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Querying a Messy Web of Data with Avalanche

Cosmin Bascaa,1,∗, Abraham Bernsteina

aDynamic and Distributed Information Systems, University of Zurich, Switzerland

Abstract

The Web thrived on messiness or to use positive attributes: diversity, flexibility, and
openness. By limiting any convention to the communications protocol (HTTP) and the
structure of data formatting (HTML) it enabled usages that were beyond the imagination
of its inventors. With the advent of the Semantic Web, a Web of Data is emerging
interlinking ever more machine readable data fragments represented as RDF documents
or queryable semantic endpoints. Recent efforts have enabled applications to query
the entire Semantic Web for up-to-date results. Such approaches are either based on
a centralized store, centralized indexing of semantically annotated meta-data, or link
traversal and URI dereferencing as often used in the case of Linked Open Data. These
approaches violate the openness principle by making additional assumptions about the
structure and/or location of data on the Web and are likely to limit the diversity of
resulting usages. As a consequence, the guiding question of this paper is: How can we
support querying the messy web of data whilst adhering to a minimal, least-constraining
set of principles that mimic the ones of the original web and will—hopefully—support the
same type of creative flurry?

In this article we propose a technique called Avalanche, designed to allow a data
surfer to query the Semantic Web transparently without making any prior assumptions
about the data distribution, schema-alignment, pertinent statistics, data evolution, and
accessibility of servers. Specifically, Avalanche can perform up-to-date queries over
SPARQL endpoints. Given a query it first gets on-line statistical information about
potential data sources and their data distribution. Then, it plans and executes the query
in a concurrent and distributed manner trying to quickly provide first answers.

The main contribution of this paper is the presentation of this open and distributed
SPARQL querying approach. We empirically evaluate Avalanche using the realistic
FedBench data-set over 26 servers, as well as investigate its behavior for varying degrees
of instance-level distribution “messiness” using the LUBM synthetic data-set spread over
100 servers. Results show that Avalanche is robust and stable in spite of varying
network latency finding first results for 80% of the queries in under 1 second. It also
exhibits stability for some classes of queries when instance-level distribution messiness
increases. We also illustrate, how Avalanche addresses the other sources of messiness
(pertinent data statistics, data evolution and data presence) by design and show its
robustness by removing endpoints during query execution. Finally, we point out the
challenges that still exist, discussing potential solutions.

Keywords: federated SPARQL, RDF distribution messines, query planing, adaptive
querying, changing network conditions

Preprint submitted to Journal of Web Semantics June 10, 2013



1. Introduction

With the introduction of the World Wide Web the way we share knowledge and con-
duct day to day activities has changed fundamentally. Indeed, the massive growth of
the web was partially based on the fact that the only limitations it set on participa-
tion where: the communications protocol (HTTP) and the structure of data formatting
(HTML), which included the notion of linking documents. The rest was consciously left
unspecified resulting in a plethora of usages and allowing for highly scalable implemen-
tations, since it avoids any central control. Indeed, this messy plethora of usage resulted
in an almost genetic search for “good” web usages giving rise to the web as we know it
today. Or to put in in Sir Tim Berners-Lee words: “... if we end up building all the
things I can imagine we’ll have failed”.2

With the advent of the Semantic Web, a Web of Data is emerging interlinking ever
more machine readable data fragments represented as RDF documents or queryable
semantic endpoints. It is in this ecosystem that unexplored avenues for application
development are emerging. While some application designs include a Semantic Web
data crawler, others rely on services that facilitate access to the Web of Data either
through the SPARQL protocol or various APIs like the ones exposed by Sindice or
Swoogle. As the mass of data continues to grow—Linked Open Data [5] accounts for
27 billion triples as of January 20113—the scalability factor combined with the Web’s
uncontrollable nature and its heterogeneity will give raise to a new set of challenges. A
question marginally addressed today is how to support the same messiness in querying
the Web of Data that gave rise to the virtually endless possibilities of using the traditional
Web. In other words: How can we support querying the messy web of data whilst adhering
to a minimal, least-constraining set of principles that mimic the ones of the original web
and will—hopefully—support the same type of creative flurry?.

Translating the guiding principles of the Web to the Web of Data proposes that we
should use a single communications protocol (i.e. HTTP with encoded SPARQL queries)
and use a common data representation format (some encoding of RDF), which allows
embedding links. In addition, it implicitly proposes that:
(a) we cannot assume any (or control the) distribution of data to servers,
(b) there is no guarantee of a working network,
(c) there is no centralized resource discovery system (even though crawled indices akin

to Google in the traditional web may be provided),
(d) the size of RDF data no longer allows us to consider single-machine systems feasible,
(e) data will change without any prior announcement,
(f) there is absolutely no guarantee of RDF-resources adhering to any kind of predefined

schema, be correct, or refer/link to other existing data items—in other words: the
Web of Data will be a mess and “this is a feature not a bug.”
As an example consider the life sciences domain: here information about drugs, chem-

ical compounds, proteins and other related aspects is published continuously. Some re-
search institutions expose part or all of their data freely as RDF dumps relying on others

∗Corresponding author. Tel: +41 44 635 4318
Email addresses: basca@ifi.uzh.ch (Cosmin Basca), bernstein@ifi.uzh.ch (Abraham Bernstein)

1Partial support provided by Swiss National Science Foundation award number 200021-118000
2http://vimeo.com/11529540, Web 3.0 by Kate Ray
3http://www4.wiwiss.fu-berlin.de/lodcloud/state/#domains
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to index it as in the cases of the CheBi4 and KEGG5 datasets, while others host their
own endpoints like in the case of the Uniprot dataset.6 Hence, anybody querying the
data will have no control over its distribution,7 no guarantees about the availability and
network connectivity of the information sources,8 data content changes continuously due
to scientific breakthroughs/discoveries, and a plethora of schema’s are used.9 Often-times
problem domains and researchers’ questions span across several datasets or disciplines
that may or may not overlap. Even in the light of this messiness, the data about drugs,
chemical compounds, proteins, and their interrelations is queried constantly resulting in
is a strong need to provide integrated and up-to-date information.

Several approaches that tackle the problem of querying the entire Web of Data have
emerged lately and most adhere to the explicit principles. They do, however, not address
the implicit principles. One solution, uberblic.org10, provides a centralized queryable
endpoint for the Semantic Web that caches all data. This approach allows searching for
and joining potentially distributed data sources. It does, however, incur the significant
problem of ensuring an up-to-date cache and might face crucial scalability hurdles in the
future, as the Semantic Web continues to grow. Additionally, it violates a number of
the implicit principles locking-in data. Furthermore, as Van Alstyne et al. [41] argue,
incentive misalignments would lead to data quality problems and, hence, inefficiencies
when considering the Web of Data as “one big database.”

Other approaches base themselves on the guiding principles of Linked Open Data
publishing and traverse the LOD cloud in search of the answer. Obviously, such a
method produces up-to-date results and can detect data locations only from the URIs of
bound entities in the query. Relying on URI structure, however, may cause significant
scalability issues when retrieving distributed data sets, since (i) the servers dereferenced
in the URI may become overloaded and (ii) it limits the possibilities of rearranging (or
moving) the data around by binding the id (i.e., URI) to its storage location. Just
consider for example the slashdot effect11 on the traditional web. Finally, traditional
database federation techniques have been applied to query the Web of Data. One of the
main drawbacks with traditional federated approaches stemming from their ex-ante (i.e.,
before the query execution) reliance on fine-grained statistical and schema information
meant to enable the mediator to build efficient query execution plans. Whilst these
approaches do not assume central control over data they do assume ex-ante knowledge
about it facing robustness hurdles against network failure and changes in the underlying
schema and statistics (invalidating implicit principles b and f).

In this paper, we propose Avalanche , a novel approach for querying the messy Web
of Data which: (1) makes no assumptions about data distribution, schema, availability,

4http://www.ebi.ac.uk/chebi/downloadsForward.do
5http://bioit.fleming.gr/mrb/Controller?workflow=ViewModel&eid=242
6http://beta.sparql.uniprot.org/
7Different copyright and intellectual property policies may prevent access to downloading part or the

entire dataset but permit access to it on a per-query basis with potential restrictions like time and/or
quota limits.

8Some institutions move repositories or change access policies, resulting in server unavailability.
9Some sub-disciplines may favor dissimilar but overlapping attributes describing their results, have

differing habits about using same-named attributes, and use a diversity of taxonomies with varying
semantics.

10http://platform.uberblic.org/
11http://en.wikipedia.org/wiki/Slashdot effect
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or partitioning and is skew resistant for some classes of queries, (2) provides up-to-date
results from distributed indexed endpoints, (3) is adaptive during execution adjusting
dynamically to external network changes, (4) does not require detailed fine-grained ex-
ante statistics with the query engine, and (5) is flexible as it makes limited assumptions
about the structure of participating triple stores. It does, however, assume that the query
will be distributed over triple-stores and not “mere” web-pages publishing RDF.12 The
system, as presented in the following sections, is based on a first prototype described in
[3] and brings a number of new extensions and improvements to our previous model.

Consequently, Avalanche proposes a novel technique for executing queries over Web
of Data SPARQL endpoints. The traditional optimize then execute paradigm—highly
problematic in the Web of Data context in its original conceptualization—is extended into
an exhaustive, concurrent, and dynamically-adaptive meta-optimization process where
fine-grained statistics are requested in a first phase of the query execution. Hence, the
main contributions of our approach are:

• an on-demand transparent querying approach over the Web of Data, without fine-
grained prior knowledge about its distribution

• a novel, inter-plan adaptive SPARQL execution paradigm

• a novel planning strategy and cost model for dealing with the involvement of large
numbers of endpoints

• a formal description of our approach with possible optimizations for each step

• a reference implementation of the Avalanche system

Hence, Avalanche supports messiness at various levels: data-distribution, schema-
alignment, prior registration with respect to statistics, constantly evolving data, and
unreliable accessibility of servers (either through network or host failure, HTTP 404’s,
or changes in policy of the publishers).

In the remainder we first review the relevant related work of the current state-of-the-
art. Section 3 provides a detailed description of Avalanche. In Section 4 we evaluate
several planning strategies and estimate the performance of our system. In Section 5 we
present several future directions and optimizations, and conclude in Section 6.

2. Related work

Several solutions for querying the Web of Data over distributed SPARQL endpoints
have been proposed before. They can be grouped into two streams: I. distributed
query processing, II. RDF indexing, and III. statistical information gathering over
RDF sources.

12An assumption that is not overly limiting, since one could imagine service providers providing
SPARQL endpoints that dynamically load RDF-documents at query time. Since those on-the-fly end-
points only cover one RDF-document at a time they are not hampered by the same scalability issues as
a centralized SPARQL endpoints would be.
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Distributed query processing: A broad range of RDF storage and retrieval solutions
exist. They can be grouped along the dimensions of partition restrictiveness (i.e., the
degree to which the system controls the data distribution) and the intended source ad-
dressing space (i.e., the design goal in terms of physical distribution of hosts from single
machine through clusters and the cloud to a global uncontrolled network of servers) as
shown in Figure 1. Although not intended as a measure of scalability and performance
the Figure positions the various approaches relative to the desired goal – a globally
addressable and highly flexible system: both paramount features when handling messy
semi-structured data at large-scale.

Research on distributed query processing has a long history in the database field
[37, 22]. Its traditional concepts are adapted in current approaches to provide integrated
access to RDF sources distributed on the Web of Data. For instance, Yars2 [17] is an end-
to-end semantic search engine that uses a graph model to interactively answer queries
over semi-structured interlinked data, collected from disparate Web sources. Another
example is the DARQ engine [32], which divides a SPARQL query into several subqueries,
forwards them to multiple, distributed query services, finally, integrating the results of the
subqueries. Inspired by peer-to-peer systems, Rdfpeers [8] is a distributed RDF repository
that stores three copies of each triple in a peer-to-peer network, by applying global hash
functions to its subject, predicate and object. Stuckenschmidt et. al [38] consider a
scenario in which multiple distributed sources contain data in the form of publications.
They describe how the Sesame RDF repository [7] needs to be extended, by using a
special index structure that determines which are the relevant sources to be considered for
a query. Virtuoso [9]—a data integration software developed by OpenLink Software—is
also focused on distributed query processing. The drawback of these solutions is, however,
that they assume total control over the data distributions – an unrealistic assumption in
the open Web.

Similarly, SemWIQ [24] uses a mediator distributing the execution of SPARQL queries
transparently. Its main focus is to provide an integration and sharing system for scientific
data. Whilst it does not assume fine-grained control over the instance distribution they
assume perfect knowledge about their rdf:type distribution. Addressing this drawback
some [44, 35] propose to extend SPARQL with explicit instructions controlling where to
execute certain sub-queries. Unfortunately, this assumes an ex-ante knowledge of the
data distribution on part of the query writer. Finally, Hartig et al. [18] describe an ap-
proach for executing SPARQL queries over Linked Open Data [5] based on graph search.
Whilst they make no assumptions about the openness of the data space, the Linked Open
Data rules requires them to place the data on the URI-referenced servers – a limiting
assumption for example when caching/copying data. A notable approach to browse the
WoD and run structured queries on it is depicted by Sig.ma [39], a system designed to
automatically integrate heterogenous web data sources. Suited to handle schema messi-
ness Sig.ma differs from Avalanche mainly in its scope, which is that of aggregating
various data sources in the attempt to offer a solution, while Avalanche (tackling data
distribution messiness) does not integrate RDF indexes, but “guides” the query execution
process to find exact matches.

Other flexible techniques have been proposed, such as the evolutionary query an-
swering system eRDF by Guéret et. al [12, 30, 13], where genetic algorithms are used
to “learn” how to best execute the SPARQL query. The system learns each time a
triple pattern gets executed. As the authors demonstrate, eRDF behaves better the
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Figure 1: Distributed SPARQL processing systems and algorithms

more complex the query, while simple queries (one or two triple pattern queries) render
low performance. Finally Muehleisen et. al [28] advance the idea of a self organized
RDF storage and processing system called S4. The approach relies on the principles of
swarm-logic and exposes certain similarities with peer-to-peer systems.

RDF indexing: A number of methods and techniques to store and index RDF have been
proposed to date, some like Hexastore [42] and RDF3X [29] construct on-disk indexes
based on B+Trees while exploiting all possible permutations of Subjects, Predicates and
Objects in an RDF triple. Other notable approaches include [2], where RDF is index
using a matrix for each triple term pair – an approach suitable for low selectivity queries,
suffering in performance however when highly selective queries are asked. Furthermore
GRIN [40] proposes a special graph index which stores “center” vertexes and their neigh-
borhoods leading to lower memory consumptions and faster times to answer graph based
queries than traditional approaches such as Jena13 and Sesame14.

