
Master Thesis
April 1, 2013

Developer Context
Model Visualization

Helping Developers to Understand Code by
Presenting an Interactive Model of the

Developer’s Context

Christoph Bräunlich
of Zürich, Switzerland (07-18-722)

supervised by
Prof. Dr. Thomas Fritz

software evolution & architecture lab

Master Thesis

Developer Context
Model Visualization

Helping Developers to Understand Code by
Presenting an Interactive Model of the

Developer’s Context

Christoph Bräunlich

software evolution & architecture lab

Master Thesis

Author: Christoph Bräunlich, braeunlich@gmail.com

URL:

Project period: 1.10.2012 - 1.4.2012

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

First of all I would like to thank my advisor, Thomas Fritz for his support, advice and for answer-
ing my many questions very patiently. I would also like to thank the S.E.A.L.-team, especially
Harald Gall for letting me attend various events, which gave me new insights to the work on
this thesis and for software engineering research in general. I am also thankful for the valuable
feedback and answers I always received promptly from the group members.

Special thanks to my girlfriend Can Liu who has been very patient and supportive during the
last six months.

Abstract

Software developers spend a significant amount of their time interpreting and navigating through
code. During this process developers build an implicit model of the code structure relevant to the
current task they are working on. In an exploratory study we conducted, 68% of the navigation
steps of developers working on bug fixing tasks, were revisits. Based on the results of the study,
we developed an approach that automatically captures a developer’s interaction with code ele-
ments in an IDE and presents the relevant code structure graphically to the developer. To evaluate
how relevant the elements in the generated diagram are, we simulated the developer’s interac-
tion with the IDE that we recorded during the exploratory study. We compared the elements in
the diagram after each simulated step of interaction with a chart of relevant code elements that
the study subjects drew after completing their tasks. The results show that in the simulations
the elements which the study subject revisited were visible in the generated diagram before the
re-visitation happened. From this finding, we can imply that the prototype has a potential to save
time in software change tasks. Finally, we propose improvements to the system based on our
evaluation.

Zusammenfassung

Software Entwickler setzen einen signifikanten Teil ihrer Zeit zum Interpretieren und Navigieren
durch Quellcode ein. Für ihre aktuelle Aufgabe bilden die Entwickler ein implizites Model der
Code-Struktur. In einer eigenen explorativen Studie mit Entwicklern, die an Fehlerbehebungsauf-
gaben arbeiteten, führeten 68% aller Schritte zu Code-Elementen, die der Entwickler bereits in-
spiziert hatte. Basierend auf dieser Studie entwickelten wir einen Prototypen, der automatisch
die Interaktion zwischen Entwickler und Entwicklungsumgebung registriert und die also rele-
vant eingestuften Code Elemente graphisch darstellt. Zur Untersuchung der Frage, ob die als
relevant kategorisierten Code-Elemente für Entwickler effektiv als relevant angesehen werden,
simulierten wir die Interaktionen, die während der Studie aufgezeichnet wurden. Wir verglichen
die die Elemente im automatisch erstellten Diagramm mit Elementen aus den Diagrammen, die
die Studienteilnehmer zeichneten, nachdem sie ihre Aufgabe erfüllt hatten. Die Resultate der
Evaluation zeigten, dass die Code Elemente, die mehrfach besucht wurden in der Simulation vor
dem Wiederholten Besuch angezeigt. Aus diesem Befund lässt sich ein Potenzial ableiten, dass
mit diesem Ansatz in Aufgaben für Programmänerungen Effizienzsteigerungen erziehlt wer-
den können. Die Arbeit schliesst mit einer Analyse des entwickelten Prototypen und schlägt
Verbesserungen vor.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Contribution . 2
1.3 Structure of the Thesis . 2

2 Related Work 3
2.1 Program Comprehension . 3
2.2 Code Recommendation . 4
2.3 Navigation Support . 4

3 Exploratory Study on Developer Navigation 7
3.1 Study Design . 7

3.1.1 Research Questions . 7
3.1.2 Study Methods . 8
3.1.3 Subjects . 10

3.2 Study Results . 10
3.3 Contributions of the Author . 12

4 Approach 15
4.1 Heuristics and Static Code Analysis . 15
4.2 Visualization . 16
4.3 Proactive Navigation Support . 17

5 Implementation 19
5.1 Components . 19

5.1.1 Interaction Monitor and Eclipse integration 20
5.1.2 Abstraction of the Captured Java Element Model 21
5.1.3 Rule Engine . 22
5.1.4 Structural Dependency Analyzer . 24

5.2 Visualization . 25
5.2.1 Initial Design Requirements . 25
5.2.2 Improvements to the Prototype . 28

5.3 Technical Aids for the Implementation . 30
5.3.1 Evaluation Support . 30
5.3.2 Testing . 31

viii Contents

6 Evaluation 33
6.1 Method . 33
6.2 Revisits . 34
6.3 Relevancy . 34
6.4 Visualization and Interactivity . 37

7 Discussion 39
7.1 Threats to Validity . 39
7.2 Future Work . 39

7.2.1 Considerations for the Layout of a Future Prototype 40

8 Conclusion 43

Contents ix

List of Figures
3.1 The visualized navigation model of subject F1 shows that the developer revisited

some code elements like MindMapMapModel.save, MindMapMapModel.saveInternal
or ControllerAdapter several times. 9

3.2 Developer models drawn by subjects J1 and F2 after completing their tasks. The
developer model of J1 uses a UML class diagram-like notation whereas F2 uses a
more abstract graphic. Both models explicitly refer to code elements. 10

