
Extending Rdfbox with
Distributed RDF

Management.
Efficient RDF Indexing

and Loading.

Daniel Spicar
of Zürich, Switzerland

Student-ID: 06-702-542
daniel.spicar@uzh.ch

Master Thesis April 1, 2013

Advisor: Cosmin Basca

Prof. Abraham Bernstein, PhD
Institut für Informatik
Universität Zürich
http://www.ifi.uzh.ch/ddis

Acknowledgements

First of all I would like to express my gratitude to Professor Abraham Bernstein, Ph.D.,
for giving me the opportunity to pursue my master thesis at the Dynamic and Distributed
Information Systems Group (DDIS).

I would also like to thank my supervisor, Cosmin Basca, for helping me throughout
this thesis with his valuable advice.

Last but not least, I am grateful for the support of my family and especially to Věra,
for accompanying me during this challenging time.

Zusammenfassung

Das Semantische Web (engl. Semantic Web) wächst ständig. RDF Datensätze erre-
ichen grössen von über einer Milliarde Tripel. Das Verwalten und Bereitstellen dieser
Datensätze kann einzelne Computer an ihre Leistungsgrenzen bringen. Diese Arbeit er-
weitert Rdfbox, ein auf Hexastore basierendes semantisches Datenbankmanagementsys-
tem, um die Unterstützung von verteilten Indexspeichern. Zusätzlich wurde eine paral-
lele Anfrageauswertung und ein verteiltes System zum Einlesen von RDF-Graphen im-
plementiert. Auswertungen zeigen, dass verteiltes Laden den vorherigen Lösungen weit
überlegen ist und dass die parallele Anfrageauswertung für eine hohe Performanz der
verteilten Indexstruckturen notwendig ist. Aber es wird ebenso deutlich, dass verteilte
Indizes in Rdfbox nicht besonders effizient funktionieren können und es grundlegende
Anpassungen in der Anfrageauswertung braucht, damit die Performanz deutlich erhöht
werden kann.

Abstract

The Semantic Web is growing at a fast pace and single machines can reach the limits of
their capabilities when trying to manage RDF data sets that contain billions of triples.
In order to tackle this problem, this thesis extends Rdfbox, a Hexastore-based semantic
database management system, with support for distributed index backends, a paral-
lelised query execution engine and a distributed index loader. Evaluations show that the
distributed index loader outperforms previous approaches and that the improved query
execution engine is performance-critical with distributed and indices. But limits to the
efficiency of distributed indices in Rdfbox are discovered that may require fundamental
changes in the approach to query resolution in order to achieve a significant performance
increase.

Table of Contents

1 Introduction 1

2 Background 3
2.1 Semantic Web Basics . 3

2.1.1 Resource Description Framework (RDF) 3
2.1.2 SPARQL Query Language . 5

2.2 RDF Data Management . 6
2.2.1 Mapping Relational Data to RDF 6
2.2.2 Triple Stores . 6

2.3 Hexastore . 7
2.3.1 Index Structure . 8
2.3.2 Storage Space Consumption . 9

2.4 Rdfbox – A Hexastore Extension . 10
2.4.1 Index Operations . 10
2.4.2 Implementing Hexastore with Ordered Key-Value Stores 11
2.4.3 Architecture Overview . 13
2.4.4 Query Execution Optimisation with Cardinalities 14
2.4.5 Loading RDF graphs into Rdfbox 16

2.5 Selected Distibuted Key-Value Stores . 16
2.5.1 Hyperdex . 16
2.5.2 Accumulo . 18

3 Motivation 21
3.1 Task Description . 22

4 Implementation 23
4.1 Hyperdex Index . 23

4.1.1 Single Hyperspace Index . 24
4.1.2 Multi-Space Index . 27
4.1.3 Limitations of the Hyperdex-based Indices 28

4.2 Accumulo Index . 29
4.2.1 Accumulo Client Proxy . 29
4.2.2 Multi-Table Index . 30

x Table of Contents

4.2.3 A Multi-Threaded Query Execution Engine 32
4.2.4 Implementation of Distributed Joins 35
4.2.5 Preliminary Results and Analysis 37
4.2.6 MapReduce-based Loading for Accumulo 38

4.3 General Changes to Rdfbox . 40

5 Evaluation 41
5.1 Data Sets . 41
5.2 Writing Triples . 41

5.2.1 Conventional Loading . 42
5.2.2 Distributed Loading . 43

5.3 Query Execution Times . 46
5.3.1 Preliminary Evaluation Queries . 46
5.3.2 Bernlin SPARQL Benchmark Queries 47
5.3.3 Life Science Queries . 47
5.3.4 SP2Bench Queries . 48

5.4 Query Execution Time Analysis . 49
5.5 Evaluation Limits . 49

6 Related Work 51
6.1 Rya – Scalable Triple Store implemented on Accumulo 51
6.2 CumulusRDF – RDF Storage in the Cloud 52

7 Conclusions and Future Work 55
7.1 Future Work . 56

A Appendix 61
A.1 Preliminary Evaluations . 61

A.1.1 Preliminary Evaluation of Hyperdex Backend 62
A.1.2 Preliminary Evaluation of Accumulo Backend 63

A.2 Evaluation of the Accumulo Backend . 64
A.2.1 Accumulo Encoding Phase Evaluation 64
A.2.2 Accumulo Distributed Loading Phase Evaluation 64
A.2.3 Accumulo Query Execution Time Evaluation 67

x

1

Introduction

The Semantic Web keeps growing because an increasing amount of data is made accessi-
ble and interlinked every day. The driving force behind this effort is a vision of a World
Wide Web (WWW) for data. The original WWW links documents together but the
web of data interlinks all imaginable types of data. The WWW was meant to be used
by humans, but linked data can be processed by machines. Because the links between
data express semantics [10], machines can interpret it. Like in the WWW, this growth
is not controlled by a central entity. The World Wide Web Consortium (W3C) proposes
open standards to keep data accessible in a well-defined manner, such that it can be
shared across application, enterprise or community boundaries and evolve into a global
data space [27].

The Resource Description Framework (RDF) is the W3C’s data format for the Se-
mantic Web [30]. It specifies a graph data structure that can be decomposed into a set
of statements about resources. These resources can be anything, as long as it can be
referenced by a unique identifier. Because each statement consists of three elements,
they are called triples.

Perhaps the most simple form of storing RDF, is serialised in a static file. But static
files do not scale to large amounts of data because they can not be efficiently modified and
queried by applications [27]. The reason for this is the scanning of large files required
when accessing the data. Therefore RDF is typically stored using modern database
management systems (DBMS). A DBMS optimised for storing RDF data is called a
triple store [40]. Maintaining an index is a common approach to improve access to data
in triple stores. Indices are data structures that can be used to traverse search spaces
efficiently. This work focuses on a specific RDF data indexing scheme, called Hexastore
[45]. Hexastore proposes a multi-index scheme for efficient support of general purpose
queries at the cost of increased storage space requirements. Other approaches often
prefer specific – perhaps more common – types of queries. Such approaches are suitable
for specific use cases, but offer no general solution.

Rdfbox is an extension of the Hexastore indexing scheme. Prior to this work it has
been limited to locally available B+-Tree index structures. This thesis extends Rdfbox
with support for two selected distributed indices based on Hyperdex[20] and Apache
Accumulo [22] and creates a distributed loading mechanism based on MapReduce [17].

2 CHAPTER 1. INTRODUCTION

Outline The structure of this thesis is as follows. Chapter 2 introduces the reader to
the central concepts and core technologies of the Semantic Web and provides an intro-
duction to different RDF storage solutions. Further it explains the Hexastore scheme
and its implementation in Rdfbox, two technologies this work directly depends on. Then
the two key-value stores used to provide distributed indices for Rdfbox are introduced.
Chapter 3 presents the motivation for this work and describes the necessary imple-
mentation tasks. In chapter 4 the design and implementation of the distributed index
extensions for Rdfbox are described in detail, thereafter the solution is evaluated in
chapter 5. Chapter 6 compares the presented work to related distributed triple stores.
Chapter 7 concludes this thesis with the discussion of results and future work.

2

2

Background

This chapter introduces the central Semantic Web technologies and discusses Semantic
Web data storage approaches. Then follows a detailed explanation of a specific storage
scheme called Hexastore and its implementation in Rdfbox. Finally the design of the
Hyperdex and Apache Accumulo distributed key-value stores is introduced.

2.1 Semantic Web Basics

This section provides a brief introduction to the most important aspects of the Resource
Description Framework and the SPARQL query language.

2.1.1 Resource Description Framework (RDF)

RDF is a core element of the World Wide Web Consortium’s (W3C) Semantic Web
stack. It is a language and data structure for representing information about resources
on the World Wide Web (WWW) [30, 34] and able to represent information about
anything that can be identified on the web. Uniform Resource Identifiers (URI) are
used for identification. They are a generalisation of the well known URLs (e.g. http:
// www.uzh.ch). URLs are only used to identify network locations but URIs can identify
people, concepts, ideas and other things that are not network retrievable [9].

In RDF resources are described by statements and each statement consist of three ele-
ments: subject, predicate and object. Because each statement forms a 3-tuple
(subject, predicate, object), they are called triples. Triples are ordered. A statement
(a, b, c) with subject a, predicate b and object c is different from a statement (c, b, a).
In the latter case c is the subject and a is the object. A collection of statements forms
an RDF data set or graph. The graph interpretation arises when subject and object are
viewed as nodes and the predicate as a typed and directed edge from subject to object.
The subject is always a node. Nodes are either identified by an URI or they are blank
nodes. Blank nodes are a special node type used primarily for structuring statements
(into ordered lists for example). In their abstract interpretation they have no inherent
identification. They can only be identified through their context. For practical purposes,
applications do assign special identifiers to them however. Predicates are identified by
their type’s URI. Objects can be either nodes or literals. Literals represent values and

4 CHAPTER 2. BACKGROUND

Daniel

http://example.org/person/bobhttp://example.org/person/daniel http://xmlns.com/foaf/0.1/knows

http://xmlns.com/foaf/0.1/name

Figure 2.1: A small RDF graph consisting of two statements. One statement is “the
resource daniel knows the resource bob”. This is a statement connecting two
nodes. The other statement is “the resource daniel has a name with value
‘Daniel’ ”. This is a statement connecting a node to a literal.

can be plain text strings with an optional language identifier or they can be typed literals
with an XML schema datatype URI. Figure 2.1 depicts a simple RDF graph.

The semantics in RDF are primarily expressed through the type of the predicates.
Predicates are properties of a subject that either point to values or relate the subjects
to other nodes. Examples of value properties are predicates which specify the name or
the favourite colour. On the other hand a relational property specifies that a person
knows another person. In these examples, rules and semantics are encountered for the
first time. Although not explicitly stated by RDF, a sensible interpretation would be:

• A value property points from a node to a literal.

• A relational property points from one node to another node.

• A node that has a favourite colour is a person or an animal – but not all things
can have favourite colours! Presumably geographical locations have no concept of
favourite colours.

• When a subject knows an object it does not imply that the object knows the
subject as well.

Such rules can be expressed with the help of vocabularies and ontologies, which are
themselves expressed in RDF and accompanied by documents defining their meaning.
The W3C specified the RDF-Schema (RDFS) vocabulary [25] and the Web Ontology
Language OWL [42] as tools for the definition of semantics. With carefully constructed
ontologies, logical reasoning on RDF data can be enabled. Many other organisations
specified general-purpose and domain-specific vocabularies and ontologies based upon
RDFS and OWL.

The graph form is the conceptional model of RDF. In practice RDF is often translated
into a text representation. This process is called serialisation. A simple approach is to
write a single line for each triple. Some formats allow to define abbreviations for recurring
prefixes in order to make the notation more human friendly. Listing 2.2 is an example
of the N3 notation [8]. The graph shown in figure 2.1 is fully contained in listing 2.2
although it does contain additional triples as well. In this work N3 and SPARQL syntax,
which is closely related to N3, will be used.

4

2.1. SEMANTIC WEB BASICS 5

person name

<http://example.org/person/bob> “Bob”

<http://example.org/person/michael> “Michael”

Table 2.1: Results of the simple SPARQL query in listing 2.1.

2.1.2 SPARQL Query Language

This section provides an introduction to a selection of concepts in the SPARQL query
language [37]. SPARQL is not only a query, but since version 1.1 a data manipulation
language as well. Many powerful concepts are not covered here.

Listing 2.1: A Simple SPARQL Query

PREFIX f o a f : <h t t p : / / xmlns . com/ f o a f /0.1/>
PREFIX ex : <h t t p : / / example . org / p e r s o n/>

SELECT ? p e r s o n ?name
WHERE {

? p e r s o n f o a f : knows ex : d a n i e l .
? p e r s o n f o a f : name ?name .

}

Basic queries in SPARQL are formulated as graph patterns which are sets of triple
patterns. A triple pattern is an RDF triple that can contain a variable in place of any of
its three elements. Variables are denoted by either a question mark (?) or a dollar sign ($)
followed by a label. Listing 2.1 presents a very simple query that consists of a single graph
pattern with two triple patterns and two variables (?name and ?person). The results
set for this query will contain references to persons that are in a knows relationship to
another person referenced by the URI http:// example.org/ person/ daniel . Or simply
(but imprecisely) put: People that know daniel. For each URI reference, the person’s
name is retrieved as well. Table 2.1 lists the results of this query applied to the graph in
Listing 2.2. If the SELECT clause contained only the ?name variable, the result would
contain only the name column.

Listing 2.2: A Sample RDF Graph in N3 Notation

@ p r e f i x f o a f : <h t t p : / / xmlns . com/ f o a f /0.1/> .
@ p r e f i x ex : <h t t p : / / example . org / p e r s o n/> .

ex : d a n i e l f o a f : name ” D a n i e l ” .
ex : d a n i e l f o a f : knows ex : bob .
ex : bob f o a f : name ”Bob” .
ex : bob f o a f : knows ex : d a n i e l .
ex : bob f o a f : knows ex : m i c h a e l .
ex : m i c h a e l f o a f : name ” M i c h a e l ” .
ex : m i c h a e l f o a f : knows ex : d a n i e l .

5

6 CHAPTER 2. BACKGROUND

Returning to listing 2.1, the query describes a graph where some triple elements are
variables. We say they are not bound. An engine resolving this query has to produce
graphs from the graph pattern by binding each variable to a value. A single graph
patterns can have many sets of valid bindings. A bound graph pattern is a valid solution
if the underlying RDF data set contains an equivalent sub-graph. In table 2.1 each row
represents a valid binding for the variables of the query.

2.2 RDF Data Management

When dealing with small quantities of data very simple approaches can be used to publish
RDF. RDF can be served as static or dynamically generated files or embedded into XML
formats through microformats such as RDFa [2, 18, 27]. Adobe XMP [29] provides a
framework for embedding RDF metadata into many binary file formats.

In order to manage large quantities of data, the underlying data must be managed by
a database management system (DBMS). The following sections provide an overview of
such solutions.

2.2.1 Mapping Relational Data to RDF

Because of their maturity and historical dominance, many data sets are stored and
structured according to the needs of relational DBMS. It is possible to perform a mapping
between the structured relational data and semi-structured RDF data. This can be
beneficial in order not to disrupt legacy systems [27] or in order to expose relational
databases to the web of data. The W3C maintains a working group specifying standards
for relational to RDF mappings [4, 15]. They are primarily applied on data stored in a
relational domain model. This is different from using relational databases for the storage
of RDF graphs. In the former case data is exposed via an RDF view of the relational
data structure. In the latter case the data is not structured for relational databases but
relational databases are used as storage layers.

Some systems that employ relational to RDF mapping strategies are D2RQ [11], Virtu-
oso RDF Views [19], or Triplify [5]. Hert et al. [28] offer an extensive list and comparison
of languages and frameworks.

2.2.2 Triple Stores

Most RDF storage systems decompose RDF graphs into triples for storage. These so-
lutions are called triple stores [40]. Some approaches are introduced here, in order to
facilitate discussion of the Hexastore approach introduced in Section 2.3.

Early triple stores used relational databases (3store [26]) or Berkley DB (Redland
[7]) for persistent storage. These systems store triples directly into a large table. They
are suited to resolve statement-based queries, where a triple pattern has one or two of
its elements unbound. But they do not support complex queries efficiently [35]. Jena
TDB [46] creates property tables that attempt to group information about subjects and

6

2.3. HEXASTORE 7

a1

a2

a3

a4

a5

...

an

b11

b12

b13

b21

b22

...c113c112c111

.

.

.

.

.

.

First Level Second Level Third Level

Figure 2.2: An abstract view of a Hexastore Index. The index is structured into three
levels (in [44] they are referred to as Type 1-3). The depicted entries (a1,
b11, c111, etc.) represent identifiers of triple elements. Each first-level entry
points to an ordered set of second-level entries and each second-level entry
points to an ordered list of third-level entries.

their properties together. But it has problems answering queries that require multiple
property tables to be combined [1]. The vertical partitioning scheme proposed by [1] is
based on relational databases. It uses a dedicated table for each unique property. Every
table has two columns, one for subjects and one for objects. Tables are ordered by sub-
ject. Wilkinson [46] implemented a very similar extension for Jena, called multi-valued
property tables. Both of these approaches assume that most queries will have a bound
property. These approaches do not perform well for queries with unspecified property
because all property tables must be accessed. Weiss et al. [45] argue convincingly against
assumptions about the type of queries and propose a solution in Hexastore.

2.3 Hexastore

Weiss et al. [45, 44] proposed a multi-index RDF storage scheme that provides efficient
querying of RDF data without favouring any type of queries. Many approaches make
assumptions about the type of queries or the data that is stored in them (Section 2.2.2).
But RDF and SPARQL do not impose any such assumption and the Hexastore approach
honours that.

7

8 CHAPTER 2. BACKGROUND

2.3.1 Index Structure

Hexastore can be seen as an extension of the vertical partitioning approach by Abadi et
al. [1]. Vertical partitioning creates ordered two-column tables for each unique property.
This is closely related to what is called a PSO index in Hexastore. PSO stands for the
initials of the elements of an RDF triple (predicate, subject and object) and the order in
which these elements are indexed. Figure 2.2 depicts a Hexastore index. The PSO index
has three levels. The first level contains all unique predicates. Each predicate points to
a sorted vector of associated subjects on the second level. Associated means that the
first-level predicate and second-level subjects appear together in triples. Each element
in the subject vector points to a sorted list of associated objects on the third level. The
third-level elements are associated with the second-level elements and transitively with
the first-level elements as well. Therefore the third-level list contains only objects that
appear together with the predicate and subject along the association chain. The major
difference between [1] and Hexastore is that Hexastore creates six indices. One for each
of the 3! = 6 permutations of the elements of a triple: SPO, SOP, PSO, POS, OSP, and
OPS. This is where its name derives from. Each index can be used for different queries.
SPO can be used to resolve triple patterns with bound subject or with bound subject
and predicate. But not for queries that do not have a bound subject. For such queries
either O- or P-headed indices can be used. Refer to Table 2.2 for a full listing of triple
pattern to index mappings.

Query Indices Level

s p o SPO (any) third

s p ?o SPO (or PSO) second

s ?p o SOP (or OSP) second

?s p o POS (or OPS) second

s ?p ?o SPO or SOP first

?s ?p o OSP or OPS first

?s p ?o PSO or POS first

?s ?p ?o SPO (any) (full-index-scan)

Table 2.2: There are 8 possible triple patterns. For each pattern at least two indices
exist that contain the result set. The level column indicates the index level or
type that needs to be queried. Index alternatives in parentheses indicate that
the other alternative may be preferable due to element order. The preference
between alternatives on the first level depends on the desired order of the
result set.

This index structure naturally fits semi structured RDF data. Many relational struc-
tures are affected by sparsely populated multi-column tables when dealing with semi
structured data. In Hexastore, no NULL values have to be inserted. An indexing scheme
like [1] has to access all property tables to resolve queries with unbound predicate – even
though many tables will not contain relevant data. Hexastore possesses an appropriate

8

2.3. HEXASTORE 9

string id

<http://example.org/person/peter> 100

<http://example.org/person/franz> 101

<http://example.org/person/lukas> 102

<http://xmlns.com/foaf/0.1/knows> 200

<http://xmlns.com/foaf/0.1/name> 201

<http://xmlns.com/foaf/0.1/mbox> 206

“Franz” 416

“Lukas” 596

<mailto://franz@example.org> 731

<mailto://lukas@example.org> 744

... ...

Table 2.3: A partial view of a mapping from string-space to id-space. Strings are encoded
to fixed size identifiers (the size is three bytes in this example).

index for any query type and does not have to access irrelevant data. Most impor-
tantly all lookups can be done in constant time and all joins between triple patterns
can be merge-joins because there are sorted lists for any access scheme. Consider that
every triple pattern maps to at least two indices (Table 2.2). If only individual triple
patterns are considered, some of the indices are obsolete. But when joining multiple
triple patterns, the order of the result set matters for the ability to perform merge-joins.
Merge-joins are fast and can be done in linear time. Many other approaches must revert
to more expensive joins because they do not contain result sets in the correct order for
every combination of triple patterns.

2.3.2 Storage Space Consumption

The six indices maintained by Hexastore come at a price. The storage space requirement
is high and inserts and updates are slow. Weiss et al. [45] argue that storage space is not
a major concern because it is cheap and easily extensible. Further they observed that the
storage requirement is less than six-fold that of an approach that stores each triple only
once. In worst case the storage requirement is five-fold because some third-level element
lists can be shared between pairs of indices. For example the SPO and PSO indices
have identical third level O-list. The same is true for SOP and OSP which share the
same P’s and POS and OPS which share the same S’. Consequently each triple element
has to be stored only 5 times in worst case. Consider the indices a subject has to be
stored in: once in each of SPO, SOP, PSO, OSP – but only once for the two indices POS
and OPS, because they share the terminal list of subjects. In practice the real storage
requirements are usually below a five-fold increase because most resources do not appear
only once in the same place of a triple and there are no duplicate entries in the indices.