Query optimization: Research on query optimization for SPARQL includes query
rewriting [19], join re-ordering based on selectivity estimations [26, 4, 29], and other
statistical information gathering over RDF sources [23, 16]. RDFStats [23] is an extensi-
ble RDF statistics generator that records how often RDF properties are used and feeds

13http://jena.sourceforge.net/
14http://www.openrdf.org/
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automatically generated histograms to SemWIQ. Histograms on the combined values of
SPO (Subject Predicate Object) triples have proved to be especially useful to provide
selectivity estimations for filters [4]. For joins, however, histograms can grow very large
and are rarely used in practice. Another approach is to precompute frequent paths (i.e.,
frequently occurring sequences of S, P or O) in the RDF data graph and keep statistics
about the most beneficial ones [26]. It is unclear how this would work in a highly dis-
tributed scenario. Finally, Neumann et. al [29] note that for very large datasets (towards
billions of triples) as even simple index scans become too expensive, single triple pat-
tern selectivity is not enough to ensure accurate join selectivity estimation. As pattern
combinations are more selective, they successfully integrate holistic sideways information
passing with the recording of detailed join cardinalities of constants joined with the entire
graph as means of improving join selectivity. An alternative approach is represented by
summarizing indexes as described by Harth et. al. [16] in data summaries.

3. Avalanche – The Design and Implementation of an indexed Web of Data

Query Processing System

Avalanche is part of the larger family of Federated Database Management Systems
or FDBMS’s [20]. Focusing primarily on answering SPARQL queries over WoD end-
points, Avalanche relies on a commonly used data representation format: RDF and
SPARQL as the main access operation. In contrast to relational FDBMS, where the
schema changes are costly and, therefore, happen seldom, the WoD is subjected to con-
stant change both schema and content-wise. Hence, the major design difference between
Avalanche and previous systems is that it assumes that the distribution of triples to
machines participating in the query evaluation is unknown prior to query execution. To
achieve its loose coupling Avalanche adheres to strict principles of transparency as well
as heterogeneity, extensibility and openness.

Transparency. A critical aspect in federated query processing is exhibited by trans-
parency. Avalanche addresses transparency at four levels:
◦ location transparency : when submitting a query to Avalanche the user is not aware

nor does it need to concern itself with where data is actually located,
◦ physical data independence transparency : similarly, users are not aware of how data is

physically stored,
◦ replication and fragmentation transparency : Avalanche is data-distribution agnostic,

incidentally also one of its main contributions and,
◦ network transparency : built on top of HTTP, Avalanche inherently derives the pro-

tocol’s flexibility and transparency.

Heterogeneity, extensibility, and openness. Participating endpoints are not constrained
in any way with regard to the schemas, vocabularies, or ontologies used. Furthermore,
over time the federation can evolve unrestrained as new data sources can be added
without impacting existing ones. Opaque to physical data representation or structure,
Avalanche can virtually accommodate any kind of data sources that can be exported
as RDF or as SPARQL endpoints.15

15A well-known technology in this regard is the D2R server and its D2RQ declarative language [6],
intended to facilitate the mapping of relational data to RDF.
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Figure 2: An idealized view of the Avalanche execution model illustrating the three major phases:
source discovery, statistics gathering, and query planing/distributed execution

In addition, akin to peer to peer systems (p2p), Avalanche does not assume any
centralized control. Any computer on the internet can assume the role of a Avalanche-
broker. However, Avalanche is not a p2p system, since participating sites do not make
a portion of their resources—CPU, RAM, or disk—directly available to other members,
nor are they bookkeeping information concerning neighboring hosts.
Another important distinction to prior art, lies within the early stages of the query
execution. Traditionally, statistical information is indexed ex-ante, i.e., ahead of query
time in the federation’s meta-database from where it is later retrieved to aid the source
selection and query optimization processes. Avalanche relies on each participating site
to manage their respective statistics individually – a trait shared to a varying degree by
virtually any optimized RDF-store. Consequently, query-relevant statistical information
is retrieved at the beginning of each query execution phase as illustrated in Figure 2.

In the following, we will first outline our approach detailing its basic operators and
the actual system using a motivating example. This will lead the way towards thoroughly
describing the Avalanche components and its novelty.

3.1. Avalanche Overview

The Avalanche system consists of the following major components working together
in a concurrent asynchronous pipeline: i) the Avalanche Source Selector relying on
the endpoints Web Directory or Search Engine, ii) the Statistics Requester, iii) the Plan
Generator, iv) the Plan Executor Pool, v) the Results Queue and vi) the Query Execution
Monitor/Stopper as illustrated in Figure 3.

These components are coordinated into three query execution phases: 1) the Source
Discovery phase, 2) the Statistics gathering phase, and 3) the concurrent Query Planing
and Execution phase. We will now discuss how all the components are coordinated into
these three execution phases. The detailed technical description of the elements will be
covered in the following subsections.

During Source Discovery, participating hosts are identified by the Source Selector,

8



3] Query Planning and Execution phase

AVALANCHE endpoints Search Engine 
i.e., http://void.rkbexplorer.com/

1] Source Discovery phase

Plan
Dispatcher

Plan 
Generator 

Results
Queue

Query 
Monitor / 
Stopper

R
es

ul
ts

Statistics 
Requester

Query 
Parser

2] Statistics Gathering phase

Source 
Selector

Asynchronous Executor / Materializer

Asynchronous Executor / Materializer

Asynchronous Executor / Materializer

Asynchronous Executor / Materializer

Asynchronous 
Executor Pool

Query

Figure 3: The Avalanche execution pipeline

which interfaces with a Search Engine such as voID store,16 Sindice’s17 SPARQL end-
point, or a Web Directory. A lightweight endpoint-schema inverted index can also be
used. Ontological prefix (the shorthand notation of the schema, i.e. foaf) and schema
invariants (i.e. predicates, concepts, labels, etc) are appropriate candidate entries to
index. More complex source selection algorithms and indexes have been proposed [25]
that could successfully be used by Avalanche given adequate protocol adaptations.

The next step—Statistics gathering—queries all selectedAvalanche endpoints (from
the set of known hosts H) for the individual cardinalities cardi,j (number of instances)
for each triple pattern tpi from the set of all triple patterns in the query TQ as detailed
in Definition 3.1. The voID18 vocabulary can be used to describe triple pattern cardi-
nalities when predicates are bound or when schema concepts are used, along with more
general purpose dataset statistical information making use of terms like: void:triples,
void:properties, void:Linkset, etc. Additionally, the same can be accomplished by using
aggregating SPARQL COUNT-queries for each triple pattern or by simple specialized
index lookups in some triple-optimized index structures [42].

Definition 3.1 Given a query Q, TQ is the set of all triple patterns ∈ Q and H the set
of all reachable hosts. ∀tpi ∈ TQ and ∀hj ∈ H, we define cardi,j = card(tpi, hj) as
the triple pattern cardinality of triple pattern tpi on host hj.

During the Query Planing and Execution phase, the Plan Generator proceeds with con-
structing the plan matrix (see Definition 3.2): a two dimensional matrix listing the

16http://void.rkbexplorer.com/
17http://sindice.com/
18http://www.w3.org/2001/sw/interest/void/
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(a) FQ5 (b) FQ14

(c) FQ20 (d) FQ33

Figure 4: Plan matrixes represented as heat-maps for selected Fedbench benchmark queries – for further
details about the specific queries and benchmark please refer to Section 4.

cardinalities of all triple patterns of a query by possible hosts. Consider, for example,
the the plan matrixes for a selection of FedBench queries visualized in Figure 4 as a heat
map, where white indicates the absence of triples matching a triple pattern tpi on some
host hj (i.e., cardi,j = 0). Focusing on Figure 4 a) we, for example, see that only host-09
has triples matching tp1.

Definition 3.2 The two dimensional set PMQ = {cardi,j | ∀tpi ∈ TQ and ∀hj ∈ H} is
called the plan matrix, where cardi,j are triple pattern cardinalities as ascertained in
Definition 3.1.

To ensure the numerical stability of the following computations the cardinalities are
stored as logarithmic probabilities by normalizing the cardinalities with the total number
of triples TMAX =

�|H|
i=0

tripleshi , where tripleshi represents the total number of triples
on host hi.
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The plan matrix is instrumental for the generation of query plans. Every query plan
p contains one triple-pattern/host pair (tpi, hj) for each triple pattern tpi in the query
TQ, where all tpi contain at least one triple (i.e., card(tpi, hj) �= 0; see Definition 3.3).
Thus, planing is equal to exploring the set of possible triple-pattern/host pairs resulting
in valid plans. Visually, this equals to finding sets of non-zero cardinality squares, where
each column is represented exactly once.

Definition 3.3 A query plan is the set p =
�
(tpi, hj) that contains exactly one triple-

pattern/host-pair (tpi, hj) per tpi ∈ TQ, where card(tpi, hj) �= 0 and hj ∈ H.

While some queries can produce no plans, the universe of all plans (see Definition 3.4)
has a theoretical upper-bound equal to |H||TQ| (see Definition 3.4). Albeit an exponential
number of possible plans can theoretically exist, our empirical evaluation suggests that
real-world datasets often produce sparse plan matrixes—possibly a consequence of the
LoD’s heterogeneity—resulting in a significantly lower number of valid plans (i.e., akin
to the plan matrixes in Figure 4). Hence, the task of the Plan Generator is to explore
the space of all possible valid SPARQL 1.1 rewritings of the original query Q by pairing
triple patterns from TQ with available endpoints from H.

Definition 3.4 The set of all plans for query Q, PQ = {pi | pi is a query plan as
in Definition 3.3 } is called the query plan space or universe of all plans, with
0 ≤ |PQ| ≤ |H||TQ|.

It is important to note that factors such as the sheer size of the Web of Data, its
unknown distribution, and multi-tenancy aspect may prevent Avalanche from guar-
anteeing result completeness. Whilst the proposed planning system and algorithm are
complete the execution of all plans to ensure completeness could be prohibitively ex-
pensive. Hence, Avalanche will normally not be allowed to exhaust the entire search
space—unless the query is simple or the search space is narrow enough. Therefore,
Avalanche will try to optimize the query execution to quickly find the first K results
by picking plans first that are more “promising” in terms of getting results quickly. In
addition, the Query Execution Monitor will monitor for termination conditions to finish
query execution when further execution seems less promising. To further reduce the size
of the search space, a windowed version of the search algorithm can be employed. Here
only the first PS partial plans are considered with each exploratory step, thus sacrificing
completeness.

As depicted in Figure 3 the Plan Generator relies on statistics about data contained
on the different hosts; statistics provided by the Statistics Requester. Any generated plan
gets assigned to a socket-asynchronous Plan Executor and Materializer. All executors
are executed concurrently and managed by the asynchronous Executor Pool. While the
asynchronous pool can accommodate orders of magnitude more individual workers than
traditional parallel thread or process-based pools a parameter is used to limit the con-
currency in order to avoid flooding the system (remote database operations still remain
expensive). Finally, once a plan is finished the executor will signal its completion by
placing the results in the Results Queue.
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3.2. Contextualizing Example: Finding Drug Information from Various LoD Sources

To contextualize Avalanche further, consider the example query Qex. in Listing 1,
executing over the Fedbench19 benchmark datasets. Specifically the query touches data
that are distributed across three life-sciences domain datasets: DrugBank,20 KEGG,21

and ChEBI22. It is Avalanche’s goal to find all drugs from DrugBank, together with
their URL from KEGG and links to their repective graphical depiction from ChEBI.

1 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

2 PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /drugbank/>

3 PREFIX cheb i : <http :// b i o2 rd f . org /ns/ b i o2 rd f#>

4 PREFIX dc : <http :// pur l . org /dc/ e lements /1 .1/>

5
6 SELECT ?drug ? keggUrl ? chebiImage

7 WHERE

8 {
9 ?drug rd f : type drugbank : drugs .

10 ?drug drugbank : keggCompoundId ?keggDrug .

11 ?drug drugbank : genericName ?drugBankName .

12 ?keggDrug chebi : u r l ? keggUrl .

13 ? chebiDrug dc : t i t l e ?drugBankName .

14 ? chebiDrug chebi : image ? chebiImage .

15 }

Listing 1: Motivating example - Life Sciences query from the Fedbench benchmark.

During query execution Avalanche performs a search for all possible rewritings of the
original query (Listing 1) as SPARQL 1.1. One such decomposition is exemplified in
Listing 2, where the SERVICE clause is used to bind subqueries to the specified endpoints.

1 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

2 PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /drugbank/>

3 PREFIX cheb i : <http :// b i o2 rd f . org /ns/ b i o2 rd f#>

4 PREFIX dc : <http :// pur l . org /dc/ e lements /1 .1/>

5
6 SELECT ?drug ? keggUrl ? chebiImage WHERE {
7 SERVICE <http :// drugbank−endpoint / spa rq l> {
8 ?drug drugbank : genericName ?drugBankName .

9 ?drug drugbank : keggCompoundId ?keggDrug .

10 ?drug rd f : type drugbank : drugs

11 } .

12 SERVICE <http :// chebi−endpoint / spa rq l> {
13 ? chebiDrug chebi : image ? chebiImage .

14 ? chebiDrug dc : t i t l e ?drugBankName

15 } .

16 SERVICE <http :// kegg−endpoint / spa rq l> {
17 ?keggDrug chebi : u r l ? keggUrl

18 }
19 }

Listing 2: Motivating example query rewritten as a SPARQL 1.1 federated query.

19https://code.google.com/p/fbench/
20http://www.drugbank.ca/
21http://www.genome.jp/kegg/
22http://www.ebi.ac.uk/chebi/
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3.3. Optimizing requirements for Avalanche endpoints

From the overview and the example we can infer that Avalanche employes both
a common ID space and a set of capabilities for Avalanche endpoints to optimize
execution. We succinctly discuss these in turn.

Common IDs. A requirement for executing joins between any two hosts is that they
share a common id space. The natural identity on the web is given by the URI itself.
However some statistical analyses of URIs on the web23 show that the average length
of a URI is 76 characters, while analyses of the Billion Triple Challenge 2010 dataset24

demonstrate that the maximum length of RDF literals is 65244 unicode characters long
with most of the string literals being 10 characters in length. Therefore, using the
actual RDF literal constants (URIs or literals) can lead to a high cost when performing
distributed joins.

