quality and the
workload of his team, even if he is not in front of his desktop computer.

4.5.1 Detecting a critical Method
While browsing through the prototype application and taking a look at the project’s status, the
project manager spots a method with a critically high nesting value. By clicking on the method’s
name, he can immediately take a look at the code of the class that contains the method. He is also
able to see the work item that is related to the latest class change and the user who updated the
work item. By taking a closer look at the work item, the project manager discovers that it has been
changed just recently and marked as done. The project manager is not satisfied with this result
and decides that the method has to be refatored.

Figure 4.10: Screenshot of the methods with a critical high nesting value

4.5.2 Sending E-mail Notification
The project manager adds the method and the corresponding work item to the e-mail notification
list and keeps on browsing. Before he finishes using the application, he sends a notification e-
mail containing the information about the method with the critical high nesting level to his work
address.
As soon as he is at his work computer again, he clicks on the link in the notification e-mail and
finds himself immediately at the right place on the web client of the Rational Team Concert. Since
it is not a very urgent issue, he creates a low priority task and assigns it to the user who modified

4.5 Use Case 25

the class last and who is responsible for that part of the code.
The project manager could also send the e-mail directly to the developer and ask him to create a
new work item.

4.5.3 Refactoring
Soon after, the developer checks his current work and finds that a newly created task has been
assigned to him. As soon as he has some spare time to work on that task, he updates the status
of the work item from new to start working. All other team members are now able to see that he is
currently working on that task.
As long as the user is working on that work item, everyone in the team can see that the status of
the work item is in progress. Unfortunately, the developer can not resolve the issue due to some
dependecy issues. Therefore, he does not mark the work item as resolved, but sets its status to
stop working and adds a note to its description why it has not been marked as resolved yet.

4.5.4 Keeping Track of the Work Item Status
The project manager has several ways to keep track of the work item’s status in the prototype
application. As long as the work item is unresolved he can find it in the project overview. He can
also use a query or check the developer’s user view to check the status of the work item.
As soon as the project manager sees that the developer stopped working on the task, he checks
the work item from the prototype application. He can see what was added to its description and
thus knows why it has not been marked as resolved yet. For checking purposes, he takes a look at
the method metrics part and finds the method gone from the list of the methods with the highest
maximum nesting level.

4.5.5 Limitation
The inability to create the work items from the application directly limits the efficiency of the
project manager. If a work item could directly be created from the application, the project man-
ager would not have to send a notification e-mail to himself to create the work item later at his
work computer.

Chapter 5

Implementation Details

5.1 Internal Structure
There are four different types of components that build up the application. The four components
and their functionality are described in the following Section.

5.1.1 Receiver Classes
The main job of receiver classes is to receive data from the Metrics Service and the Rational Team
Concert Server. An abstract receiver class which contains the information of how to communicate
with the RESTful web services is defined in the project. Several other receiver classes that are
specialized to receive one specific data object, for example a workitem or a user, inherit from the
abstract receiver class.
To prevent the user interface from freezing, Android does not allow network operations on the
main application thread [Mei12]. Therefore, all receiver classes are called from an AsyncTask, a
class defined in the Android API that allows to perform operations on a background thread. While
receiving the data, a ProgressDialog appears and shows that the app is loading. As long as
the ProgressDialog is showing, user input is ignored.
Network operations are not allowed on the main application thread, whereas Activities and their
Fragments are always handled by the main thread.

Figure 5.1: Flowchart of a user input scenario

28 Chapter 5. Implementation Details

5.1.2 Fragments

The Fragment class is provided by the Android API and represents some behaviour or a portion
of user interface within an activity. Figure 3.5 shows how Fragments are intended to create multi-
pane user interfaces.
To create a new fragment, a subclass of Fragment has to be created. A fragment is always embed-
ded in an activity and dependent on its lifecycle. If the activity is paused or stopped, the fragment
is paused or stopped as well. Every activity has a FragmentManager that can be used to interact
with fragments, for example hiding, showing, or replacing them. The user interface of an activity
or a fragment is either defined statically in an XML file or programmatically in the source code.
It is also possible to define part of the user interface statically and add some elements or content
programmatically [Mei12]. A typical XML file that defines a user interface i shown in Listing 5.1.