4.1 This example of the visualization for the proposed approach shows a chart similar
to a UML class diagram with inheritance and composition. It also shows a call
graph around the currently selected method (save(): boolean). 17

5.1 Scheme of the prototype’s implementation created in collaboration with and drawn
by Thomas Fritz: A rule engine receives events from an IDE interaction monitor
and structural code element dependencies. The rule engine then applies a set of
heuristics to generate a model in which each code element is associated with a
relevancy value. The elements with a relevancy value high enough are displayed
in a visualization plug-in. 19

5.2 The Prototype showing three classes with methods and structural dependencies. . 26
5.3 The Prototype showing the Visualized Model in Full Screen and the Associated

Code in the Corner . 28
5.4 The second iteration of the prototype showing detected inheritance between classes

and a call chain of the currently selected element. 29

6.1 Precision and Recall for the Subjects Working on the Freemind-Task (Relevant Ele-
ments: Classes of Developer Models, Retrieved Elements: Classes Categorized as
Relevant by the Plug-in) . 35

6.2 Precision and Recall for the Subjects Working on the JPass-Task (Relevant Elements:
Classes of Developer Models, Retrieved Elements: Classes Categorized as Relevant
by the Plug-in) . 36

6.3 Precision and Recall for the Subjects Working on the Rachota-Task (Relevant Ele-
ments: Classes of Developer Models, Retrieved Elements: Classes Categorized as
Relevant by the Plug-in) . 37

7.1 The layout of a possible future prototype when displayed in a maximized window:
the call chain may contain more than direct callers and callees, there is a specific
place left empty so that the source code editor does not overlap the diagram and
the size of code elements depends on the relevancy value of the code element. . . . 41

List of Tables
3.1 Sample of the transcript for subject F1 . 8
3.2 Code elements extracted from the developer models of subjects J1 and F2. Even

though F2 refers to a call chain, no methods or fields could be extracted from F2’s
developer model. 10

3.3 This table from the report [FSB12] presents a summary of the descriptive statistics
collected on the developer’s background and from the exploratory study (pro =
professional, grad = graduatestudent, fac = faculty, X = success, � = failure,
Cl = classes, Me = methods, Deb = debugging). 11

x Contents

6.1 This table presents a summary of the results collected from the evaluation of the
prototype, compared with the results of the exploratory study (pro = professional,
grad = graduatestudent, fac = faculty, Cl = classes, Me = methods, D =
RevisitsV isibleInDiagram). 34

List of Listings
5.1 Issuing an Event on EventBus . 20
5.2 Listening to Events forwarded by the EventBus . 21
5.3 Definition of the DSL as nested Java Interfaces . 22
5.4 The same definition in EBNF . 23
5.5 Mylar’s degree-of-interest model implemented in the DSL 24
5.6 Example for simulated developer code navigation 30

Chapter 1

Introduction

1.1 Motivation
Nowadays, software development is usually followed by a long phase of maintenance, which
lasts through the whole life time of a software. During this phase, developers spend a significant
amount of time navigating through unfamiliar code [KMCA06, SLVA10]. The code is often not
structured according to the context of a maintenance task. Instead, it is modularized according to
other structures that are defined during the development phase. Although there exist attempts to
organize code with the notion of aspects according to specific tasks [KLM+97]. But usually, de-
velopers have to depend on their own exploration to understand the code. They often start with
searching for relevant code elements and explore the dependencies of them. With the discovered
information about the relevant code, developers build a implicit model to remember what was
found [KMCA06, MKRČ05]. This whole process might take more time than actually completing
the maintenance task [KM05]. Developers might also fail in finding the relevant code if they do
not follow a methodical approach [RCM04].

Some researchers have addressed these issues and have built tools to help developers focus
on a given task. Code Bubbles [BRZ+10] lets developers organize the code by placing bubbles on
a large virtual canvas. A bubble may contain any task-related information such as the code of a
method or relevant documentation. Code Bubbles also allows developers to save and share the set
of bubbles related to a task so that other developers may work on it directly instead of building up
a new workspace. Relo [SKM06] follows a different approach to help developers explore the code
structure. It displays an interactive UML class diagram, which shows relevant code elements and
hide irrelevant ones. Mylyn’s approach was proved to be very successful and became a part of the
Eclipse IDE. It tracks the developer’s interaction with the code and automatically learns which el-
ements are important to the developer. The code elements categorized as relevant are highlighted
in the Eclipse Package Explorer, whereas irrelevant code elements are hidden. In Mylyn, the gen-
erated model can be assigned to a task in an issue-tracking system and shared in a team.

In this thesis we propose a new approach that combines and extends several existing ap-
proaches. An exploratory study was conducted, where several developers were asked to work
on a software-change task and draw a visual representation of their mental model. We tran-
scribed the developers’ navigation and analyzed the collected data. Based on this study we built
a prototype that captures the developer’s navigation within the code and automatically assigns
a relevancy-value to each code element in this navigation model. Combined with a static code
analysis, it generates an interactive UML class digram-like chart, which visualizes the structure
and relation of the most relevant elements. The chart is designed to be similar to the charts drawn

2 Chapter 1. Introduction

by the participants in the study. Developers are also able to see the source code assigned to the di-
agram by clicking on code elements in the diagram. The approach was implemented as a Eclipse
plug-in and can thus be embedded in existing development environments.