To reduce the overhead of using long strings we used a number encoding of the URIs.
To avoid central points of failure based on dictionary encoding or similar techniques,
we propose the use of a hash function responsible for mapping any RDF string to a
common number-based id format. For our experiments, we applied the widely used
SHA family of hash functions on the indexed URIs and literals. An added benefit of a
common hash function is that the hosts involved in answering a query, can agree on a
common mapping function prior to executing the query. Note that this proposition is not
a necessary condition for the functioning of Avalanche but represents an optimization
that will lead to performance improvements.

Endpoint operations. To optimize SPARQL execution performance Avalanche takes
advantage of a number of operations that extend the traditional SPARQL endpoint
functionality, which we discuss in the following.

Whilst we acknowledge that the implementation of these procedures puts a bur-
den on these endpoints their implementation should be trivial for most triple-stores.
Some of the operations are either SPARQL 1.1 compliant or can be expressed as plain
SPARQL queries as fully detailed in Appendix A, while others will be internally avail-
able in any indexed triple store and “only” need to be exposed (i.e. set filtering or set
merge). From a functional point of view the procedures are classified into: i) execution
operators and ii) state management operators.

The next subsections will describe the basicAvalanche operators and the functional-
ity of its most important elements: the Plan Generator and Plan Executor / Materializer
as well as explain how the overall execution pipeline stops.

3.4. Generating Query Plans

Enumerating the space of possible query execution plans lays at the core of query
processing and planning. Traditionally, optimal plan space traversal was accomplished
by using techniques such as dynamic programming. A popular heuristic when doing so
is to discard all plans with the exception of left-deep ones. Such exhaustive strategies
of traversing the entire plan universe in order to find the best (or lowest cost) plan can

23http://www.supermind.org/blog/740/average-length-of-a-url-part-2
24http://gromgull.net/blog/category/semantic-web/billion-triple-challenge/
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become prohibitively expensive for queries where the number of joins is high25 – even
when only left-deep plans are considered and the execution is centralized [33]. Moreover,
when dealing with uncertain constraints (i.e. fast first results) RDBMS’s like Oracle
RDB [1] heuristically execute several plans competitively in parallel for a short interval
of time to increase the likelihood of hitting the most relevant cases under the assumption
of a Zipf distribution.

The distributed context within which Avalanche is designed to operate in conjunc-
tion with the flexibility of the RDF model which can lead to arbitrarily complex queries,
renders the planning space exponential in the worst of cases: |H||TQ| (see Definition 3.4).
The problem becomes even harder when factors like the WWW’s no-guarantees / open
world assumption are taken into account. As a consequence, Avalanche extends the
competitive plan execution paradigm to its logical conclusion attempting to execute all
plans (or a window of a predetermined size) concurrently. Therefore, one of the main
differences between traditional query optimization and Avalanche lays in the scope of
employing the optimization methods. While commonly, query optimizers focus on find-
ing the absolute best plan exhaustively, Avalanche does not attempt to ascertain a
plan’s absolute cost and instead uses the cost model as a ranking mechanism for all plans
whether partial or complete. The simple rationale behind this strategy being that while
a generalizable absolute cost model is difficult to obtain for the problem of on-demand
querying on the WoD, the concurrent execution of plans will have a higher probability of
yielding results if “productive” plans are pushed early in the execution pipeline.

As with any large search space there are two possible ways of traversal: either in
a deterministic fashion or employing a stochastic algorithm. The Avalanche planner
falls within the deterministic class. Although, a breadth-first traversal strategy will rank
the plans starting with the best (according to the cost heuristic) the exponential space
complexity can easily result in an indefinite waiting time to start the actual execution
phase. This renders the approach impractical for many setups and workloads. In con-
trast, greedy strategies like depth-first traversal are better suited to the asynchronous
nature of the Web due to their characteristic support for iterative execution models.

Hence, Avalanche’s plan generator is designed as an informed, best-first multi-path,
depth traversal algorithm. Borrowing from both breadth and depth search, the Plan
Generator traverses the universe of all plans as outlined in Algorithm 1. Its main focus
is that of generating query plans which are likely to produce results fast with a minimum
of cost, in the order dictated by the cost model.

3.4.1. The cost model
Commonly, cost model functions can be classified into: (i) cost models that aim to

reduce the total time to execute the query and (ii) cost models that strive to reduce
the response time (or first result latency). The first class of cost models are in gen-
eral pertinent to single query execution scenarios. Since a complete result set is not in
Avalanche’s scope the second class of cost functions is desirable. According to [31] the
general comprehensive cost model takes into account all factors that influence the cost
of the execution of a distributed query.

An exact approximation of the cost of a plan is not as crucial of an aspect as for
traditional setups when the planner would search for a single best plan. This stringent

25As reported in [33], at the time (c. 2003) a number of 15 joins was considered prohibitive.
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constraint is relaxed inAvalanchemainly due to the following factors: (a)Avalanche’s
Plan Generator exhaustively traverses the space of all plans and (b)Avalanche executes
many plans concurrently at any given time. In consequence, since Avalanche needs to
rank all generated plans according to their cost—not necessarily in an absolute fashion,
but following the cost trend—two simplifying assumptions can be considered:

◦ Network : We assume that network latency and bandwidth are relatively uniformly
distributed between participating sites. Although a gross approximation, the assumption
holds true in most cases for geographically “near” sites. Furthermore, many participants
on the WWW follow this assumption.

◦ Distributed Joins: A widely encountered phenomenon on the WoD, multi-tenancy
gives rise to a number of difficulties and problems ranging from management of RDF data
to query and index optimization both locally and at a global scale. Since Avalanche’s
scope is the indexed WoD, it is unrealistic to assume that full index statistical information
is always available or can always be shared between participating sites. Therefore, in the
absence of more exact and elaborate metrics and estimations join selectivity is estimated.
The main advantages of this model are: (1) there is no need for joint distribution statistics
to be available and (2) it bears virtually no computation and network cost. However,
there are many fallacies introduced as it neither overestimates nor does it underestimate
the actual join between any two BGPs.

In the following we discuss the impact these assumptions have on the cost model.

Selectivity estimation. In the absence of exact statistics regarding triple patterns and
basic graph patterns selectivity is usually estimated. However, as Avalanche starts with
the premise that triple pattern cardinalities are know as reported by getTPCardinality
(Appendix A), triple pattern selectivities are computed and not estimated. For a given
triple pattern tp bound to a given host h its selectivity represents the probability of
selecting a triple that matches from the total number of triples involved and is thus
directly computed as follows:

selh
tp

= Pmatch(tp, h) =
card(tp, h)

TMAX

(1)

where TMAX represents the total number of triples across all participating hosts as
detailed in Definition 3.1.

Exact basic graph pattern selectivities require knowledge about join triple pattern
cardinalities – a prohibitively expensive requirement considering its characteristic ex-
ponential space complexity. Most RDF database management systems with very few
exceptions—and in limited cases only—proceed to estimating the selectivity of BGPs
and Avalanche is no exception. However, in doing so Avalanche discriminates be-
tween star shaped graph patterns26 and the rest. For simplicity we will later refer to
them as star graph patterns or stars. Any given basic graph pattern bgp can be decom-
posed into the set of all contained stars referred to as Sbgp and a remainder graph pattern
which contains all triple patterns that do not form stars called NSbgp. In consideration
of the above, the selectivity of bgp is estimated according to the the following formula:

26Graph theoretic constructs, they materialize in the realm of SPARQL queries as groups of triple
patterns that join on the same subject or object
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SELh

bgp
=

�

tp
�∈NSbgp

selh
tp

� ×
�

star∈Sbgp
( min
tp

��∈star

selh
tp

�� ) (2)

The equation captures the intuition that non-star pattern triple-patterns are estimated
via independent combination of their selectivities. Obviously, independence is not correct
but oftentimes found as an acceptable approximation. The selectivity of a star pattern,
in contrast is estimated by the selectivity of its minimal participating triple-pattern.

Cost model. When ranking plans, Avalanche employs a common no-preference mul-
tiobjective optimization method: the method of Global Criterion [43]. Avalanche uses
this method as an envelope to combine the folowing heuristic objectives:
◦ plan selectivity estimation: this objective relies primarily on selectivity estimation

as it appears in equations 1 and 2 and is defined according to the following equation:

SELplan =
�

sq∈SQplan

SEL
hsq

bgpsq
(3)

where plan represents a partial or complete plan and SQplan is the set of subqueries
in plan.

◦ number of subqueries: stemming from a data-locality assumption (related assertions
are usually on the same host) this second heuristic is intended to bias the plan generator
towards plans (or partial plans) that will result in query decompositions with fewer
subqueries and is defined as follows:

SIZEplan = |Tplan|− |SQplan| (4)

where plan represents a partial or complete plan, Tplan = {tpi | tpi ∈ plan} the set of
triple patterns in plan, and SQplan the set of subqueries in plan.
Since Avalanche needs to compare partial plans with various degrees of completion

whilst exploring the universe of all plans PQ the number of subqueries is “normalized”
by the number of triple patterns considered so far.

Finally, Avalanche minimizes the cost of a plan by combining the previous heuristic
functions according to the following equation:

COSTplan = || < SELplan, SIZEplan > −zideal|| (5)

where zideal =< 1, 0 > and the ||.|| norm is the L2 norm or the euclidean norm. A flexible
design, the cost model COSTplan supports pluggable heuristics by simply extending the
heuristics vector and zideal accordingly.

Numerical stability. The issue of numerical stability is risen when dealing with very
high selective triple or basic graph patterns in the context of large RDF spaces. To avoid
numeric overflow effects, COSTplan is computed in logarithmic space. Hence, the notion
of logarithmic probability or in our case logarithmic selectivity is used:
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logselh
tp

= −log(selh
tp
) (6)

An added benefit, the cost computation is simplified since in logarithmic space the
products from equations 2 and 3 are transformed into sums. Furthermore, since the
method of global criterion is sensitive to the scaling of the considered objective functions,
as recommended in [27] the objectives are normalized into the uniform [0,1] range.

3.4.2. Searching for the “best” plans.
As exhibited in Algorithm 1 the planner will try to optimize the construction of plans

using an informed (best-first) multi-path depth traversal strategy. Therefore, plans are
generated in ascending order by minimizing the heuristic cost-approximation function of
each plan COSTplan, described in Equation 5. Stemming from the attempt to preserve
the data-set distribution flexibility that publishers enjoy on the Web and therefore on the
WoD, the plan composition space exposes an exponential worst case space complexity:
O(mn), where m = |H| is the number of involved sites and n = |TQ| is the number of
triple patterns (number of joins - 1) in the query Q.

With each exploratory step the size of the exploration fringe F increases by the number
of sites |H| (line 19). This happens for each expanded state or partial plan represented by
a < tp, hi > pair, where tp ∈ TQ is the current triple pattern and hi ∈ H a participating
endpoint or host. The algorithm is complete and exhaustive as it iterates over all possible
plans. While search algorithms normally stop and return when the solution is found, the
planGenerator procedure is not halted and instead each solution or plan is emitted

to the caller (line 11).
The traversal generator procedure, although classified as informed or best-first (BFS),

borrows conceptually from depth-first search (DFS) algorithms. The DFS aspect is nec-
essary in order to produce viable plans quickly and is encoded by the partial sort of the
local fringe N in function nodes line 29, forcing the exploration of direct descendant
partial plans of the current state. In contrast, the BFS aspect is triggered right after a
plan has been emitted by sorting the entire fringe F (line 13). This is critical since the
planner must select for expansion the next best plan available.

Pruning. As the exploration space grows quickly pruning invalid or ∅ plans is desired.
Early pruning is achieved immediately after the statistics gathering phase when the plan
matrix PMQ is available, by removing all hosts (matrix rows) for which the cardinality
of all triple patterns is 0. In the absence of triple-patten cardinalities, early pruning
would not be possible and the maximum number of plans would have to be considered:
|H||TQ|.27 Hence, queries that produce a Ø plan matrix (where all elements are 0) are
stopped during this early optimization step.

Furthermore, during execution the same join can be often shared by multiple com-
peting plans. Consequently, joins that are ∅ (empty) are recorded and used as dynamic
feedback for the planner, which then prunes any plan that contains an ∅ join. This aspect
transforms the Avalanche planner into an adaptive planner as seen in line 26 of the
nodes function.

27For a realistic example of plan space upper bound vs. possible plans after pruning we refer to Table
3 on page 28.
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Algorithm 1 The plan generator algorithm
Precondition: Q a well-formed SPARQL query, T the set of all triple patterns ∈ Q
Postcondition: Na set of search nodes, P a query plan

1: procedure planGenerator(Q)
2: V ← ∅ � V: set of visited nodes
3: C ← ∅ � C: set of closed nodes
4: F ← nodes(V, T, ∅) � F: active exploration fringe
5: ρ ← 0 � ρ: current plan counter
6: while F �= ∅ do

7: if ρ = MAXplans then � MAXplans: maximum number of plans
8: break

9: best ← F.pop()
10: if solution(best) then � best is a leaf search node
11: emit Plan(Q, best, ρ) � emit generated plan
12: ρ ← ρ+ 1
13: F.sort() � sort fringe F based on COST

14: if best /∈ C then

15: C ← C ∪{best}
16: Tnxt ← {tp}, tp ∈ T ∧ tp /∈ triplePatterns(best)
17: if Tnxt = ∅ then � Tnxt: next unexplored triple pattern in partial plan
18: continue

19: F ← F ∪ nodes(V, Tnxt, best) � expand search space

20:

21: function nodes(V , T , parent) � partial fringe expansion function
22: N ← ∅ � N : the nodes, V : visited queue, T : a set of triple patterns
23: for tp ∈ T do

24: for h ∈ H do � H: the set of all endpoints
25: n ← node(tp, h, parent) � create new node
26: if n /∈ V ∧ n �= ∅ then

27: V ← V ∪ {n}
28: N ← N ∪{n}
29: N .sort() � sort (partial fringe) Nbased on COST
30: return N

3.5. Executing Plans

Since in Avalanche state is managed remotely, the broker is only tasked with the
orchestration of the overall query execution process. As such, the broker is primarily an
I/O bound process with little need for multicore parallelism. In this sense the use of
socket-asynchronous system design is indeed a natural match for its implementation.

Once a plan is emitted by the Plan Generator it is directly assigned to a new executor
worker in the asynchronous Executor Pool. Asynchronous concurrent pools can support
orders or magnitude more workers in comparison to traditional thread or process based
pools limited by the relatively low number of system threads / processes. If the number
of open sockets is too high for asynchronous communication concurrency can be throttled

18



down (just like in traditional thread-pools).