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/main_activity_layout"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:orientation="horizontal"

android:weightSum="100" >

<LinearLayout

android:id="@+id/menu_bar_container"

android:layout_width="0dp"

android:layout_height="match_parent"

android:layout_weight="15" />

<LinearLayout

android:id="@+id/central_container"

android:layout_width="0dp"

android:layout_height="match_parent"

android:layout_weight="85" />

</LinearLayout>

Listing 5.1: Example XML file that defines a user interface

The prototype application consists of only one activity. Listing 5.1 contains the layout structure
of that activity. There are two layouts aligned horizontally, the left layout uses 15 percent of the
screen width and contains a fragment that displays the menu bar of the application. The right
layout takes 85 percent of the screen width and holds the currently selected fragment. Figure 5.2
shows how the layout specificaitons in Listing 5.1 build up the fragment structure in the prototype
application.

5.1.3 Data Container Classes

Some classes are intended to store data loaded by the receiver classes. A data container class
represents an entity defined by the service, such as a metrics result or a single work item. Every
container class is interconnected with a receiver class. A data container object is only instantiated
from the receiver class that is supposed to load that data container class.

5.2 Receiving Data from the Metrics Services 29

Figure 5.2: The application’s fragment structure

5.1.4 Data Management Classes

Data management classes are the connector between receiver classes and fragments. The job of
these classes is to organize the received and created data container objects and provide them to
the fragments. There are only three data management classes in the project. One to handle the
data from Rational Team Concert, one to handle the data from the Metrics Service and one to handle
the connected data from both tools.

5.2 Receiving Data from the Metrics Services

Data is received from the SOFAS metrics services by sending a encoded SPARQL Query to the
RESTful interface of the metrics service and parsing the received response. This procedure is
explained in the following Sections.

5.2.1 SPARQL Query

The SOFAS metrics services are able to handle HTML encoded SPARQL (SPARQL Protocol and
RDF Query Language) queries through their RESTful interface. The services execute the query
and provide the result in a SPARQL Query Results XML Format 1.
The following Listing shows a SPARQL query that receives the five largest values of the average
method weight metric (AMW) and their corresponding label.

1http://www.w3.org/TR/2007/CR-rdf-sparql-XMLres-20070925/

30 Chapter 5. Implementation Details

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX j.0: <http://habanero.ifi.uzh.ch/seon/softwaremetrics.owl#>

SELECT ?label ?value

WHERE {

?description rdfs:label ?label .

?description j.0:hasName "AMW" .

?description j.0:hasValue ?value

}

ORDER BY DESC(?value)

LIMIT 5

Listing 5.2: Example SPARQL query of the average method weight metric

5.2.2 Response Receiving

In order to comunicate with the metrics services, Apache’s HTTPComponents2 library is used.
The following code snippet shows how a metrics result in form of a HttpResponse object is re-
ceived from the service.
First, a DefaultHttpClient and a HttpHost object are created. Next, the authentification cre-
dentials are added to the DefaultHttpClient object and a new HttpGet object is created by
passing the entire request URL to the constructor. The URL consists of the serviceName which
is one of the two names of the metrics services, the analysisName that is defined on the service,
as well as the HTML encoded SPARQL query. After that, the HTTP Accept header field is added
to the HttpGet object. In order to receive a valid response from the metrics service, the HTTP ac-
cept request-header field has to be application/sparql-results+xml. Last, the HttpHost
and the HttpGet objects are executed by the DefaultHttpClient object.