Furthermore storage requirements are reduced, because RDF triple elements are dic-
tionary encoded before they are indexed. All triple elements receive a unique identifier

9

10 CHAPTER 2. BACKGROUND

(id) which is stored in the indices instead of the string representation. The identifiers are
usually more concise than the string representation and can be stored more efficiently.
Table 2.3 contains an example of a string to identifier mapping. The dictionary encoding
requires Hexastore to maintain an additional two-way mapping between the identifiers
and string representations. Nevertheless storage space is saved, because most triple ele-
ments appear more than once in a given data set and the identifiers are usually shorter
than their string representation.

2.4 Rdfbox – A Hexastore Extension

Rdfbox is a Hexastore extension written in Python and Cython. It uses third party
key-value stores for persistent storage. A Python API for triple loading and SPARQL
query execution is provided. A web frontend for query execution is included as well.
The query execution engine is a custom implementation and currently does not support
full SPARQL syntax.

This section describes the index operations and how Rdfbox uses sorted key-value
stores to implement a Hexastore indexing scheme. Then a brief description of the Rdfbox
architecture follows. It concludes with a description of the query execution engine and
index loading process.

2.4.1 Index Operations

In [44], Weiss and Bernstein define two required operations for a Hexastore implemen-
tation:

getIndex Given a first-level item a there should be an operation that efficiently retrieves
the second-level index associated to a.

getSet Given a second-level item b there should be an operation that efficiently retrieves
the third-level ordered set associated to b.

These operations are sufficient to resolve queries. Query resolution requires binding val-
ues to variables in triple patterns. A triple pattern can have all three elements unbound,
in which case every triple matches and the resolution amounts to a full index scan. But
in all other cases there is at least one element bound and therefore there are two indices
that contain this element on the first level (Table 2.2). In this case we choose one index
and obtain the second-level index using the getIndex operation. If another element is
bound, we use the getSet operation to retrieve all results for this triple pattern. If only
a single element was bound, we have to use the getSet operation on each entry in the
second-level index to obtain all results. This covers all cases for a single triple pattern.
More advanced query resolution will be discussed in Section 2.4.4.

10

2.4. RDFBOX – A HEXASTORE EXTENSION 11

a1

a2

...

Level 0 Level 1 Level 2

a1b11

a1b12

a1b13

a2b21

a2b22

...

a1b11c111

a1b11c112

a1b11c113

a1b12c121

a1b12c122

a1b13c131

...

Figure 2.3: An abstract view of the Rdfbox index structure. The brackets indicate how
the individual sets and lists in Figure 2.2 are mapped into a single ordered
set on each level.

2.4.2 Implementing Hexastore with Ordered Key-Value Stores

Hexastore [45] does not specify how indices are persisted. A later paper by Weiss and
Bernstein proposes a novel solution called vector storage [44] but Rdfbox delegates this
task to third party key-value stores that are ordered by key. Originally only a Tokyo
Cabinet [31] B+Tree database has been supported. Ritter added support for other
databases in [39]. These include leveldb [16] which is based on the BigTable [14] but not
distributed.

Rdfbox implements each index-level as a standalone ordered key-value database. There-
fore 3 ∗ 6 = 18 databases are maintained. They are named after the index permutation
and a zero-based level number (spo0, spo1, spo2, pso0, pso1, etc.). Optionally three level
2 indices can be omitted because they contain the same entries as other indices (Section
2.3.2). Each database entry consists of a key and a value. The entries are ordered by
key. The exact nature of the ordering is unimportant. The only requirement is that
entries sharing a common prefix are grouped together. Each index level offers a cursor
interface. Cursors are moveable pointers to the entries in an index. A cursor is required
to implement methods to move to the beginning of the index, to advance to the next
entry and to jump to an entry specified by a key-prefix. At any time the cursor allows
access to the entry it is currently pointing at. Multiple cursors can be opened on a single
index at the same time.

11

12 CHAPTER 2. BACKGROUND

Figure 2.3 depicts and abstract view of all three index levels. The entry keys are fixed-
length byte arrays. In level 0, the key is the encoded first-level element (the encoded
subject in case of an SPO index). In level 1 the key is the encoded first-level ele-
ment concatenated with the encoded second-level element (subject+predicate in SPO).
In level 2 the key consists of all encoded triple elements concatenated together (sub-
ject+predicate+object in SPO). For a concrete example, Listing 2.3 contains a triple T1
to be indexed:

Listing 2.3: Unencoded T1

<ht tp : // example . org / pe r son / f r anz> <ht tp : // xmlns . com/ f o a f /0 .1/name> ”Franz ” .

Assuming Table 2.3 contains the string-to-id mapping, Listing 2.4 shows the encoded
version of T1 and the keys of the index entries for each index and level.

Listing 2.4: Encoded T1 and index entry keys

T1 : 101 201 416

spo0 : 101 sop0 : 101
spo1 : 101201 sop1 : 101416
spo2 : 101201416 sop2 : 101416201

pso0 : 201 pos0 : 201
pso1 : 201101 pos1 : 201416
pso2 : 201101416 pos2 : 201416101

osp0 : 416 ops0 : 416
osp1 : 416101 ops1 : 416201
osp2 : 416101201 osp2 : 416201101

The getIndex(a) operation is implemented by opening a cursor on a level 1 index and
jumping to the key-prefix specified by the argument a. This moves the cursor to the first
entry that start with the specified prefix. Calling next on the cursor until the key prefix
changes or the cursor reaches the end of the index, retrieves the level 1 index for a. This
range is indicated by brackets on the level 1 index in Figure 2.3. The level 1 element
can be obtained by splitting the key at index len(a) because all element identifiers have
the same length.

The getSet(b) operation is implemented in the same way by opening a cursor on a
level 2 index and jumping to the prefix specified by ab. The level 2 element can be
obtained by splitting the full key at index len(a) + len(b). The ranges that cover a set
for given values of a and b are indicated in Figure 2.3 by brackets on the level 2 index.

12

2.4. RDFBOX – A HEXASTORE EXTENSION 13

spo1 spo2 osp2 ids stringsspo0 ...
File System

String Manager

Index Manager

LoaderEngine

Rdfbox

Index/

Level

Index/

Level

Index/

Level

Index/

Level...

Db

Figure 2.4: A layered view of the most important Rdfbox components. Not all In-
dex/Level components and data stores are shown. In reality 15 to 18 data
stores are used, three levels for each of the six index permutations. As de-
scribed in Section 2.3.2, some levels can be shared – resulting in only 15 data
stores for indices.

2.4.3 Architecture Overview

Figure 2.4 provides simplified layered view of the most important Rdfbox modules.

Db The Db module offers a Python API for interacting with Rdfbox. The most im-
portant methods are opening and closing the triple store, loading triples from a
specified file and executing SPARQL queries supplied as strings.

Engine The Engine executes and resolves SPARQL queries. This module is explained
in Section 2.4.4.

Loader The Loader module is responsible for loading triples into Rdfbox. Section 2.4.5
provides more details on the loading mechanism.

Index Manager Rdfbox uses 15 or 18 separate indices. One for each index level. The
number varies depending on whether index sharing is enabled or not. The Index
Manager abstracts the complexity of handling all these separate indices from its
clients. Another important task is the joining of partial results coming from the
indices.

Index/Level The Index and Level modules are mainly abstract representations of the
key-value stores. Each concrete storage module has to implement the Index inter-

13

14 CHAPTER 2. BACKGROUND

face in order to plug into Rdfbox. The Cursor API of Rdfbox is implemented here
too.

String Manager The String Manager handles the translation of triple elements between
their identifiers and the string representations and vice-versa.

2.4.4 Query Execution Optimisation with Cardinalities

Rdfbox accepts SPARQL 1.0 queries as strings an delegates query parsing to Rasqual [6].
The query execution engine is a custom implementation and currently does not support
full SPARQL syntax.

So far the values of index entries were not mentioned. They are used for optimisation
of the query execution plans. Rdfbox maintains detailed statistics about the cardinalities
of triple elements as values in the index databases. For each key the corresponding value
is a count of index entries on the next level. An example: For each encoded subject s,
the spo0 index entry with key s contains the number of spo1 entries starting with prefix
s. This number is the cardinality of predicates associated with s because the second-
level elements in SPO are p-elements. For each s and p, the spo1 index maintains the
cardinality of objects associated with s and p. The value of the spo2 index is not used.

Listing 2.5: SPARQL Query with exemplary variable cardinalities

@ p r e f i x f o a f : <h t t p : / / xmlns . com/ f o a f /0.1/> .
@ p r e f i x ex : <h t t p : / / example . org / p e r s o n/> .

SELECT ? f r i e n d ? m a i l
WHERE {

ex : p e t e r f o a f : knows ? f r i e n d . #1: ? f r i e n d : 10
? f r i e n d f o a f : name ?name . #2: ? f r i e n d : 1000 , ?name :1000
? f r i e n d f o a f : mbox ? m a i l . #3: ? f r i e n d : 100 , ?mbox :100

}

Listing 2.5 contains a simple SPARQL query with one graph pattern. The control
flow of the query resolution engine can be followed in Figure 2.5. When resolving a
graph pattern, the first step is to fetch the cardinalities for all variables. Then the most
selective variable is chosen to be resolved. We can see in Listing 2.5 that ?friend has
the cardinalities 10, 100, 1000, ?name has 1000 and ?mbox has 100. The best (smallest)
cardinality is held by ?friend with a minimum of 10. Joining all three triple patterns on
?friend will yield at most 10 results. This is the optimal strategy based on the available
information. A join returns all valid identifiers that can be bound to ?friend. The next
step starts to iterate over each result of the join. Each iteration creates a context in
which ?friend is bound to a different result and recursively calls the resolution algorithm
again.

Branching out the resolution tree too much early on has to be avoided. Let each
person in the underlying data set have only one foaf:name and one foaf:mbox. If ?name
is resolved first, then the join returns 1000 identifiers, the resolution tree creates 1000

14

2.4. RDFBOX – A HEXASTORE EXTENSION 15

Graph Pattern Resolution

Update Variable

Cardinanlities

[all variables resolved]

[finished]

recursive

Yield Result

[not finished]

Get Most Selective

Variable

Ids = Join on Variable

*

For each Id

Figure 2.5: A UML activity diagram of the query execution engine’s control flow. It
splits into several control flows at the fork after Join on Variable. All control
flows are resolved recursively in a single thread and each control flow can
create even more recursive control flows until all variables are resolved.

recursions and each recursion performs a join on ?friend. If ?friend is joined first, only
one join on ?friend has to be performed and for each of the maximally 10 results, a
single ?name (and ?mbox) has to be resolved.

A join on ?friend creates three cursors, one for each occurrence of the variable. The
index manager handles the choice of a suitable index to open the cursor on. The cursor
for triple pattern #1 will be opened on the spo2 or pso2 index. It returns an ordered
list of o’s, corresponding to a getSet operation. The other cursors are opened on a pos1
index which corresponds to a getIndex operation. Crucially it returns an ordered list
of o’s as well. Therefore three ordered lists of o’s can be merge-joined. The query could
be resolved as well with cursors on pso1 instead of the pos1 index. But getIndex on
pso1 returns a list ordered by s. A more expensive sort-merge join or hash-join would
be necessary. This makes a key feature of Hexastore apparent. At each level a suitably

15

16 CHAPTER 2. BACKGROUND

ordered list can be retrieved.

Because cursors provide efficient sequential access, the engine does not perform joins
pair-wise and instead joins on all cursors at the same time. As soon as one of the
participating cursors is exhausted, the merge can stop and no more unnecessary values
are fetched. Therefore there is no preferred order of joins when joining on a single
variable.

2.4.5 Loading RDF graphs into Rdfbox

Rdfbox has a dedicated module to load serialised RDF graphs into the indices. The
loading process consists of four steps. First the input is dictionary encoded. This step
has to be synchronised because the dictionary encoding must assign unique identifiers
to triple elements. It must be avoided that different elements are assigned the same
identifier. Second all six permutations are created for each triple. Third all permutations
are sorted and finally, the data is loaded into the indices. Facilities that perform all
steps on input larger than memory are provided and [39] implemented two variants that
perform most steps in parallel. One variant does not sort the data before loading. Sorted
input is beneficial for B+Trees but for other index structures it can be unsuitable or
unnecessary.

2.5 Selected Distibuted Key-Value Stores

This section introduces the Hyperdex [20] and Apache Accumulo [22] distributed key-
value stores, because they have been selected for the implementation of distributed
Rdfbox indices as part of the task definition.

2.5.1 Hyperdex

Hyperdex [20] is a distributed key-value store that offers a search API that allows to
retrieve entries not only by their primary key but also by secondary attributes. It
supports the search operation efficiently with an approach called hyperspace hashing. It
requires the specification of a fixed schema at the creation time of a table (or space as
it is called in Hyperdex). The schema of each space consists of a primary key and a set
of attributes. The key and attribute values are typed. Primitive types, strings and lists,
sets, and maps constructed with those types are supported.

Hyperspace offers strong consistency guarantees and fault tolerance. In YCSB bench-
marks conducted by the authors [20] it outperform Cassandra and MongoDB. Unlike
Accumulo (Section 2.5.2) the Hyperdex coordinator and daemon software have very low
requirements in terms of infrastructure and external dependencies and are very easy to
set up. It comes with Python client bindings which makes interfacing with Rdfbox easy.

16

2.5. SELECTED DISTIBUTED KEY-VALUE STORES 17

Hyperspace Hashing and the Search Operation

A multidimensional hyperspace is created from the attributes of a space, making each
attribute an axis. The hyperspace is divided into regions that are assigned to servers.
Hyperspace hashing is employed to map each entry to coordinates in this hyperspace by
hashing each of its attributes to a location on the corresponding axis. These coordinates
can then be used by a client to identify the servers, that store the desired entries. When
all attributes are fully specified, the coordinates will always map to exactly one server.
A search operation is specified by values or value ranges for each attribute. Unspecified
attributes have an unlimited value range. Conceptually a search operation constructs a
hyperplane for each attribute. It intersect the corresponding axis in one point and all
other axes in every point. Figure 2.6 illustrates this on a three dimensional example.
The more attributes are specified, the more planes are constructed. Search results are
found where all hyperplanes intersect. A fully specified search intersects only in one
point. The more attributes are specified the less servers need to be contacted to perform
a search.

Figure 2.6: A search operation in a three dimensional hyperspace. The axes represent the
attributes first name, last name and phone number. A search with specified
first name = “John” and last name = “Smith” has been issued. Each speci-
fied search attribute forms a plane that intersect its axis in one point. Both
planes intersect on a line on which all search results (phone numbers of John
Smiths) can be found. The boxes indicate the regions that the intersection
falls into. A region maps to a server. Graphic by [20].

In order to prevent an explosion of dimensions due to too many attributes, high
dimensional hyperspaces can be partitioned into a set of lower dimensional subspaces.
One such special subspace is the key-space. It is a one dimensional space for the primary
key to support efficient key based operations.

17

18 CHAPTER 2. BACKGROUND

2.5.2 Accumulo

Apache Accumulo [22] is a distributed and ordered key-value store that has been mod-
elled after Google’s BigTable [14] design. It is designed to scale to very large clusters of
commodity hardware. Accumulo is implemented in Java. It depends on Apache Hadoop
[24] for its underlying distributed file system (HDFS) and it can plug into Hadoop’s
MapReduce framework as a data source or sink. Apache Zookeeper [21] provides con-
figuration management and distributed synchronization and Apache Thrift [43] is used
for communication across the cluster.

BigTable Data Model

BigTable [14] has been designed for wide applicability. It supports batch-oriented pro-
cessing and latency-sensitive data provision to end user applications. It offers proven
scalability to very large data, high performance and high availability. The data model is
simple with limited schema options. Each table is a distributed sorted map. Each entry
consists of a key and a value. The value is always an uninterpreted string. It is up to the
application to serialize complex data structures accordingly if needed. The key consists
of three dimensions: a row, a column and a timestamp. Row and column are strings.
The column has two elements. A column family and a column qualifier separated by a
“:” character. The timestamp value is a 64 bit integer.

(row, columnFamily:qualifier, timestamp) → value

Table entries are maintained in lexicographic order by row first and in decrementing
timestamp order second. Furthermore tables are split into tablets at row boundaries. A
tablet is assigned to at most one server at a time. This data model has some interesting
implications:

• Because entries are sorted by row and tablets are guaranteed to contain all entries
with the same row value, applications can reason about the locality of data by
designing the elements of keys accordingly.

• Sequential access to to short ranges requires communication with only few servers
because similar row keys are likely on the same server.

• Data can be versioned. When inserting different values with same row and column
values, the timestamp key element naturally sorts data such that more recent
versions appear first. A garbage collector can be configured to only keep the n
most recent entries.

BigTable does not offer full transaction support but row operations are always serialis-
able. Access control is performed on column family level. Applications can be configured
not have access to all column families.

18

2.5. SELECTED DISTIBUTED KEY-VALUE STORES 19

Accumulo Data Model

Accumulo extends the described BigTable data model. The column model is extended
by another field called visibility. This is used for cell-level access control to key-value
pairs. Furthermore BigTable requires the explicit specification of column families before
they can be used. In Accumulo this is not necessary. Because Accumulo is implemented
in Java, it uses byte arrays to store key elements and value. The timestamp is stored as
a long integer type.

User Defined Code Execution on Accumulo Tablet Servers

User applications can provide custom Java code that is executed on the servers when
entries are being processed (when data is being read and when servers dump in-memory
data onto the the file system). This code is implemented as Iterators that can be arranged
in hierarchies. An iterator receives entries emitted by a previous iterator or directly from
the table as input and can manipulate or consume the data before emitting it. Common
tasks for iterators are filtering entries based on various criteria or aggregation of values.
With iterators data can be processed on the servers where the data is saved.

19

3

Motivation

The Semantic Web continues to develop into a gigantic global data space as is demon-
strated by the ever growing linking open data (LOD) cloud (Figure 3.1). With some
data sets reaching sizes in the billions of triples new SDBMS (Semantic Database Man-
agement System) need to be developed. While centralized solutions and traditional
B+Tree index structures may work for some use cases, they are often overwhelmed and
limited to the resources provided by a single machine. We believe that distributed index
structures offer a general and efficient approach to handling the largest of data sets with
commodity hardware.

As of September 2011

Music
Brainz

(zitgist)

P20

Turismo
de

Zaragoza

yovisto

Yahoo!
Geo

Planet

YAGO

World
Fact-
book

El
Viajero
Tourism

WordNet
(W3C)

WordNet
(VUA)

VIVO UF

VIVO
Indiana

VIVO
Cornell

VIAF

URI
Burner

Sussex
Reading

Lists

Plymouth
Reading

Lists

UniRef

UniProt

UMBEL

UK Post-
codes

legislation
data.gov.uk

Uberblic

UB
Mann-
heim

TWC LOGD

Twarql

transport
data.gov.

uk

Traffic
Scotland

theses.
fr

Thesau-
rus W

totl.net

Tele-
graphis

TCM
Gene
DIT

Taxon
Concept

Open
Library
(Talis)

tags2con
delicious

t4gm
info

Swedish
Open

Cultural
Heritage

Surge
Radio

Sudoc

STW

RAMEAU
SH

statistics
data.gov.

uk

St.
Andrews
Resource

Lists

ECS
South-
ampton
EPrints

SSW
Thesaur

us

Smart
Link

Slideshare
2RDF

semantic
web.org

Semantic
Tweet

Semantic
XBRL

SW
Dog
Food

Source Code
Ecosystem
Linked Data

US SEC
(rdfabout)

Sears

Scotland
Geo-

graphy

Scotland
Pupils &
Exams

Scholaro-
meter

WordNet
(RKB

Explorer)

Wiki

UN/
LOCODE

Ulm

ECS
(RKB

Explorer)

Roma

RISKS

RESEX

RAE2001

Pisa

OS

OAI

NSF

New-
castle

LAAS
KISTI

JISC

IRIT

IEEE

IBM

Eurécom

ERA

ePrints dotAC

DEPLOY

DBLP
(RKB

Explorer)

Crime
Reports

UK

Course-
ware

CORDIS
(RKB

Explorer)
CiteSeer

Budapest

ACM

riese

Revyu

research
data.gov.

ukRen.
Energy
Genera-

tors

reference
data.gov.

uk

Recht-
spraak.

nl

RDF
ohloh

Last.FM
(rdfize)

RDF
Book

Mashup

Rådata
nå!