1) Join (s1, s2)

4) Reconcile (s2, s1)

?drugBankName

?drug drugbank:genericName   ?drugBankName.
?drug drugbank:keggCompoundId      ?keggDrug.
?drug rdf:type                              drugbank:drugs

sub query s1

?chebiDrug         chebi:image          ?chebiImage.
?chebiDrug         dc:title             ?drugBankName

sub query s2

?keggDrug           chebi:url                      ?keggUrl

sub query s3

?keggDrug

Drugs

Compounds

Chemicals

2) Join (s1, s3)

3) Reconcile (s3, s1)

6) Materialize s2

7) Materialize s3

5) Materialize s1

8) Merge (s2, s1)

9) Merge (s3, s1)

Figure 5: Graphical illustration of the execution process for example query Qex..

As soon as a plan is assigned to a worker the process described in Algorithm 2 unfolds.
Figure 5 illustrates this process for the query Qex.

A first step consists of sorting the subqueries (if more than 1) in order of their
selectivity estimation SELh

sq
on the designated host h. The distributed join is than

executed in left-deep fashion, starting with the most selective subquery as see in line 5
and steps 1 and 2 in figure. Necessary for the next phase, the order in which joins occurred
is recorded in the JQ queue. The next phase is optional, since it’s an optimization. When
enabled, the partial results that have been produced in the earlier join can be reconciled
(filter out the pairs that do not match) in reverse order of their counter-part joins (line
6, steps 3,4 in figure). Reconciliation can be naive (send the entire set compressed or
not) or optimized. The former is used when the cost of creating the optimized structures
is higher than just sending the set. In the latter hashes can be send when the item size
is larger than its hash or following [34] bloom-filters can be employed. Bloom-filters are
space-efficient lossy bit-vector representations of sets by virtue of using multiple hash
functions for recording each element.

Finally results are materialized in parallel (line 7, steps 5,6,7 in figure) and then
merged on the host corresponding to the first subquery – the one with the lowest esti-
mated selectivity, (line 8, steps 8,9 in figure). To increase execution performance, since
many plans contain the same or overlapping subqueries, a memoization strategy is em-
ployed. Hence, partial results are kept for the duration of the entire query execution
and not just for the current plan. This acts as a site-level cache memory bypassing the
database altogether for “popular” result sets when resources permit.

When the merge is completed, the Plan Executor worker process will signal the
Avalanche Query monitor via the Results Queue. Note that the finished plans do
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Algorithm 2 The plan executor
Precondition: P a valid query plan, RQ the Avalanche Results Queue

1: procedure executePlan(P , RQ)
2: r ← ∅ � r: the results
3: if isFederated(P ) then � P has more than 1 subqueries
4: SortSubqueries(P ) � Sort subqueries in P by SELh

sq

5: JQ ← distJoin(P ) � distributed join of subqueries
6: distReconciliation(JQ) � reconcile partial results
7: SQ ← distMaterialize(P ) � distributed materialization (�)
8: r ← distMerge(SQ) � merge partial results
9: else

10: r ← sparql(P ) � execute SPARQL query

11: RQ ← RQ ∪ r � append results

not contain the final results, as the matches are kept remotely. It is the Query monitor’s
responsibility to retrieve the results and update the overall state of the broker accord-
ingly. In the remainder of this subsection we will describe in detail the inner-workings
of the operations described above.

Distributed Join & Reconciliation. The join and reconciliation procedures are de-
tailed in Algorithms 3 and 4 respectively. Joining is implemented in a left-deep fashion
while the reconciliation procedure is straight-forward. One important aspect to note is
that the execution of a plan can be stopped (line 6 in Algorithm 4) if the cardinality
of a join is 0. This information is recorded and fed back into the planner for dynamic
pruning.

Algorithm 3 The distributed join operation
Precondition: P a valid query plan
Postcondition: JQ a queue, containing the joins in order

1: function distJoin(P )
2: JQ ← ∅ � JQ: joins queue
3: S ← subqueries(P ) � S: set of all subqueries in P
4: S.sort() � sort by selectivity estimation SEL
5: if isFederated(P ) then
6: while S �= ∅ do

7: best ← S.pop()
8: for sq ∈ S do

9: best �� sq � remote join
10: JQ ← JQ ∪ {[best, sq]} � record join

11: else

12: sparqlRemote(P ) � SPARQL query but keep results remotely

13: return JQ
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Algorithm 4 The distributed reconciliation operation
Precondition: JQ joins queue

1: procedure distReconciliation(JQ)
2: JQ.reverse()
3: for [left, right] ∈ JQ do

4: κ ← reconcile(left, right) � remote reconciliation step
5: if κ = 0 then

6: halt � stop plan execution when cardinality = 0

Distributed Materialization & Merge. The final execution phases are detailed in
Algorithms 5 and 6 respectively. The simple materialization procedure is executed in
parallel on all subquery hosts with the important note that locally kept selectivity esti-
mations for each subquery in SQare updated to actual join cardinalities, available at this
stage remotely (line 5 in Algorithm 5). This information is later used to find out the
host with the highest partial result cardinality. This host (best in line 2 in Algorithm
6) is than used as the “hub” on which all other partial results are merged (lines 3-5 in
Algorithm 6).28

Algorithm 5 The distributed materialization operation
Precondition: P a plan
Postcondition: SQa queue containing the plan subqueries sorted by cardinality κ

1: function distMaterialize(P )
2: SQ ← ∅ � SQ: subqueries queue
3: for sq ∈ P do

4: κ ← materialize(sq) � κ: the cardinality of partial results on sq
5: SQ ← SQ ∪{[κ, sq]}
6: if κ = 0 then

7: halt � stop plan execution when cardinality = 0

8: SQ.sort() � sort by κ
9: return SQ

3.6. Stopping the query execution

Since we have no control over distribution and availability of the RDF data and
SPARQL endpoints, providing a complete answer to the query is an unreasonable as-
sumption except for the cases involving few endpoints and rather simple queries. Instead,
the Query Monitor / Stopper monitors for the following stopping conditions :

◦ a global timeout set for the whole query execution,
◦ returning the first K unique results to the caller,

28For brevity and graphical simplicity of Figure 5, the “Compounds” endpoint (in the middle) was
also assigned to be the merge host.
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Algorithm 6 The distributed merge operation
Precondition: SQ subqueries queue
Postcondition: r a valid SPARQL results set

1: function distMerge(SQ)
2: κ, best ← SQ.popLeft() � κ: the cardinality of partial results on best
3: while SQ �= ∅ do

4: sq ← SQ.popLeft()
5: merge(best, sq) � merge results from sq on best

6: r ← getResults(best) � retrieve the final results from best
7: return r

◦ to avoid waiting for the timeout when the number of results is � K we measure
relative result-saturation. Specifically, we employ a sliding window to keep track of the
last n received result sets. If the standard deviation (σ) of these sets falls below a given
threshold then we stop execution. Specifically, using Chebyshev’s inequality [21] we stop
when 1− 1

σ2 > 0.9.

4. Evaluating Avalanche’s Robustness Against Messiness

In the introduction we claimed that the Avalanche system provides the capability
to query the messy Web of Data. Specifically, we claimed that the proposed system:
(1) makes no assumptions about data distribution, schema, availability, or partitioning
and is skew resistant for some classes of queries, (2) provides up-to-date results from
distributed indexed endpoints, (3) is adaptive during execution adjusting dynamically to
external network changes, (4) does not require detailed fine-grained ex-ante statistics with
the query engine, and (5) is flexible as it makes limited assumptions about the structure
of participating triple stores.

Avalanche is able to provide up-to date results without any ex-ante statistics (2
and 4) by accessing participating triple-stores at run-time and is open due to the limited
assumptions it makes on triple-stores (5). Whilst skew resistance (1) and adaptiveness
(3) seem possible due to its multi-plan competitive planing/execution strategies (see
Sections 3.4 and 3.5) it has not been shown that these strategies are actually successful.

In the following we will describe the experimental evaluation of the Avalanche sys-
tem. Specifically, we will provide empirical evidence ascertaining Avalanche’s planner
quality and the system’s overall robustness to varying data distributions and network
conditions like different latencies and endpoint unreliability. Specifically, we evaluate
Avalanche’s planer quality as well as robustness against network latency and end-
point stability (in Section 4.1) using a real world dataset. In addition, we will show
Avalanche’s robustness against various data distributions (Section 4.2) using a syn-
thetic dataset.

Experimental setup. For all experiments a cluster of 6 physical machines with 64GB
of RAM, 24 AMD Opteron 6174 Cores @2.2 GHz, and running Debian GNU/Linux
6.0.6 64bit was used. In addition the Avalanche broker was executed on a separate
machine with 72GB of RAM, 8 Intel(R) Xeon(R) CPU X5570 Cores @2.93GHz, and
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running Fedora release 12 (Constantine) 64bit. For all evaluations we will first succinctly
introduce the setup and then discuss the evaluated characteristics.

4.1. Evaluation Setting I: Analyzing Avalanche with real-world data

To evaluate the generalizability of our results to a real-world setting we chose a
real-world dataset specifically tailored for the evaluation of federated RDF stores. This
subsection first outlines the dataset, its distribution to hosts, the queries used and then
discusses Avalanche’s execution results on this dataset.

The Data and its Distribution. We chose the recently published Fedbench29 [36]
dataset as it comes pre-partitioned using a real-world partitioning schema and, addi-
tionally, offers 36 SPARQL queries. For summarized statistics about each participating
dataset refer to Table 1.30

Table 1: Fedbench datasets statistics

Collection Dataset version # triples Dataset version # triples

Cross Domain

DBpedia subset 3.5.1 43.6M Jamendo 2010-11-25 1.05M

NY Times 2010-01-13 335k GeoNames 2010-10-06 108M

LinkedMDB 2010-01-19 6.15M SW Dog Food 2010-11-25 104k

Life Sciences
DBpedia subset 3.5.1 43.6M Drugbank 2010-11-25 767k

KEGG 2010-11-25 1.09M ChEBI 2010-11-25 7.33M

SP
2
Bench SP

2
Bench 10M v1.01 10M

a Data available from http://code.google.com/p/fbench/wiki/Datasets

Following the natural partitioning of the benchmark we adopted the assumption that
each dataset is published on its own distinct server. For bigger datasets such as Geon-
ames and DBPedia we assumed in addition that the publishers decided to further split
the data into multiple RDF stores. We captured this by splitting some of the larger
datasets as detailed in Table 2. Hence, additional distribution messiness was introduced
by splitting the Geonames triples randomly over 11 hosts while for DBpedia larger dumps
were distributed to single hosts and the smaller ones were integrated into the Other
Avalanche endpoint.

The Queries. The triple store31 we used for implementing Avalanche endpoints does
not currently not support SPARQL features beyond traditional BGP pattern matching.
Hence, we ignored all Fedbench queries that contain the OPTIONAL and FILTER graph
pattern modifiers. This is a limitation of the current system and evaluation, which we
discuss in detail in Section 5. Additionally, as UNION is not supported either, queries
containing the operator were split and executed as separate queries, which is aligned

29http://code.google.com/p/fbench
30Another viable option would be the Billion Triple Challenge 2011 dataset. Whilst one could define

splits based on the provenance of each triple (group triples originating from the same source/publisher
in the same store) it does, however, lack a standard agreed upon set of queries suited for the evaluation
of distributed triple stores.

31An in-house and updateable extension of Hexastore was used as the RDF store technology behind
all Avalanche endpoints in our evaluations.
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Table 2: The distribution of the Fedbench dataset to Avalanche hosts

Dataset Avalanche Host #triples Dataset Avalanche Host #triples

NY Times News 314k LinkedMDB Movies 6.14M

Jamendo Music 1.04M SW Dog Food SW 84k

KEGG Chemicals 10.9M ChEBI Compounds 4.77M

Drugbank Drugs 517k SP2B-10M Bibliographic 10M

Geonames

Geography 1 9.98M Geography 7 9.95M

Geography 2 9.99M Geography 8 9.99M

Geography 3 9.93M Geography 9 9.99M

Geography 4 9.94M Geography 10 9.99M

Geography 5 9.98M Geography 11 7.98M

Geography 6 9.98M

DBPedia subset

Infobox Types 5.49M Infobox Properties 10.80M

Titles 7.33M Articles Categories 10.91M

Images 3.88M SKOS Categories 2.24M

Other 2.45M

with the common practice of executing unions as individual subqueries in parallel. In
addition to the resulting 33 queries we supplemented the Fedbench queries with another
5 more complex queries from the life sciences domain, as listed in Appendix D. The
translation table to the original names (where applicable) is available in Appendix C.

4.1.1. Experiment #1: Avalanche vs. Baseline System
In order to observe the performance gains characteristic to the execution model pro-

posed in Avalanche we implemented a “baseline” query execution pipeline as described
in the following. The core idea behind the baseline approach is to essentially gather
relevant data from the distributed sources and efficiently recompose the partial results
obtained in this fashion locally.

A naive approach would be to multicast the queryQ to all participating sites but allow
them to answer only those parts (triple patterns) of the query that the endpoint actually
“understands”, in effect mapping Q �→ Qknown. The decision to discard triple patterns
is made locally by the RDF store itself and is implemented as defined in Equation 7:

TQknown = {tpi | ∀tpi ∈ TQ ⇐⇒ card(tpi, h) > 0, h is the current endpoint} (7)

where TQknown represents the “known” set of triple patterns composing query Qknown.32

Since traditional SPARQL query execution assumptions are broken when executing
queries in the manner mentioned earlier, the baseline engine is left with the non-trivial
task of recombining the partial results. A further complication arises from the fact that a
SPARQL SELECT query is essentially a G �→ R mapping, where G is the original graph
data and R represents the results table with the query projection variables as column
names. To make sense of the incoming partial result tables Ri the reverse mapping
Gi ←� Ri needs to be performed. The resulting graph Gknown ← �

�
Ri would then

32Depending on the indexing mechanisms used by the RDF store, other triple pattern exclusion rules
can be imagined (i.e: discard triple patterns if the predicate belongs to an unknown namespace – provided
namespace information is available).
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contain all the original triples stemming from the partial result tables. The engine is
now left with the task of re-executing the original query Q on the local graph Gknown.