1.2 Research Contribution
The main contribution of this thesis is an approach to automatically analyze the developer’s in-
teraction with an IDE and generate a graphical representation of a context specific model. It helps
developers build an implicit model of the code elements that are relevant to a specific task. We
also show how to extend the presented prototype to have a more constant chart over time and
how to add additional structural information to the diagram. In particular we wanted to address
the following questions:

1. How can a system help developers to find relevant code elements and their relations in
unfamiliar source code for a specific task?

2. How can this relevant code and structure be visualized to support the developer to build an
implicit model?

1.3 Structure of the Thesis
In this thesis, we start with presenting an exploratory study on developers’ code navigation,
which leads to several conclusions. They are used to design the approach to help developers
comprehend the source code faster while navigating. we continue with demonstrating a proto-
typical IDE plug-in that implements the approach. Afterwards we describe the evaluation of the
prototype based on the data gathered in a study. In the end, we discuss how the prototype could
be extended in future work.

Chapter 2

Related Work

The related work can be divided into three categories. First, studies that investigate how develop-
ers find the information they need to work with code and how they build and implicit model of
this information (Program Comprehension). Secondly tools, often based on the program compre-
hension studies, that find the relevant code elements for the developers to help them understand
the code faster (Code Recommendation). The last category lists tools and methods that help de-
velopers navigate through the code by presenting them the the relevant code elements structured
in a graphical representation (Navigation Support).

2.1 Program Comprehension
In two similar studies [KAM05,KMCA06], Andrew Ko et al. described an exploratory study with
which the tried to explore what software developers in a software change task do, until they
understand the code well enough to finally perform the change in the software. Ko et al. laid
a focus on how developers decide what is relevant for them, what types of relevant information
they seek, how they keep track of the gathered information and what developers do differently
than other developers for the same task. They fond out that developers spend in average 35% of
the time navigating through code that was relevant for the task and developers use 46% of their
time going through irrelevant code. They also show that the purpose for most re-visitations of
code was juxtaposing code fragments.

In an other study [LGHM07], ten novice developers and three expert developers were given
three hours to understand the design of an open source project and to find problems in the design.
The study shows that the expert developers were able to comprehend the root cause of the design
problems while the novice developers could only explain the symptoms. During the analysis, the
experts did not read more relevant methods than the novices but they also did not waste a lot of
time on irrelevant methods.

In [LM10], the authors define the term Reachability Question and explain it as follows:

A Reachability Question is a search across feasible paths through a program for target
statements matching search criteria.

In their paper, the authors showed that in three studies developers had to ask reachability ques-
tions very often (e.g. in one study 9 times a day). Typical questions were about which code
elements are impacted by a specific change of source code. The authors further state that avail-
able tools that present call graphs to the developers are not able to show all affected code elements
and tools for that purpose have yet to be developed.

4 Chapter 2. Related Work

One Year later, the same authors present such a tool called Reacher in [LM11]. This tool
presents an interactive call chain graphically to the developer. With a statement matcher inte-
grated into the tool is it possible to find elements affected by a change that can not be seen with
traditional call graph tools, often seen as part of IDEs. In a study the authors show that Reacher
helps developers exploring code more easily and more effective.

A study about the costs and benefits of UML in software maintenance [DAB08] shows that
UML helps developers to understand code better and if used is beneficial for the functional cor-
rectness of changes. However to generate and continuously update the documentation in form of
UML diagrams makes the development more time-consuming.

2.2 Code Recommendation
The Eclipse plug-in Mylyn [KM05] solved the problem of information overload with the addition
of the notion task to the IDE. With help of the user interaction it creates Degree-of-Interest model
for the current task with three simple rules that are applied while the developer navigates through
code. The generated Degree-of-Interest model can then be used to filter irrelevant files and adds
a degree-of-interest-value to code elements. In 2006 Mylyn has been extended with an ability to
associate the Degree-of-Interest values of code elements to tasks [KM06] and now allows devel-
opers to switch between tasks. Mylyn is well integrated into Eclipse and other task management
tools like Bugzilla [bug]. With help of these tools, the task can be shared between developers.

Sando [SDRF12] is a framework for experimenting and quick integration of several information-
retrieval approaches to find relevant code elements to a given search term. The Sando search tool
was developed on top of the framework to demonstrate the approach. Based on the same study
as used in this thesis, the authors showed that a following tool CoMoGen [FSB12] that uses a
similar but refined approach performs better than Sando and that both Sando and CoMoGen yield
significantly better results than a normal text search.

2.3 Navigation Support
Relo [SKM06] is a tool to help developers to understand parts of large code bases with help of an
interactive UML-like diagram that shows more information when the developer clicks on buttons
inside the diagram. In this tool the mental model of the developer is rebuilt by the developer him-
self within the diagram. It is also possible to show the diagram after code navigation in the source
code editor, the diagram then shows all previous navigation or the manually filtered navigation.
The filtering can be done with the help of a designated dialog before showing the diagram. The
tool includes an embedded text editor below the visualized code elements which allows the de-
veloper to use the tool as a single point of interaction with the IDE. Since the tool only shows
the part of the code base which was explored by the developer, it reduces the cognitive overload.
Relo was turned into a commercial product under the name Architexa [arc].

The authors of Code Bubbles [BRZ+10], propose a new user interface for IDEs that displays
methods separated in a small window which they call bubble on the screen. Developers can nav-
igate with the help of these bubbles and open new related methods in new bubbles. With that
method, the implicit model that developers build in their heads can be represented on the display
and additionally annotated. Code bubbles also has advanced built in debugging support and can
automatically display a call graph between to methods. It also allows users to add notes and add
flags (icons) to bubbles. To overcome the problem of not having enough screen real estate, the

2.3 Navigation Support 5

code bubbles are arranged on a large virtual space which can be panned by the developer. A set
of bubbles can be saved in a session and shared within a group of developers by emailing a xml
session file.