DefaultHttpClient httpClient = new DefaultHttpClient();

HttpHost targetHost = new HttpHost("habanero.ifi.uzh.ch", 80, "http");

httpClient.getCredentialsProvider().setCredentials(

new AuthScope(targetHost.getHostName(), targetHost.getPort()),

new UsernamePasswordCredentials("username", "password"));

HttpGet httpGet = new HttpGet("/" + serviceName + "/analyses/"

+ analysisName + "?query=" + URLEncoder.encode(sparqlQuery, "UTF-8"));

httpGet.addHeader("Accept", "application/sparql-results+xml");

HttpResponse response = httpClient.execute(targetHost, httpGet);

Listing 5.3: Implementation of communication with the metrics service

2http://hc.apache.org/

5.3 Connect RTC with the Metrics Service 31

5.2.3 Response Parsing
The last step to make the metrics results easily accessible is to parse the received SPARQL Query
Results XML file and store the values and names in a self defined MetricsResult data container
object. The received HttpResponse object from Listing 5.3 is handled by the method shown in
Listing 5.4.
First, an ArrayList<MetricsResult> is created to store the parsed results. XPath is used to
navigate through the XML content of the HttpResponse object and create a NodeList object
result entities of the XML response. In our case, the NodeList will have five entries since the av-
erage method weight query from Listing 5.2 limits the result entities to five. Each NodeList entry
will again be evaluated with XPath and the result values are going to be stored in a MetricsResult
which will be added to the initially created ArrayList.

private ArrayList<MetricsResult> parseResponse(HttpResponse httpResponse){

ArrayList<MetricsResult> resultList = new ArrayList<MetricsResult>();

XPath xPath = HttpUtils.getXPath();

InputSource source = new InputSource(httpResponse.getEntity().getContent());

NodeList nodeList = (NodeList) xPath.evaluate("/:sparql/:results/:result",

source, XPathConstants.NODESET);

for (int i = 0; i < nodeList.getLength(); i++) {

Node node = nodeList.item(i);

node.getParentNode().removeChild(node);

String value = xPath.evaluate("./:binding[@name=’value’]/:literal", node);

String name = xPath.evaluate("./:binding[@name=’label’]/:literal", node);

MetricsResult famixResult = new MetricsResult(name, value);

resultList.add(famixResult);

}

return resultList;

}

Listing 5.4: Parsing the content of a response from the metrics services

5.3 Connect RTC with the Metrics Service
The connection of the Rational Team Concert and the SOFAS metrics services works due to the
fact that both services know the source code of the project. The metrics services obviously know
the code because they have to analyze it and the Rational Team Concert knows the code because
the project’s source control runs through it. Source code changes are committed to Rational Team
Concert’s source contol in form of change sets and have to be linked with a work item. How the
connection is implemented in the application is shown in the following Section.

5.3.1 Finding a Change Set by the Name of a Java class
The ChangeSet class has four private fields: a Date field for the date when the code change was
committed, a String that stores the URL which is used as the identifier of the related work item,
a JSONObject that holds all the information about the change set, and a HashMap<String,
JavaClass> that is used to store the source code of the change set’s Java classes.
At startup of the application, a list of the URLs of every change set in the project is received

32 Chapter 5. Implementation Details

and an ArrayList<ChangeSet> containing the creation date, the work item URL and the
JSONObject of each change set is created. The list is sorted descending by the commit date,
hence the latest change set is at index 0.
In order to find the Java classes related to a change set, it is necessary to analyze the JSONObject
of the change set and look for every URL that points to a text file containing Java source code
and parse that file. Since this is a time consuming task, the HashMap<String, JavaClass>
remains unset until the Java classes of that change set are needed.
Below, it is explained how to find the change set by the name of a java class with the help of an
example.

public ChangeSet findChangeSet(String fullClassName, int changeSetIndex) {

// changeSetToAnalyze is a static int variable

if (changeSetToAnalyze <= changeSetIndex) analyzeNextChangeSet();

if (changeSets.get(changeSetIndex).containsJavaClass(fullClassName)) {

return changeSets.get(changeSetIndex);

} else if (changeSetToAnalyze < changeSets.size()) {

return findChangeSet(fullClassName, changeSetIndex + 1);

}

return null;

}

Listing 5.5: Finding the latest change set which is related to a given Java class