Limitations. While conceptually simple, a number of hurdles render the implementa-
tion non-trivial. First, it is possible that some of the reduced queries Qknown do not
contain any of the selective triple patterns from Q (if any). These subqueries usually
appear when executing distributed query plans with one major difference, they are asso-
ciated with other subqueries with which they usually join and their execution is deferred
in favor of the more selective ones. Furthermore when executed partial results bindings
are supplied resulting in increased selectivity. In the worst case Qknown ≡< s, p, o >
which in turn attempts to retrieve the entire remote knowledge-base, a prohibitively ex-
pensive operation for both requester and provider. Second, since the final results for Q
can only be computed after obtaining Gknown two execution strategies emerge:
i) Wait until all Ri partial results are retrieved and then execute Q on Gknown. This

is suitable for situations where partial results are inexpensively obtained and/or the
query is complex.

ii) Every time a partial result Ri arrives, merge it with Gknown and execute query Q
retaining the results. This pipelined strategy obviously pays off when (some) partial
results are expensive to obtain additionally offering the possibility of an early stop
when Q is satisfied without having to wait for all partial tables. However, it incurs
the cost of executing Q with each retrieved partial table.

Finally, the method is not complete due to the following reason: the resulting Qknown can
remove some triples from the result set, triples which may be match points with other
remote endpoints. In contrast Avalanche is complete since it considers all possible
decompositions of Q and not just one decomposition like Qknown.

Results. Based on the assumption that the selectivity distribution of the generated
Qknown subqueries on participating endpoints is Zipf-ian, we chose to implement the
pipelined execution model due to its obvious performance benefits. Furthermore, the
same asynchronous behavior as in Avalanche was encoded in the baseline, while Gknown

was implemented by a fast loading and high performance in memory indexed RDF store33.
A consequence of this choice is that the same stopping conditions that Avalanche em-
ploys can be used to determine wether the engine should stop the query execution or
not, hence, eliminating other unknown hidden factors when comparing the two systems.

The time taken to complete all the considered Fedbench queries by both systems is
graphed in Figure 6. With very few exceptions Avalanche proved to be faster than
the baseline system. When retrieving first results the baseline system is slower than
Avalanche in 65% of the queries, becoming slower for 92% of the queries by the time
total34 results are retrieved. This is better captured in Figure 7, where the geomet-
ric mean over all queries is computed. Clearly, for the 38 selected Fedbench queries
Avalanche exhibits superior average performance for both cases: retrieving first results
and achieving query completion.

33We used the IOMemory RDF store provided by the rdflib package: https://github.com/RDFLib
34By total we refer to the number of results retrieved until the system is stopped by the Results

Monitor.
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Figure 6: Average query execution times for each of the Fedbench queries. Avalanche vs. the Baseline
System.

Figure 7: Geometric mean of the execution time over all queries: Avalanche vs. the Baseline System.

Furthermore, as mentioned previously the baseline system is not guaranteed to be
complete, a fact exhibited by queries: FQ11, FQ14, FQ21, FQ23, FQ25, FQ26, FQ28
and FQ33 as seen in Figure 8, which depicts the recall for all queries. The ground-truth
used to compute the recall was obtained by disabling the Results Monitor component,
thus, enforcing none of the stopping conditions.

The baseline system although slower in most cases and incomplete in some, exhibits
some positive properties. First, it is of a much more simple design and finally for some
classes of queries it can be faster than Avalanche. For example for query FQ30 first
results are retrieved with a negligible 0.37 seconds faster (a difference that can be at-
tributed to the statistics gathering phase in Avalanche), while the same happens for
total results in query FQ7 which completes 4.6 seconds faster than Avalanche.

In light of these results, we can safely say that Avalanche exhibits significant per-
formance and conceptual benefits over the naive baseline system.
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Figure 8: Recall for each of the Fedbench queries. Avalanche vs. the Baseline System.

4.1.2. Experiment #2: Planner Quality Assessment
As described in Section 3.4 the Avalanche planning strategy uses heuristics to ex-

plore the universe of all plans PQ. In the following, we will analyze the quality of the
planning algorithm used in Avalanche by 1) comparing it to a perfect omniscient (or
oracle) planner and 2) by observing the relative ranking of productive plans within the
query plan universe PQ.

Comparison to a perfect planner. To construct an omniscient or perfect planner, we
used the following strategy. In a first run, Avalanche recorded (serialized) “productive”
plans to a local storage, while in a second run a custom planner component—referred to
as the Perfect Planner—was employed. Its role was to generate only productive plans
for the given query, allowing Avalanche to execute them in the exact same manner as
before. This setup allows us to simulate an oracle planner.35

The results of running all 38 Fedbench queries comparing the standardAvalanche plan-
ner (labeled dfs) with the oracle planner are depicted in Figure 9. Over all queries
Avalanche was 0.37 seconds slower on average when retrieving first results and 0.76
seconds slower on average when retrieving all results (i.e., completing the query execu-
tion). If we split the depicted answer times into two groups—one for queries that are at
most 1 second slower when answered with the Avalanche heuristic planner (a total of
27 queries) and another for queries that are more than one second slower (the remaining
11 queries)—then we observe that for the first group Avalanche produces first results
with an average of 0.14 seconds extra latency (respectively 0.11 seconds extra latency for
total results) than in the perfect planner case. The difference is more dramatic for the
second group of queries, where Avalanche produces first results with an average of 1.92
seconds extra latency and 2.35 seconds extra latency for total results. The largest differ-
ences are recorded for the Fedbench queries FQ4, FQ7, FQ21 and FQ37 (Listings 20, 23,
37 and 53) and is explained by a higher plan-rank assigned by the Avalanche planner
to the productive plans and/or interfering non-productive plans that consume system
resources needlessly. Moreover, since queries FQ35 and FQ36 produce no results the
perfect planner returns immediately while the Avalanche planner continues to search
for a productive plan coming to a halt after about one second.

35A plan generator connected to an oracle, akin to an oracle machine, i.e., a Turing machine connected
to an oracle
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Figure 9: Average query execution times for each of the Fedbench queries. Avalanche standard dfs
planner vs. oracle planner.

In general this difference is to be expected. The effort of discarding (and executing)
unproductive plans in conjunction with the plan space exploration takes time. Hence, the
Avalanche planner is naturally slower than a no-effort planner (like the oracle planner)
is used. However, as exhibits by Figure 9 the delays are clearly limited and acceptable
to many applications. Hence, Avalanche exhibits a good performance in the conditions
of this evaluation when acting based on join-estimate heuristics.

Table 3: Total possible plans and first productive plan rank as generated by Avalanche

query FQ0 FQ1 FQ2 FQ3 FQ4 FQ5 FQ6 FQ7 FQ8 FQ9 FQ10
max plans

b
26

1
26

2
26

3
26

5
26

5
26

4
26

4
26

4
26

1
26

1
26

1

# plans
c

6 26 1 18 324 18 180 2592 1 0 1

1
st

plan 1 25 1 1 2 3 23 48 1 -
a

1

query FQ11 FQ12 FQ13 FQ14 FQ15 FQ16 FQ17 FQ18 FQ19 FQ20 FQ21
max plans

b
26

2
26

5
26

7
26

6
5
26

26
3

26
3

26
4

26
5

26
3

26
5

# plans
c

26 18 1 10 10 7 1 126 1 5 594

1
st

plan 2 6 1 6 2 7 1 20 1 1 71

query FQ22 FQ23 FQ24 FQ25 FQ26 FQ27 FQ28 FQ29 FQ30 FQ31 FQ32
max plans

b
26

2
26

5
26

3
26

3
26

5
26

3
26

9
26

5
26

2
26

2
26

1

# plans
c

24 180 1 18 49 1 270 45 104 104 1

1
st

plan 9 1 1 2 1 1 1 1 27 20 1

query FQ33 FQ34 FQ35 FQ36 FQ37
max plans

b
26

16
26

12
26

16
26

11
26

6

# plans
c

18 1 10 18 324

1
st

plan 6 1 -
a

-
a

17

a query has no results
b maximum number of plans if no triple-pattern cardinalities are available ≡ upper bound
c maximum number of possible plans deduced when triple pattern cardinalities are considered

Plan ranking. As can be seen in absolute values in Table 3 and normalized relative to
total number of plans in Figure 10 Avalanche succeeds in assigning a low rank (1 ≡ best
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rank) to the first productive plan. When the number of possible plans is large, the simple
selectivity-estimation-based cost model will assign higher ranks, as is the case of query
FQ21 where the first productive plan is the 71st plan generated out of 594 possibilities.
However, due to the asynchronous-concurrent manner in which plans are executed, the
negative effect of assigning higher ranks to plans36 is mitigated to a relatively high degree
as shown in the previous analysis agains the perfect planner.37

Figure 10: Normalized relative plan ranking: first plan compared to the possible number of plans / query
for each Fedbench queries.The higher the bar the closer the first proposed plan is to the optimal one.

4.1.3. Experiment #3: Varying Network Latency
Changing network conditions can impede the execution of any distributed SPARQL pro-

cessing. Two critical network factors stand out: bandwidth and latency. Since the slow-
down effect of a low-bandwidth connection can in general be overcome with a certain de-
gree of success by either compressing the message or making use of binary communication
protocols and since Avalanche employs bloom filter optimized joins to reduce commu-
nication I/O, we decided to focus our attention in this experiment on connection latency.
The majority of requests in the Avalanche system are between the Avalanche broker
and the participating endpoints. Hence, for this experiment the connection between the
broker and each endpoint was routed through a TCP delayer proxy, which would intro-
duce delays according to a predefined configuration. We chose to simulate three types of
latency distributions:

◦ No Delay → a local cluster network with negligible connection latency,
◦ Gamma 1 → a fast network with an average connection latency of 0.3 seconds.

Simulated by a gamma distribution with α = 1 & β = 0.3 (Figure 11),
◦ Gamma 2 → a slow network with an average connection latency of 3 seconds.

Simulated by a gamma distribution with α = 3 & β = 1.0 (Figure 11).
Additionally, the TCP socket buffer size was set to the standard value of 16KB.

Avalanche successfully finds results for all the considered benchmark queries un-
der all simulated latency variations. Looking at Figure 12 we can clearly observe that
the speed with which Avalanche answers queries across the different connection types
increases dramatically as we move towards slower connections like Gamma 2. First, re-
sults are produced after an average of 0.36 seconds when connection latency is negligible,
while for the Gamma 1 and Gamma 2 cases first results are found after an average of

36The rank is equivalent to the order in which a plan is generated, higher ranks imply a larger delay
until plan execution.

37Non-productive plans are quickly discarded after the first empty join.
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Figure 11: Propability desnity function (pdf) for the simulated Gamma 1 and Gamma 2 latency
distributions.

2.93 seconds and 20.64 seconds respectively. The situation is similar for achieving the
stop condition (called total query results38): 0.49 seconds on average for the No Delay
setup, 3.52 and 23.15 seconds on average for the Gamma 1 respectively Gamma 2 se-
tups. Although this performance decrease is dramatic Avalanche exhibits a sub-linear
slowdown as graphed in Figure 13 compared to the broker-endpoints average latency
slowdown.

Figure 12: Geometric mean of the execution time
over all queries for the three connection setups.

Figure 13: Slowdown introduced by the three con-
nection setups.

This behavior is attributed to Avalanche mainly because of its adaptive asyn-
chronous design. In essence plans that return quickly are favored by the asynchronous
scheduling Results Queue. As a consequence, Avalanche is largely dependent on the
critical plan for first results. The critical plan should ideally be the first productive plan.
However, given that network conditions are uncontrollable, a slower plan might produce
results faster because it shares a faster network connection. This is also observed in Figure
14, where the individual average times for answering all Fedbench queries FQi, i ∈ [0, 37]
queries under all three network conditions are graphed. As the broker-endpoints con-
nections experience more lag, Avalanche exhibits a stable behavior overall depending
mainly on the critical plan(s), albeit slower with the slowdown depicted in Figure 13.

38Not to be mistaken with the ground truth result set for the respective query.
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Figure 14: Average response time for each Fedbench query under different latency distributions. The
graph differentiates between the time necessary to get the statistics, execute the first plan, and execute
all plans.

4.1.4. Experiment #4: Varying Endpoint Availability
Another source of messiness stems from the uncontrollable nature of the underlying

communication protocol stacks on the Web as well hardware and physical crashes of
servers and routers. There is no guarantee that a host replying to requests at any given
moment T will be available at time T +∆t. To observe the behavior of Avalanche in
such a case we have designed an experiment. where some hosts disappear during query
execution.

First, in order to have multiple plans per query we replicated some of the Fedbench
endpoints used throughout this experimental setup. Specifically, we replicated the News,
Movies and Music in the Cross Domain collection and Drugs in the Life Sciences collec-
tion Avalanche endpoints (see Table 2). This resulted in the increase of total number of
triples over all hosts by about 8 million additional assertions. Furthermore, the already
burdened physical machines had to support the 4 additional replicated endpoints.

Then, to emulate a crash the replicated endpoints were started in a “fail” mode,
meaning that they would abruptly terminate themselves immediately after reporting the
triple pattern cardinalities. This case is most interesting as the hosts will be considered
by the Query Planner component as it received cardinalities from them, even-though
all query plans containing subqueries allocated to them will fail to execute. The two
other cases—the host being unavailable during either the source selection or statistics
gathering phase—are less interesting as they handled by design (i.e., the hosts are not
even considered in the planing). We compared Avalanche when replicated hosts would
fail seamlessly during query execution with the case when the replicas would not fail. Note
that the obtained results should not be directly compared to results obtained elsewhere
in this section, as the Avalanche endpoints were simulated on some of the physical
nodes, which experience additional load in this replicated setting.

Figure 15 graphs the arrival time of the first and total results for the cross domain
and life sciences queries (FQi, i ∈ [0, 15] ∪ [33, 37] ) and Figure 16 graphs the average

31



Figure 15: Average response time for Cross Domain and Life Sciences Fedbench queries when endpoints
fail.

Figure 16: Average # of results time for Cross Domain and Life Sciences Fedbench queries when end-
points fail.

number of results obtained over the same queries.39 Avalanche’s Plan Generator adapts
dynamically to external changing conditions, such as endpoints going offline, due to
various reasons. Such events are usually detected when a plan that contains at least one
subquery assigned to an offline host is executed. Upon detection, the planner’s internal
state is dynamically readjusted first by removing the corresponding row for the host from
the Plan Matrix PM and secondly by pruning all partial plans containing the offline host

39Queries FQ9, FQ35, and FQ36 were not considered since they produce no results be default, while
query FQ34 could not be run in the fully replicated scenario since the physical machine did not have
enough resources to accommodate the extra replicated servers in this case.
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generated up to the detection moment. In most cases Avalanche is not impacted by
the fact that a host has failed when at least another alternate plan to produce results
exists. Of course, if all query relevant hosts fail, then the query will timeout without any
results found. As the results indicate Avalanche is able to return the a result set of
similar size than the one without disappearing hosts within a similar time-frame as the
stable host setting.