PSH

Product
Types

Ontology

Product
DB

PBAC

Poké-
pédia

patents
data.go

v.uk

Ox
Points

Ord-
nance
Survey

Openly
Local

Open
Library

Open
Cyc

Open
Corpo-
rates

Open
Calais

OpenEI

Open
Election

Data
Project

Open
Data

Thesau-
rus

Ontos
News
Portal

OGOLOD

Janus
AMP

Ocean
Drilling
Codices

New
York

Times

NVD

ntnusc

NTU
Resource

Lists

Norwe-
gian

MeSH

NDL
subjects

ndlna

my
Experi-
ment

Italian
Museums

medu-
cator

MARC
Codes
List

Man-
chester
Reading

Lists

Lotico

Weather
Stations

London
Gazette

LOIUS

Linked
Open
Colors

lobid
Resources

lobid
Organi-
sations

LEM

Linked
MDB

LinkedL
CCN

Linked
GeoData

LinkedCT

Linked
User

Feedback
LOV

Linked
Open

Numbers

LODE

Eurostat
(Ontology
Central)

Linked
EDGAR

(Ontology
Central)

Linked
Crunch-

base

lingvoj

Lichfield
Spen-
ding

LIBRIS

Lexvo

LCSH

DBLP
(L3S)

Linked
Sensor Data
(Kno.e.sis)

Klapp-
stuhl-
club

Good-
win

Family

National
Radio-
activity

JP

Jamendo
(DBtune)

Italian
public

schools

ISTAT
Immi-
gration

iServe

IdRef
Sudoc

NSZL
Catalog

Hellenic
PD

Hellenic
FBD

Piedmont
Accomo-
dations

GovTrack

GovWILD

Google
Art

wrapper

gnoss

GESIS

GeoWord
Net

Geo
Species

Geo
Names

Geo
Linked
Data

GEMET

GTAA

STITCH

SIDER

Project
Guten-
berg

Medi
Care

Euro-
stat

(FUB)

EURES

Drug
Bank

Disea-
some

DBLP
(FU

Berlin)

Daily
Med

CORDIS
(FUB)

Freebase

flickr
wrappr

Fishes
of Texas

Finnish
Munici-
palities

ChEMBL

FanHubz

Event
Media

EUTC
Produc-

tions

Eurostat

Europeana

EUNIS

EU
Insti-

tutions

ESD
stan-
dards

EARTh

Enipedia

Popula-
tion (En-
AKTing)

NHS
(En-

AKTing) Mortality
(En-

AKTing)

Energy
(En-

AKTing)

Crime
(En-

AKTing)

CO2
Emission

(En-
AKTing)

EEA

SISVU

educatio
n.data.g

ov.uk

ECS
South-
ampton

ECCO-
TCP

GND

Didactal
ia

DDC Deutsche
Bio-

graphie

data
dcs

Music
Brainz

(DBTune)

Magna-
tune

John
Peel

(DBTune)

Classical
(DB

Tune)

Audio
Scrobbler
(DBTune)

Last.FM
artists

(DBTune)

DB
Tropes

Portu-
guese

DBpedia

dbpedia
lite

Greek
DBpedia

DBpedia

data-
open-
ac-uk

SMC
Journals

Pokedex

Airports

NASA
(Data
Incu-
bator)

Music
Brainz
(Data

Incubator)

Moseley
Folk

Metoffice
Weather
Forecasts

Discogs
(Data

Incubator)

Climbing

data.gov.uk
intervals

Data
Gov.ie

data
bnf.fr

Cornetto

reegle

Chronic-
ling

America

Chem2
Bio2RDF

Calames

business
data.gov.

uk

Bricklink

Brazilian
Poli-

ticians

BNB

UniSTS

UniPath
way

UniParc

Taxono
my

UniProt
(Bio2RDF)

SGD

Reactome

PubMed
Pub

Chem

PRO-
SITE

ProDom

Pfam

PDB

OMIM
MGI

KEGG
Reaction

KEGG
Pathway

KEGG
Glycan

KEGG
Enzyme

KEGG
Drug

KEGG
Com-
pound

InterPro

Homolo
Gene

HGNC

Gene
Ontology

GeneID

Affy-
metrix

bible
ontology

BibBase

FTS

BBC
Wildlife
Finder

BBC
Program

mes BBC
Music

Alpine
Ski

Austria

LOCAH

Amster-
dam

Museum

AGROV
OC

AEMET

US Census
(rdfabout)

Figure 3.1: Linking Open Data cloud diagram as of September 2011, by Richard Cyga-
niak and Anja Jentzsch. http:// lod-cloud.net/

22 CHAPTER 3. MOTIVATION

With Rdfbox, a SDBMS developed at the University of Zurich and based on the
Hexastore [45] indexing scheme, we have an high-performance centralized solution. In
this work we aim to develop efficient distributed index plugins for the support of very
large data sets.

3.1 Task Description

This master thesis’ tasks are to develop efficient implementations of:

• A distributed index plugin based on the Hyperdex [20] project.

• A distributed index plugin based on the Accumulo [22] project.

• A parallel, high-performance and tunable MapReduce [17] based RDF loader.

All implementations are to be materialized in the scope of the Rdfbox SDBMS and
tested. The source code has to be documented.

The goal is to support larger quantities of data than can be supported with centralized
indices while maintaining the efficiency inherited from the Hexastore indexing scheme.

22

4

Implementation

This chapter describes the design and implementation of the Hyperdex and Accumulo
distributed index extensions and the MapReduce based loader. The subject of the fol-
lowing discussions are the reasons for different implementation choices and the identifi-
cation of optimisations based on preliminary evaluations. Special attention is given to
the implementation of a multi-threaded query execution engine.

4.1 Hyperdex Index

Section 2.5.1 introduced Hyperdex, a distributed key-value store with a special search
API [20]. It implements uses hyperspace hashing to support efficient searches of entries
by secondary attributes. Hyperspace hashing creates interesting options for structuring
and looking up entries. Low infrastructure requirements and easy setup are additional
advantages of Hyperdex.

At the beginning of this work the latest Hyperdex release was version 0.4.0, which did
not offer ordered access to keys nor any method to retrieve entries ordered by attributes.
Ordered access is required for Rdfbox’ cursor API and the query execution engine is
built around the concept of efficient ordered sequential access. Hyperdex’ schema options
allow for values to be lists, but values are always associated to one coordinate in the
hyperspace and served by a single server. They can be replicated on other servers but
this is only a fault tolerance mechanism and cannot be used for partitioning. To access
elements in lists, the entire list has to be retrieved first. Therefore creating large lists of
triple element identifiers would not scale. But ordered access is not strictly necessary to
resolve queries. The search API is a powerful tool to retrieve the required entries – but in
unpredictable order. Fast merge joins are not possible but other joins can be used. But
the development version of Hyperdex introduced a sorted search method which would
enable ordered access starting with the next release.

The remainder of this section covers a first approach at implementing the Rdfbox
extension using a single hyperspace for all entries. A discussion of the findings of a
preliminary evaluation follows. It discovered serious deficiencies and which required a
different approach. Then the implementation of this new approach is examined but
because the desired results are not achieved. An analysis of the limitation of using
Hyperdex as an Rdfbox backend concludes this chapter.

24 CHAPTER 4. IMPLEMENTATION

4.1.1 Single Hyperspace Index

Hyperdex is designed for cluster environments and large quantities of data [20]. For
this reason a starting assumption has been made that a single hyperspace would be
able to hold all data without significant performance degradation. Rdfbox uses a very
simple data schema. An identifier-key is mapped to a cardinality-value. Depending on
index level, the identifier-key (idkey) is a triple element (encoded) or a concatenation of
encoded triple elements. This schema can be directly mapped into a two-dimensional
space consisting of a string-typed key and an integer-typed value. Because Rdfbox
creates six permutations from each triple, the supplied idkey is not guaranteed to be
unique when all entries are written into the same space. The actual key entered into
the space is made unique by prepending the index permutation and level (e.g. spo0201
for a spo0 entry with idk 201). For efficient searching additional s, p and o secondary
attributes have been considered. A natural schema for RDF data that would allow
to resolve each triple pattern in a SPARQL query with a single search in Hyperdex.
Consider the triple patterns in Table 2.2, each bound triple element can be mapped to
a specified secondary attribute. Each variable is an unspecified attribute. The search
would return all valid bindings for all variables in the triple pattern. But this approach
has two problems.

1. Because all three index levels are stored in the same space, the results also contain
entries from different index levels.

2. Resolving results per triple pattern is problematic. A single triple pattern could
return many results (potentially the entire index). And with unordered results,
expensive hash joins are required, which keep many partial results in memory –
alternatively memory requirements can be mitigated by performing more searches
in Hyperdex.

The first problem is trivial to solve. Additional index and level attributes allow the
search to be specified to return only results from the required index.

The second problem can not be entirely solved without ordered results. Rdfbox avoids
the memory problem because the cursor API accesses only one entry from each involved
index at a time and merge joins on sorted lists require very little memory. A full solution
of this issue has been postponed because a new Hyperdex release with a sorted search
method has been anticipated. Furthermore it would be very ill-advised to invest a lot
of time into a solution requiring expensive joins because one of the key advantages of
the Hyperdex index schema is not to have to perform expensive joins at this level.
Temporarily a simple hash-join extension has been implemented in the query engine –
under the assumption that all partial results fit into memory.

Schema Definition

Awaiting the next Hyperdex release, experiments with different schemas have been made.
There are a multitude of options but the more attributes are specified, the more data
has to be transferred over the network when writing and reading entries. Assuming the

24

4.1. HYPERDEX INDEX 25

network might become a bottleneck but still wanting to exploit the ability to search for
entries by secondary attributes, the s, p and o attributes have been dropped and the
following schema has been implemented:

key:string → idk:string, index:string, level:int, count:int

idk is the identifier of the entry as supplied by Rdfbox, index is the permutation of the
index (e.g. spo), level is the index level and count is the cardinality.

Implementation of Index Operations

The Rdfbox operations getIndex and getSet are mapped to searches in Hyperdex. Sec-
tions 2.3 and 2.4.2 introduce these operations in an abstract manner. The attributes
to search for, can be specified as a value and results must match this value exactly.
Alternatively ranges can be specified in which case attribute values must fall into this
range to match. For this index plugin, the s, p and o attributes have been replaced with
the construction of an appropriate range for idk.

getIndex is mapped to a search operation as follows:

getIndex(a)→ search(idk = (a, end), index = permutation, level = 1)

getSet is mapped to a search operation as follows:

getSet(b)→ search(idk = (ab, end), index = permutation, level = 2)

The parameter permutation is the permutation string of the index on which the opera-
tion is applied (e.g. spo) and (a, end) is the range starting with a (inclusive) and ending
with end (inclusive). Similarly ab is the concatenation of a (obtained from the preceding
getIndex operation) with b. end represents the largest possible idk. This means, that
each search is effectively open ended. The range could be limited to the largest possible
idk starting with a but the query execution engine is relying on the range of results to
go beyond the specified prefix or it does not produce correct results.

Sorted Search

With the release of Hyperdex 1.0.rc1, the index extension has been adapted to the new
API. The most notable improvement has been the use of sorted search. This variant of
the search method returns results sorted by a specified attribute. While sorted search
method calls are somewhat slower, the ability to use merge joins instead of hash joins
outweighs the drawbacks.

25

26 CHAPTER 4. IMPLEMENTATION

Preliminary Evaluation and Optimizations

With a fully functional index implementation, preliminary evaluations with larger data
sets have been performed. As expected loading performance was significantly worse than
with centralized indices. Without special optimisations, this had to be expected. An
evaluation of loading times can be found in Section 5.2.1. More interesting was the
evaluation of the query execution times. For these tests a dataset with 50,000 triples
was loaded. All queries required minutes to resolve despite the data set being very small
in relation to the goals of this thesis. The exact results were not recorded but PQ1
required about ten minutes to resolve and PQ2 -type queries about two minutes. Refer
to Listings A.1 and A.2 in Appendix A.1 for the queries.

An investigation revealed that a single sorted search operation takes almost two sec-
onds with 50,000 triples loaded. But great number of searches had to be performed when
hundreds of intermediate results had to be joined.

Optimisations The investigation helped to identify some optimisations that help to
reduce the number and size of searches.

The sorted search method requires the specification of the number of results that
should be returned at most. Because Rdfbox stores cardinalities, this number can be
retrieved. Initially it was assumed that this additional request would be too expensive
and a constant number has been used instead. In case more results were required, the
requested range has been shifted to the end of the last returned search result and another
search was issued. Obtaining the correct cardinality made searches more efficient and
provided an overall improvement. Two things could be achieved by this measure.

• Searches that were triggered because the initially requested number was too low,
could be avoided. In general fetching more data is more efficient than searching
for it multiple times.

• Many searches fetched too much data because the actual cardinality is very low
(e.g. 1). With the optimisation a search never retrieves more results than it
maximally needs.

This change introduced a new problem too. Sometimes the cardinality of a search is
very large. It may be better to fetch only a part of the entries of the search. If two sets of
search results are joined, one with a single result and another with 100,000 results, they
can join at most on one single entry (because that is the size of the smallest participating
set). If the result appears early in the large set, then most of the results have been
needlessly retrieved. A configurable upper limit for searches has been introduced. A
search never fetches more elements than this limit. This also helps to keep memory
requirements lower. If more results are needed, they can be fetched in another search.

A final optimisation allows to avoid searches all together, when the search range
intersects with a previous search range. A limited amount of searches is cached and
before a new search is issued, the beginning of its range is compared to the cached
search ranges. If it is contained, the cached results are returned. With searches being so
expensive, this check is beneficial to do even if it does not avoid searches in many cases.

26

4.1. HYPERDEX INDEX 27

Subjecting the optimised solution to the same evaluations again, revealed a significant
performance increase. The execution time has been reduced by a factor of 5-8. The
exact results can be found in Section 4.1.2. Nevertheless query execution still did not
perform sufficiently. Especially some execution times approaching one hour for the one
million triples data set show that the solution does not scale. More investigation into
the causes triggered a different approach which is described in the next section.

4.1.2 Multi-Space Index

The single hyperspace index suffered from slow searches. Even several optimisations that
reduced the number and size of searches did not achieve sufficient performance. Most
potential for better performance was believed to lie in execution time optimisations of
the search operation itself. Therefore the factors which make searches slow have to
be investigated. It was found that the total number of dimension did not have any
measurable impact on search performance. But the total amount of entries did. Search
execution times became longer as more data was loaded into a space. Consequently, the
number of entries in a space had to be kept low in order to have fast searches.

The Hexastore approach produces many entries and their number can not be lowered
without loss of information. The benchmark 1m data set contains 1 million triples
(Section 5.1). But consider that each triple has six permutations and each permutation
creates entries in up to three index levels. Effectively it produces 7.8 million entries when
indexed. The exact number of entries for 1 million triples can vary a lot and depends
entirely on the distribution of the triple elements in the data set.

But there is a simple approach to reducing the number of entries a space has. Instead
of writing all entries into a single space, a dedicated space can be used for each index
level. It is easy to implement and it would distribute the entries to 18 (or 15 if indices
are shared) spaces – although the distribution is not even.

Schema Changes and Index Operations

The new version of Hyperdex (1.0.rc1) enabled searches for the primary key (and not only
for secondary attributes any more). This was used to create a very simple schema for
the multi-space solution. While it could be applied to simplify the single-space schema
as well, it would not improve performance significantly.

Because each index level is now contained in its own space, the index and level at-
tributes are not needed any more. The schema becomes very simple:

idk:string → count:int

idk is the identifier as supplied by Rdfbox and count is the cardinality.
Only minor changes had to be made to the implementation of the index operations.

Instead of using search, sorted search is used. The optimisations as discussed in Section
4.1.1 are used as well. Instead of using the index and level parameters as attributes in
the search, they are used to identify the space on which the sorted search needs to be
applied.

27

28 CHAPTER 4. IMPLEMENTATION

PQ1 (cold)

PQ1 (warm)

PQ2 (cold)

PQ2 (warm)

1 10 100 1,000 10,000

117.11

118.12

14.90

14.50

81.86

82.63

2.41

2.42

3,313.63

3,309.42

579.56

581.76

1,558.27

1,549.46

41.41

39.31

Hyperdex benchmark_50K Hyperdex MS benchmark_50K

Hyperdex benchmark_1m Hyperdex MS benchmark_1m

Execution Time [s]

Figure 4.1: Comparison of query execution times for Hyperdex backends. Hyperdex
refers to the optimized single space index and Hyperdex MS refers to the
multi space index. PQ1 and PQ2 are names of the queries. The queries
and the setup are described in Appendix A.1 and the data sets in Section
5.1. The multi-space version performs significantly better than the optimized
single-space version. Mind the logarithmic scale.

Comparison to the Single Space Index

Figure 4.1 compares query execution times of the single-space and the multi-space index
variants. The multi-space index performance is faster by a factor of 1.5-2 for PQ1 and
a factor of 6-15 for PQ2. This is a dramatic improvement. But with one million triples
loaded most benchmark queries still need over a minute to execute. PQ1 even about 25
minutes. Struggling with long execution times on small data sets pointed to fundamental
problems in the way Hyperdex is used in Rdfbox.

4.1.3 Limitations of the Hyperdex-based Indices

The preliminary evaluations discovered that the search operation is a major bottleneck.
Various optimisations that reduce the number, size and execution time of searches have
been implemented. Performance did increase significantly but not to satisfactory levels
and more untapped potential for significant optimisations could not be found any more.
The problem is, that in this use case, search operations are principally too slow. Hy-
perdex advertises the search operation as an efficient method which is not untrue. A
single search performs well when considered in isolation. But in the Rdfbox use case too
many searches are required. I do not think that this is a problem of Hyperdex. Rather
it lies in the way Hyperdex has to be used in Rdfbox. Query resolution in Rdfbox (see
section 2.4.4) uses cursors and not searches. In the Hyperdex-based indices the jump
operation, that moves a cursor to a specified position, is mapped to a Hyperdex search.
But moving a cursor is assumed to be a very efficient operation and therefore its use is
not restricted. Hyperdex searches are a much more complex operation and not designed

28

4.2. ACCUMULO INDEX 29

with such a usage pattern in mind.

Hyperdex is a distributed system, searching operations are delegated to remote ma-
chines. While a search is running, Rdfbox is mostly idle. From the operating system’s
point of view, a search is an I/O operation and while it is running, the system is waiting.
Different programming models that allow to create systems that can do other work while
some operation performs I/O do exist. Unfortunately Rdfbox’ query execution engine
has not been implemented with such a programming model. It only performs one I/O
operation at a time and waits for its completion before any other work is done. Hyperdex
is not the only index extension suffering from this limitation. Any index that spends
significant time on I/O operations is affected. It can be a centralized index waiting disk
I/O or a distributed index waiting for network I/O.

Changing Rdfbox’ query execution engine to one that can do work in parallel is a
complex task and the other problem of misusing the search operation for the emulation
of cursors would not be solved. After careful consideration it has been decided to leave
the Hyperdex plugin in the current state and focus on an Accumulo-based index that
promised better overall performance because it supports a cursor-like interface natively.
If the query execution engine had to be parallelised, it could still be done for Accumulo.

4.2 Accumulo Index

Apache Accumulo [22] is an open source distributed keys-value store and an implemen-
tation of Google’s BigTable [14] design. Section 2.5.2 introduces Accumulo. In terms of
infrastructure requirements it is very demanding. It requires a working Hadoop HDFS
and MapReduce cluster and while no special purpose hardware is required, considerable
amounts of memory and CPU cores are needed on each cluster machine to ensure sta-
bility of the system under load. To set up and configure such a cluster is a non-trivial
task.

Accumulo stores all entries sorted by key and offers a cursor-like scanner API for data
retrieval. Basic scanners retrieve data in sorted order. This makes it a perfect match
for Rdfbox. Furthermore the ability of Accumulo to act as a source and sink of data
for Hadoop MapReduce jobs, can be used to design a distributed MapReduce loading
mechanism. During this work the latest Accumulo release (1.4.2) only offered a Java
client API. In order to use Accumulo from Rdfbox’ Python/Cython code, a solution had
to be found.

This section covers the creation of a custom service that is used to interact with
Accumulo from Python. Then it describes the design and implementation of the index
extension an alternative, multi-threaded query execution engine. It ends by presenting
the implementation of a distributed MapReduce [17] based loader for Accumulo.

4.2.1 Accumulo Client Proxy

In order to be able to interface with Accumulo’s Java API, a custom service offering
a narrow API specifically for Rdfbox has been implemented. Apache Thrift [43], an

29

30 CHAPTER 4. IMPLEMENTATION

interface description language (IDL), a software library and a code generation framework
for efficient and reliable communication across programming languages has been used
for this. Thrift allows the specification of services and data types in an abstract IDL
and is used extensively throughout Accumulo. From the abstract service definition, a
provided compiler can generate RPC (remote procedure call) server and client code in
various programming languages.

Accumulo’s Java client is very complex and could not be trivially replicated in Python.
Instead Thrift has been used to create a Java service that implements a subset of the
Rdfbox Index and Cursor API and wraps the Accumulo Java client. Because this service
uses the Accumulo client on behalf of Rdfbox, it is called Accumulo client proxy. Using
the Thrift Python library, Rdfbox can communicate with the client proxy via RPCs.
Figure 4.2 explains the involved components and highlights the role of Thrift.

The client proxy process can run on a remote machine but in general it is preferable
to run it on the same machine as Rdfbox. Accumulo’s client uses a variety of advanced
techniques to optimize data transfer. When the client proxy runs on a remote machine,
the communication between the proxy and Accumulo is efficient, but the transfer between
Rdfbox and the proxy is not.

4.2.2 Multi-Table Index

Mirroring the approach of the Hyperdex multi-space index (Section 4.1.2), 15 (or 18)
tables are created in an Accumulo instance. This approach has been chosen because it
allows a simple, direct mapping of Rdfbox indices into Accumulo tables, allowing quick
verification of its suitability as an index backend. I wanted to avoid discovering severe
problems late, as happened with Hyperdex.