The method findChangeSet in Listing 5.5 is called after the data from the metrics service
is loaded and stored in a MetricsResult object. After that, the Java class name is parsed and
stored as follows: com.prototype.main.MainActivity. This class name serves as the iden-
tifier to find the linked Java class in a change set.
Next, the findChangeSet method is called with the full class name and the changeSetIndex
0. The changeSetIndex refers to the ArrayList<ChangeSet> that holds all change sets in
descending chronological order. The first thing the method does, is to check if the change set at
changeSetIndex has already been analyzed. The purpose of the static variable
changeSetToAnalyze is to ensure that the JSONObject of every change set gets analyzed at
most once. On application startup, the value of the variable is 0 and increases with every change
set that has been analyzed. Since both values are 0 in our case, the JSONObject of the latest
change set is analyzed and the HashMap<String, JavaClass> of the latest change set will be
set.
The next if condition checks if the change set at index changeSetIndex of the ArraxList con-
tains the Java class we are looking for. If this is the case, the found change set is returned. If not,
the findChangeSet method is called recursively with the same class name, but a
changeSetIndex increased by 1.
Assuming that the Java class corresponding to our class name has not been found in the first
analyzed change set, the findChangeSet method will be called again. Next, the second latest
change set will be analyzed since both the changeSetToAnalyze and the changeSetIndex
values are 1. After that, the value of changeSetToAnalyze variable is 2.
Under the assumption that the second latest change set contains the wanted Java class, the found
change set will be returned. If the findChangeSet method is called again with another class
name, the first two change sets will not have to be analyzed again since changeSetToAnalyze
value will be 2 and the hash maps of the first two change sets will be set.

Chapter 6

Evaluation

To evaluate and test the usability of the prototype application a formative evaluation was con-
ducted. The goal was to analyze the functionality of the application and find out if it is easy and
intuitive to use and suitable for the given tasks. Additionaly, the participants were asked if they
could imagine to use such an application in a productive environment and which functionalities
would need improvement. The setup, the results, some suggestions for imporvement, as well as
the limitations of the evaluation are described in this Chapter.

6.1 Setup
The evaluation consists of three parts: a tasksheet that covers the capability of the application, a
usability rating, and a open question part. These three parts are briefly described in the following:

• Tasks: The tasks section consists of eight different tasks that demand using all different
parts of the application described in Section 4.3. The user is asked to rate the difficulty and
the time intensity of each task on a five point rating scale.

• Usability rating: The user was asked to rate eight polarity profiles [KH] about the general
usability, the intiuitivity, and the tablet optimization of the application.

• Open questions: The open questions focus on the detection of improvement suggestions
and missing features.

Nine persons participated in the evaluation. All of the participants were either students or
postgraduates in the field of computer science and therefore ideally equipped to evaluate the
application. Those who had no experience with software metrics or team collabortation tools like
the Rational Team Concert were shortly informed about the topic.
At the beginning, the participants were briefly introduced to the setup of the evaluation and a
tablet with the running application was handed to them. The application itself was not explained.
They were allowed to ask questions during the evaluation, but the goal was to let them solve the
tasks by themselves.
The procedure of the evaluation was similar to the lab test introduced by Tullis and Albert, where
"the moderator [...] gives them (particpants) a set of tasks to perform on the product in question" and the
test "requires a relatively small number of participants(typically four to ten)" [TA08]. The data collected
in the evaluation consists of the success of each task, the results of the usability rating and the
answers to the open questions.
The handed out evaluation sheet is found in Appendix A.

34 Chapter 6. Evaluation

6.2 Results

The result section is divided into the three parts of the evaluation. First, the success rate, the
difficulty, and the time intensity of the tasks are analyzed. Second, the results of the usability
rating are presented, and third, the answers to the open questions are analyzed.

6.2.1 Task Success

The following bar chart shows how successful each task was solved. To the left of the chart,
there is a brief description of each task. The tasks are ordered in the same way as in the original
evaluation form (see Apendix A).

Figure 6.1: Bar chart showing the success rate of each task

The chart in Figure 6.1 shows that three out of eight tasks were solved correctly by every
participant and four taks were solved correctly by at least seven out of the nine participants. The
main source of error in those four tasks was that the answers were not complete. Somehow, the
participants wrote down only one part of the answer, which was correct in every case, and forgot
about the rest of the answer.
Only one task, where the participants had to send an e-mail notification about a given metric
result, caused difficulties. The idea was that they would find the specified metric in the class
metrics view and click on the message icon (see Figure 4.3), so the metric is added to the e-mail
notification list. Unfortunately, four out of nine participants did not discover that it is possible to
click on the message icon and were not able to send the e-mail. There was no hint in the e-mail
notification view that explained first time users how to use the e-mail send ability.