4.2. Evaluation Setting II: Analyzing Avalanche with synthetic data

One of the key characteristics of the WoD is represented by its semantic heterogeneity
stemming from a plethora of intertwining applications domains. Currently this aspect
alone represents an important part of a federated query’s selectivity. However, it is not
inconceivable that in the future schema-homogeneous partitions of the WoD will increase
in size reducing the usefulness of schema/vocabulary information during planing. These
kind of instance-level messy distributed RDF datasets, hence, significantly complicates
distributed query processing as it is unclear if triples matching one triple pattern from
one host are likely to join with matches to a second triple pattern from the same host or
another. This kind of messiness attenuates the effect of locality.40 WhileAvalanche was
not designed with the intend of addressing instance-level messiness we investigate the
behavior of our proposed execution paradigm when individual instances (triples) are
spread across a large number of semantically-homogenous hosts with increasing degrees
of messiness.

To this end we employed the synthetic LUBM benchmark dataset [14]. Specifically,
we generated the LUBM2000 benchmark configuration, resulting in 2000 universities, and
accounting to a total of 276 million triples. In contrast to the previous setup, where 26
schema-heterogeneous endpoints were used, a total of 100 schema-homogeneous

endpoints are created. Such a setup allows us to flexibly mimic instance-level “dis-
tribution messiness” by reassigning triples to hosts. Note, that this setup situates
Avalanche in a worst case scenario, where the Source Discovery Phase reports a
large number of semantically-identical sources—all sharing the same schema—but with
an unknown distribution of triples.

The Data and its distribution. As illustrated in Figure 17, the LUBM triples were
allocated to hosts according to the three LUBM2000 D1, LUBM2000 D3, and LUBM2000
D5 distributions (in short D1, D3 respectively D5). The degree of distribution messiness
increases with each case as detailed in the remainder of this section.

A coarse-grained level of messiness is achieved in the LUBM2000 D1 data-distribution.
Here all data belonging to a university is placed on the same host. To simulate various
levels of server load we assign universities to hosts using the following procedure. Half
the universities are randomly assigned to a host ensuring a basic load for each host. The
second half of the universities are assigned to a host by drawing the host id from a normal
normal distribution with mean µ = 50 and standard deviation σ = 14. This leads to a
higher load for some hosts (towards the middle of Figure 17).

To achieve a higher degree of instance-level messiness LUBM2000 D3 & LUBM2000
D5 additionally distribute triples of one university across 3 or even 5 hosts. The initial

40Note that supporting this messiness is one underlying principles of the Semantic Web, as everyone
can annotate any resource with some triple.
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Figure 17: The data distributions chosen over 100 Hosts. The y-axis denotes the number of universities
about which a host contains information.

host for a university is still determined using the same procedure as with D1. Once that
host is determined, however, 2 (or 4) additional hosts are randomly selected. For D3 each
university’s triples are distributed over 3 hosts using a normal distribution with µ = 1.5
and σ = 0.3. imilarly, for data distribution D5, each university’s triples are distributed
over 5 hosts using a normal distribution with µ = 2.5 and σ = 0.5. Hence, the bulk of the
university’s data is still on one host with part data distributed elsewhere. This mimics
a Brownian motion of the data away from its originating source – one host contains
most of the data while the rest is diffused to other hosts with the chosen probability
density function. Consequently, as Figure 17 shows, the hosts will have data about more
universities.

The Queries. Although we employed the LUBM benchmark data generator for each
of the distributions, we chose not to use the original LUBM benchmark queries since
they are a) geared towards reasoning systems and b) present a coarse grain of complexity
in terms of composing triple patterns and number of unbound variables rendering them
unsuitable for an in-depth evaluation of Avalanche. Instead we devised the 11 SPARQL
queries of varying complexity listed in Appendix B (listings 4 through 14) based on the
observation that the number of joins involved, their size (number of participating triple
patterns), and type are important descriptors of a queries’ potential complexity and
therefore induced effort. For example star joins can be executed in parallel as n-way
joins reducing the complexity of such an operation. However, when joins are chained in
a read-after-write manner one is forced to process them serially.

Consequently, queries LQi, i ∈ [0, 10] are constructed in order of increased complexity
by combining increasingly longer read-after-write join chains with increasingly larger
sized star patterns.

4.2.1. Experiment #5: Varying Data Distribution
The results of running all eleven queries on the three data distributions (D1, D3,

and D5) are graphed in Figures 18 and 19. All runs are warm runs and each query was
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run 5 times. The following Avalanche stopping configuration was used: 1) the timeout
was set to 300 seconds (5 minutes), 2) a stop sliding window of size 3 plans, 3) a relative
saturation of 0.9, 4) a number of 512 maximum concurrent asynchronous connections at
any given moment, and 5) a 0.01 bloom-filter false positive error rate.

Figure 18: Query execution times for all data distributions. Timeout cases are represented with orange.

Figure 19: Number of retrieved results (average) for all data distributions.

As can be observed in Figure 18 Avalanche exposes a relatively stable performance
characteristic without timing-out for queries LQ0 through LQ7. Instance level spread
is actually a benefiting factor for these queries that target replicated knowledge by pro-
viding more “chunks” of partial results, which in turn increases Avalanche’s chances
of generating a “productive” plan. Looking at Figure 19, we can clearly observe that
regardless of the degree of messiness (a university’s triples spread to 1, 3 or 5 endpoints),
Avalanche succeeds in retrieving about the same number of results exhibiting a highly
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stable behavior. An exception is exhibited by LQ6 (Listing 10) where performance de-
grades only for distribution D3. This kind of system behavior is expected in some cases,
due mainly to the estimative nature of the cost model. In this particular case the first
“productive” plan is discovered relatively late compared to the other 2 distribution cases.

LQ8, LQ9 and LQ10 form a second group of queries. These queries target very
specific knowledge pertinent to a single university leaving Avalanche with the task of
identifying those endpoints (1, 3 or 5), which produce the desired result when combined.
As can be observed, performance degrades dramatically41 with the number of hosts
on which data is spread and with the number of joins generated by the query. This
result suggests that näıve selectivity estimation based cost models are not enough when
dealing with fine-grained triple-level messiness at this scale, warranting novel and (more)
accurate estimation statistics. Another effect of increased triples-spread is observed in
the decline in recall for this second group of queries (Figure 19). A possible explanation
for this observation is that as triples are distributed over more hosts, finding candidate
joins becomes harder while the ones that are favored first are usually the more selective
and, hence, the ones with fewer results.

Figure 20: Geometric mean of the execution time
over all queries for D1,D3 and D5, queries LQ0
through LQ7.

Figure 21: Geometric mean of the execution time
over all queries for D1,D3 and D5, queries LQ8
through LQ10.

The systems’ overall behavior for the two query groups is observed more clearly in
Figures 20 and 21, where the geometric mean over answering all queries against each
distribution is shown. The Figures highlight the elapsed times for the three important
execution phases in Avalanche. The statistics gathering phase accounts for a negligible
part of the entire execution process and accounts to a mere 0.2 seconds on average for both
query groups.42 We observe thatAvalanche exposes a stable behavior for the first group
of queries finding first answers after an average of 1.5 seconds and completing the query
after an average of 1.7 seconds. For the second group of queries, Avalanche exposes
a slowdown effect in terms of finding first answers, retrieving them after an average
of 48 seconds and completing the query after an average of 56 seconds. Finally, while

41Query FQ10 times out—depicted in orange—for distribution D5 (triples spread over 5 endpoints).
42A fact we attribute to the read-optimized Hexastore-inspired indexing model employed by the

RDF store used.
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Avalanche becomes slower it however, maintains its robustness as it will eventually find
results.

4.3. Summary

Both evaluation settings in Sections 4.1 and 4.2 are witness to Avalanche’s sta-
bility against messiness. For the real world data-distribution setup based on Fedbench
Avalanche was able to find first results in under one second for about 80% of the con-
sidered queries, while total results were retrieved under one second for about 70% of the
queries, with the slowest running query taking about 5.5 seconds to complete. A notable
exception is represented by query FQ12, which generates a large intermediate result set,
potentially blocking or slowing down access to underlying shared resources like network
connections and database indexes. This is alleviated to some extent by (a) relying on
asynchronous socket API’s and (b) isolating the execution of expensive queries/joins
inside threads or processes. Other possibilities of reducing the overhead of expensive
semi-joins is by compressing intermediate result sets. Even more, a good replacement
strategy for semi-joins are bloom-joins, where the actual data sent is the bit-vector form-
ing the bloom filter of the intermediate results set. The bloom-join is advantageous for
large result sets as sizeof(ResultSetsubquery) >> sizeof(BitV ectorbloomfilter).

Furthermore, as shown in the the third experiment when the broker-endpoints net-
work latency changes then Avalanche’s slowdown compared to the connection’s slow-
down exhibits a sub-linear characteristic as graphed in Figure 13. Avalanche is also
able to dynamically adapt when some participating endpoints go offline when they are
not the sole query results providers. Considering the synthetic LUBM dataset where a
“brownian” spread of triples from their source host is simulated, Avalanche exhibits a
high level of stability when answering queries that are selective with respect to knowledge
that is likely to be replicated (i.e. classes) as seen in Figure 20. Avalanche does become
progressively slower for queries that target specific resources (Figure 21). This happens
since the objective functions considered do not leverage in any way the data distribution
aspect.

5. Limitations, Optimizations, and Future Work

The work presented here exhibits two kinds of limitations. On one side the external
validity of the evaluation is limited; on the other side the system could be extended
and/or optimized. We will discuss both of these topics in turn.

Evaluation limitations. Our experiments rely on a limited number of physical re-
sources available for accommodating the endpoints, the number of physical machines
used is 4 to 16 times smaller than required in reality, where an endpoint would most
often reside on an individual server. When one machine accommodates multiple end-
points, then these endpoints compete for shared (such as RAM, disk I/O, network I/O,
and CPU-time). We think that the impact on our finding is mitigated by the choice
of machines with more cores then endpoints. Furthermore, real-world endpoints would
have to answers multiple query requests, each of which also competes for machine re-
sources. Hence, we believe that our setup is as realistic as possible in an experimental
laboratory-setup and allows generalizing the results.
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Furthermore, we do not support SPARQL filters. However, with the exception of
computationally intensive filters (i.e. regular expressions), they are usually pushed to-
wards remote endpoints and can result in the reduction of the partial result-sets that
need to be sent between endpoints, at the expense of a somewhat higher CPU work-
load. Consequently, the implementation of filters is likely to improve the performance
of Avalanche by reducing the amount of data sent of over the network indicating that
our results can be seen as a worst-case. Given these considerations, we believe that
BGP pattern matching is more difficult problem when querying the indexed WoD while
SPARQL filters are a secondary, optimizing concern that we intend to address as part of
the next iteration of the Avalanche system.

System limitations and optimizations. The Avalanche system has shown how a
completely heterogeneous distributed query engine that makes no assumptions about
data distribution could be implemented. The current approach does have a number of
limitations. In particular, we need to better understand the employed objective functions
for the planner, investigate if the requirements put on participating triple-stores are
reasonable, explore if Avalanche can be changed to a stateless model, and empirically
evaluate if the approach scales to an even larger number of active hosts. Note that for
real data distributions the results show it scales well to hundreds of participating hosts.
Here we discuss each of these issues in turn.

The Query Preprocessing phase in it’s current implementation gets executed once each
time a query is dispatched. There are cases where depending on the data distribution
and query formulation the simple source selection algorithm proposed—a schema (or
ontology) index of hosts—can omit relevant sources, potentially leading to a limited
result-set or no results at all. Consider for example the case of a query where the first
triple pattern has a bound predicate in the FOAF namespace, while the second chained
triple pattern contains no bound variables. Whilst the planer will know that it has to
look for hosts with FOAF predicates for the first triple pattern it has no plan-time (or
prior) information about what hosts are likely to match the second one resulting in an
explosion of the plan space. Dynamic source selection based on partial results or the
results of prior runs might help to to prune this search space.

One of the core optimizations employed by Avalanche lies in the cost model used.
The heuristics considered estimate the joins based on their selectivity. Although the
estimations are good enough in most cases more accurate statistics pertinent to join es-
timations could significantly improve Avalanche’s performance as highlighted by the
LUBM queries LQ8, LQ9 and LQ10 (see Section 4.2). One approach to gather such
estimations would be to record “popular” join cardinalities helping the planer find pro-
ductive plans faster. Other approaches might consider investigating sampling techniques
for estimating distributed joins.

In order to support Avalanche existing triple-stores should be able to:
◦ report statistics: cardinalities can be exported as VOID statistical descriptors,

bloom filters or other future extensions,
◦ support the execution of distributed joins, common in distributed databases as

detailed in Section 3.3. This entails the ability to execute sub-queries. The operation
could be delegated to an intermediary but would be inefficient. And

◦ share the same key space. Whilst the keys could be URI strings this would results
in bandwidth-intensive joins and merges as well as CPU intensive string comparisons.
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As argued above the first requirement is already supported by most triple-stores via
the SPARQL-standard. We still need to investigate how complex the second and third
extension are in practice. One possibility would be the an extension of the SPARQL
standard with the above-mentioned operations (namely distributed joins), which we will
attempt to propose.

The current Avalanche process assumes that hosts keep partial results throughout
plan execution to reduce the cost of local database operations and that result-views are
kept for the duration of a query. This limits the number of queries a host can handle. We
intend to investigate if a stateless approach is feasible. Note that the simple approach—
the use of REST-ful services [11]—may not be applicable as the size of the state (i.e.,
the partial results) may be too large and overburden the available bandwidth.

Probably one of the most hard to control, potential limiting aspect of Avalanche stems
from its aggressive concurrent execution of multiple same-query decompositions. A pos-
itive effect is that at least some of the unproductive plans have the effect of “warming
up” the underlying endpoints. This is beneficial when multiple different but overlapping
queries (where some basic graph pattern is shared) are executed by the system. However,
this is also detrimental when multiple disjoint queries are executed resulting in a thinner
spread of overall system resources especially when they reside on overlapping hosts – an
effect we call “plan flooding”. A possible solution would be controlling the amount of
load a query is allowed to put on the overall WoD. Finding the correct specification of
that “allowable load” is an open problem.

We designed Avalanche with the need for handling messy semi-structured data at
large scales. The core idea follows the principle of decentralization. It also supports asyn-
chrony using asynchronous HTTP requests to avoid blocking, autonomy by delegating
the coordination and execution of the distributed join/update/merge operations to the
hosts, concurrency through the pipeline shown in Figure 3, symmetry by allowing each
endpoint to act as the initiating Avalanche node for a query caller, as well as fault
tolerance via proper exception and time-out handling and stopping conditions.