Key Schema

In section 2.5.2 the BigTable data model has been introduced. It allows many options
to structure a key into several columns. But inspired by Rya (Section 6.1) a very simple
but efficient key schema has been chosen. In the row field of the key, the identifiers
(idk) supplied by Rdfbox are used. The other key fields (column, visibility) are empty.
timestamp is automatically set by Accumulo but it is not used. The value field (count)
contains the cardinality value:

(idk, “”, “”, timestamp) → count

This key format makes interaction with Accumulo simple and efficient. No filtering has
to be applied and all table entries are in the order Rdfbox expects them in.

Implementing Index Operations

To retrieve data from Accumulo tables, clients use scanners. Scanners can be used as
configurable iterators that return the table entries in lexicographic key-order. The range

30

4.2. ACCUMULO INDEX 31

thrift.Protocol

«subsystem»

IndexManager

Index

Cursor

«subsystem»

storage.accumulo

«component»

AccumuloIndexImpl

«component»

AccumuloCursorImpl

«thrift generated»

AccumuloClientAccumuloClient

«subsystem»

AccumuloClientProxy

«rpc handler»

Client

«accumulo»

Accumulo Instance

«thrift generated»

AccumuloClient

AccumuloClient.IFace

Connector

Figure 4.2: A UML component diagram of the components related to the client proxy.
Thrift-generated components are marked accordingly. AccumuloClient is
used by the index and cursor implementations to issue RPCs. It extends the
service interface defined in the abstract IDL and contains additional meth-
ods to communicate via the Thrift protocol. The thrift.Protocol interface is
in reality a protocol stack that can be configured in various manners (e.g.
framed, buffered or binary format). It is the bridge between Python and Java
programming languages. The communication is handled by components in
the Thrift library (not shown). AccumuloClient.IFace is the service interface
and Client in AccumuloClientProxy is the RPC handler, which implements
the Accumulo client wrapper. The Connector interface is used by the RPC
handler to communicate with the Accumulo instance.

31

32 CHAPTER 4. IMPLEMENTATION

of entries can be configured. Start and end keys of the range can be omitted, in which
case the range starts at the beginning or continues until the end of the table respectively.

The Hexastore getIndex and getSet operations are implemented in Rdfbox by creating
open-ended cursors starting at a specified key prefix. Then the cursors are advanced
until the specified prefix changes (Sections 2.3 and 2.4.2). The same can be done with
Accumulo scanners, therefore the implementation of these operations is a direct mapping
of cursors onto scanners.

getIndex creates a scanner with a specified range:

getIndex(a)→ scanner(table = (index = permutation, level = 1), startkey =
a, endkey =∞)

getSet creates a scanner with a specified range:

getSet(b)→ scanner(table = (index = permutation, level = 2), startkey =
ab, endkey =∞)

(index = permutation, level = levelnumber) represents a string created by combining
the index permutation and index level (e.g. spo1). ab is the concatenation of the a with
b. a can be retrieved from the preceding getIndex operation.

Preliminary Evaluation

Subjecting this solution to the same tests as the Hyperdex backends, revealed that it
resolved queries an order of magnitude faster. A detailed comparison to Hyperdex can
be found in Section 4.2.5. This meant that queries that took minutes to resolve in
Hyperdex could be resolved in a matter of seconds. An analysis of where time is spent
during query resolution showed that operations on the scanner were a major time sink.
This is reminiscent of the problems with Hyperdex search operations (Section 4.1.1). A
direct comparison is not possible because the scanner operates differently, specifically
it starts to return results much faster than the sorted search operation. The search
operation has a big initial delay until the first result is sent. Therefore scanners operate
very efficiently as cursors. The time spent on scanner operations can be largely attributed
to the relatively slow data transfer over a network interface. Network access can not be
avoided and the problem of waiting for I/O has already been observed in Section 4.1.1
with Hyperdex. The problem can be approached by creating a query execution engine
that can do multiple I/O operations in parallel.

4.2.3 A Multi-Threaded Query Execution Engine

Rdfbox’ default query execution engine is single-threaded and resolves queries recur-
sively. Figure 2.5 shows an activity diagram of the resolution algorithm’s control flow.
Section 4.1.1 and the previous section discussed how the query resolution is often idle

32

4.2. ACCUMULO INDEX 33

Multi-Threaded Graph Pattern Resolution

Init Worker

*

Ids = Join on Variable

Get Most Selective

Variable

*
Put each id into out_queue

Copy

Iteration Context

put context into in_queue;

len_in := len_in + 1

[finished || len_in = 0]

*

[all vars resolved]

Put context to result_queue

Yield Results

[result_queue not empty]

Update Var

Selectiveness

Resolve Variable len_in := len_in - 1

Figure 4.3: A UML activity diagram illustrating the multi-threaded query engine’s con-
trol flow. A producer-consumer pattern is used to distribute work. The main
thread feeds the worker threads with contexts to work on. A context primar-
ily contains the graph pattern that needs to be resolved and a set of variable
bindings. Worker threads produce two kinds of output. When a context is
fully resolved (all variables have a binding), the context is put in a result
queue. The main thread consumes contexts from this queue and translated
the variable bindings to their string representation to yield a final result.
The second output of the worker threads are identifiers of bindings for joined
variables. The main thread uses the identifiers to create new contexts for
later execution.

while it awaits I/O operations to complete. I/O waiting times can not be avoided di-
rectly. The network interface and disk access are slow operations. In the distributed
case, the mere network latency makes every remote procedure call slow, even when the
remote operation can work in memory. But there is a way to increase performance in
such situations if the waiting time can be used to perform other work.

When the query execution engine performs a join on a variable, it generally retrieves
multiple results. Each result gives rise to a context in which this result is bound to the
variable it was joined on. Conceptually this creates a tree of contexts. At the root is
a completely unresolved context. Each branch on the way towards the leaves is a new
context where a variable is bound to one of the values created by the last join in the
parent context. The leaves are fully resolved results. By default, each of those contexts
has been resolved in series. Worse even, for each context all still unbound variables are

33

34 CHAPTER 4. IMPLEMENTATION

resolved recursively in the same manner. Consider an example: after the first join, there
may be 100 results – thus 100 independent contexts for which the graph pattern has to
be resolved. But 99 of these contexts need to wait until the first context and all the
child contexts it creates are resolved. Only then the next context is worked on. If the
system was under full load during resolution, nothing could be gained. But because the
system is largely idle when resolving a context (because much of the work is performed
remotely or spent transferring data), the idle time could be used to work on (some of)
the 99 other contexts in parallel.

A multi-threaded query execution engine has been implemented. It resolves the de-
scribed contexts in parallel. Python has a GIL (Global Interpreter Lock) that mostly
inhibits the use of multiple CPUs, because most operations must synchronize on the GIL.
Notably waiting for I/O tasks releases the GIL. Because distributed query resolution is
not primarily a CPU, but I/O bound task, multi-threading is applicable for this case.
An added benefit of multi-threading is shared memory between threads, which proved
to be very useful.

The original implementation of the query resolution engine has been very ill-suited for
parallelisation. It was implemented in a stateful manner. The contexts described before,
did not actually exist as a separate entity. Only a single context could be active at a
time because it stored its state in the engine instance. Extensive refactoring of various
Rdfbox core classes has been necessary to extract the context into an independent entity
that supported deep-copy operations to create duplicates of the current state.

Figure 4.3 describes the multi-threaded query execution engine. It uses a configurable
fixed-size worker thread pool. The worker threads primarily perform I/O bound tasks,
which causes them to yield control to other threads while waiting for results. The size
of the thread pool does not depend on the number of CPU cores. In our experiments we
found the number of 10 threads to be good. But this number depends on several factors.
Optimally the local CPU utilisation should be high during execution. If the worker pool
is too small, the CPU utilization is low, which means more work could be performed in
parallel. When the worker pool is too large, it could overwhelm the local resources or
lower throughput in any of the distributed nodes because too many requests are being
processed in parallel. Because of Python’s GIL, only one Python thread is doing work
at a time. Monitoring has shown that a carefully calibrated thread pool size uses the
system’s CPU resources efficiently nevertheless. On one hand, the main thread became
a CPU bound task because it does not wait for I/O now, especially when the worker
threads can feed it with intermediate results continuously. On the other hand there are
other processes involved as well (the operating system and the client proxy can schedule
work on CPU cores with free resources).

The input queue that feeds workers with tasks, is a priority queue. Tasks that are
added later, have a higher priority – effectively working like a stack. The priority queue
realizes of depth-first like approach that attempts to reach leaves (results) in the context
tree quickly. If the query has a specified limit, this helps to resolve it more quickly.
Especially when the limit is significantly smaller than the full result set.

This engine does not replace its single-threaded variant. Which engine is used at
runtime is determined by a compilation flag. Index extensions need to supply alterna-

34

4.2. ACCUMULO INDEX 35

tive cursor and merge-join algorithm implementations that operate correctly in a multi-
threaded environment. Currently only Accumulo does this. For a comparison of the
multi-threaded and single-threaded query execution engines, refer to Section 4.2.5.

4.2.4 Implementation of Distributed Joins

The development of a multi-threaded query execution engine has been triggered by the
observation that much of the execution time is spent on data transfer over the network
interface. It has been assumed that much of this data transfer could be avoided if joins
could be performed remotely.

This section introduces a related solution, the Accumulo Wikipedia Search Exam-
ple and then explains the implementation of distributed joins in the Accumulo index
extension.

The Accumulo Wikipedia Search Example

Some use cases are explained on the Accumulo website. The Wikipedia search example
[23] shares many aspects with the Rdfbox use case and inspired the implementation of
distributed joins.

It is a word search over Wikipedia articles using a reverse index of words to documents.
The Accumulo iterator mechanism (Section 2.5.2) is used extensively to implement much
of the functionality. The index is built using an aggregator, a special kind of iterator
that rewrites table entries by combining values of similar rows. Initially multiple entries
for the same word are written if the word appears more than once in the indexed dataset.
The aggregator combines all entries with the same word into one entry and attaches a
list of articles that contain the word.

Searches for more than one required word are implemented as intersections of docu-
ment lists. Consider a search for all articles with the words “wood” and “fire”. The set
of articles containing “wood” has to be intersected with the set of articles containing
“fire”. Intersections are implemented as iterators as well and (at least partially) per-
formed on tablet servers in a distributed fashion. The joins in Rdfbox are intersections
as well. Consider that a join on ?var in Rdfbox is the intersection of each triple pattern’s
bindings for ?var.

Data Model and Index Operations

In order to use an intersecting iterator for the Accumulo index extension, the data model
has to be changed because iterators do not work across different tables. The first step
has been to map all Rdfbox indices into a single table and to find a key structure that
supports distributed joins.

Each Accumulo table can be split into multiple tablets and each tablet is always
entirely hosted by a single node. Section 2.5.2 contains more information. Iterators run
in tablet scope and because tablets are split at row boundaries, all entries with the same
row field value are in the same tablet. Therefore data locality can be considered when

35

36 CHAPTER 4. IMPLEMENTATION

designing the key-schema. All entries that need to be joined remotely, require the same
row field value. Otherwise it can not be ensured that an iterator can see all of them.
Further each entry’s index permutation and level has to be stored in the key schema, to
make it unique and to be able to retrieve entries by index or level.

Rdfbox index operations are based on prefixes of the entry identifiers (idk). The
operations return triple element identifiers that are obtained by removing the prefix
from the full idk. Let the remaining part be the postfix. Because the identifiers of triple
elements are fixed-size byte arrays, the length of the pre- and postfix is always a multiple
of the id size.

Consider an entry in an SPO index with an idsize of 3 byte:

spo0: ︸︷︷︸
prefix

101︸︷︷︸
postfix

→ count len(prefix) = 0 ∗ idsize; len(postfix) = 1 ∗ idsize

spo1: 101︸︷︷︸
prefix

201︸︷︷︸
postfix

→ count len(prefix) = 1 ∗ idsize; len(postfix) = 1 ∗ idsize

spo2: 101201︸ ︷︷ ︸
prefix

416︸︷︷︸
postfix

→ count len(prefix) = 2 ∗ idsize; len(postfix) = 1 ∗ idsize

A pattern emerges. The prefix length is level ∗ idsize bytes and the postfix length is
1 ∗ idsize bytes. This separation of the idk is used in the new key schema that supports
distributed joins:

(postfix, index : prefix, “”, timestamp)→ count

Again the visibility field is empty and timestamp is not used. index is the concatenation
of the index permutation and level (e.g. spo1). The row field value is postfix and
index : prefix means that the column family is index and the column qualifier is prefix.

This key format guarantees that all entries with the same postfix are in the same tablet
because postfix is used as the row. The column families of each row are the indices that
it has entries for. The column qualifiers are the prefixes that the postfix appears with.

Rdfbox index operations are now performed by iterators. Consider that a cursor is
specified by the index it is opened on and the prefix it jumped to. An Rdfbox join
can be interpreted as resolving all postfixes that appear in the indices with the prefixes
specified by the involved cursors. This information has been moved into the index key
schema and therefore cursors are made obsolete. Distributed joins are specified by a set
of columns (a column is specified by index and prefix). The JoinIterator is attached to
a scanner with unlimited range. When the scanner is now used to iterate over entries,
only rows (postfixes) that appear in all the specified columns are returned. Thus a join
is performed.

This distributed join has a consequence. There is no ordered view of each index any
more. The indices are now ordered by postfix which is not useful in the scope of Rdfbox.
But the primary benefit of an ordered view, the ability to perform fast merge joins in
the query execution engine, is made obsolete by distributed joins. Therefore this is not
a concern.

36

4.2. ACCUMULO INDEX 37

Code Changes

Accumulo already provides an IntersectingIterator. An extension has been implemented
that adapts it to work with the described key format. It is implemented in Java. A
JAR file containing the iterator has to be distributed to all Accumulo nodes in order
to use it. Some modifications had to be made to the client proxy because the index
does not offer an ordered view of the entries any more. The JoinIterator is used to-
gether with a BatchScanner. BatchScanners perform parallel scans on multiple tablets
but they return entries without predictable order. This variant of the client proxy is
called AccumuloUnorderedClient. The client proxy service has to be started with the
unordered parameter and in Python an AccumuloUnorderedClient instance has to be
used for interaction. In Rdfbox, distributed joins can be activated with a compile flag
but only Accumulo supports it.

4.2.5 Preliminary Results and Analysis

PQ1 (cold)

PQ1 (warm)

PQ2 (cold)

PQ2 (warm)

0.10 1.00 10.00 100.00

3.62

2.76

0.87

0.71

0.64

0.60

0.37

0.31

20.80

20.55

Accumulo (single-threaded, local join)

Accumulo (multi-threaded, local join)

Accumulo (multi-threaded, distributed-join)

benchmark_50k Execution Time [s]

PQ1 (cold)

PQ1 (warm)

PQ2 (cold)

PQ2 (warm)

0.10 1.00 10.00 100.00 1,000.00

4.97

4.54

1.16

1.09

0.93

0.78

0.70

0.59

435.28

436.75

Accumulo (single-threaded, local join)

Accumulo (multi-threaded, local-join)

Accumulo (multi-threaded, distributed-join)

benchmark_1m Execution Time [s]

Figure 4.4: Preliminary evaluation query execution times for different Accumulo index
implementations. Single-threaded and multi-threaded refer to the query ex-
ecution engine variant used. The times are measured with (left) the bench-
mark 50k data set and (right) the benchmark 1m data set. Multi-threaded,
local-join performs best, distributed joins perform very badly (PQ2 evalua-
tions with distributed joins were aborted after surpassing one hour of execu-
tion time). Mind the logarithmic scales.

Figure 4.4 compares the results of the preliminary evaluation setting for all Accumulo
index variants. The setting is described in Appendix A.1. Comparing Accumulo to
Hyperdex (Hyperdex evaluation results can be found in Section 4.1.2 and Figure 4.1)
reveals that Accumulo outperforms Hyperdex by at least an order of magnitude in each
case. This supports the decision to concentrate on Accumulo. But because the data
sets are relatively small, it is more important that Accumulo scales dramatically better
between 50,000 and one million triples. The best Hyperdex variant (MS), increases
execution time between the two data sets by a factor of almost 19 and approximately
16 for PQ1 and PQ2 respectively. The same factors for the single-threaded Accumulo

37

38 CHAPTER 4. IMPLEMENTATION

variant (which uses the same query execution engine) are merely 1.4 and 1.5 and for the
best Accumulo variant (multi-threaded, local join) 1.3 and 1.9. The data does not allow
to make a final statement about how either of the indices scale but Accumulo has more
potential to perform well with larger data sets.

Comparison of Single-Threaded and Multi-Threaded Query Resolution

Multi-threaded query resolution is an order of magnitude faster than single-threaded
query resolution for every evaluated query and data set. Therefore the assumption that
network I/O is the main bottleneck in single-threaded query resolution can be verified.
The multi-threaded variant will be evaluated with larger data sets in Chapter 5.

Analysis of Distributed Joins

Tests confirmed that the distributed joins produce correct results but they are very slow.
For PQ1 it is comparable with Hyperdex backends but for PQ2 it is much worse. The
results for PQ2 were not measured for either data set because the execution has been
aborted after an hour of execution time. It is not entirely clear why these joins are so
slow but some findings are:

• Even though several Accumulo examples use the approach of filtering entries by
column, this seems to be significantly slower than access by row ranges.

• The index structure is effectively a reverse index, mapping all postfixes to the
indices and prefixes they appear with. However the index is not accessed in that
manner. All rows have to be filtered by column, resulting in each row being
accessed. That this does not scale is not very surprising but it is not clear why the
Wikipedia search example performs much better. Its evaluation has been run on
a much stronger infrastructure however [23].

Perhaps there are some problems with the join algorithm implementation as well.
But due to lack of time the decision has been made to leave the distributed joins in
the current state and spend the remaining time optimizing the earlier approach that
performs considerably better.

4.2.6 MapReduce-based Loading for Accumulo

The facilities provided by Rdfbox for loading are inefficient (Section 5.2.1) for distributed
indices. This section describes how a more efficient distributed loader has been imple-
mented.

The loading process as described in Section 2.4.5 consists of four steps: an input RDF
graph has to be encoded, permutations of all triples have to be created, the input has
to be sorted and then written to the index backend. The encoding step needs to be
synchronized. But the other steps can be distributed.

MapReduce is a programming model for distributed computing designed to process
vast amounts of data [17] and Apache Hadoop [24] implements an open source software

38

4.2. ACCUMULO INDEX 39

ex:franz foaf:name “Franz“ .

ex:franz foaf:knows ex:lukas .

ex:lukas foaf:name “Lukas“ .

. . .

encode

101 201 416

101 200 102

102 201 596

. . .

dump

store

101 201 416

101 200 102

102 201 596

. . .

strings

ids

Figure 4.5: The dumper process. A serialised RDF graph is used as input. The graph is
encoded, that means translated from string-space into identifier-space. The
resulting string-to-identifier and identifier-to-string mappings are stored in
the string manager of Rdfbox. The encoded triples are written (dumped)
into a file.

framework for MapReduce. Accumulo runs on top of a Hadoop cluster and is designed
to work as a data source and data sink of MapReduce jobs.

Separation of the Encoding Step

In order to decouple the encoding step from the other steps, a simple Python program
has been created that uses Rdfbox to encode an input graph. It is called the dumper
because it stores the encoded graph to a file instead of executing any of the other loading
steps. Figure 4.5 illustrates this process. Rdfbox loader components are only used to
create the string and identifier mappings in the string manager. If the input is larger
than a specified size, the input is processed in chunks. This allows to encode RDF graphs
that are larger than memory. Following the dumping process, the file with the encoded
triples can be uploaded to a distributed file system (DFS) where MapReduce jobs can
use it as input.

Distributed Loading

With the encoded graph saved in the DFS, a MapReduce job can be used to implement
the remaining steps (permutation, sorting, writing to Accumulo table). Figure A.1 in
Appendix A.2.2 illustrates this process. The map steps create the permutation and the
reduce step sorts the permutations and aggregates the cardinality values. Because it
uses both, the map and the reduce steps, it is called Map/Reduce loader. The output is
written to Accumulo directly on DFS level, which is very efficient and makes this process
considerably faster than conventional loading. But it does not distribute load very well.
Because output is written sorted by index, the load is concentrated on one or two tables.
The nodes hosting these tables are under heavy load while other nodes are idle. Sorting
and aggregation are tasks that can be performed by Accumulo. Therefore an unsorted
variant has been created. This Map-only loader writes the output of the map processes

39

40 CHAPTER 4. IMPLEMENTATION

directly into Accumulo. Figure A.2 in Appendix A.2.2 describes the process. Because
each map process creates entries for each table, all tables and therefore all nodes are
busy for the entire loading time. The load is distributed evenly. The lexicographic
ordering of the entries is done automatically by Accumulo and a SummingIterator has
been configured on the tables to aggregate the cardinality values.

Section 5.2.1 compares the distributed loaders to conventional loaders and Section
5.2.2 evaluates distributed loading in detail.

4.3 General Changes to Rdfbox

At the beginning of of this work the intention has been to work towards a release of
Rdfbox. Therefore some time has been invested to make sure Rdfbox can be compiled
on different platforms. The build scripts had to be repaired because some library names
and locations were platform dependent and not all resources have been discovered for
inclusion in distribution builds.

Further another effort to extend Rdfbox with more centralized index backends [39]
has been developed in parallel on the same code base. This parallel work introduced
many additional external dependencies which, in the absence of a useful dependency
management solution, proved to be problematic for the development workflow and made
it complicated to install Rdfbox for users. In general a user does not need all backends
at the same time but uses only a single one or a small subset. Rdfbox featured a
plugin configuration that primarily allowed to cut down on compilation time of Cython
modules by choosing which modules to compile. But often static dependencies from
plugin modules had to be introduced into core Rdfbox modules. That prohibited a
successful compilation of Rdfbox without those plugins – even when they were never
used at runtime. To resolve this problem, the plugin mechanism has been extended to
enable exclusion of static dependencies at compile time depending on the current plugin
configuration and to disable unit tests for backends that were not compiled.