6.2 Results 35

The following line chart shows the average participant rating about the difficulty and time
intensity of each task. The particpants were asked to rate difficulty and time intensety directly
after each task on a five point scale.

Figure 6.2: Line chart showing the difficulty of each task

The line chart in Figure 6.2 shows a clear correlation between the participants’ rating of the
difficulty and the time intensity of each task.
What attracts attention in the chart is the fact that the participants rated the first task as far more
time intensive as most of the other tasks. Some particpants even annotated on the time intensity
rating of the first task that it took them some time to get to know the application during the first
task. For this reason, one can suppose that the time intensity and difficulty rating of the first
task would have been lower if the participants had some time to become acquainted with the
application before they started the tasks.
Another thing that stands out is, like in Figure 6.1, task number seven where the participant had
to send an e-mail notification. Since four out of nine participants failed to send the notification, it
does not surprise that this task was rated as the most difficult one.
Altogether, one can come to the conclusion that only one task had an unsatisfying outcome and
that most of the tasks were solved correctly with fairly low effort.

36 Chapter 6. Evaluation

6.2.2 Usability Rating

The following chart shows how the participants rated the usability of the application on a five-
point polarity profile.

Figure 6.3: Usability rating of the application

The most negativly ranked feature in the polarity rating of Figure 6.3 is the attractiveness
of the user interface. Since the application was built as a prototype, no focus was laid on the
attrativeness of the application. Still, some improvements of the user interface design would also
increase the intuitive use of the application. One participant noted in the open question section
that it was sometimes unclear to him which elements in the application were clickable and which
were not. A revision of the user interface would not only make the application more attractive,
but also help to get rid of such unclarities.
Another comment needs to be made about the loading time of the application because it is the
second worst rated feature and has the largest rating diversity. The application took about one to
two minutes to initially load all data. While some participants browsed through the evaluation
form or asked some questions during the application was loading, others just waited for it to
finish loading, so they could start. This clearly indicates that not all participants paid attention to
the loading time in the same extent.
The overall rating of the usability shows a fairly satisfying result which proves that the application
is a valuable instrument to stay aware of a project’s status and software quality.

6.2 Results 37

6.2.3 Open Questions
The open questions section consisted of four questions. The first question asked the participants
if they could imagine using a fully developed application like this prototype in a productive en-
vironment. Generally, all particpants liked the idea of the application and could imagine using it.
Some stated that the application is no replacement for a tool that is integrated in the development
environment, but rather a nice addition for situations when they are out of office. One participant
mentioned that the application could be useful for a project leader and someone else noted that it
could be convenient in a scrum meeting situation.
The second question was about the features the participants particularly liked about the applica-
tion. They mentioned the project and the user view, the ability to send e-mail notifications, the
clearly arranged user interface, the possibility to query for work items, and the fact that the ap-
plication fosters team collaboration.
When asked about things they disliked about the application, the participants mentioned the in-
teractivity of the application, i.e. more elements should be clickable and it should be obvious
which elements are clickable. Further, the missing ability to create work item queries and the
design of the user interface were also brought up.
The last question referred to suggestions for improvement which are described in the following
Section.

6.2.4 Suggestions for Improvement
The following list contains the improvement suggestions brought up by the participants.

• Add ability to edit work items: Allow to add comments or change the description of a
work item.

• Make e-mail notification feature more intuitive: Simplify the way to add metrics to the
notification list.

• Revise home screen: Add more content to the home screen. It only shows the name of the
application so far.

• Add ability to search or group queries: Avoid the long list of queries by adding the ability
to group or search through them.

• Add syntax highlighting: Make Java Code better readable by adding syntax highlighting.

• Add ability to see metrics of all classes and methods: Add the metrics of all classes and
methods in the project and make them browseable, e.g. through the package strucutre of the
project.

• Make user interface more interactive: Add interactive elements to the user interface like
zooming and sliding. Make more elements clickable.

• Add more background information: Help users who are not familiar with software metrics
and work items by adding more hints and background information.