We would like to point out that Avalanche completely ignores schema. Whilst
this allows us to provide a schema-agnostic solution it does delegate the problem to the
querying user. As a large number of publications on schema-integration [10] and the
owl:sameAs problem (i.e., [15]) show a lot of work might still be needed to address this
kind of messiness transparently. Hence, this is beyond the scope of Avalanche.

6. Conclusion

In this paper we presented Avalanche, a novel approach for querying the Web of
Data that (1) makes no assumptions about data distribution, availability, or partition-
ing exhibiting skew resistance for classes of queries that are selective with regards to
replicated knowledge (i.e. Class information), (2) is dynamically adaptive to changing
external network conditions, (3) provides up-to-date results, and (4) is flexible since it
makes few limiting assumptions about the structure of participating triple stores. Specif-
ically, we showed that Avalanche is able to execute non-trivial queries over distributed
data-sources with an ex-ante unknown data-distribution. We showed that an extensible
cost model based on a common Multi Objective Optimization method—the method of
Global Criterion, where different heuristics can be plugged in without imposing changes
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to existing ones—can yield good performance in spite of different data distributions or
changing latency while allowing for a messy Web of Data.

By design Avalanche handles messiness generated by (i) schema alignment and
data evolution, as Avalanche is schema agnostic its current view of the world is as a
set of triples, (ii) data distribution through its extensible cost model, and (iii) source
un-availability, as Avalanche dynamically dismisses plans issued to hosts that are not
present anymore during the execution phase, still allowing other hosts (sources) to pro-
duce new and more results.

Avalanche’s main limitation with respect to messiness is its assumption that par-
ticipating data-sources are indexed (i.e., stored in some kind of triple store rather than
“just” provided as files). In the light of its robustness against other kinds of messi-
ness, however, we believe that Avalanche’s capabilities outweigh this disadvantage—in
particular since it would be simple to “wrap” any (known)file-based source with a com-
bination of a triple-store and crawler.

To our knowledge, Avalanche is the first Semantic Web query system that makes no
assumptions about the data distribution whatsoever. Whilst it is only a first implemen-
tation with a number of drawbacks it represents an important step towards querying a
messy Web of Data by embracing its messiness as necessity (rather than an impediment)
in order to foster its unpredictable growth.
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Appendix A. Avalanche Endpoint Operators

Execution Operators. For brevity, example query listings will not include the prefixes
already defined in the motivating example query Qex.

getTPCardinality(tp)
As the name suggests, this operator is responsible with returning the number of instances matching
the triple pattern tp on the callee endpoint. This operator is SPARQL (1.1) compliant and can be
implemented in several fashions depending on wether the predicate is bound and VoID is used. To
illustrate how, the following triple pattern from Qex is considered:
< ?chebiDrug, chebi:image, ?chebiImage >.
Example: getTPCardinality operator to SPARQL(1.1) mapping

PREFIX void : <http :// rd f s . org /ns/ void#>

## I f p r e d i c a t e i s b ound and VoID i s u s e d
SELECT ? c a r d i n a l i t y WHERE {

? dataset void : p rope r tyPar t i t i on ? pa r t i t i o n .

? p a r t i t i o n void : property chebi : image .

? p a r t i t i o n void : t r i p l e s ? c a r d i n a l i t y

}

## I f VoID i s n o t u s e d b u t SPARQL 1 . 1 c o m p l i a n t
SELECT (COUNT(DISTINCT ? chebiDrug ) as ? c a r d i n a l i t y ) WHERE {

? chebiDrug chebi : image ? chebiImage

}

getTotalTriples()
SPARQL compliant as well, this is arguably the simplest operator. Its task being to report the total
number of triples indexed by the endpoint. The overwhelming majority of modern day triple stores
are aware of this fact and exposing this as a VoID statistic would be trivial.
Example: getTotalTriples operator to SPARQLmapping

## i f VoID i s u s e d
SELECT ? dataset ? t o t a l WHERE {

? dataset void : t r i p l e s ? t o t a l .

}

executeQuery(bgp, vars, values)
This operator is virtually implemented by all RDF triple stores. The optional vars and values
arguments are mapped directly to the VALUES term in SPARQL 1.1. For example consider the second
fragment from Qex in Listing 2 with example dummy values for the ?drugBankName variable:
Example: executeQuery operator to SPARQL1.1 mapping

SELECT ? chebiDrug ? chebiImage WHERE {
? chebiDrug chebi : image ? chebiImage .

? chebiDrug dc : t i t l e ?drugBankName

} VALUES (?drugBankName) {
( ”Drug A” )

( ”Drug B” )

( ”Drug C” )

}

executeDistributedJoin(bgplocal, bgpremote, host)
A critical part of the core functionality of any distributed database querying system is given by
the ability to execute distributed joins. This operator is essentially a proxy operator as it relies on
the ability to execute SPARQL queries both locally and remotely and functions as following: first
the subquery bgplocal is executed locally as any regular SPARQL query. Next, the join variables
(vars) between the two subqueries (bgplocal and bgpremote) are determined and the partial results
corresponding to them are selected (values). As the final step the executeQuery(bgpremote, vars,
values) operator is called on the remote host.
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The following operator pair is optional and exists mainly for optimization reasons. Their
role is to simply reduce the end I/O cost of executing a distributed query:

executeDistributedReconciliation(bgplocal, bgpremote, host)
Regarded as a “cleanup” operation the set-reconciliation procedure follows the execution of a dis-
tributed n-way join in order to remove partial results in excess resulting from preceding joins. Also a
proxy operator baring a simplistic nature, its task is that of determining the values of the join vars
between the two subqueries (bgplocal and bgpremote) and calling executeReconciliation(bgpremote,
vars, values) on the remote host. Various optimizations are possible at this stage. Hence, instead
of sending the actual set of values (compressed or not), a set of their hashes or a bloom filter can
be employed, resulting in a hash- or a bloom filter-optimized distributed join.

executeReconciliation(bgp, vars, values)
Always called as the result of executing the executeDistributedReconciliation operator, its scope
is to select and filter the excess results corresponding to the previously locally executed bgp query.
As mentioned earlier this operator is designed to reduce the network traffic for the final merge phase
of the distributed query execution. Depending on the optimization mechanism used (hashing, bloom
filters, or the actual set) the process can be exact or exhibit false positives (for bloom filters).

The following operators are required in the final stages of the query execution process:

executeDistributedMerge(bgplocal, bgpremote, host)
Just like the previous executeDistributedJoin operator, this is also a proxy operator paired with
executeMerge. The partial results contained in results table corresponding to the previously executed
query bgplocal are selected and sent remotely by calling executeMerge(bgpremote, results table) on
host. This operator is outside the scope of SPARQL compliancy, however, it can be implemented as
a simple HTTP GET call as described by the REST model [11].

executeMerge(bgp, results table)
Called as a result of a distributed merge operation, this final operator in the execution pipeline
implements the standard database INNER JOIN (��) operation on the incoming remote results table
and the local partial results table corresponding to the bgp query, which was previously executed
during the distributed join phase.

materialize(bgp)
This operator is necessary when distributed joins are executed in a common ID space used by the
remote endpoints to index RDF data-sets. As the name suggests its basic functionality is that of
providing the mapping from ID to RDF literals, a necessary condition when formulating the final
results.

State Management Operators. The following state management operators43 are ex-
posed by Avalanche as a means to allow query brokers to halt the distributed operations
involved in answering a query when the desired results are found:

stopPlan(pid)
Although not strictly necessary for Avalanche to function, the operator ensures the “cleanup” and
freeing of allocated resources while trying to satisfy a given plan denoted by the pid identifier (i.e.
the MD5 hash of the SPARQL 1.1 query decomposition).

stopAllPlans(Q)
Similarly, the operator will stop the execution and free all resources allocated for the resolving of
all plans pertaining to the considered query. To reduce network overhead the query string can be
replaced with a simple hash of the actual query (i.e., the MD5 hash of the original SPARQL query).

43Both operators can be implemented as REST calls
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Appendix B. LUBM Benchmark Queries

PREFIX lubm : <http ://www. l eh i gh . edu/˜zhp2 /2004/0401/ univ−bench . owl#>
PREFIX uni0 : <http ://www. Department1 . Un iver s i ty0 . edu/>

Listing 3: PREFIXES

SELECT ? p r o f e s s o r WHERE {
? p r o f e s s o r lubm : name ” Fu l lP ro f e s s o r 1 ”} LIMIT 100

Listing 4: LQ0

SELECT ?department ? researchGroups WHERE {
? researchGroups lubm : subOrganizationOf ?department .

? department lubm : name ”Department1”} LIMIT 100

Listing 5: LQ1

SELECT ? studentName WHERE {
? student lubm : name ?studentName .

? student lubm :memberOf <http ://www. Department1 . Un iver s i ty0 . edu>} LIMIT 100

Listing 6: LQ2

SELECT ? property ? value WHERE {
? p r o f e s s o r lubm : name ” Fu l lP ro f e s s o r 1 ” .

? p r o f e s s o r ? property ? value} LIMIT 100

Listing 7: LQ3

SELECT ?mail ?phone WHERE {
? p r o f e s s o r lubm : emailAddress ?mail .

? p r o f e s s o r lubm : te lephone ?phone .

? p r o f e s s o r lubm : name ” Fu l lP ro f e s s o r 1 ”} LIMIT 100

Listing 8: LQ4

SELECT ?mail ?phone ? doctor WHERE {
? p r o f e s s o r lubm : emailAddress ?mail .

? p r o f e s s o r lubm : te lephone ?phone .

? p r o f e s s o r lubm : doctoralDegreeFrom ? doctor .

? p r o f e s s o r lubm : name ” Fu l lP ro f e s s o r 1 ”} LIMIT 100

Listing 9: LQ5

SELECT ? studentName ?courseName WHERE {
? student lubm : takesCourse ? course .

? course lubm : name ?courseName .

? student lubm : name ?studentName .

? student lubm :memberOf <http ://www. Department1 . Un iver s i ty0 . edu>} LIMIT 100

Listing 10: LQ6

SELECT ? pub l i c a t i on ? author ?department ? un i v e r s i t y WHERE {
? pub l i c a t i on lubm : name ”Publ i ca t ion0 ” .

? pub l i c a t i on lubm : publ icat ionAuthor ? author .

? author lubm : worksFor ?department .

? department lubm : subOrganizationOf ? un i v e r s i t y } LIMIT 100

Listing 11: LQ7

SELECT ?name ? adv i so r ?department WHERE {
? adv i so r lubm : worksFor ?department .

? student lubm : adv i so r ? adv i so r .

? student lubm : name ?name .

? student lubm : takesCourse uni0 : GraduateCourse33} LIMIT 100

Listing 12: LQ8
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SELECT ?name ? t e l ? adv i so r ?department WHERE {
? adv i so r lubm : worksFor ?department .

? student lubm : adv i so r ? adv i so r .

? student lubm : name ?name .

? student lubm : te lephone ? t e l .

? student lubm : takesCourse uni0 : GraduateCourse33} LIMIT 100

Listing 13: LQ9

SELECT ? un i v e r s i t y ? student ?name ? t e l WHERE {
? student lubm : adv i so r ? adv i so r .

? adv i so r lubm : worksFor ?department .

? department lubm : subOrganizationOf ? un i v e r s i t y .

? student lubm : name ?name .

? student lubm : te lephone ? t e l .

? student lubm : takesCourse uni0 : GraduateCourse33} LIMIT 100

Listing 14: LQ10

Appendix C. Fedbench Query Name Mapping

Table C.4: Fedbench query name mapping

Collection Fedbench Name Name Fedbench Name Name Fedbench Name Name

Cross Domain

CD 1a
c

FQ0 CD 1b
c

FQ1 CD 2 FQ2

CD 3 FQ3 CD 4 FQ4 CD 5 FQ5

CD 6 FQ6 CD 7 FQ7

Life Sciences

LS 1a
c

FQ8 LS 1b
c

FQ9 LS 2a
c

FQ10

LS 2b
c

FQ11 LS 3 FQ12 LS 4 FQ13

LS 5 FQ14 LS 6 FQ15

Life Sciences +
b

FQ33 FQ34 FQ35

FQ36 FQ37

Linked Data

LD 1 FQ16 LD 2 FQ17 LD 3 FQ18

LD 4 FQ19 LD 5 FQ20 LD 6 FQ21

LD 7 FQ22 LD 8 FQ23 LD 9 FQ24

LD 10 FQ25 LD 11 FQ26

SP
2
Bench

SP2Bench Q1 FQ27 SP2Bench Q2 FQ28 SP2Bench Q5 FQ29

SP2Bench Q9a
c

FQ30 SP2Bench Q9b
c

FQ31 SP2Bench Q10 FQ32

a Original query names from the Fedbench project: http://code.google.com/p/fbench/wiki/Queries.
b These queries are not part of the original Fedbench benchmark and therefore do not have a
corresponding denomination. They are added for their increased complexity.

c Queries whose names are suffixed with a or b represent Fedbench queries that contain the UNION
operator. The two subqueries are executed independently.

Appendix D. Fedbench Benchmark Queries

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
PREFIX kegg : <http :// b i o2 rd f . org /ns/kegg#>
PREFIX nytimes : <http :// data . nytimes . com/ elements/>
PREFIX geonames : <http ://www. geonames . org / ontology#>
PREFIX r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX skos : <http ://www.w3 . org /2004/02/ skos / core#>
PREFIX swc : <http :// data . semanticweb . org /ns/swc/ ontology#>
PREFIX dbpedia−owl : <http :// dbpedia . org / ontology/>
PREFIX dc : <http :// pur l . org /dc/ elements /1.1/>
PREFIX bench : <http :// l o c a l h o s t / vocabulary /bench/>
PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ re source /drugbank/>
PREFIX person : <http :// l o c a l h o s t / persons/>
PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX dbpedia : <http :// dbpedia . org / r e source/>
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PREFIX swrc : <http :// swrc . ontoware . org / ontology#>
PREFIX drugbank−category : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ re source / drugcategory/>
PREFIX drugbank−drugs : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ re source /drugs/>
PREFIX linkedmdb : <http :// data . linkedmdb . org / r e source /movie/>
PREFIX chebi : <http :// b i o2 rd f . org /ns/ b i o2 rd f#>
PREFIX pur l : <http :// pur l . org /dc/ terms/>

Listing 15: PREFIXES

SELECT ? pr ed i ca t e ? ob j e c t WHERE {
dbpedia : Barack Obama ? pred i ca t e ? ob j e c t }

Listing 16: FQ0

SELECT ? pr ed i ca t e ? ob j e c t WHERE {
? sub j e c t owl : sameAs dbpedia : Barack Obama .