40

5

Evaluation

This chapter starts with the presentation of the RDF data sets that are used for evalu-
ations. Then the write and read operations with Hyperdex and Accumulo backends are
evaluated before a discussion of the limitations of this evaluation concludes the chapter.

5.1 Data Sets

A mix of synthetic and real data sets of different sizes has been used for the evaluations.
Table 5.1 lists the dataset sizes and their origin. Synthetic datasets are artificially
generated by a computer program for evaluation purposes. Real data sets are taken
from databases that are employed in real use cases.

Name Description Number of Triples

benchmark 50k Synthetic product database 50,116

benchmark 1m Synthetic product database 1,000,226

benchmark 25m Synthetic product database 25,000,557

benchmark 100m Synthetic product database 100,001,402

sp2bench Synthetic bibliography 10,000,457

dbpedia-subset Encyclopedia 43,600,000

life-science Chemicals, Drugs 52,787,000

Table 5.1: Datasets used for the evaluations. The benchmark datasets originate from
the Berlin SPARQL Benchmark [13]. The other data sets are part of the
FedBench datasets [41]. The life-science data set includes the dbpedia-subset.

5.2 Writing Triples

The required steps for loading RDF graphs are described in Section 2.4.5. They can
be separated into pre-processing steps (encoding, permuting triples and sorting) which
are performed by the Rdfbox Loader module and the effective writing of entries into the
distributed index. This sections shows that the conventional loading approach in Rdfbox
is inefficient for distributed indices and evaluates a MapReduce [17] based distributed
loading process.

42 CHAPTER 5. EVALUATION

benchmark_50K

benchmark_1m

1 10 100 1,000 10,000

356

9,822

411

8,404

176

1,232

163

1,297

73

311

50

153

Hyperdex Hyperdex MS

Accumulo (multi-table) Accumulo (single-table)

Accumulo (Map/Reduce Loading) Accumulo (Map Loading)

Loading Time [s]

Figure 5.1: Loading times with different loader variants. Hyperdex refers to the single-
space implementation and Hyperdex MS to the multi-space implementation.
To be comparable with the time measurements of conventional loaders, the
values for the distributed loaders (Map/Reduce and Map) consist of encoding
and loading times added together. All Accumulo variants perform signifi-
cantly better than Hyperdex variants and distributed variants are an order
of magnitude faster than the corresponding conventional loaders. Mind the
logarithmic scale.

5.2.1 Conventional Loading

Conventional loading refers the default loading process in Rdfbox as described in Section
2.4.5. Compared to distributed loading, all steps are performed on a single machine and
the index entries are written via the put interface. Both, the Hyperdex and the Accumulo
backend, can be used with conventional loaders.

Figure 5.1 contains a comparison of conventional loading times of all implemented
index variants (the distributed variants are listed as well). All data is taken from the
preliminary evaluations (Appendix A.1.1 and A.1.2). Conventional Accumulo variants
(multi-table and single-table) generally perform much better than Hyperdex variants.
Specifically this comparison reveals that the Hyperdex variants scale very badly with a
scaling factor between 20 and 28 (that is the loading time for benchmark 1m divided by
the loading time for benchmark 50k). Between the conventional Accumulo loaders, no
significant difference can be seen and scaling factors are between 7 and 8.

The conventional loading process achieves relatively low throughput because the put
interface is not very suitable for bulk loading of data as entries are written one at a
time. With distributed indices this causes significant network overhead for each entry.
This is apparent in Figure 5.1 where the distributed loaders can be seen to outperform
the conventional loaders by an order of magnitude. The distributed loaders use a better
interface for bulk loading.

42

5.2. WRITING TRIPLES 43

5.2.2 Distributed Loading

A MapReduce based distributed loading process has only been implemented for the
Accumulo index extension because the Hyperdex extensions performed badly, even with
small data sets (Section 5.2.1).

90%

10%

Encoding (20 MB
Buffer)

Loading (Map-only)

71%

29%
Encoding (20 MB
Buffer)

Loading (Map-only)

Figure 5.2: Encoding time compared to distributed loading time. (left) dbpedia-subset
(43.6 million triples) spends a bigger fraction of time on encoding than
(right) sp2bench dataset (10 million triples). Encoding becomes a bottle-
neck for large data sets.

The encoding is not distributed (Section 2.4.5). Therefore the encoding phase is eval-
uated separately from the other steps which are combined into the loading phase. Ritter
has shown that a major bottleneck of the overall writing process chain is the encoding
step [39]. When encoding approximately 150 million triples, 90% of the time has been
used by the encoder process. A similar bottleneck can be identified for distributed load-
ing (Figure 5.2). The larger the dataset is, the more the writing process is dominated
by encoding time.

1

10

20

30

50

0 20,000 40,000 60,000 80,000 100,000

74,529

70,292

47,498

79,292

93,381

27,235

3,416

2,111

2,623

2,185

dbpedia-subset sp2bench

Encoding Time [s]

B
u

ffe
r

S
iz

e
 [M

B
]

10,000,000 50,000,000 90,000,000
0

50,000
100,000
150,000
200,000
250,000
300,000
350,000

R² = 0.9821614688

R² = 0.9766322289

20 MB Buffer Exponential (20 MB Buffer)

50 MB Buffer Linear (50 MB Buffer)

Number of Triples

E
n

co
d

in
g

 T
im

e
 [s

]

Figure 5.3: (left) Encoding times of the dbpedia-subset (43.6 million triples) and
sp2bench (10 million triples) for different buffer sizes. Buffer size can sig-
nificantly influence encoding time. (right) Encoding time by data set size.
20 megabyte buffer performs better until approximately 50 million triples.
Then it appears to scale exponentially. From 50 to 100 million triples 50
megabyte buffer is better.

43

44 CHAPTER 5. EVALUATION

Encoding Phase

A simple program for the encoding of RDF data and the creation of the string-to-
identifier mappings has been created (Section 4.2.6). The data sets (Section 5.1) were
encoded on a computer with two 3.16 GHz CPU cores, 2 GB memory, running Ubuntu
Server 12.04 64bit Edition and a 7200 RMP hard drive.

In order to encode data sets larger than memory, the input is split into chunks that
are processed individually. The size of the chunks depends on the configuration of the
buffer size for the encoder. Setting large buffer sizes (>100 megabyte) failed to encode
data sets bigger than one million triples. The process ran out of memory. Furthermore
the buffer size influences the encoding time dramatically (Figure 5.3). A buffer size of 20
megabytes is optimal for data sets smaller than 50 million triples. Figure 5.4 shows the
relative time spent on sub-tasks of the encoding phase. The entire phase is dominated by
the encoding sub-task, that is: dictionary encoding and writing of the string-to-identifier
mappings. With a 20 megabyte buffer size the encoding sub-task is most efficient but
this effect is less obvious for smaller data sets.

50

20

1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100%

94%

99%

parsing encoding dumping other

B
u

ffe
r

S
iz

e
 [M

B
]

Figure 5.4: Relative time spent on encoding sub-tasks for the dbpedia-subset. Parsing is
the reading and interpreting of input data. Encoding includes the dictionary
encoding and the creation of the string-to-identifier mappings. Dumping
refers to the writing of encoded triples into a file for later processing. Other
is time spent by the algorithm on other tasks such as gathering of statistics
and splitting the input into chunks.

Based on the data plotted in Figure 5.3, it is appears that the encoding time scales
exponentially with data set size for a 20 megabyte buffer (R2 = 0.9766). The data for
the 50 megabyte buffer indicates linear growth (R2 = 0.9622) but based on attempts to
encode a larger data set (150 million triples – it did not finish) it has to be expected
that the 50 megabyte buffer eventually reveals exponential growth as well.

The Role of Main Memory [39] used almost the same encoding process as part of the
full loading process and managed to encode and load the same datasets in significantly

44

5.2. WRITING TRIPLES 45

less time. Encoding and loading of the FedBench [41] cross-domain data set lasted
approximately 34,000 seconds (9.4 hours). Out of which 90% is encoding time. Compare
this to the encoding of 100 million triples in this work that took approximately 316,800
seconds (88 hours). The main difference between the two encodings is the computer they
ran on. [39] had access to a machine with eight 2.933 GHz CPU cores and 72 GB main
memory. Because encoding is not parallelised (Section 2.4.5), most of the difference has
to be attributed to the difference in main memory. A hypothesis is that optimal buffer
sizes and the efficiency of the encoding process depends strongly on the system’s main
memory. Better hardware infrastructure and further evaluations are necessary to verify
this.

Loading Phase

For distributed loading a relatively small MapReduce and Accumulo cluster has been
deployed on four nodes. Each node had two 3.00 GHz CPU cores, 2 GB memory, a 7200
RPM hard drive and a Ubuntu Server 10.04 32bit Edition operating system. Hadoop
DataNodes and TaskTrackers were deployed on each node. One node has been designated
as the master node and additionally ran a NameNode and JobTracker. The other nodes
have been designated slave nodes. Accumulo has been set up in the same way. All
nodes ran a TServer and Logger process. The master node additionally ran a Garbage
Collector, Monitor and Master process. The master node also hosted the Zookeeper
server. Furthermore MapReduce was configured to run maximally one map process and
one reduce process on each slave and only one reduce process (no map processes) on the
master. This relieved the master of some workload and ensured one CPU core would be
available for Accumulo during the execution of jobs.

10,000,000 50,000,000 90,000,000
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

R² = 0.9700682973

R² = 0.9984395183

Map/Reduce Loading

Linear (Map/Reduce Loading)

Map Loading

Linear (Map Loading)

Number of Triples

L
o

a
d

in
g

 T
im

e
 [s

]

Figure 5.5: Distributed loading time by data set size for both loading variants. Loading
time grows linearly with dataset size and Map-only loading scales better than
Map/Reduce loading.

45

46 CHAPTER 5. EVALUATION

Two variants of distributed loading (Section 4.2.6) exist. Map/Reduce loading uses
map and reduce steps. The reduce step sorts the input and performs cardinality ag-
gregation. The second variant, Map-only loading, omits the reduce step and writes
entries into Accumulo after the map step. Accumulo then performs the ordering and
cardinality aggregation in a deferred manner. Figure 5.5 plots loading times for both
variants by data set size. The data suggests that Map/Reduce loading scales linearly
(R2 = 0.9985). Linear is the best fit for the Map-only variant too (R2 = 0.9701). But
neither evaluation contains enough data points to make a final statement. In general
Map-only loading scales better than Map/Reduce loading because each map task writes
entries into all Accumulo tables (Section 4.2.6 and Figure A.2). Consequently all tables
are ingesting new entries in parallel. Load from additional map tasks is spread evenly
across all Accumulo nodes. This leads to higher throughput overall. In the Map/Reduce
case, only one or two tables are ingesting data at a time because entries are written in
sorted order (Section 4.2.6 and Figure A.1). Therefore load from additional reduce tasks
is concentrated on one or two nodes that may become overwhelmed, leading to lower
throughput. One aspect has not been investigated in detail. Map-only loading places
more burden on Accumulo until all entries are eventually aggregated. This may have a
negative effect on query performance for a limited time but all queries can be answered
nevertheless.

5.3 Query Execution Times

The query performance of the Hyperdex backends has already been discussed in Section
4.1.2. Section 4.2.5 covered the comparison of the different Accumulo variants. This
section evaluates the best Accumulo variant with large data sets. The best variant is
multi-threaded query resolution combined with local (as opposed to distributed) joins.

The infrastructure for these evaluations is the same as for the distributed loading
evaluation (Section 5.2.2). Namely a setup with four Hadoop/Accumulo nodes. One
node additionally hosts master processes and the Zookeeper server. Rdfbox and the
client proxy shared a dedicated machine with two 3.16 GHz CPU cores, 2 GB memory,
7200 RMP hard drive and Ubutu Linux Server 12.04 64 bit edition operating system.
The data sets are described in Section 5.1 and the queries in Appendix A.1 and A.2.3. All
execution times in this section are averaged over five runs, unless differently indicated.

5.3.1 Preliminary Evaluation Queries

The preliminary evaluation queries were chosen because they exercise different aspects of
query resolution. PQ1 (Listing A.1) focuses on data transfer between the remote indices
and the local Rdfbox instance. The joins involved are very simple to process. The data
for PQ1 in Figure 5.6 indicates a logarithmic growth in execution time (R2 = 0.9186)
but the data is not sufficient to make a final statement. PQ2 (Listing A.2) involves
joins of a higher complexity and is intended to evaluate the query resolution algorithm.

46

5.3. QUERY EXECUTION TIMES 47

10,000 100,000 1,000,000 10,000,000 100,000,000
0.1

1

10

100

R² = 0.9997282464

R² = 0.9188554827

PQ 1 Logarithmic (PQ 1)
PQ 2 Linear (PQ 2)

Number of Triples

E
xe

cu
tio

n
 T

im
e

 [s
]

BQ 1
PQ 2

BQ 3
BQ 4

BQ 5
BQ 6

BQ 7
BQ 8

BQ 10

0.1

1

10

100

1000

1
8

.0
0

0
.6

6

1
6

.1
1

8
.4

4

7
1

.6
5

6
1

.5
2 2
2

9
.7

1

1
.5

4

5
8

.6
3

0
.7

1

5
5

.7
1

1
7

.0
8

9
.7

1

2
3

3
.4

7

6
7

3
.5

9

1
.6

8

benchmark_25m benchmark_100m

Berlin SPARQL Benchmark Queries

A
vg

. E
xe

cu
tio

n
 T

im
e

 [s
]

Figure 5.6: (left) Preliminary evaluation query performance with different data set sizes.
PQ1 and PQ2 plotted for data set sizes from 50,000 triples to 100 million
triples on a log-log scale. PQ1 starts off as the slower query but appears to
scale logarithmically. PQ2 appears to scale linearly. (right) Average query
execution times for the the benchmark 25m and benchmark 100m data sets.
The time scale is logarithmic. Missing bars indicate that the query did not
finish (typically they were aborted after several hours of execution).

With growing data set size, the execution time appears to grow linearly (Figure 5.6,
R2 = 0.9997).

5.3.2 Bernlin SPARQL Benchmark Queries

The two data sets benchmark 25m (25 million triples) and benchmark 100m (100 million
triples) are used to evaluate how queries scale with data set size. The full queries are
available in Listing A.5. The execution times are shown in Figure 5.6. BQ 7 puts a
lot of stress on the Accumulo infrastructure. It reports a scanning rate of over 40,000
entries/s and appears to reach a limits. Accumulo logs warnings about several nodes
running low on memory. It would be interesting to test this query on a more powerful
infrastructure, to determine the impact of the limited resources. BQ 8 on the other
hand exhibits an extremely low scanning rate (1000 entries/s) and failed to produce
results in meaningful time. It is not known why the low scanning rate happens. BQ 5 is
an anomaly. It executes an order of magnitude faster with 100 million triples than with
25 million triples. The measurement has repeatedly verified with no explanation found.

In general it can be observed that the queries scale less than by a factor of 4, which
is the factor the data set is scaled with. The very simple queries PQ 2 and BQ 10 scale
with a much lower factor. These observations are in line with the analysis of the scaling
behaviour conducted with the preliminary queries (Section 5.3.1).

5.3.3 Life Science Queries

The life-science data set contains 52.8 million triples and is therefore a medium-sized data
set in this evaluation. The full queries are available in Listing A.3. Figure 5.7 compares

47

48 CHAPTER 5. EVALUATION

the execution times of all life-science queries. The performance of half of the queries is in
the range where it can be used for responsive applications. LQ 3 and LQ 5 approach the
one minute mark which is clearly too much for responsive applications but still useful for
batch processing. LQ 7 did not produce a single result after several hours of execution
although it did put considerable stress on the infrastructure. Accumulo reported a
scanning rate of approximately 25,000 entries per second for the entire execution time
which indicates that the query execution engine did not find an efficient execution plan.
Further investigations show almost all data transfer happened on the pos1 index and that
the it contains many rows with identical prefix. It is likely that one of the involved joins
repeatedly transferred the same, very large range of data, indicating a very unselective
join. The time for LQ 9 is the time to retrieve just one result. Most load was distributed
on the indices pos1, pso1 and pos2 and the scanning rate fluctuated constantly between
transfer 15,000 and 20,000 entries per second. It appears to suffer from similar problems
as LQ 7.

LQ 1
LQ 2

LQ 3
LQ 4

LQ 5
LQ 6

LQ 7
LQ 8

LQ 9
LQ 10

0.1

1

10

100

1000

3.65

0.31

50.50

0.39

33.52

2.41

0.23

637.30

8.41

Life Science Queries

A
vg

. E
xe

cu
tio

n
 T

im
e

 [s
]

SQ 1 SQ 2 SQ 3 SQ 4
0.1

1

10

100

0.13

70.06

0.45

SP²Bench Queries

A
vg

. E
xe

cu
tio

n
 T

im
e

 [s
]

Figure 5.7: Average query execution times for the (left) life-science and (right) sp2bench
data sets. The time scale is logarithmic. Queries with missing bars did not
finish (typically they were aborted after several hours of execution).

5.3.4 SP2Bench Queries

The sp2bench data set contains 10 million triples which makes it a relatively small data
set in this evaluation. The queries are available in Listing A.3. SQ 1 and SQ 4 perform
well but they are rather simple queries. Both complex queries perform significantly
worse. SQ 2 brings the Accumulo infrastructure to its limits with a scanning rate over
60,000 entries/s. SQ 3 had to be aborted before it produced any results. A first analysis
suggests that for some reason it exhausted the memory on the machine that runs Rdfbox
which degrades the performance until it stalls completely. This may be due to a bug in
the execution engine but more investigations have to be conducted to verify this.

48

5.4. QUERY EXECUTION TIME ANALYSIS 49

5.4 Query Execution Time Analysis

Query execution produced mixed results. An observed effect is that individual joins
need to transfer more data when operating on larger data sets. Therefore the size of
intermediate results is growing as well – especially when the joins are unselective. Each
intermediate result creates a context which typically requires joins as well and adds even
more contexts to be processed – until it is fully resolved (Section 4.2.3). An assumption
is that this leads to an exponential increase of the number of join operations with larger
data set sizes and consequently the total size of data that has to be transferred to resolve
a query may scale exponentially as well. In conclusion, queries with many unselective
joins are expected to be very problematic with large data sets. LQ 7, LQ 9 and SQ 2
appear to be such cases.

In general it is evident that the current query resolution is not efficient enough for
complex queries with many joins. Future work may investigate the precise causes of
these inefficiencies and implement further optimisations to the query execution engine.
Unfortunately the algorithmic complexity of SPARQL queries can be very high [36] and
there is no easy solution that would avoiding this. But it has to be considered that
the transfer of data on the network interface is a bottleneck that scales directly with
the size of the data set. Therefore transferring the data to the algorithm will subject
execution times directly to the data set size. If a distributed resolution algorithm could
be created, and most of the data transfer avoided, the influence of the data set size may
be reduced considerably. If the algorithm is efficient, it can eventually outperform the
current centralized algorithm.

5.5 Evaluation Limits

Not enough data could be gathered to make any definitive statements about the be-
haviour of the presented solutions with very large data sets. Consequently one of the
goals of this thesis can not be fully evaluated. Namely whether the presented solution
can handle data sets larger than those that can be used with centralized index backends.
This has several reasons. On one hand a more powerful infrastructure is required to be
able to evaluate larger data sets. On the other hand, the encoder process and possibly
parts of the multi-threaded query resolution engine can be implemented more efficiently,
which would lower the infrastructure requirements in general.

Further, a different limitation is that these results can not be directly compared to
other implementations even though data sets and queries from established benchmarks
[13, 41] have been used. Most benchmark queries are not fully supported by the Rdf-
box query execution engine. Therefore they have been modified to avoid unsupported
features. Sometimes this may alter the query characteristics significantly.

49

6

Related Work

This chapter describes two works closely related to the Accumulo index extension. Both
of these related works are based on a distributed BigTable [14] based storage layer.
Table 6.1 contains a summary of the comparisons that are explained in more detail in
the following sections.

6.1 Rya – Scalable Triple Store implemented on Accumulo

The Rya RDF Triple Store is an RDF storage and querying layer for Accumulo [38]. It
uses three indices (SPO, OSP and POS) to save triple elements as concatenated strings
in the row field of an Accumulo key. The column field is not used but the visibility field
provides access control to triples. The value field is empty. This yields the following
data model for the case of an SPO index. OSP and POS are modelled alike:

(spo, “”, securityFlag, timestamp) → -

When querying data, triple patterns are reordered such that a maximum prefix of
bound values matches one of the three indices. Example: (a, ?b, c) would have a maxi-
mum matching prefix in the OSP index when reordered to (c, a, ?b). Because Accumulo
sorts all entries by row, sequential access to rows sharing a common prefix is very effi-
cient. This concept is very similar to Rdfbox’ sorted indices. Rya uses a special statistics

Rya CumulusRDF Rdfbox

BigTable Implementation Accumulo Cassandra Accumulo

Data Distribution DFS (HDFS) DHT DFS (HDFS)

Permutations 3 3 6

Permutation Structure none columns levels

Cardinalities triple elements none rich*

Query Support SPARQL triple patterns SPARQL subset

Table 6.1: Comparison of BigTable-like distributed RDF stores. * Section 2.4.2 describes
the rich cardinalities stored in Rdfbox.

52 CHAPTER 6. RELATED WORK

table to store cardinality values for triple elements. These statistics are are created with
periodic MapReduce jobs.