38 Chapter 6. Evaluation

6.3 Limitations
The evaluation was conducted with only nine participants. For this reason, the degree to which
the results of this evaluation can be generalized, is limited. Moreover, the results of this evaluation
could also be biased due to the selection of the participants which were composed of students and
postgraduates. The postgraduates have obviously more experience with collaboration tools and
software metrics which might cause a different rating of the application. Further, the fact that
the participants were directly asked to participate in the evaluation might lead to too positive
answers. Tullis and Albert state that the "participants in a usability lab essentially want to tell us
what they think we want to hear, and that is usually positive feedback about our product" [TA08]. The
evaluation would have had to be conducted in an anonymous environment to avoid this effect
which is called the social desirability bias [TA08].

Chapter 7

Conclusion

7.1 Summary
The work task of a project manager is complex and consits of many different activities. To support
him in his decision making progress, he needs analyzed data from his project that is presented to
him in an easy to understand fashion.
The prototype application that is developed in connection with this thesis focuses on a high level
project overview. It is used in conjuction with Rational Team Concert that helps raising project
awareness and the SOFAS metrics services which provide software metrics to analyze the soft-
ware quality of the project. The application is developed as a mobile application on the Android
platform and its user interface is optimized for tablets.
The Overview Pyramid that represents one part of the application provides a visualization of a
software project in its entirety and is designed to present an overall status of a project’s software
quality. In addition, several software metrics are used to indicate potentially critical code areas.
Further parts of the application provide an overview of the tasks of a single developer and the
current work tasks in the project. Moreover it is possible to display specific work items using
self-defined queries. To remind oneself of critically high software metrics, the application allows
one to send notification e-mails.
The results of the evaluation illustrated that the prototype application was intuitive to use. Fur-
ther, all participants could imagine to use a fully developed version of the application in a pro-
ductive environment to keep track of a software project’s status. Nevertheless, the evaluation also
brought several problems and limitations to light. To eliminate the limitations, the Future Work
Section below presents some of the initial thoughts, along with other improvement ideas.

7.2 Future Work
Multiple suggestions for improvements arised from the open questions in the evaluation. While
some of the suggestions partially miss the idea of the use case, others seemed to be very particular
for a prototype application, e.g. the improvement of the user interface design. The following list
covers the three most crucial limitations that need to be dealt with in future work.

• Add local database: The evaluation showed that the initial loading time was considered to
be too long by some of the participants. The reason for this is that the application loads most
of the required data on startup and does not store it on the device after it has been closed.
For this reason, the loading process at application startup takes a long time. Android allows
one to store application data in a local database on the mobile device. If such a database was

40 Chapter 7. Conclusion

implemented, the application would only need to check if some of data has been updated
and would not have to load all of the data again.

• Allow creation and editing of work items: The use case as well as some of the participants
in the evaluation suggested to add the functionality to create work items. The RESTful
interface of the Rational Team Concert does not only allow one to request data via HTTP
Get requests, but also to send and store data on the server via HTTP Put requests. The
functionality to create and edit work items through the application would certainly increase
the productivity of a project manager.

• Search or group queries: The prototype application presents the work item queries in a
simple list. Since any number of queries can be defined, the list might get disorganized and
confusing. Adding the ability to either search for queries or group them would prevent this.

Appendix A

Evaluation Form

42 Chapter A. Evaluation Form

Usability Evaluation

Evaluation number:....................................

Productivity

Task 1

Take a look at the productivity of all users. Go to the user page of the most unproductive
user of the last five weeks and check when he resolved his last work item.

Title and close date of the last resolved work item:

..

..

How much time did it take to complete this task compared to what you would expect?

Too much Plenty Average Little Very little

How hard was it to solve the task?

Very Easy Easy Average Hard Very Hard

Task 2

What is Michael Kündig’s and Daniel Sedin’s current work?

Work Item title and type of Michael Kündig’s work:

..

..

Work Item title and type of Daniel’s work:

..

..

43

How much time did it take to complete this task compared to what you would expect?

Too much Plenty Average Little Very little

How hard was it to solve the task?

Very Easy Easy Average Hard Very Hard

Task 3

Find all unresolved defects that have a low priority.