Stacksplorer [KKD+11] supports developers comprehending source code by presenting a list
of methods that call a currently selected method and another list of methods that are being called
by the currently selected method. By clicking on the methods the tool allows the developer to
interactively browse the automatically computed call graph. In a study, the authors of the paper
show that tasks in a large open-source project could be completed significantly faster with the use
of Stacksplorer.

Concern Graphs [RM02] is a representation of code elements that belong to a specific con-
cern of a developer in a project. In their paper, the authors present the Feature Exploration and
Analysis Tool (FEAT) [RM03], which shows the concern graph to the developer in a tree structure.
In three case studies, the authors show that concern graphs allow developers to focus on critical
parts of the program, that the concern can be displayed even if it is scattered across the whole
program and that concern graph scale up to large systems.

Chapter 3

Exploratory Study on Developer
Navigation

Thomas Fritz and David Shepherd, Industrial Software Engineering Researcher at ABB’s Software
Engineering Research Group, conducted an exploratory study [FSB12] in which they observed 12
software developers completing a change task in one of three open source projects [fre], [jpa],
[rac]. While the developers investigated the code, their screen was recorded. The resulting screen
recordings were later used to analyze the steps the developers performed in order to complete the
change task. Out of these transcriptions a Navigation Model was created for each developer. The
developers were also asked to draw a diagram of their mental model of the code that is relevant
for the task. For this models we will use the term Developer Model later in this thesis. After the
developers completed their change task, the code changes were analyzed and all changed code
elements were listed in a Patch Model.

The author of this thesis performed most of the transcription and a big part of the data analy-
sis. All transcripts as well as developer and context models collected during the study are avail-
able at [stua].

3.1 Study Design

3.1.1 Research Questions
With the study, the authors wanted to get a better understanding of code context models and
based on what insights software developers build these models i.e. which parts of the code are
relevant for a developer and should therefore be part of the model. The following questions that
are intended to be answered by the study are relevant to this thesis:

• What is a developer’s mental model of the source code after completing a given task?

• Which code elements are relevant in a certain context of a change task?

• Can developers keep the relevant elements in mind?

• How do people navigate? And how often do they use the structural navigation aids pro-
vided by an IDE?

• Is it more effective to navigate using the structural navigation aids from an IDE?

8 Chapter 3. Exploratory Study on Developer Navigation

3.1.2 Study Methods
Three open source projects were chosen which should show recent development activity and sys-
tems that are big enough so that developers can not understand the entire system in a systematic
way. The projects should also have a open bug reporting system with a task that can be com-
pleted within less than an hour and they should all use Java as programing language. Specifically
the following projects were chosen: FreeMind [fre], a mind-mapping software, Java Password-
Safe [jpa], a software to store and encrypt passwords, [rac], a software to timetrack projects. 10 of
the 12 developers completed their tasks successfully.

Transcribing the Developer’s Navigation

To have a similar development environment, all developers connected themselves to a remote
desktop with Eclipse already setup for the task. The screens were recorded during the work on
the task so that all steps could later be analyzed. In order to do so we systematically analyzed the
resulting videos and transcribed all relevant steps into a table for each developer. All transcrip-
tions together with the other study artifacts can be found on-line [stub].

The transcriptions were done by the author of this thesis and cross validated by Professor
Thomas Fritz. The resulting transcripts are used in both the referenced paper [FSB12] and in this
thesis, which were partly written at the same time.

Action Time Element Name Type of Element Containing Type Type of Relation Category Input Method View Notes

· · ·
Open Type 07:51 ControllerAdapter.SaveAction Class ControllerAdapter Definition Navigation Keyboard Java Editor Ctrl+Shift+T, "free*.S*Action"

Scan 07:51 ControllerAdapter.SaveAction Class ControllerAdapter Definition Navigation Mouse Java Editor

Scan 08:03 FreeMind_integration Project - - Navigation Mouse Package Explorer

View Task 08:07 Task Mylin Task - - View Mouse Mylyn Window

Open Type 08:16 ControllerAdapter.SaveAction Class ControllerAdapter - Navigation Mouse Java Editor Click on Java Editor Tab

· · ·
Quick Hierarchy 09:46 save(File) Method MapAdapter Definition View Keyboard Java Editor Ctrl+T

Show Method 09:54 save Method MindMapMapModel Definition Navigation Mouse Java Editor Using Quick Hierarchy

Show Method 09:58 saveInternal Method MindMapMapModel Reference Navigation Mouse Java Editor Ctrl+Click on Reference

· · ·

Table 3.1: Sample of the transcript for subject F1

Since the subjects were using the Eclipse IDE we tried to use Eclipse’s notation whenever
possible in the transcript. If there existed an action that we wanted to transcribe named in Eclipse,
we used this name. For instance we used "Open Type" whenever a Class or Interface was opened
in a Java Editor because of the Open Type Dialog in Eclipse.

Navigation Model

To get a better understanding about how the developers navigated through the code we extracted
all navigation actions from the transcripts (a sample of the transcript for subject 9 is shown in
Table 3.1). In this analysis, non-navigation actions were omitted e.g. the fourth in Table 3.1 -
Viewing the task which the developer had to perform in Eclipse’s Mylyn window.