The Rya RDF store provided very valuable insight for the implementation in this
thesis. But it deviates from Hexastore-based implementations in various points:

• Rya does not use dictionary encoding on triple elements but saves the string rep-
resentations directly in Accumulo.

• It only uses three indices and not all six possible permutations. It does not use
index levels like Rdfbox or any deeper structures in indices for that matter. Each
entry is a full triple.

• According to [38] joins during query execution are not merge joins in Rya. A future
extension that uses merge joins for better performance is mentioned however. But
when using only three index permutations and no index levels, merge joins will not
be possible in all cases.

• Rya plugs into the OpenRDF Sesame [3] SAIL API to implement storage and
querying of RDF data. Therefore it delegates query execution plan generation
to SAIL. Rdfbox implements a custom query execution engine. Based on [38] it
appears that queries are primarily resolved based on triple patterns, that means
that triple pattern in a graph pattern are individually resolved and the intermediate
results then joined. This may be one reason why levels are not used in Rya. Section
4.1.1 briefly mentioned that such a resolution approach is dangerous because it
limits the options to cut down on the size of intermediate results.

• In order to optimise query execution plans, an extra table with cardinalities is
used. In Rdfbox, more fine grained statistics are used as an integral part of the
indexing scheme (the statistics contained Rdfbox’ level 1 indices are completely
missing in Rya).

6.2 CumulusRDF – RDF Storage in the Cloud

CumulusRDF [32] is another triple store based on a BigTable [14] storage solution. It
uses Apache Cassandra [33] as storage layer. Cassandra offers the same data model as
BigTable (Section 2.5.2). But it uses a distributed hash table for distributed data storage.
CumulusRDF provides a REST API for data management and allows to formulate single
triple patterns as queries but it does not provide a SPARQL endpoint. It creates the
same three indices SPO, OSP and POS as Rya (Section 6.1) and maps any query type
to the corresponding index, reordering the triple elements in the request if necessary.
Unlike Rya, it uses the row and the column key fields to create a structure reminiscent
of Rdfbox index levels. Nothing is mentioned about the timestamp field. For an SPO
entry the data format is the following:

(s, p:o, timestamp) → -

52

6.2. CUMULUSRDF – RDF STORAGE IN THE CLOUD 53

The OSP index is structured alike. Because RDF data typically has a skewed distribution
and many triples share a relatively small set of predicates, the POS index would have
very large rows (many entries with the same row field) if stored like the SPO/OSP
indices. But Cassandra does not support rows larger than memory. Therefore the POS
index has a different format:

(po, s:-, timestamp) → -

An alternative storage schema is available. It uses Cassandra specific super-columns to
save the second-level element and the regular column for the third-level element.

Compared to the Rdfbox Accumulo plugin, the following differences should be con-
sidered:

• CumulusRDF saves the RDF string representation and does not encode triple
elements using a dictionary encoding.

• Only three indices are used. Index levels are modelled in the BigTable key struc-
ture. Rdfbox uses six indices and models index levels as separate databases. Al-
though this work tried to use structured entries for modelling levels as well, that
solution was abandoned for performance reasons.

• The query API is very limited and only resolves single triple patterns. Triple
patterns can be resolved with one index lookup like in a Hexastore. But Cumulus-
RDF does not do any joins between triple patterns to resolve entire graph patterns.
Therefore it does not solve one of the hard problems of query resolution.

• CumulusRDF does not save statistics about cardinalities in the index. This may
be because it does not join intermediate results or resolve any complex queries.

53

7

Conclusions and Future Work

With RDF data sets reaching the size of billions of triples and the Semantic Web con-
tinuing to grow at a fast pace, the resources of a single machine can easily become
overwhelmed. The recent trend towards cloud computing and the increasing offer of
infrastructure as a service (IaaS) providers, have made access to clusters of commodity-
level hardware easy and economical. Therefore distributed databases have become a
viable option for many new use cases.

This thesis focused on the implementation of two distributed index extensions and a
distributed loading mechanism for the Rdfbox semantic data base management system.
Previously only centralized index structures were used by Rdfbox. Hyperdex [20] and
Apache Accumulo [22] were chosen as the distributed persistent storage layer for the
distributed index structures.

During development it became clear that Hyperdex would not be a viable solution.
An extensive investigation of the underlying problems revealed that its search API is
not suitable for the access pattern imposed by Rdfbox. Despite various optimization
attempts, satisfactory performance could not be achieved.

Accumulo however, produced more promising results. It is based on Google’s BigTable
[14] and designed for vast amounts of data. It builds on top of the proven and widely
used Hadoop [24] framework to achieve horizontal scalability and persistent storage.
Early evaluations proved that it scales much better with increasing data set sizes than
Hyperdex and its API supports the Rdfbox use case efficiently.

Some core modules in Rdfbox had to undergo extensive optimisations to enable more
efficient query resolution with distributed data stores that are inherently slow to access.
From this arose one of the main contributions of this thesis, a scalable and efficient
multi-threaded query execution engine.

Building on the new query execution engine, the Accumulo index plugin could unfold
more of its potential. A thorough evaluation produced mixed results however. For
medium sized data sets in the range of tens of millions of triples many indicators show
that the plugin can work efficiently and the scaling behaviour of the index operations is
adequate. But hard to overcome limits are imposed on the solution by the algorithmic
complexity of SPARQL query resolution [36] and the circumstance of having to fetch
data from remote locations to join them locally. This work attempted to distribute
parts of the query resolution process to the remote nodes where the data is stored
but this partially sacrificed the efficiency of the Hexastore index scheme and performed

56 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

significantly worse. Consequently an index extension scalable to very large RDF graphs
could not be contributed. But many insights have been gained into the consequences of
using a distributed index for Rdfbox. One important conclusion is that the centralized
query resolution algorithms have severe limits when used together with distributed data.
A proposition is, that parts of the query resolution have to be distributed such that they
can execute where the data is stored, as opposed to transferring the data to where the
algorithm executes.

For the purpose of writing triples into the Accumulo backend, a distributed loading
mechanism has been implemented. The encoding bottleneck, something that has been
identified by previous work as well [39], could not be solved in the scope of this thesis.
But for the purpose of populating the index backend with entries, a highly scalable
and efficient solution could be created. The distributed loader is implemented as a
MapReduce [17] job and makes use of a high speed bulk-ingest interface of Accumulo.
Evaluations have shown that this loader performs an order of magnitude better for the
distributed index than the previous loaders available in Rdfbox.

7.1 Future Work

A pressing matter is the creation of a more efficient encoding process. The current
process is a severe bottleneck in Rdfbox because its current implementation can not be
fully distributed and it appears to scale exponentially. It is the most time consuming
task when loading large data sets (Section 5.2.2) and this bottleneck affects not only
evaluations but the usefulness of a distributed index in general.

As mentioned in Section 5.5, more evaluations need be performed on a better infras-
tructure to verify or discard some of the findings and to establish the behaviour of the
Accumulo backend with truly large data sets.

The multi-threaded query execution engine described in Section 4.2.3 still suffers from
several insufficiencies. In some cases it has been observed to consume considerable
amounts of memory. This has to be optimised. Further, a bug that existed already
prior to this work has been found in the selectivity estimation. An investigation is
necessary to establish whether this affects query resolution performance significantly.
Using wrong cardinalities when evaluating a query execution plan, could have severe
effects on performance. Section 5.3.3 describes that some queries may be transferring
very large ranges of Accumulo entries repeatedly. Sophisticated local caching could
mitigate this problem and give the Accumulo index a considerable performance boost.

But all these measures may not resolve the underlying problem. In order to provide ef-
ficient query execution on RDF graphs, a different approach should be investigated. The
distributed join implementation in this work performed badly (Section 4.2.4). Neverthe-
less further investigations in that direction should be conducted. Section 5.4 discussed
the problem of centralized query resolution and proposes that a distributed approach
may overcome the encountered limitations.

56

References

[1] Daniel J. Abadi, Adam Marcus, Samuel R. Madden, and Kate Hollenbach. Scal-
able semantic web data management using vertical partitioning. In Proceedings of
the 33rd international conference on Very large data bases, pages 411–422. VLDB
Endowment, 2007.

[2] Ben Adida, Mark Birbeck, Shane McCarron, and Steven Pemberton. RDFa in
XHTML: Syntax and processing. W3C Recommendation, 2008.

[3] Aduna. openRDF.org website. http:// www.openrdf.org/ , 1997. [Online; accessed
24-March-2013].

[4] Marcelo Arenas, Alexandre Bertail, Eric Prud’hommeaux, and Juan Sequeda. A
direct mapping of relational data to RDF. W3C recommendation, World Wide Web
Consortium, 2012.

[5] Sören Auer, Sebastian Dietzold, Jens Lehmann, Sebastian Hellmann, and David
Aumueller. Triplify light-weight linked data publication from relational databases.
2009.

[6] Dave Beckett. Rasqal RDF query library. http:// librdf.org/ rasqal/ , 2003. [Online;
accessed 24-March-2013].

[7] David Beckett. The design and implementation of the redland RDF application
framework. Computer Networks, 39(5):577–588, 2002.

[8] Tim Berners-Lee and Dan Connolly. Notation3 (N3): A readable RDF syntax.
Technical report, W3C, January 2008.

[9] Tim Berners-Lee, Roy Thomas Fielding, and Larry Masinter. Uniform resource
identifier (uri): Generic syntax, September 2004.

[10] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific
American, 284(5):34–43, May 2001.

[11] Christian Bizer and Richard Cyganiak. D2r server-publishing relational databases
on the semantic web. In 5th international Semantic Web conference, page 26, 2006.

58 References

[12] Christian Bizer and Andreas Schultz. Benchmarking the performance of storage
systems that expose SPARQL endpoints. In Proc. 4 th International Workshop on
Scalable Semantic Web Knowledge Base Systems (SSWS), 2008.

[13] Christian Bizer and Andreas Schultz. The berlin SPARQL benchmark. International
Journal on Semantic Web and Information Systems (IJSWIS), 5(2):1–24, 2009.

[14] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable:
A distributed storage system for structured data. ACM Transactions on Computer
Systems (TOCS), 26(2):4, 2008.

[15] Souripriya Das, Seema Sundara, and Cyganiak Richard. R2RML: RDB to RDF
mapping language. W3C recommendation, World Wide Web Consortium, 2012.

[16] Jeff Dean and Sanjay Ghemawat. leveldb – a fast and lightweight key/value database
library by google. https:// code.google.com/ p/ leveldb/ . [Online; accessed 24-March-
2013].

[17] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[18] Leigh Dodds and Ian Davis. Linked data patterns, 2012.

[19] Orri Erling and Ivan Mikhailov. RDF support in the virtuoso DBMS. Networked
Knowledge-Networked Media, pages 7–24, 2009.

[20] Robert Escriva, Bernard Wong, and Emin Gün Sirer. HyperDex: a distributed,
searchable key-value store. ACM SIGCOMM Computer Communication Review,
42(4):25–36, 2012.

[21] The Apache Software Foundation. Apache zookeeper website. http:// zookeeper.
apache.org/ , 2010. [Online; accessed 25-March-2013].

[22] The Apache Software Foundation. Apache accumulo website. http:// accumulo.
apache.org/ , 2011. [Online; accessed 22-March-2013].

[23] The Apache Software Foundation. The wikipedia example explained, with per-
formance numbers. http:// accumulo.apache.org/ example/ wikisearch.html , 2011.
[Online; accessed 28-March-2013].

[24] The Apache Software Foundation. Apache hadoop website. http:// hadoop.apache.
org/ , 2012. [Online; accessed 24-March-2013].

[25] Ramanathan V. Guha and Dan Brickley. RDF vocabulary descrip-
tion language 1.0: RDF schema. W3C recommendation, W3C, 2004.
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.

[26] Stephen Harris and Dr. Nicholas Gibbins. 3store: Efficient bulk RDF storage. 2003.

58

References 59

[27] Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a Global Data
Space. Morgan & Claypool, 1st edition, 2011.

[28] Matthias Hert, Gerald Reif, and Harald Gall. A comparison of RDB-to-RDF map-
ping languages. In Proceedings of the 7th International Conference on Semantic
Systems (I-Semantics), Graz, Austria, September 2011.

[29] Adobe Systems Incorporated. Extensible metadata platform (XMP) website. http:
// www.adobe.com/ products/ xmp/ , 2013. [Online; accessed 24-March-2013].

[30] Graham Klyne and Jeremy J. Carroll. Resource description framework (RDF): con-
cepts and abstract syntax. W3C recommendation, World Wide Web Consortium,
2004.

[31] FAL Labs. Tokyo cabinet: a modern implementation of DBM. http:// fallabs.com/
tokyocabinet/ , 2006. [Online; accessed 24-March-2013].

[32] Günter Ladwig and Andreas Harth. CumulusRDF: Linked data management on
nested key-value stores. In Proceedings of the 7th International Workshop on Scal-
able Semantic Web Knowledge Base Systems (SSWS2011) at the 10th International
Semantic Web Conference (ISWC2011), October 2011.

[33] Avinash Lakshman and Prashant Malik. Cassandra: A structured storage system on
a P2P network. In Proceedings of the twenty-first annual symposium on Parallelism
in algorithms and architectures, pages 47–47. ACM, 2009.

[34] Frank Manola and Eric Miller. RDF primer. W3C Recommendation, 10:1–107,
2004.

[35] Akiyoshi Matono, Toshiyuki Amagasa, Masatoshi Yoshikawa, and Shunsuke Ue-
mura. A path-based relational RDF database. In Proceedings of the 16th Aus-
tralasian database conference-Volume 39, pages 95–103. Australian Computer Soci-
ety, Inc., 2005.

[36] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of
SPARQL. The Semantic Web-ISWC 2006, pages 30–43, 2006.

[37] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for RDF. W3c
recommendation, World Wide Web Consortium, 2008.

[38] Roshan Punnoose, Adina Crainiceanu, and David Rapp. Rya: a scalable RDF
triple store for the clouds. In Proceedings of the 1st International Workshop on
Cloud Intelligence, page 4. ACM, 2012.

[39] Thomas Ritter. Extending rdfbox with centralized RDF management. efficient RDF
indexing and loading. Master’s thesis, 2013.

59

60 References

[40] Jack Rusher. Rethorical device: Triple store. http:// www.w3.org/ 2001/ sw/
Europe/ events/ 20031113-storage/ positions/ rusher.html , 2003. [Online; accessed
22-March-2013].

[41] Michael Schmidt, Olaf Görlitz, Peter Haase, Günter Ladwig, Andreas Schwarte,
and Thanh Tran. Fedbench: A benchmark suite for federated semantic data query
processing. The Semantic Web–ISWC 2011, pages 585–600, 2011.

[42] Guus Schreiber and Mike Dean. OWL web ontology language reference. W3C rec-
ommendation, W3C, 2004. http://www.w3.org/TR/2004/REC-owl-ref-20040210/.

[43] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. Thrift: Scalable cross-language
services implementation. Facebook, Jan, 2007.

[44] Cathrin Weiss and Abraham Bernstein. On-disk storage techniques for semantic
web data – are b-trees always the optimal solution? In The 5th International
Workshop on Scalable Semantic Web Knowledge Base Systems, page 49, 2009.

[45] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. Hexastore: sextuple
indexing for semantic web data management. PVLDB, 1(1):1008–1019, 2008.

[46] Kevin Wilkinson. Jena property table implementation. In Second International
Workshop on Scalable Semantic Web Knowledge Base Systems. Hewlett-Packard
Development Company, L.P, Citeseer, November 2006.

60

A

Appendix

A.1 Preliminary Evaluations

For preliminary evaluations during the development phase small data (benchmark 50k
and benchmark 1m, see Table A.4) sets have been used to test for functionality and
perform preliminary performance evaluations.

The queries are of two categories to check for different aspects of the implementation.
Unselective queries like PQ1 shown in listing A.1, cover many entries in the index back-
ends and require a lot of data to be transferred between Rdfbox and index backends.
These queries can point out bottlenecks in the communication between Rdfbox and the
distributed indices. Selective queries like PQ2 shown in listing A.2 retrieve various in-
formation for a specific node. These queries primarily perform joins and can reveal
problems with the join operation. Note that :product: has to be replaced by a specific
product URI when executing.

Listing A.1: PQ1 – An unselective query focusing on data transfer

PREFIX r d f s : <h t t p : / /www. w3 . org /2000/01/ r d f−schema#>

SELECT ? s ?o WHERE {
? s r d f s : l a b e l ?o .

}
LIMIT 300

62 APPENDIX A. APPENDIX

Listing A.2: PQ2 – A selective query focusing on joins

PREFIX b : <h t t p : / /www4 . w i w i s s . fu−b e r l i n . de / b i z e r /bsbm/ v01 / v o c a b u l a r y />
PREFIX r d f s : <h t t p : / /www. w3 . org /2000/01/ r d f−schema#>
PREFIX dc : <h t t p : / / p u r l . o rg / dc / e l e m e n t s /1.1/>

SELECT ? l a b e l ?comment ? p r o d u c e r ? p r o d u c t F e a t u r e ? p r o p e r t y T e x t u a l 1
? p r o p e r t y T e x t u a l 2 ? p r o p e r t y T e x t u a l 3 ? p r o p e r t y N u m e r i c 1
? p r o p e r t y N u m e r i c 2

WHERE {
: p r o d u c t : r d f s : l a b e l ? l a b e l .
: p r o d u c t : r d f s : comment ?comment .
: p r o d u c t : b : p r o d u c e r ?p .
?p r d f s : l a b e l ? p r o d u c e r .
: p r o d u c t : dc : p u b l i s h e r ?p .
: p r o d u c t : b : p r o d u c t F e a t u r e ? f .
? f r d f s : l a b e l ? p r o d u c t F e a t u r e .
: p r o d u c t : b : p r o d u c t P r o p e r t y T e x t u a l 1 ? p r o p e r t y T e x t u a l 1 .
: p r o d u c t : b : p r o d u c t P r o p e r t y T e x t u a l 2 ? p r o p e r t y T e x t u a l 2 .
: p r o d u c t : b : p r o d u c t P r o p e r t y T e x t u a l 3 ? p r o p e r t y T e x t u a l 3 .
: p r o d u c t : b : p r o d u c t P r o p e r t y N u m e r i c 1 ? p r o p e r t y N u m e r i c 1 .
: p r o d u c t : b : p r o d u c t P r o p e r t y N u m e r i c 2 ? p r o p e r t y N u m e r i c 2 .

}

A.1.1 Preliminary Evaluation of Hyperdex Backend

Table A.1 lists the results for the preliminary evaluation of Hyperdex index backends.
Rdfbox has been running on a single machine with two 2.53 GHz CPU cores, 4 GB
Memory, a solid state drive and Ubuntu Linux 12.04 operating system. Hyperdex version
1.0.rc3-2 has been set up with two deamons (nodes) on a different machine with two 3.16
GHz CPU cores, 2 GB memory, 7200 RMP hard drive and Ubuntu Server 12.04 operating
system. Both machines were connected on a 100 MBit LAN. The values are averages
over 5 runs. For warm-cache, the queries were run ten times but measurements were
averaged over the last five runs only.

PQ1 PQ2

Index Data Set Loading cold warm cold warm

Hyperdex benchmark 50k 355.88 s 117.11 s 118.12 s 14.90 s 14.50 s

Hyperdex MS benchmark 50k 410.51 s 81.86 s 82.63 s 2.41 s 2.42 s

Hyperdex benchmark 1m 9822.23 3313.63 3309.42 579.56 581.76

Hyperdex MS benchmark 1m 8404.09 1558.27 1549.46 41.41 39.31

Table A.1: Loading and query times for Hyperdex indices. Hyperdex refers to the single
space implementation and Hyperdex MS to the multi-space implementation.
‘cold’ stands for cold-cache. ‘warm’ stands for warm-cache.

62

A.1. PRELIMINARY EVALUATIONS 63

A.1.2 Preliminary Evaluation of Accumulo Backend

Table A.2 lists the results for the preliminary evaluation of Accumulo index backends.
Rdfbox has been running on a single machine with two 2.53 GHz CPU cores, 4 GB
Memory, a solid state drive and Ubuntu Linux 12.04 operating system. The Accumulo
setup is the same as for the distributed loading evaluation described in Section 5.2.2.
The values are averages over 5 runs. For warm-cache, the queries were run ten times
but measurements were averaged over the last five runs only.

PQ1 PQ2

Setup Data Set cold warm cold warm

single-threaded, local-join benchmark 50k 3.62 s 2.76 s 0.87 s 0.71 s

multi-threaded, local-join benchmark 50k 0.64 s 0.60 s 0.37 s 0.31 s

multi-threaded, dist. join benchmark 50k 20.80 s 20.55 s - -

single-threaded, local-join benchmark 1m 4.97 s 4.54 s 1.16 s 1.09 s

multi-threaded, local-join benchmark 1m 0.93 s 0.78 s 0.70 s 0.59 s

multi-threaded, dist. join benchmark 1m 435.28 s 436.75 s - -

Table A.2: Preliminary evaluation query execution times for Accumulo indices. Single-
threaded and multi-threaded refers to the used query execution engine. ‘cold’
stands for cold-cache. ‘warm’ stands for warm-cache.

Setup Data Set Loading Time

multi-table benchmark 50k 176.09 s

single-table benchmark 50k 163.26 s

Map/Reduce Loading benchmark 50k 72.93 s

Map Loading benchmark 50k 49.93 s

multi-table benchmark 1m 1,232.22 s

single-table benchmark 1m 1,297.46 s

Map/Reduce Loading benchmark 1m 310.51 s

Map Loading benchmark 1m 152.51 s

Table A.3: Preliminary evaluation loading times for Accumulo indices. Multi-table and
single-table refer to conventional loading and the data schema used. The
schema depends on whether local or distributed join is used. Map/Reduce
and Map Loading are the distributed variants.