? sub j e c t ? p r ed i ca t e ? ob j e c t }

Listing 17: FQ1

SELECT ? party ?page WHERE {
dbpedia : Barack Obama dbpedia−owl : party ? party .

?x nytimes : topicPage ?page .

?x owl : sameAs dbpedia : Barack Obama}

Listing 18: FQ2

SELECT ? pr e s id en t ? party ?x WHERE {
? pr e s id en t rd f : type dbpedia−owl : Pres ident .

? p r e s id en t dbpedia−owl : n a t i o na l i t y dbpedia : Un i ted States .

? p r e s id en t dbpedia−owl : party ? party .

?x nytimes : topicPage ?page .

?x owl : sameAs ? pr e s iden t }

Listing 19: FQ3

SELECT ? actor ?news WHERE {
? f i lm pur l : t i t l e ”Tarzan” .

? f i lm linkedmdb : actor ? actor .

? actor owl : sameAs ?x .

?y owl : sameAs ?x .

?y nytimes : topicPage ?news}

Listing 20: FQ4

SELECT ? f i lm ? d i r e c t o r ? genre WHERE {
? f i lm dbpedia−owl : d i r e c t o r ? d i r e c t o r .

? d i r e c t o r dbpedia−owl : n a t i o na l i t y dbpedia : I t a l y .

?x owl : sameAs ? f i lm .

?x linkedmdb : genre ? genre}

Listing 21: FQ5

SELECT ?name ? l o c a t i on WHERE {
? a r t i s t f o a f : name ?name .

? a r t i s t f o a f : based near ? l o c a t i on .

? l o c a t i on geonames : parentFeature ?germany .

?germany geonames : name ”Federa l Republic o f Germany”}

Listing 22: FQ6

SELECT ? l o c a t i on ?news WHERE {
? l o c a t i on geonames : parentFeature ? parent .

? parent geonames : name ” Ca l i f o r n i a ” .

?y owl : sameAs ? l o c a t i on .

?y nytimes : topicPage ?news}

Listing 23: FQ7
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SELECT ?drug ?melt WHERE {
?drug drugbank : melt ingPoint ?melt}

Listing 24: FQ8

SELECT ?drug ?melt WHERE {
?drug dbpedia−owl : drug/melt ingPoint ?melt}

Listing 25: FQ9

SELECT ? pr ed i ca t e ? ob j e c t WHERE {
drugbank−drugs : DB00201 ? pr ed i ca t e ? ob j e c t}

Listing 26: FQ10

SELECT ? pr ed i ca t e ? ob j e c t WHERE {
drugbank−drugs : DB00201 owl : sameAs ? c a f f .

? c a f f ? p r ed i ca t e ? ob j e c t }

Listing 27: FQ11

SELECT ?Drug ? IntDrug ? I n tE f f e c t WHERE {
?Drug rd f : type dbpedia−owl : Drug .

?y owl : sameAs ?Drug .

? Int drugbank : interact ionDrug1 ?y .

? Int drugbank : interact ionDrug2 ? IntDrug .

? Int drugbank : text ? I n tE f f e c t }

Listing 28: FQ12

SELECT ?drugDesc ?cpd ? equat ion WHERE {
?drug drugbank : drugCategory drugbank−category : c a t h a r t i c s .

?drug drugbank : keggCompoundId ?cpd .

?drug drugbank : d e s c r i p t i o n ?drugDesc .

?enzyme kegg : xSubstrate ?cpd .

?enzyme rd f : type kegg : Enzyme .

? r ea c t i on kegg : xEnzyme ?enzyme .

? r ea c t i on kegg : equat ion ? equat ion}

Listing 29: FQ13

SELECT ?drug ? keggUrl ? chebiImage WHERE {
?drug rd f : type drugbank : drugs .

?drug drugbank : keggCompoundId ?keggDrug .

?keggDrug chebi : u r l ? keggUrl .

?drug drugbank : genericName ?drugBankName .

? chebiDrug dc : t i t l e ?drugBankName .

? chebiDrug chebi : image ? chebiImage}

Listing 30: FQ14

SELECT ?drug ? t i t l e WHERE {
?drug drugbank : drugCategory drugbank−category : micronutr i ent .

?drug drugbank : casRegistryNumber ? id .

?keggDrug rd f : type kegg : Drug .

?keggDrug chebi : xRef ? id .

?keggDrug dc : t i t l e ? t i t l e }

Listing 31: FQ15

SELECT ? paper ?p ?n WHERE {
? paper swc : i sPartOf <http :// data . semanticweb . org / con f e r ence / iswc /2008/

poster demo proceedings >.

? paper swrc : author ?p .

?p rd f s : l a b e l ?n}

Listing 32: FQ16
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SELECT ? proceed ings ? paper ?p WHERE {
? proceed ings swc : relatedToEvent <http :// data . semanticweb . org / con f e r ence /eswc/2010>.

? paper swc : i sPartOf ? proceed ings .

? paper swrc : author ?p}

Listing 33: FQ17

SELECT ? paper ?p ?x ?n WHERE {
? paper swc : i sPartOf <http :// data . semanticweb . org / con f e r ence / iswc /2008/

poster demo proceedings >.

? paper swrc : author ?p .

?p owl : sameAs ?x .

?p rd f s : l a b e l ?n}

Listing 34: FQ18

SELECT ? r o l e ?p ? paper ? proceed ings WHERE {
? r o l e swc : i sRoleAt <http :// data . semanticweb . org / con f e r ence /eswc/2010>.

? r o l e swc : heldBy ?p .

? paper swrc : author ?p .

? paper swc : i sPartOf ? proceed ings .

? proceed ings swc : relatedToEvent <http :// data . semanticweb . org / con f e r ence /eswc/2010>}

Listing 35: FQ19

SELECT ?a ?n WHERE {
?a dbpedia−owl : a r t i s t dbpedia : Michael Jackson .

?a rd f : type dbpedia−owl : Album .

?a f o a f : name ?n}

Listing 36: FQ20

SELECT ? d i r e c t o r ? f i lm ?x ?y ?n WHERE {
? d i r e c t o r dbpedia−owl : n a t i o na l i t y dbpedia : I t a l y .

? f i lm dbpedia−owl : d i r e c t o r ? d i r e c t o r .

?x owl : sameAs ? f i lm .

?x f o a f : based near ?y .

?y geonames : o f f i c i a lName ?n}

Listing 37: FQ21

SELECT ?x ?n WHERE {
?x geonames : parentFeature <http :// sws . geonames . org /2921044/>.

?x geonames : name ?n}

Listing 38: FQ22

SELECT ?drug ? id ? s ?o ? sub WHERE {
?drug drugbank : drugCategory drugbank−category : micronutr i ent .

?drug drugbank : casRegistryNumber ? id .

?drug owl : sameAs ? s .

? s f o a f : name ?o .

? s skos : sub j e c t ? sub}

Listing 39: FQ23

SELECT ?x ?p WHERE {
?x skos : sub j e c t dbpedia : Category : FIFA World Cup−winn ing count r i e s .

?p dbpedia−owl : managerClub ?x .

?p f o a f : name ”Luiz Fe l ipe S c o l a r i ”}

Listing 40: FQ24

SELECT ?n ?p2 ?u WHERE {
?n skos : sub j e c t dbpedia : Category : Chancel lors of Germany .

?n owl : sameAs ?p2 .

?p2 nytimes : l a t e s t u s e ?u}

Listing 41: FQ25
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SELECT ?x ?y ?d ?p ? l WHERE {
?x dbpedia−owl : team dbpedia : E int racht Frank fur t .

?x rd f s : l a b e l ?y .

?x dbpedia−owl : birthDate ?d .

?x dbpedia−owl : b i r thP lace ?p .

?p rd f s : l a b e l ? l }

Listing 42: FQ26

SELECT ? yr WHERE {
? j ou rna l rd f : type bench : Journal .

? j ou rna l dc : t i t l e ” Journal 1 (1940) ” .

? j ou rna l pur l : i s sued ? yr}

Listing 43: FQ27

SELECT ? inproc ? author ? book t i t l e ? t i t l e ? proc ? ee ?page ? u r l ? yr WHERE {
? inproc rd f : type bench : Inproceed ings .

? inproc dc : c r ea to r ? author .

? inproc bench : b o ok t i t l e ? book t i t l e .

? inproc dc : t i t l e ? t i t l e .

? inproc pur l : partOf ? proc .

? inproc rd f s : seeAlso ? ee .

? inproc swrc : pages ?page .

? inproc f o a f : homepage ? u r l .

? inproc pur l : i s sued ? yr}

Listing 44: FQ28

SELECT ? person ?name WHERE {
? a r t i c l e rd f : type bench : A r t i c l e .

? a r t i c l e dc : c r ea to r ? person .

? inproc rd f : type bench : Inproceed ings .

? inproc dc : c r ea to r ? person .

? person f o a f : name ?name}

Listing 45: FQ29

SELECT ? pr ed i ca t e WHERE {
? person rd f : type f o a f : Person .

? sub j e c t ? p r ed i ca t e ? person}

Listing 46: FQ30

SELECT ? pr ed i ca t e WHERE {
? person rd f : type f o a f : Person .

? person ? pr ed i ca t e ? ob j e c t }

Listing 47: FQ31

SELECT ? sub j e c t ? p r ed i ca t e WHERE {
? sub j e c t ? p r ed i ca t e person : Paul Erdoes}

Listing 48: FQ32

SELECT ?drug ?enzyme ? r ea c t i on WHERE {
?drug1 drugbank : drugCategory drugbank−category : a n t i b i o t i c s .

? drug2 drugbank : drugCategory drugbank−category : an t i v i r a lAgen t s .

? drug3 drugbank : drugCategory drugbank−category : ant ihyper tens iveAgents .

? I1 drugbank : interact ionDrug2 ?drug1 .

? I1 drugbank : interact ionDrug1 ?drug .

? I2 drugbank : interact ionDrug2 ?drug2 .

? I2 drugbank : interact ionDrug1 ?drug .

? I3 drugbank : interact ionDrug2 ?drug3 .

? I3 drugbank : interact ionDrug1 ?drug .

?drug owl : sameAs ?drug5 .

?drug5 rd f : type dbpedia−owl : Drug .

?drug drugbank : keggCompoundId ?cpd .

?enzyme kegg : xSubstrate ?cpd .

?enzyme rd f : type kegg : Enzyme .

? r ea c t i on kegg : xEnzyme ?enzyme .

? r ea c t i on kegg : equat ion ? equat ion}

Listing 49: FQ33
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SELECT ?drug ?drug1 ?drug2 ?drug3 ?drug4 WHERE {
?drug1 drugbank : drugCategory drugbank−category : a n t i b i o t i c s .

? drug2 drugbank : drugCategory drugbank−category : an t i v i r a lAgen t s .

? drug3 drugbank : drugCategory drugbank−category : ant ihyper tens iveAgents .

? drug4 drugbank : drugCategory drugbank−category : anti−bac t e r i a lAgent s .

? I1 drugbank : interact ionDrug2 ?drug1 .

? I1 drugbank : interact ionDrug1 ?drug .

? I2 drugbank : interact ionDrug2 ?drug2 .

? I2 drugbank : interact ionDrug1 ?drug .

? I3 drugbank : interact ionDrug2 ?drug3 .

? I3 drugbank : interact ionDrug1 ?drug .

? I4 drugbank : interact ionDrug2 ?drug4 .

? I4 drugbank : interact ionDrug1 ?drug}

Listing 50: FQ34

SELECT ?drug WHERE {
?drug1 drugbank : po s s ib l eD i s ea s eTarge t <http ://www4. wiwiss . fu−b e r l i n . de/ diseasome/ re source /

d i s e a s e s /302>.

? drug2 drugbank : po s s ib l eD i s ea s eTarge t <http ://www4. wiwiss . fu−b e r l i n . de/ diseasome/ re source /

d i s e a s e s /53>.

? drug3 drugbank : po s s ib l eD i s ea s eTarge t <http ://www4. wiwiss . fu−b e r l i n . de/ diseasome/ re source /

d i s e a s e s /59>.

? drug4 drugbank : po s s ib l eD i s ea s eTarge t <http ://www4. wiwiss . fu−b e r l i n . de/ diseasome/ re source /

d i s e a s e s /105>.

? I1 drugbank : interact ionDrug2 ?drug1 .

? I1 drugbank : interact ionDrug1 ?drug .

? I2 drugbank : interact ionDrug2 ?drug2 .

? I2 drugbank : interact ionDrug1 ?drug .

? I3 drugbank : interact ionDrug2 ?drug3 .

? I3 drugbank : interact ionDrug1 ?drug .

? I4 drugbank : interact ionDrug2 ?drug4 .

? I4 drugbank : interact ionDrug1 ?drug .

?drug drugbank : casRegistryNumber ? id .

?keggDrug rd f : type kegg : Drug .

?keggDrug chebi : xRef ? id .

?keggDrug dc : t i t l e ? t i t l e }

Listing 51: FQ35

SELECT ?d ?drug5 ?cpd ?enzyme ? equat ion WHERE {
?drug1 drugbank : po s s ib l eD i s ea s eTarge t <http ://www4. wiwiss . fu−b e r l i n . de/ diseasome/ re source /

d i s e a s e s /261>.

? I1 drugbank : interact ionDrug2 ?drug1 .

? I1 drugbank : interact ionDrug1 ?drug .

?drug drugbank : po s s ib l eD i s ea s eTarge t ?d .

?drug owl : sameAs ?drug5 .

?drug5 rd f : type dbpedia−owl : Drug .

?drug drugbank : keggCompoundId ?cpd .

?enzyme kegg : xSubstrate ?cpd .

?enzyme rd f : type kegg : Enzyme .

? r ea c t i on kegg : xEnzyme ?enzyme .

? r ea c t i on kegg : equat ion ? equat ion}

Listing 52: FQ36

SELECT ?drug5 ?drug6 WHERE {
?drug1 drugbank : po s s ib l eD i s ea s eTarge t <http ://www4. wiwiss . fu−b e r l i n . de/ diseasome/ re source /

d i s e a s e s /319>.

? drug1 drugbank : po s s ib l eD i s ea s eTarge t <http ://www4. wiwiss . fu−b e r l i n . de/ diseasome/ re source /

d i s e a s e s /270>.

? I1 drugbank : interact ionDrug1 ?drug1 .

? I1 drugbank : interact ionDrug2 ?drug .

?drug1 owl : sameAs ?drug5 .

?drug owl : sameAs ?drug6}

Listing 53: FQ37
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