We categorized all navigation steps in Structured ones and Unstructured ones. Structured Nav-
igation Steps include navigation aids like call hierarchy, type hierarchy and find references, debugging
steps: step into, step return and stacktrace clicks. Finally Structured Navigation Steps also include
navigation steps aided by extended editor functions like quick documentation, open declaration and
quick fix (which was only used in the FreeMind project to open the parent class). We categorized
the following steps as Unstructured navigation steps: expanding and opening items in the package
explorer, performing Java and File searches, finding string in a file and using the outline view to

3.1 Study Design 9

navigate as well as navigation forward and backwards in Eclipse’s navigation history, open editor
tabs and scanning code.

A visualized version of subject F1’s navigation model (Figure 3.1) shows how the devel-
oper often returned to the same elements. For example the methods MindMapMapModel.save and
MindMapMapModel.saveInternal stood in the focus of the developer in several navigation steps.
With only 40.0% steps that navigated to a previously inspected element, Subject F1 performed
less revisits than the average developer that completed the task successfully (in average 68.0% of
all navigation steps are revisits). We choose to show this picture because the graph is compact.
Some of the graphs are more scattered and would require several pages to be displayed while
other graphs are to simple to show. Most of the revisits happened during the initial phase of
comprehending the code.

Figure 3.1: The visualized navigation model of subject F1 shows that the developer revisited some code el-
ements like MindMapMapModel.save, MindMapMapModel.saveInternal or ControllerAdapter several times.

Developer Model

After the developers completed their task, in a questionnaire they were asked what information
they needed to understand in order to complete their tasks. More specifically they were asked
which software artifacts and source code elements were relevant to them and which relation be-
tween those code elements had an impact on their understanding of the context of their tasks.
The developers then were asked to draw their mental models using pen and paper or a computer
drawing tool as a diagram in any form (See two examples in Figure 3.2).

Some of these diagrams were drawn similar to a UML class diagram, others were more ab-
stract (like the picture in on the right in Figure 3.2). To make these models comparable, we listed
all code elements from the diagrams. In this process some of the information certainly got lost but
since the models were different in therms of the chosen abstractness, it seemed like a valid method
to equalize the models. To eliminate ambiguities and errors in the drawings, we compared the
extracted elements with the source code.

Of the 12 diagrams only 7 contain methods. The average number of classes in the diagrams is

10 Chapter 3. Exploratory Study on Developer Navigation

Figure 3.2: Developer models drawn by subjects J1 and F2 after completing their tasks. The developer
model of J1 uses a UML class diagram-like notation whereas F2 uses a more abstract graphic. Both models
explicitly refer to code elements.

Classes Subject J1 Classes Subject F2

org.pwsafe.passwordsafeswt.PasswordSafeJFace freemind.modes.ControllerAdapter

org.pwsafe.passwordsafeswt.action.LockDbAction freemind.modes.mindmapmode.EncryptedMindMapNode

org.pwsafe.passwordsafeswt.action.UnlockDbAction freemind.modes.ControllerAdapter.SaveAction

org.pwsafe.passwordsafej.PasswordDialog java.io.IOException

Methods Subject J1 Subject F2 has no classes in his model

org.pwsafe.passwordsafeswt.PasswordSafeJFace.updateViewers() : void

org.pwsafe.passwordsafeswt.PasswordSafeJFace.setPwsFile(PwsFile) : void

org.pwsafe.passwordsafeswt.PasswordSafeJFace.setLocked(boolean) : void

org.pwsafe.passwordsafeswt.action.UnlockDbAction.performUnlock() : boolean

org.pwsafe.passwordsafeswt.action.LockDbAction.performLock() : void

Fields Subject J1 Subject F2 has no fields in his model

org.pwsafe.passwordsafeswt.PasswordSafeJFace.treeViewer : TreeViewer

Table 3.2: Code elements extracted from the developer models of subjects J1 and F2. Even though F2
refers to a call chain, no methods or fields could be extracted from F2’s developer model.

4.1 and the average number of methods in the diagrams that contain methods is 3.86.

3.1.3 Subjects
An overview of the study participants can be seen in Table 3.3. The 12 subjects were recruited
from the industry (six professional developers) and from academia (three graduate students and
three faculty members). All participants had at least 8 years of experience in software develop-
ment with an average of 11.83 years with an average of 51.84 minutes.

3.2 Study Results
10 of the 12 study participants completed the task successfully. The successful developers com-
pleted their tasks in a time between 8.6 and 100.6 minutes. In average the developers needed 258.3
(stdev = 159.7) navigation and debugging steps for the task of which 27.83 (stdev = 20.66) were

3.2 Study Results 11

steps aided by structural navigation tools from the Eclipse IDE (e.g. follow type hierarchy) and 88.7
(stdev = 88.24) debugging steps (like step into). Of the 258.3 steps they needed in average 174.2
(stdev = 130.08) steps navigated the developer to a code element that was already previously
visited (listed as Revisits in Table 3.3).