63

64 APPENDIX A. APPENDIX

A.2 Evaluation of the Accumulo Backend

A.2.1 Accumulo Encoding Phase Evaluation

Buffer Size

Data Set 1 MB 10 MB 20 MB 30 MB 50 MB

benchmark 100m - - - - 316,800 s*

dbpedia-subset 74,529 s 70,292 s 47,498 s 79,292 s 93,381 s

life-science - - 195,018 - -

benchmark 25m - - 14,498 - 13,789

sp2bench 27,235 s 3,416 2,111 s 2,623 2,185

Table A.4: Encoding times measured with the dumper process for different buffer sizes.
*The benchmark 100m data set measurement is approximate. The exact
time could not be measured due to a software error.

Buffer Size 1 MB 20 MB 50 MB

Parsing 120.615151 s 49.249007 s 124.386944 s

Encoding 73,948.46138 s 1,982.024661 s 92,971.977185 s

Dumping 152.057585 s 49.096949 s 153.439845 s

Other 307.866294 s 30.37178 s 131.180588 s

Total 74,529.00041 s 2,110.742397 s 93,380.984562 s

Table A.5: Time splits for different encoding sub-tasks for the dbpedia-subset data set
encoded with 1 MB, 20 MB and 50 MB buffer.

A.2.2 Accumulo Distributed Loading Phase Evaluation

Data Set Map/Reduce Loading Map-only Loading

dbpedia-subset 6,826 s 5,078 s

benchmark 100m 15,413 s 8,959 s

life-science 7,739 s 5,420 s

benchmark 25m 3,976 s 2,256 s

sp2bench 1,558 s 849 s

Table A.6: MapReducde loading times. Gathered on a cluster of 4 nodes, running a
maximum of 3 map tasks concurrently and a maximum of 4 reduce tasks
concurrently.

64

A.2. EVALUATION OF THE ACCUMULO BACKEND 65

1
0

1
 2

0
1

 4
1

6

1
0

1
 2

0
0

 1
0

2

1
0

2
 2

0
1

 5
9

6

.
.
.

In
p

u
t

S
p

li
t

1
0

1
 2

0
1

 4
1

6

1
0

1
 2

0
0

 1
0

2

1
0

2
 2

0
1

 5
9

6

M
a

p

s
p

o
0

 1
0

1
,

1

p
o

s
0

 2
0

1
,

1

o
p

s
0

 4
1

6
,

1

..
.

s
p

o
1

 1
0

1
2

0
1

,
1

p
o

s
1

 2
0

1
4

1
6

,
1

o
p

s
1

 4
1

6
2

0
1

,
1

..
.

s
p

o
2

 1
0

1
2

0
1

4
1

6
,
1

p
o

s
2

 2
0

1
4

1
6

1
0

1
,
1

o
p

s
2

 4
1

6
2

0
1

1
0

1
,
1

..
.

s
p

o
0

 1
0

1
,

1

p
o

s
0

 2
0

0
,

1

o
p

s
0

 1
0

2
,

1

..
.

s
p

o
1

 1
0

1
2

0
0

,
1

p
o

s
1

 2
0

0
1

0
2

,
1

o
p

s
1

 1
0

2
2

0
0

,
1

..
.

s
p

o
2

 1
0

1
2

0
0

1
0

2
,
1

p
o

s
2

 2
0

0
1

0
2

1
0

1
,
1

o
p

s
2

 1
0

2
2

0
0

1
0

1
,
1

..
.

s
p

o
0

 1
0

2
,

1

p
o

s
0

 2
0

1
,

1

o
p

s
0

 5
9

6
,

1

..
.

s
p

o
1

 1
0

2
2

0
1

,
1

p
o

s
1

 2
0

1
5

9
6

,
1

o
p

s
1

 5
9

6
2

0
1

,
1

..
.

s
p

o
2

 1
0

2
2

0
1

5
9

6
,
1

p
o

s
2

 2
0

1
5

9
6

1
0

2
,
1

o
p

s
2

 5
9

6
2

0
1

1
0

2
,
1

..
.

S
h

u
ff

le
/S

o
rt

p
o

s
0

 2
0

1
,
1

p
o

s
0

 2
0

1
,
1

o
p

s
0

 1
0

2
,
1

o
p

s
0

 4
1

6
,
1

o
p

s
0

 5
9

6
,
1

o
p

s
1

 1
0

2
2

0
0
,

1

o
p

s
1

 4
1

6
2

0
1
,

1

o
p

s
1

 5
9

6
2

0
1
,

1

o
p

s
2

 1
0

2
2

0
0

1
0

1
,

1

o
p

s
2

 4
1

6
2

0
1

1
0

1
,

1

o
p

s
2

 5
9

6
2

0
1

1
0

2
,

1

p
o

s
0

 2
0

0
,
1

p
o

s
1

 2
0

0
1

0
2
,

1

p
o

s
1

 2
0

1
4

1
6
,

1

p
o

s
1

 2
0

1
5

9
6
,

1

p
o

s
2

 2
0

0
1

0
2

1
0

1
,

1

p
o

s
2

 2
0

1
4

1
6

1
0

1
,

1

p
o

s
2

 2
0

1
5

9
6

1
0

2
,

1

.
.
.

.
.
.

s
p

o
0

 1
0

1
,
1

s
p

o
0

 1
0

1
,
1

s
p

o
0

 1
0

2
,
1

s
p

o
1

 1
0

1
2

0
0
,

1

s
p

o
1

 1
0

1
2

0
1
,

1

s
p

o
1

 1
0

2
2

0
1
,

1

s
p

o
2

 1
0

1
2

0
0

1
0

2
,

1

s
p

o
2

 1
0

1
2

0
1

4
1

6
,

1

s
p

o
2

 1
0

2
2

0
1

5
9

6
,

1

R
e

d
u

c
e

o
p

s
0

 1
0

2
,

1

o
p

s
0

 4
1

6
,

1

o
p

s
0

 5
9

6
,

1

o
p

s
1

 1
0

2
2

0
0

,
1

o
p

s
1

 4
1

6
2

0
1

,
1

o
p

s
1

 5
9

6
2

0
1

,
1

o
p

s
2

 1
0

2
2

0
0

1
0

1
,
1

o
p

s
2

 4
1

6
2

0
1

1
0

1
,
1

o
p

s
2

 5
9

6
2

0
1

1
0

2
,
1

p
o

s
0

 2
0

0
,

1

p
o

s
1

 2
0

0
1

0
2

,
1

p
o

s
1

 2
0

1
4

1
6

,
1

p
o

s
1

 2
0

1
5

9
6

,
1

p
o

s
2

 2
0

0
1

0
2

1
0

1
,
1

p
o

s
2

 2
0

1
4

1
6

1
0

1
,
1

p
o

s
2

 2
0

1
5

9
6

1
0

2
,
1

.
.
.

.
.
.

s
p

o
0

 1
0

2
,

1

s
p

o
1

 1
0

1
2

0
0

,
1

s
p

o
1

 1
0

1
2

0
1

,
1

s
p

o
1

 1
0

2
2

0
1

,
1

s
p

o
2

 1
0

1
2

0
0

1
0

2
,
1

s
p

o
2

 1
0

1
2

0
1

4
1

6
,
1

s
p

o
2

 1
0

2
2

0
1

5
9

6
,
1

p
o

s
0

 2
0

1
,

2

s
p

o
0

 1
0

1
,

2

O
u

tp
u

t

o
p

s
0

o
p

s
1

o
p

s
2

p
o

s
0

p
o

s
1

p
o

s
2

s
p

o
0

s
p

o
1

s
p

o
2

.
.
.

.
.
.

F
ig

u
re

A
.1

:
M

a
p
R

ed
u

ce
A

cc
u

m
u

lo
L

o
ad

er
P

ro
ce

ss
.

T
h

e
in

p
u
t

fi
le

is
sp

li
t

in
to

ch
u

n
k
s

at
li
n

e
b

ou
n
d

ar
ie

s.
T

h
e

si
ze

of
th

e
in

d
iv

id
u

a
l

sp
li

ts
ca

n
b

e
co

n
fi

g
u

re
d

.
E

ac
h

ch
u

n
k

is
se

n
t

to
a

m
ap

p
ro

ce
ss

th
at

cr
ea

te
s

al
l

p
er

m
u

ta
ti

on
s

fo
r

al
l

in
d

ic
es

.
T

h
e

M
a
p

R
ed

u
ce

fr
am

ew
or

k
th

en
so

rt
s

p
er

m
u

ta
ti

on
s

b
y

in
d

ex
an

d
ke

y
an

d
fo

rw
ar

d
s

th
em

in
-o

rd
er

to
re

d
u

ce
r

p
ro

ce
ss

es
th

a
t

co
u

n
t

th
e

ca
rd

in
al

it
ie

s.
T

h
e

re
d

u
ce

r
ou

tp
u
t

is
w

ri
tt

en
d

ir
ec

tl
y

in
to

th
e

co
rr

es
p

on
d

in
g

A
cc

u
m

u
lo

ta
b
le

on
D

F
S

le
v
el

.

65

66 APPENDIX A. APPENDIX

1
0

1
 2

0
1

 4
1

6

1
0

1
 2

0
0

 1
0

2

1
0

2
 2

0
1

 5
9

6

.
.
.

In
p

u
t

S
p

li
t

1
0

1
 2

0
1

 4
1

6

1
0

1
 2

0
0

 1
0

2

1
0

2
 2

0
1

 5
9

6

M
a

p

s
p

o
0

 1
0

1
,

1

p
o

s
0

 2
0

1
,

1

o
p

s
0

 4
1

6
,

1

..
.

s
p

o
1

 1
0

1
2

0
1

,
1

p
o

s
1

 2
0

1
4

1
6

,
1

o
p

s
1

 4
1

6
2

0
1

,
1

..
.

s
p

o
2

 1
0

1
2

0
1

4
1

6
,
1

p
o

s
2

 2
0

1
4

1
6

1
0

1
,
1

o
p

s
2

 4
1

6
2

0
1

1
0

1
,
1

..
.

s
p

o
0

 1
0

1
,

1

p
o

s
0

 2
0

0
,

1

o
p

s
0

 1
0

2
,

1

..
.

s
p

o
1

 1
0

1
2

0
0

,
1

p
o

s
1

 2
0

0
1

0
2

,
1

o
p

s
1

 1
0

2
2

0
0

,
1

..
.

s
p

o
2

 1
0

1
2

0
0

1
0

2
,
1

p
o

s
2

 2
0

0
1

0
2

1
0

1
,
1

o
p

s
2

 1
0

2
2

0
0

1
0

1
,
1

..
.

s
p

o
0

 1
0

2
,

1

p
o

s
0

 2
0

1
,

1

o
p

s
0

 5
9

6
,

1

..
.

s
p

o
1

 1
0

2
2

0
1

,
1

p
o

s
1

 2
0

1
5

9
6

,
1

o
p

s
1

 5
9

6
2

0
1

,
1

..
.

s
p

o
2

 1
0

2
2

0
1

5
9

6
,
1

p
o

s
2

 2
0

1
5

9
6

1
0

2
,
1

o
p

s
2

 5
9

6
2

0
1

1
0

2
,
1

..
.

O
u

tp
u

t

o
p

s
0

o
p

s
1

o
p

s
2

p
o

s
0

p
o

s
1

p
o

s
2

s
p

o
0

s
p

o
1

s
p

o
2

.
.
.

.
.
.

F
ig

u
re

A
.2

:
M

ap
R

ed
u

ce
M

a
p

-O
n

ly
A

cc
u

m
u

lo
L

oa
d

er
P

ro
ce

ss
.

T
h

e
in

p
u

t
fi

le
is

sp
li

t
in

to
ch

u
n

k
s

at
li

n
e

b
ou

n
d

a
ri

es
.

T
h

e
si

ze
of

th
e

in
d

iv
id

u
al

sp
li

ts
ca

n
b

e
co

n
fi

gu
re

d
.

E
ac

h
ch

u
n

k
is

se
n
t

to
a

m
a
p

p
ro

ce
ss

th
a
t

cr
ea

te
s

al
l

p
er

m
u

ta
ti

o
n

s
fo

r
a
ll

in
d

ic
es

.
N

o
so

rt
in

g
an

d
co

u
n
ti

n
g

ta
ke

s
p

la
ce

.
T

h
e

m
ap

ou
tp

u
t

is
w

ri
tt

en
d

ir
ec

tl
y

in
to

th
e

co
rr

es
p

on
d

in
g

A
cc

u
m

u
lo

ta
b

le
on

D
F

S
le

v
el

.
O

rd
er

in
g

an
d

ca
rd

in
al

it
y

co
u

n
ti

n
g

is
d

on
e

b
y

A
cc

u
m

u
lo

.

66

A.2. EVALUATION OF THE ACCUMULO BACKEND 67

A.2.3 Accumulo Query Execution Time Evaluation

The following listings present the queries used for the evaluation of Query Execution
times. Then the query execution setting is described and the raw results are listed.

Life Science Queries

Life science queries are based off the FedBench [41] life science queries adapted to only
use features that the Rdfbox query execution engine can process. They are the same
queries as used by [39] for the most part.

Listing A.3: Life Science Queries

PREFIX r d f : <ht tp : //www.w3 . org /1999/02/22− rd f−syntax−ns#>
PREFIX owl : <ht tp : //www.w3 . org /2002/07/ owl#>
PREFIX drugbank : <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ drugbank / r e s o u r c e / drugbank/>
PREFIX drugbank−drugs : <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ drugbank / r e s o u r c e / drugs/>
PREFIX drugbank−c a t e go r y : <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ drugbank / r e s o u r c e /

d rugca t ego r y/>
PREFIX dbpedia−owl : <ht tp : // dbped ia . org / on to l ogy/>
PREFIX dbpedia−owl−drug : <ht tp : // dbped ia . org / on to l ogy / drug/>
PREFIX kegg : <ht tp : // b i o 2 r d f . o rg / ns /kegg#>
PREFIX ch eb i : <ht tp : // b i o 2 r d f . o rg / ns / b i o 2 r d f#>
PREFIX p u r l : <ht tp : // p u r l . o rg /dc/ e l ement s /1.1/>
PREFIX b i o 2 r d f : <ht tp : // b i o 2 r d f . o rg / ns / b i o 2 r d f#>
PREFIX d i s e a s e : <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ d i seasome / r e s o u r c e / d i s e a s e s />

#LQ 1
SELECT ? drug ?melt WHERE {

? drug drugbank : me l t i n gPo i n t ?mel t .
}

#LQ 2
SELECT ? p r e d i c a t e ? o b j e c t WHERE {

drugbank−drugs : DB00201 ? p r e d i c a t e ? o b j e c t .
}

#LQ 3
SELECT ?Drug ? IntDrug ? I n t E f f e c t WHERE {

?Drug r d f : t ype dbpedia−owl : Drug .
? y owl : sameAs ?Drug .
? I n t drugbank : i n t e r a c t i o nD r u g 1 ?y .
? I n t drugbank : i n t e r a c t i o nD r u g 2 ? IntDrug .
? I n t drugbank : t e x t ? I n t E f f e c t .

}

#LQ 4
SELECT ? drugDesc ? cpd ? equa t i on WHERE {

? drug drugbank : d rugCategory drugbank−c a t e go r y : c a t h a r t i c s .
? drug drugbank : keggCompoundId ? cpd .
? drug drugbank : d e s c r i p t i o n ? drugDesc .
? enzyme kegg : xSub s t r a t e ? cpd .
? enzyme r d f : t ype kegg : Enzyme .
? r e a c t i o n kegg : xEnzyme ?enzyme .
? r e a c t i o n kegg : equa t i on ? equa t i on .

}

#LQ5
SELECT ? drug ? keggUr l ? cheb i Image WHERE {

67

68 APPENDIX A. APPENDIX

? drug r d f : t ype drugbank : d rugs .
? drug drugbank : keggCompoundId ? keggDrug .
? keggDrug b i o 2 r d f : u r l ? keggUr l .
? drug drugbank : gener icName ?drugBankName .
? cheb iDrug p u r l : t i t l e ?drugBankName .
? cheb iDrug cheb i : image ? cheb i Image .

}

#LQ6
SELECT ? drug ? t i t l e WHERE {

? drug drugbank : d rugCategory drugbank−c a t e go r y : m i c r o n u t r i e n t .
? drug drugbank : casReg i s t r yNumber ? i d .
? keggDrug r d f : t ype kegg : Drug .
? keggDrug b i o 2 r d f : xRef ? i d .
? keggDrug p u r l : t i t l e ? t i t l e .

}

#LQ7
SELECT ? drug ?enzyme ? r e a c t i o n Where {

? drug1 drugbank : d rugCategory drugbank−c a t e go r y : a n t i b i o t i c s .
? drug2 drugbank−c a t e go r y : d rugCategory drugbank−c a t e go r y : a n t i v i r a l A g e n t s .
? drug3 drugbank−c a t e go r y : d rugCategory drugbank−c a t e go r y :

a n t i h y p e r t e n s i v eA g e n t s .
? I 1 drugbank : i n t e r a c t i o nD r u g 2 ? drug1 .
? I 1 drugbank : i n t e r a c t i o nD r u g 1 ? drug .
? I 2 drugbank : i n t e r a c t i o nD r u g 2 ? drug2 .
? I 2 drugbank : i n t e r a c t i o nD r u g 1 ? drug .
? I 3 drugbank : i n t e r a c t i o nD r u g 2 ? drug3 .
? I 3 drugbank : i n t e r a c t i o nD r u g 1 ? drug .
? drug owl : sameAs ? drug5 .
? drug5 r d f : t ype dbpedia−owl : Drug .
? drug drugbank : keggCompoundId ? cpd .
? enzyme kegg : xSubs t r a t e> ? cpd .
? enzyme r d f : t ype kegg : Enzyme> .
? r e a c t i o n kegg : xEnzyme> ?enzyme .
? r e a c t i o n kegg : equat ion> ? equa t i on .

}
LIMIT 1

#LQ8
SELECT ? drug WHERE {

? drug1 drugbank : p o s s i b l eD i s e a s eT a r g e t d i s e a s e :302 .
? drug2 drugbank : p o s s i b l eD i s e a s eT a r g e t d i s e a s e : 53 .
? drug3 drugbank : p o s s i b l eD i s e a s eT a r g e t d i s e a s e : 59 .
? drug4 drugbank : p o s s i b l eD i s e a s eT a r g e t d i s e a s e :105 .
? I 1 drugbank : i n t e r a c t i o nD r u g 2 ? drug1 .
? I 1 drugbank : i n t e r a c t i o nD r u g 1 ? drug .
? I 2 drugbank : i n t e r a c t i o nD r u g 2 ? drug2 .
? I 2 drugbank : i n t e r a c t i o nD r u g 1 ? drug .
? I 3 drugbank : i n t e r a c t i o nD r u g 2 ? drug3 .
? I 3 drugbank : i n t e r a c t i o nD r u g 1 ? drug .
? I 4 drugbank : i n t e r a c t i o nD r u g 2 ? drug4 .
? I 4 drugbank : i n t e r a c t i o nD r u g 1 ? drug .
? drug drugbank : casReg i s t r yNumber ? i d .
? keggDrug r d f : t ype kegg : Drug .
? keggDrug b i o 2 r d f : xRef ? i d .
? keggDrug dc : t i t l e ? t i t l e .

}

#LQ9
SELECT ?d ? drug5 ? cpd ?enzyme ? equa t i on WHERE {

? drug1 drugbank : p o s s i b l eD i s e a s eT a r g e t d i s e a s e :261 .

68

A.2. EVALUATION OF THE ACCUMULO BACKEND 69

? I 1 drugbank : i n t e r a c t i o nD r u g 2 ? drug1 .
? I 1 drugbank : i n t e r a c t i o nD r u g 1 ? drug .
? drug drugbank : p o s s i b l eD i s e a s eT a r g e t ?d .
? drug owl : sameAs ? drug5 .
? drug5 r d f : t ype dbpedia−owl : Drug .
? drug drugbank : keggCompoundId ? cpd .
? enzyme kegg : xSub s t r a t e ? cpd .
? enzyme r d f : t ype kegg : Enzyme .
? r e a c t i o n kegg : xEnzyme ?enzyme .
? r e a c t i o n kegg : equa t i on ? equa t i on .

}
LIMIT 1

#LQ10
SELECT ? drug5 ? drug6
WHERE {

? drug1 drugbank : p o s s i b l eD i s e a s eT a r g e t d i s e a s e :319 .
? drug1 drugbank : p o s s i b l eD i s e a s eT a r g e t d i s e a s e :270 .
? I 1 drugbank : i n t e r a c t i o nD r u g 1 ? drug1 .
? I 1 drugbank : i n t e r a c t i o nD r u g 2 ? drug .
? drug1 owl : sameAs ? drug5 .
? drug owl : sameAs ? drug6 .

}
LIMIT 10000

Query Avg. Execution Time Standard Error

LQ 1 3.65 s 0.04

LQ 2 0.31 s 0.01

LQ 3 50.59 s 3.45

LQ 4 0.39 s 0.00

LQ 5 33.52 s 0.14

LQ 6 2.41 s 0.14

LQ 7 N/A N/A

LQ 8 0.23 s 0.04

LQ 9 637.30 s N/A

LQ 10 8.41 s 0.08

Table A.7: Query execution times for life-science data set. Average is calculated over 5
passes. LQ 7 did not finish and was aborted after several hours. LQ 9 is a
single measurement of the time required to return a single result (LIMIT 1).