Defect titles:

..

..

How much time did it take to complete this task compared to what you would expect?

Too much Plenty Average Little Very little

How hard was it to solve the task?

Very Easy Easy Average Hard Very Hard

44 Chapter A. Evaluation Form

Metrics

Task 4

Figure out the size of the project measured in lines of code. How many lines of code does
the project consist of?

Lines of code:

..

How much time did it take to complete this task compared to what you would expect?

Too much Plenty Average Little Very little

How hard was it to solve the task?

Very Easy Easy Average Hard Very Hard

Task 5

How many methods does a class of the project contain on average?

Methods per class:

..

How much time did it take to complete this task compared to what you would expect?

Too much Plenty Average Little Very little

How hard was it to solve the task?

Very Easy Easy Average Hard Very Hard

45

Task 6

Take a look at the java code of the class that has the second highest number of attributes.
What are the names of the first three attributes/fields of the class?

Attribute names:

..

..

..

How much time did it take to complete this task compared to what you would expect?

Too much Plenty Average Little Very little

How hard was it to solve the task?

Very Easy Easy Average Hard Very Hard

46 Chapter A. Evaluation Form

RTC Connectivity

Task 7

Assume that you want Michael to take a closer look at the class that has the highest
average method weight and its related work item. Send an E-Mail to
michael.kuendig@gmail.com that contains the information about this work item and about
the work item related to the method with the highest coupling intensity.

How much time did it take to complete this task compared to what you would expect?

Too much Plenty Average Little Very little

How hard was it to solve the task?

Very Easy Easy Average Hard Very Hard

Task 8

Suppose that you have created a query in RTC that shows your unresolved work items
that have a high priority. Find that query in the tablet application. What’s the name of the
open work item that has a high priority? How long has it been unresolved, respectively
when was it created?

Name and creation date of the work item:

..

How much time did it take to complete this task compared to what you would expect?

Too much Plenty Average Little Very little

How hard was it to solve the task?

Very Easy Easy Average Hard Very Hard

47

General usability rating

The application... The application...

...is easy and intuitive to
use

...is complicated and hard
to use

...is self-explanatory ...is hard to understand

...is structured well ...is structured
incomprehensible

...has an optimized user
interface for a tablet

...has a suboptimal user
interface for a tablet

...has an attractive user
interface

...has an unattractive
user interface

...is suitable to solve the
tasks

...is not suitable for the
tasks

...loads very fast ...takes a long time to
load

...reacts quickly to user
input

...reacts slowly to user
input

48 Chapter A. Evaluation Form

Further Questions

Could you imagine to use a fully developed application like this in a productive
environment? Why or why not?

..

..

..

..

What did you like in particular?

..

..

..

..

What did you dislike in particular?

..

..

..

..

What do you think should be improved?

..

..

..

..

Additional comments:

..

..

..

Appendix B

Content of the CD-ROM

• Abstract.txt
English version of the abstract of this thesis

• Zusfsg.txt
German version of the abstract of this thesis

• Bachelorarbeit.pdf
This thesis

• PrototypeApplication.zip
Project of the prototype application developed in conjunction with this thesis

• Readme.txt
Readme file for the prototype application

• PrototypeApplication.apk
Android installer package of the prototype application

50 Chapter B. Content of the CD-ROM

Bibliography

[ach] http://www.achartengine.org/.

[and] http://developer.android.com/distribute/googleplay/quality/tablet.html.

[BCSR07] Jacob T. Biehl, Mary Czerwinski, Greg Smith, and George G. Robertson. Fastdash: A
visual dashboard for fostering awareness. In in Software Teams. SIGCHI conference on
Human Factors in computing systems, pages 1313–1322, 2007.

[BK95] James M. Bieman and Byung-Kyoo Kang. Cohesion and reuse in an object-oriented
system. SSR ’95 Proceedings of the 1995 Symposium on Software reusability, pages 259–
262, 1995.

[BZ10] Raymond P.L. Buse and Thomas Zimmermann. Analytics for software development.
2010.

[BZ11] Raymond P.L. Buse and Thomas Zimmermann. Information needs for software de-
velopment analytics. 2011.