Project ID Job Years Time & Dev. Model Patch Model Code Nav. Model Navigation Steps
Pr.Exp. Success Cl Cl Me Cl Me All Structured Revisits Deb

Freemind F1 pro 10 39.7minX 4 16 25 37 42 116 101 47 26
F2 pro 11 22.0minX 4 15 23 16 25 106 57 40 54
F3 grad 8 59.7minX 5 11 18 19 36 341 229 250 219
F4 grad 9 70.9minX 4 16 23 22 38 177 41 112 11

JPass J1 pro 12 8.6minX 4 2 2 6 12 67 46 30 33
J2 pro 12 64.5minX 4 6 11 19 28 408 279 305 250
J3 pro 11 62.0minX 5 3 7 12 27 140 64 88 17
J4 fac 12 101.1min� 4 - - 19 32 570 459 453 441

Rachota R1 fac 15 53.8minX 6 5 10 20 31 349 101 248 78
R2 grad 11 100.6minX 4 1 2 13 78 553 42 396 39
R3 pro 15 36.6minX 6 1 2 10 22 326 130 241 160
R4 fac 16 114.4min� 9 - - 16 35 282 76 155 6

Table 3.3: This table from the report [FSB12] presents a summary of the descriptive statistics collected on
the developer’s background and from the exploratory study (pro = professional, grad = graduatestudent,
fac = faculty, X = success, � = failure, Cl = classes, Me = methods, Deb = debugging).

The study results that are relevant for this thesis can be summarized as follows:

Developers often revisit code. Having a re-visitation rate of 61.4% (SD = 14.7%), it seems
that the mental model of a developer has to be extended or can not be kept in mind. Often, revis-
its are short. Presumably they only remind themselves of small things, like structures or names
of methods they want to call. Not surprisingly, developers with a higher re-visitation rate spent
more time to complete the whole task (Pearson’s r = 0.72).

Developers that use the structured navigation aids of the IDE can complete their task faster.
With a Pearson product-moment correlation coefficient of r = −0.49, we support the observation
of Robillard et al. [RCM04] that successful developers perform more structurally guided searches
than unsuccessful ones. However, in the exploratory study, we looked at the task completion time
rather than on the success.

Code Navigation Models are highly connected. As can be seen in figure 3.1, the navigation
models are often (six of the ten navigation models, of the tasks that were completed successfully)
clustered around a one highly connected group of elements (in this case around MindMapMap-
Model). In average, 73% of all classes were connected to at least one other class.

Developer Models are small. When developers are asked to draw the basic structure of the
model they have in mind, they will come up with only few elements which are relevant to the task.
In average the developer models include 6.3 elements of which 4.1 are classes, 2.3 are methods
and only 0.9 are fields.

12 Chapter 3. Exploratory Study on Developer Navigation

3.3 Contributions of the Author
The author of this thesis transcribed the screen recordings that were taken when the developers
solved their change tasks. The author also analyzed the drawn developer models and extracted
the code elements for further analysis. Then he analyzed the transcripts and classified the all
navigation steps into the following categories:

• Structure Navigation

– Follow Dynamic Program Flow

– Follow Declarations

– Follow References

– Follow Type Hierarchy

• Text Searches

• Scans

• Unstructured Navigation

• Debugging

• Code Editing

For the categories of steps he calculated the ratios and correlation to the time the developers
needed to complete the tasks. The results of most correlations confirm results of other studies
(e.g. [RCM04]). The correlations lead to the following conclusions:

Less revisits led to a faster completion of the task, regardless of how many navigation steps
were performed. With a correlation coefficient of 0.62 between the number of revisits and the
time to complete the task, developers that revisit the same code less were able to complete their
tasks faster. Probably, this is because more advanced developers have to revisit less and can com-
plete the task faster.

Developers that debugged more were slightly more productive but programmers that of-
ten debugged the same code were less productive Some developers in the study seemed to use
the debugger very target-oriented to find dynamic call chains this increased the productivity.
However, developers that used the debugger to analyze all code and tried to perceive the whole
structure with this tool mostly needed more time than developers that read most of the source
code without the help of a debugger. (Correlation coefficient between the ratio of the debugging
and other steps and the total time: 0.44)

Unstructured navigation slightly decreased productivity and Developers that followed Type
Hierarchies more often typically needed less time. Following type hierarchies was one of the
more frequently used structured navigation aid in the study. We assume that developers that
used aids like this were specifically inspecting inheritances to other structural dependencies and
could therefore build a implicit model faster. (Correlation Coefficient between the ratio of the
structured and unstructured steps and the total time: 0.34)

3.3 Contributions of the Author 13

Developers that used the debugger more and spent more time on editing code were more
productive Assuming an implicit model and trying to confirm this model my editing code and
debugging seems to be a technique which corrects and builds an implicit model quickly. The cor-
relation coefficient of 0.55 is relatively small, we were still able to draw the conclusion because one
developer that was very slow used the debugger almost exclusively and reduced the correlation
coefficient noticeably.

Chapter 4

Approach

The findings of the exploratory study show that developers can not keep all relevant code ele-
ments in mind. Presumably it is not only the structure that makes the developers revisit the same
code elements again but personal experience suggests that the structure of the code is relevant
when locating a bug in a larger code base. There already exist several tools that show the struc-
ture of the source code to the developer (e.g. Relo [SKM06]) but the developers have to explore the
diagram themselves. Developers are used to browse through the code and associating the code
with a model they have in mind because they have to work with code on a daily basis. But the
UML class diagram as used in Relo is not used in every software project [DP06] even though most
developers have heard about it and know the structure from books and documentations. There-
fore we propose the use of the code to UML class diagram association the other way around:
software should work directly with the code as they are used to and a UML class diagram (or
something similar) should be generated automatically as a documentation of the relevant code
elements and the structure that connects the elements. To help the developer to associate the ele-
ments drawn in the diagram to the code elements in the source code editor and to help developers
understanding the underlying code, the diagram should be interactive.