SP2Bench Queries

SP2Bench queries originate from FedBench [41] and are adapted to only use features,
which the Rdfbox query execution engine can process. They are the same queries as
used by [39].

Listing A.4: SP2Bench Queries

PREFIX bench : <ht tp : // l o c a l h o s t / vo c abu l a r y /bench/>
PREFIX dc : <ht tp : // p u r l . o rg /dc/ e l ement s /1.1/>

69

70 APPENDIX A. APPENDIX

PREFIX dcterms : <ht tp : // p u r l . o rg /dc/ terms/>
PREFIX f o a f : <ht tp : // xmlns . com/ f o a f /0.1/>
PREFIX pe r son : <ht tp : // l o c a l h o s t / p e r s on s/>
PREFIX r d f : <ht tp : //www.w3 . org /1999/02/22− rd f−syntax−ns#>
PREFIX r d f s : <ht tp : //www.w3 . org /2000/01/ rd f−schema#>
PREFIX swrc : <ht tp : // swrc . ontoware . org / on to l ogy#>
PREFIX xsd : <ht tp : //www.w3 . org /2001/XMLSchema#>

#SQ 1
SELECT ? y r
WHERE {

? j o u r n a l r d f : t ype bench : J ou r n a l .
? j o u r n a l d c t i t l e ” Jou r na l 1 (1940) ” .
? j o u r n a l dcterms : i s s u e d ? y r

}

#SQ 2
SELECT ? i n p r o c ? autho r ? b o o k t i t l e ? t i t l e ? proc ? ee ? page ? u r l ? y r
WHERE {

? i n p r o c r d f : t ype bench : I n p r o c e e d i n g s .
? i n p r o c dc : c r e a t o r ? autho r .
? i n p r o c bench : b o o k t i t l e ? b o o k t i t l e .
? i n p r o c dc : t i t l e ? t i t l e .
? i n p r o c dcterms : pa r tOf ? proc .
? i n p r o c r d f s : s e eA l s o ? ee .
? i n p r o c swrc : pages ? page .
? i n p r o c f o a f : homepage ? u r l .
? i n p r o c dcterms : i s s u e d ? y r

}
LIMIT 100

#SQ 3
SELECT DISTINCT ? pe r son ?name
WHERE {

? a r t i c l e r d f : t ype bench : A r t i c l e .
? a r t i c l e dc : c r e a t o r ? pe r son .
? i n p r o c r d f : t ype bench : I n p r o c e e d i n g s .
? i n p r o c dc : c r e a t o r ? pe r son .
? pe r son f o a f : name ?name

}

#SQ 4
SELECT ? s u b j e c t ? p r e d i c a t e
WHERE {

? s u b j e c t ? p r e d i c a t e pe r son : Pau l E rdoe s
}
LIMIT 1000

Query Avg. Execution Time Standard Error

SQ 1 0.29 s 0.00

SQ 2 70.06 s 3.37

SQ 3 N/A s N/A

SQ 4 0.45 s 0.00

Table A.8: Query execution times for sp2bench data set. Average is calculated over 5
passes. SQ 3 did not finish and was aborted after several hours of execution.

70

A.2. EVALUATION OF THE ACCUMULO BACKEND 71

Berlin SPARQL Benchmark Queries

These queries originate from the Berlin SPARQL Benchmark (BSBM) [12] but are
adapted to only use features, that the Rdfbox query execution engine can process.

Listing A.5: Berlin SPARQL Benchmark Queries

PREFIX bsbm− i n s t : <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ b i z e r /bsbm/v01/ i n s t a n c e s />
PREFIX bsbm : <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ b i z e r /bsbm/v01/ vo cabu l a r y/>
PREFIX r d f s : <ht tp : //www.w3 . org /2000/01/ rd f−schema#>
PREFIX r d f : <ht tp : //www.w3 . org /1999/02/22− rd f−syntax−ns#>
PREFIX r e v : <ht tp : // p u r l . o rg / s t u f f / r e v#>
PREFIX f o a f : <ht tp : // xmlns . com/ f o a f /0.1/>
PREFIX dc : <ht tp : // p u r l . o rg /dc/ e l ement s /1.1/>

#BQ 1
SELECT DISTINCT ? p roduc t ? l a b e l
WHERE {

? p roduc t r d f s : l a b e l ? l a b e l .
? p roduc t r d f : t ype <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ b i z e r /bsbm/v01/ i n s t a n c e s /

ProductType13> .
? p roduc t bsbm : p roduc tFea tu r e <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ b i z e r /bsbm/v01/

i n s t a n c e s / ProductFeature148> .
? p roduc t bsbm : p roduc tFea tu r e <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ b i z e r /bsbm/v01/

i n s t a n c e s / ProductFeature580> .
? p roduc t bsbm : p roduc tPrope r tyNumer i c1 ? va l u e1 .

LIMIT 10

#Query 2 i s PQ 2

#BQ 3
SELECT ? p roduc t ? l a b e l ?p1 ?p3
WHERE {

? p roduc t r d f s : l a b e l ? l a b e l .
? p roduc t r d f : t ype <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ b i z e r /bsbm/v01/ i n s t a n c e s /

ProductType9> .
? p roduc t bsbm : p roduc tFea tu r e <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ b i z e r /bsbm/

v01/ i n s t a n c e s / ProductFeature353> .
? p roduc t bsbm : p roduc tPrope r tyNumer i c1 ?p1 .
? p roduc t bsbm : p roduc tPrope r tyNumer i c3 ?p3 .

}
LIMIT 10

#BQ 4
SELECT ? p roduc t ? l a b e l ?p1
WHERE {

? p roduc t r d f s : l a b e l ? l a b e l .
? p roduc t r d f : t ype <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ b i z e r /bsbm/v01/ i n s t a n c e s

/ProductType51> .
? p roduc t bsbm : p roduc tFea tu r e <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ b i z e r /bsbm/

v01/ i n s t a n c e s / ProductFeature241> .
? p roduc t bsbm : p roduc tFea tu r e <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ b i z e r /

bsbm/v01/ i n s t a n c e s / ProductFeature2269> .
? p roduc t bsbm : p roduc tPrope r tyNumer i c1 ?p1 .

}
LIMIT 20

#BQ 5
SELECT DISTINCT ? p roduc t ? p roduc tLabe l ? o r i gP r o p e r t y 1 ? o r i gP r o p e r t y 2 ? s imPrope r t y1

? s imPrope r t y2
WHERE {

71

72 APPENDIX A. APPENDIX

? p roduc t r d f s : l a b e l ? p r oduc tLabe l .
<ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ b i z e r /bsbm/v01/ i n s t a n c e s /

dataFromProducer492 /Product24166> r d f : t ype ? p rodtype .
? p roduc t r d f : t ype ? p rodtype .
<ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ b i z e r /bsbm/v01/ i n s t a n c e s /

dataFromProducer492 /Product24166> bsbm : p roduc tFea tu r e ? p rodFea tu r e .
? p roduc t bsbm : p roduc tFea tu r e ? p rodFea tu r e .
<ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ b i z e r /bsbm/v01/ i n s t a n c e s /

dataFromProducer492 /Product24166> bsbm : p roduc tPrope r tyNumer i c1 ?
o r i gP r o p e r t y 1 .

? p roduc t bsbm : p roduc tPrope r tyNumer i c1 ? s imPrope r t y1 .
<ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ b i z e r /bsbm/v01/ i n s t a n c e s /

dataFromProducer492 /Product24166> bsbm : p roduc tPrope r tyNumer i c2 ?
o r i gP r o p e r t y 2 .

? p roduc t bsbm : p roduc tPrope r tyNumer i c2 ? s imPrope r t y2 .
}
LIMIT 5

#BQ 6
SELECT ? p roduc t ? l a b e l
WHERE {

? p roduc t r d f s : l a b e l ? l a b e l .
? p roduc t r d f : t ype bsbm : Product .

}
LIMIT 2000

#BQ 7
SELECT ? p roduc tLabe l ? o f f e r ? p r i c e ? vendor ? v e n d o rT i t l e ? r e v i ew ? r e v T i t l e

? r e v i ew e r ? revName ? r a t i n g 1 ? r a t i n g 2
WHERE {

<ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ b i z e r /bsbm/v01/ i n s t a n c e s /
dataFromProducer324 /Product15766> r d f s : l a b e l ? p r oduc tLabe l .

? o f f e r bsbm : p r i c e ? p r i c e .
? o f f e r bsbm : vendor ? vendor .
? vendor r d f s : l a b e l ? v e n d o rT i t l e .
? vendor bsbm : coun t r y <ht tp : // downlode . org / r d f / i s o −3166/ c o u n t r i e s#DE> .

? o f f e r dc : p u b l i s h e r ? vendor .
? o f f e r bsbm : va l i dTo ? date .

}

#BQ 8
SELECT ? t i t l e ? t e x t ? r ev i ewDate ? r e v i ew e r ? rev iewerName ? r a t i n g 1 ? r a t i n g 2 ? r a t i n g 3

? r a t i n g 4
WHERE {

? r e v i ew bsbm : r e v i ewFo r <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ b i z e r /bsbm/v01/
i n s t a n c e s / dataFromProducer352 /Product17091> .

? r e v i ew dc : t i t l e ? t i t l e .
? r e v i ew r e v : t e x t ? t e x t .
? r e v i ew bsbm : rev i ewDate ? rev i ewDate .
? r e v i ew r e v : r e v i ew e r ? r e v i ew e r .
? r e v i ew e r f o a f : name ? rev iewerName .

}
LIMIT 20

#Query 9 can not be a p p l i e d to Rdfbox

#BQ 10
SELECT DISTINCT ? o f f e r ? p r i c e ? d e l i v e r yDa y s ? date
WHERE {

? o f f e r bsbm : p roduc t <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ b i z e r /bsbm/v01/
i n s t a n c e s / dataFromProducer572 /Product28147> .

? o f f e r bsbm : vendor ? vendor .

72

A.2. EVALUATION OF THE ACCUMULO BACKEND 73

? o f f e r dc : p u b l i s h e r ? vendor .
? vendor bsbm : coun t r y <ht tp : // downlode . org / r d f / i s o −3166/ c o u n t r i e s#US> .
? o f f e r bsbm : d e l i v e r yDa y s ? d e l i v e r yDa y s .
? o f f e r bsbm : p r i c e ? p r i c e .
? o f f e r bsbm : va l i dTo ? date .

}
LIMIT 10

benchmark 25m benchmark 100m

Query Avg. Time StdErr Avg. Time StdErr

BQ 1 18.00 s 0.39 58.63 s 0.23

PQ 2 0.66 s 0.06 0.71 s 0.02

BQ 3 16.11 s 0.06 58.63 s 0.18

BQ 4 8.44 s 0.02 17.08 s 0.09

BQ 5 71.65 s 0.13 9.71 s 0.40

BQ 6 61.52 s 0.14 233.47 s 0.24

BQ 7 229.71 s 1.22 673.59 s 1.37

BQ 8 N/A s N/A N/A s N/A

BQ 10 1.54 s 0.10 1.68 s 0.03

Table A.9: Query execution times for the benchmark 25m and benchmark 100m data
sets. Average is calculated over 5 passes. PQ 2 is Query 2 from BSBM.,
Query 9 is not applicable to Rdfbox.

73

List of Figures

2.1 A small RDF graph consisting of two statements. One statement is “the
resource daniel knows the resource bob”. This is a statement connecting
two nodes. The other statement is “the resource daniel has a name with
value ‘Daniel’ ”. This is a statement connecting a node to a literal. 4

2.2 An abstract view of a Hexastore Index. The index is structured into three
levels (in [44] they are referred to as Type 1-3). The depicted entries (a1,
b11, c111, etc.) represent identifiers of triple elements. Each first-level
entry points to an ordered set of second-level entries and each second-
level entry points to an ordered list of third-level entries. 7

2.3 An abstract view of the Rdfbox index structure. The brackets indicate
how the individual sets and lists in Figure 2.2 are mapped into a single
ordered set on each level. 11

2.4 A layered view of the most important Rdfbox components. Not all In-
dex/Level components and data stores are shown. In reality 15 to 18 data
stores are used, three levels for each of the six index permutations. As
described in Section 2.3.2, some levels can be shared – resulting in only
15 data stores for indices. 13

2.5 A UML activity diagram of the query execution engine’s control flow. It
splits into several control flows at the fork after Join on Variable. All
control flows are resolved recursively in a single thread and each control
flow can create even more recursive control flows until all variables are
resolved. 15

2.6 A search operation in a three dimensional hyperspace. The axes represent
the attributes first name, last name and phone number. A search with
specified first name = “John” and last name = “Smith” has been issued.
Each specified search attribute forms a plane that intersect its axis in one
point. Both planes intersect on a line on which all search results (phone
numbers of John Smiths) can be found. The boxes indicate the regions
that the intersection falls into. A region maps to a server. Graphic by [20]. 17

3.1 Linking Open Data cloud diagram as of September 2011, by Richard
Cyganiak and Anja Jentzsch. http:// lod-cloud.net/ 21

76 List of Figures

4.1 Comparison of query execution times for Hyperdex backends. Hyperdex
refers to the optimized single space index and Hyperdex MS refers to
the multi space index. PQ1 and PQ2 are names of the queries. The
queries and the setup are described in Appendix A.1 and the data sets
in Section 5.1. The multi-space version performs significantly better than
the optimized single-space version. Mind the logarithmic scale. 28

4.2 A UML component diagram of the components related to the client proxy.
Thrift-generated components are marked accordingly. AccumuloClient is
used by the index and cursor implementations to issue RPCs. It extends
the service interface defined in the abstract IDL and contains additional
methods to communicate via the Thrift protocol. The thrift.Protocol in-
terface is in reality a protocol stack that can be configured in various
manners (e.g. framed, buffered or binary format). It is the bridge be-
tween Python and Java programming languages. The communication is
handled by components in the Thrift library (not shown). Accumulo-
Client.IFace is the service interface and Client in AccumuloClientProxy
is the RPC handler, which implements the Accumulo client wrapper. The
Connector interface is used by the RPC handler to communicate with the
Accumulo instance. 31

4.3 A UML activity diagram illustrating the multi-threaded query engine’s
control flow. A producer-consumer pattern is used to distribute work.
The main thread feeds the worker threads with contexts to work on. A
context primarily contains the graph pattern that needs to be resolved and
a set of variable bindings. Worker threads produce two kinds of output.
When a context is fully resolved (all variables have a binding), the context
is put in a result queue. The main thread consumes contexts from this
queue and translated the variable bindings to their string representation to
yield a final result. The second output of the worker threads are identifiers
of bindings for joined variables. The main thread uses the identifiers to
create new contexts for later execution. 33

4.4 Preliminary evaluation query execution times for different Accumulo index
implementations. Single-threaded and multi-threaded refer to the query
execution engine variant used. The times are measured with (left) the
benchmark 50k data set and (right) the benchmark 1m data set. Multi-
threaded, local-join performs best, distributed joins perform very badly
(PQ2 evaluations with distributed joins were aborted after surpassing one
hour of execution time). Mind the logarithmic scales. 37

4.5 The dumper process. A serialised RDF graph is used as input. The
graph is encoded, that means translated from string-space into identifier-
space. The resulting string-to-identifier and identifier-to-string mappings
are stored in the string manager of Rdfbox. The encoded triples are
written (dumped) into a file. 39

76

List of Figures 77

5.1 Loading times with different loader variants. Hyperdex refers to the single-
space implementation and Hyperdex MS to the multi-space implementa-
tion. To be comparable with the time measurements of conventional load-
ers, the values for the distributed loaders (Map/Reduce and Map) consist
of encoding and loading times added together. All Accumulo variants
perform significantly better than Hyperdex variants and distributed vari-
ants are an order of magnitude faster than the corresponding conventional
loaders. Mind the logarithmic scale. 42

5.2 Encoding time compared to distributed loading time. (left) dbpedia-
subset (43.6 million triples) spends a bigger fraction of time on encoding
than (right) sp2bench dataset (10 million triples). Encoding becomes a
bottleneck for large data sets. 43

5.3 (left) Encoding times of the dbpedia-subset (43.6 million triples) and
sp2bench (10 million triples) for different buffer sizes. Buffer size can
significantly influence encoding time. (right) Encoding time by data set
size. 20 megabyte buffer performs better until approximately 50 million
triples. Then it appears to scale exponentially. From 50 to 100 million
triples 50 megabyte buffer is better. 43

5.4 Relative time spent on encoding sub-tasks for the dbpedia-subset. Pars-
ing is the reading and interpreting of input data. Encoding includes the
dictionary encoding and the creation of the string-to-identifier mappings.
Dumping refers to the writing of encoded triples into a file for later pro-
cessing. Other is time spent by the algorithm on other tasks such as
gathering of statistics and splitting the input into chunks. 44

5.5 Distributed loading time by data set size for both loading variants. Load-
ing time grows linearly with dataset size and Map-only loading scales
better than Map/Reduce loading. 45

5.6 (left) Preliminary evaluation query performance with different data set
sizes. PQ1 and PQ2 plotted for data set sizes from 50,000 triples to 100
million triples on a log-log scale. PQ1 starts off as the slower query but
appears to scale logarithmically. PQ2 appears to scale linearly. (right)
Average query execution times for the the benchmark 25m and bench-
mark 100m data sets. The time scale is logarithmic. Missing bars in-
dicate that the query did not finish (typically they were aborted after
several hours of execution). 47

5.7 Average query execution times for the (left) life-science and (right) sp2bench
data sets. The time scale is logarithmic. Queries with missing bars did
not finish (typically they were aborted after several hours of execution). . 48

77

78 List of Figures

A.1 MapReduce Accumulo Loader Process. The input file is split into chunks
at line boundaries. The size of the individual splits can be configured.
Each chunk is sent to a map process that creates all permutations for all
indices. The MapReduce framework then sorts permutations by index and
key and forwards them in-order to reducer processes that count the car-
dinalities. The reducer output is written directly into the corresponding
Accumulo table on DFS level. 65

A.2 MapReduce Map-Only Accumulo Loader Process. The input file is split
into chunks at line boundaries. The size of the individual splits can be
configured. Each chunk is sent to a map process that creates all permu-
tations for all indices. No sorting and counting takes place. The map
output is written directly into the corresponding Accumulo table on DFS
level. Ordering and cardinality counting is done by Accumulo. 66

78

List of Tables

2.1 Results of the simple SPARQL query in listing 2.1. 5

2.2 There are 8 possible triple patterns. For each pattern at least two indices
exist that contain the result set. The level column indicates the index
level or type that needs to be queried. Index alternatives in parentheses
indicate that the other alternative may be preferable due to element or-
der. The preference between alternatives on the first level depends on the
desired order of the result set. 8

2.3 A partial view of a mapping from string-space to id-space. Strings are
encoded to fixed size identifiers (the size is three bytes in this example). . 9

5.1 Datasets used for the evaluations. The benchmark datasets originate from
the Berlin SPARQL Benchmark [13]. The other data sets are part of the
FedBench datasets [41]. The life-science data set includes the dbpedia-
subset. 41

6.1 Comparison of BigTable-like distributed RDF stores. * Section 2.4.2 de-
scribes the rich cardinalities stored in Rdfbox. 51

A.1 Loading and query times for Hyperdex indices. Hyperdex refers to the
single space implementation and Hyperdex MS to the multi-space imple-
mentation. ‘cold’ stands for cold-cache. ‘warm’ stands for warm-cache. . . 62

A.2 Preliminary evaluation query execution times for Accumulo indices. Single-
threaded and multi-threaded refers to the used query execution engine.
‘cold’ stands for cold-cache. ‘warm’ stands for warm-cache. 63

A.3 Preliminary evaluation loading times for Accumulo indices. Multi-table
and single-table refer to conventional loading and the data schema used.
The schema depends on whether local or distributed join is used. Map/Re-
duce and Map Loading are the distributed variants. 63

A.4 Encoding times measured with the dumper process for different buffer
sizes. *The benchmark 100m data set measurement is approximate. The
exact time could not be measured due to a software error. 64

A.5 Time splits for different encoding sub-tasks for the dbpedia-subset data
set encoded with 1 MB, 20 MB and 50 MB buffer. 64

80 List of Tables

A.6 MapReducde loading times. Gathered on a cluster of 4 nodes, running a
maximum of 3 map tasks concurrently and a maximum of 4 reduce tasks
concurrently. 64

A.7 Query execution times for life-science data set. Average is calculated over
5 passes. LQ 7 did not finish and was aborted after several hours. LQ
9 is a single measurement of the time required to return a single result
(LIMIT 1). 69

A.8 Query execution times for sp2bench data set. Average is calculated over 5
passes. SQ 3 did not finish and was aborted after several hours of execution. 70

A.9 Query execution times for the benchmark 25m and benchmark 100m data
sets. Average is calculated over 5 passes. PQ 2 is Query 2 from BSBM.,
Query 9 is not applicable to Rdfbox. 73

80

List of Listings

2.1 A Simple SPARQL Query . 5
2.2 A Sample RDF Graph in N3 Notation . 5
2.3 Unencoded T1 . 12
2.4 Encoded T1 and index entry keys . 12
2.5 SPARQL Query with exemplary variable cardinalities 14

A.1 PQ1 – An unselective query focusing on data transfer 61
A.2 PQ2 – A selective query focusing on joins 62
A.3 Life Science Queries . 67
A.4 SP2Bench Queries . 69
A.5 Berlin SPARQL Benchmark Queries . 71