[CKG+00] A. E. J. M. Cavelaars, A. E. Kunst, J. J. M. Geurts, R. Crialesi, L. Grötvedt, U. Helmert,
E. Lahelma, O. Lundberg, A. Mielck, N. Kr. Rasmussen, E. Regidor, Th. Spuhler, and
J. P. Mackenbach. Persistent variations in average height between countries and be-
tween socio-economic groups: An overview of 10 european countries. Annals of Hu-
man Biology, 2000.

[CL11] Andre Charland and Brian Leroux. Mobile application development: Web vs. native.
2011.

[DB92] Paul Dourish and Victoria Bellotti. Awareness and coordination in shared workspaces.
1992.

[DH07] Thomas H. Davenport and Jeanne G. Harris. Competing on Analytics: The New Science
of Winning. Harvard Business School Press, Boston, MA, USA, 1st edition, 2007.

[DTS99] Serge Demeyer, Sander Tichelaar, and Patrick Steyaert. Famix 2.0 - the famoos infor-
mation exchange model. 1999.

[EK08] Khaled El Emam and A. Güneş Koru. A replicated survey of it software project fail-
ures. IEEE Computer Society, 2008.

[ESS92] S.G. Eick, J.L. Steffen, and Jr. Sumner, E.E. Seesoft-a tool for visualizing line oriented
software statistics. Software Engineering, IEEE Transactions on, 18(11):957–968, 1992.

52 BIBLIOGRAPHY

[fam] http://habanero.ifi.uzh.ch/famixmetrics/.

[FBB+11] Kecia A.M. Ferreira, Mariza A.S. Bigonha, Roberto S. Bigonha, Luiz F.O. Mendes, and
Heitor C. Almeida. Identifying thresholds for object-oriented software metrics. The
Journal of Systems and Software, 2011.

[FP97] Norman Fenton and Shari Lawrence Pfleeger. Software metrics (2nd ed.): a rigorous and
practical approach. PWS Publishing Co., Boston, MA, USA, 1997.

[gar] http://www.gartner.com/newsroom/id/2408515.

[GPS04] Carl Gutwin, Reagan Penner, and Kevin Schneider. Group awareness in distributed
software development. 2004.

[hon] http://developer.android.com/about/versions/android-3.0-highlights.html.

[jav] http://habanero.ifi.uzh.ch/javafamixmetrics/.

[KCG10] Jitender Kumar Chhabra and Varun Gupta. A survey of dynamic software metrics.
Journal of Computer Science and Technology, 25(5):1016–1029, 2010.

[KH] Souheil Khaddaj and G Horgan. The evaluation of software quality factors in very
large information systems.

[LHG10] Michel Lanza, Lile Hattori, and Anja Guzzi. Supporting collaboration awareness with
real-time visualization of development activity. Conference on Software Maintenance and
Reengineering, 2010.

[LM06] Michel Lanza and Radu Marinescu. Object-Oriented Metrics in Practice. Springer, 2006.

[McC76] T. J. McCabe. A complexity measure. ICSE ’76: Proceedings of the 2nd International
Conference on Software Engineering, 1976.

[Mei12] Reto Meier. Professional Android 4 Application Development. Wrox, 2012.

[Mil98] Everald E. Mills. Software metrics. 1998.

[osla] http://open-services.net/.

[oslb] http://open-services.net/bin/view/main/oslccorespecification.

[qdo] http://qdox.codehaus.org/.

[rtc] https://jazz.net/products/rational-team-concert/.

[seo] http://www.se-on.org/.

[Sha00] Mary Shaw. Software engineering education: A roadmap. Proceeding ICSE ’00 Proceed-
ings of the Conference on The Future of Software Engineering, pages 371 – 380, 2000.

[sof] http://www.ifi.uzh.ch/seal/research/tools/sofas.html.

[TA08] Thomas Tullis and William Albert. Measuring the User Experience: Collecting, Analyzing,
and Presenting Usability Metrics. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2008.

[TS10] Christoph Treude and Margaret-Anne Storey. Awareness 2.0: Staying aware of
projects, developers and tasks using dashboards and feeds. 2010.