Approaches to capture relevant code elements during code navigation have already proven to
be usable like Mylyn [myl, KM05] that became a standard component of the Eclipse IDE. Mylyn
determines the relevant code elements with a degree-of-interest model and highlights important
classes in the package explorer while unimportant ones are hidden. In our approach we want to
extend Mylyn’s degree-of-interest model and use it to generate an interactive UML class diagram-
like representation of the code relevant to a specific task. To better show the structure of the code
elements, the underlying code should be statically analyzed to determine and later visualize the
relations between the relevant code elements.

4.1 Heuristics and Static Code Analysis
Mylyn’s degree-of-interest model uses code edits and code selections to increase the interest-value
of the corresponding code elements. While the interest-value raises for the affected elements,
other elements loose in interest. The approach presented here extends Mylyn’s degree-of-interest
model by additional heuristics to determine the relevance of code elements and adds static code
analysis to determine the relations between code elements. Our approach assigns a relevance-
value to each Java type, Java method and Java field. It further defines three thresholds for the
relevance values:

• The Relevancy Threshold defines whether an element is relevant enough to be displayed

16 Chapter 4. Approach

in the diagram. I.e. a code element is categorized as relevant if its relevance-value is higher
or equal than the relevancy threshold.

• The Importance Threshold determines whether a code element is especially important and
should be highlighted in the diagram. Code elements with a relevancy-value higher or
equal to the importance threshold are categorized as important.

• A Minimal Relevancy does not allow an element to have a relevancy-value which is that
low, that the element can never become relevant in a common task solving programming
session anymore.

The heuristics that determine the relevance-values of the code elements should be designed to
be expendable and the following list should not be considered complete in a sense that it gener-
ates an optimal result for various different tasks. The following heuristics were generated out of
the insights of the exploratory study and should yield good results for the same tasks that were
analyzed in the study:

• The relevancy threshold is set to 0.

• The importance threshold is set to 2.

• The minimal relevancy it set to -0.9.

• Selecting a code element increases the relevance by 1.1.

• Selecting a code element decreases the relevance of all elements in the model by 0.1.

• Selecting a code element marks the element as active and sets the state of the previously
marked as not active anymore. Active code elements are highlighted in the diagram to
indicate to the developer which code element was selected in the last step and which code
element is therefore most likely to be currently visible in the code.

• Whenever a Java method becomes active, all methods that call the methods and all methods
that are being called by the active method become visible in the diagram. An arrow from
each caller to the active method and an arrow for each callee from the active methods form
a call chain in the diagram.

• Whenever a code element becomes relevant, the structural dependencies of that element are
determined with a static code analyzer.

• All classes that include a relevant code element are also considered relevant even if they
have a relevancy-value below the relevancy threshold.

4.2 Visualization
The approach is meant as an extension for IDEs and the visualized diagram should be an addition
to components already available to an IDE like source code editors.

Figure 4.1 shows the concepts of the visualization. The approach uses a UML-class-diagram-
like notation which additionally makes use of icons for the code elements like this is done for
code elements in the Eclipse IDE. It simplifies relations between code elements by abstracting all
relations that can occur in the diagram into three categories: inheritance represented by an arrow
pointing to the parent type, association depicted by a connecting line and a rhombus next to the
field from which the association originates. As third connection the proposed diagram adds a

4.3 Proactive Navigation Support 17

Figure 4.1: This example of the visualization for the proposed approach shows a chart similar to a UML
class diagram with inheritance and composition. It also shows a call graph around the currently selected
method (save(): boolean).

new element to the UML-class-diagram notation: a call represented by a small arrow from the
calling method to the called method.

Also visible in figure 4.1 is an element categorized as important (MapAdapter.save(): boolean)
and the call chain of the active method (MindMapMapModel.save(): boolean) with one method that
calls it and two methods that are being called by (MindMapMapModel.save(): boolean).

When a developer clicks on a code element the corresponding code should be opened in a
code editor, highlighting the selected element.

The interactive diagram can either be placed next to the code editor in an IDE or as a max-
imized window enabling a developer to focus on the model and only show the code of some
elements in a smaller code window besides or half-way above the diagram.

4.3 Proactive Navigation Support
The results of the exploratory study showed that developers can complete their tasks faster when
they use structured navigation aids to analyze unfamiliar code. Our approach provides the de-
veloper with three types of structural navigation:

1. Type Hierarchies. The structural dependency analyzer finds type hierarchies if the types
are relevant both types are displayed in the diagram. A developer can use the interactivity
of the diagram an click on code elements to show them in the source code editor.

2. Associations. When a relevant class possesses a field whose type is relevant, the diagram
shows an association between the class and the type. A developer can either click on the
visualized association (diamond symbol and connecting line) to show the field that is an
instance of a relevant type or click directly on a code element of the two types.

3. Call Chains. Whenever a method gets selected, the method is highlighted in the diagram
and methods that call the selected methods are displayed left of the method and methods
that are being called by the active method are displayed right of the active method (see
Figure 4.1). The call chain is click-able and refers the developer to the respective code.

18 Chapter 4. Approach

Next to the relevant elements that are likely to be visited again by the developer (as shown
in the exploratory study) the methods in the call chain are not necessarily relevant and can help
a developer browsing to unexplored code, thereby marking other elements as relevant. The el-
ements that become relevant in this process are of course displayed in the diagram again which
provides the developer with a comprehensive navigation support.

Chapter 5

Implementation

5.1 Components
The prototype is built in a loosely coupled design so that the main modules can operate within
themselves. The communication between the modules is realized with an event model. To receive
the developer’s (the user of this eclipse plug-in) interaction over time trackers are registered to
eclipse and send events to a central event dispatcher EventBus . All modules that need to react on
events register themselves for the needed events to the EventBus. The module that evaluates the
importance of the code elements is the rule engine which applies an internal list of heuristics after
receiving events. The rule engine issues a static dependency analyzer which finds dependencies like
associations and inheritance between code elements. These code elements are encapsulated in a
ContextModel which notifies the UI-Plugin whenever elements of the context model change. To vi-
sualize the ContextModel two versions of graphic representations of the model were implemented
as eclipse windows. (see Figure 5.1).

Figure 5.1: Scheme of the prototype’s implementation created in collaboration with and drawn by Thomas
Fritz: A rule engine receives events from an IDE interaction monitor and structural code element depen-
dencies. The rule engine then applies a set of heuristics to generate a model in which each code element
is associated with a relevancy value. The elements with a relevancy value high enough are displayed in a
visualization plug-in.

20 Chapter 5. Implementation

5.1.1 Interaction Monitor and Eclipse integration
To be able to listen to eclipse’s events from the beginning when eclipse is started, we registered
a start-up extension (IStartup interface) which registers several handlers to the relevant eclipse
components. We implemented a list of events that were frequently used by the developers in the
study and could be retrieved directly from the eclipse model:

• Opening a compilation unit

• Closing a compilation unit

• Bringing a compilation unit to the top (making it visible in Eclipse)

• Opening an editor (normally a Java editor)

• Closing an editor

• Bringing an editor to the top

• Selecting a Java field

• Selecting a Java method

• Selecting a compilation unit (Class or Interface)

• Navigating along a Java hierarchy

• Navigating along a Java Method call

• Pressing a key in an editor

• Scroll inside an editor

Since these events need to be gathered from different places of the eclipse model, a unified
Interface (Tracker) was created and implementation of this interface can be added to a centralized
register. Some of the events, however are issued multiple times when a developer only performs
an action once. To get a better control over the events which are influencing the generation of the
context model, an EventBus was implemented which is independent from Eclipse’s event model.
This EventBus allows to selectively forward only relevant events and eliminate duplicated events.

Events not only come directly from the eclipse’s model but also from components of this proto-
type. For example when a developer clicks on a Java element which is displayed on the generated
context model visualization then this element has a higher probability to be relevant. The selec-
tion event should therefore be forwarded to all components which need to know about it via the
EventBus.

The events are ordered in a clear hierarchy so that listeners of the EventBus can selectively
receive events and their sub-events. The event hierarchy is implemented with interfaces to allow
events to be in multiple event categories at the same time.

The implementation of EventBus is similar and influenced by the one of Google’s Guava li-
braries [gua] but has the ability to filter certain events. To issue an event the fireEvent method can
simply be called like in this case where a Java Editor Selection Tracker notifies the selection of a
Java method:

eventBus.fireEvent(new JavaMethodSelectedEvent(method));

Listing 5.1: Issuing an Event on EventBus

5.1 Components 21

To receive Events a handler can be registered to the EventBus. In the example below the
EventHandler listenes to all JavaElementSelectedEvents i.e. when a Java field, method, class or
interface is selected in an editor. This example was taken from the visualized context model
diagram, which selectively updates Java elements when they get selected:

eventBus.registerEventHandler(new EventHandler() {

@Override

public void onEvent(Event event) {

JavaElement element = ((JavaElementSelectedEvent)event)

.getJavaElement();

updateElement(element);

}

@Override

public Class<? extends Event> getEventType() {

// listen to all JavaElementSelectedEvents

return JavaElementSelectedEvent.class;

}

});

Listing 5.2: Listening to Events forwarded by the EventBus

5.1.2 Abstraction of the Captured Java Element Model
For this prototype it must be possible to add a relevance property to all Java elements and to Java
relations in order to filter non relevant elements in the diagram of the context model.

Instead of decorating the Java elements that are already modeled by the Eclipse model or the
Java Reflection API, We chose to implement a new model from scratch where also Java relations
are modeled as objects and therefore can have the relevance as property. This decision has the ad-
vantage to be portable to other systems (e.g. an IDE independent system or one for another IDE).
Is is also a clear distinction of which elements are part of the context model and what elements
are part of eclipse’s syntax tree. It also has a simpler structure with only the elements needed
for the context model and no decoration for the relevancy. Furthermore the model resembles the
type hierarchy of the event model and can more easily be mapped. Other advantages are that it
is more easily extensible and that it is not dependent on an other model which could change the
model without notifying this prototype.

The model includes a Interface JavaElement for all Java elements which requires some methods
to get or set the relevance for an element. Since these methods are the same for most JavaElements
they are implemented in an abstract class AbstractJavaElement which also insures the invariances
for the relevance of an element by validating the values after each write access of the value. Direct
ancestors of the AbstractJavaElement are JavaClass, JavaField, JavaMethod and JavaRelation which
has three sub types: JavaCallRelation, JavaComposition and JavaInheritance.JavaMethodAccessModifier
and JavaFieldAccessModifier are used to specify the access level of JavaElements.

To make sure that JavaElements can only be generated in the right context (e.g. there should
only be a JavaElement if there is a corresponding element in the eclipse model) all constructors
have the default access modifier which only allows them to be created inside the same package.
Inside the same package there is a JavaElementBuilder which is the only class allowed to generate
JavaElements together with a corresponding class in the test folder JavaMockElementBuilder. The
JavaElementBuilder can only create a new JavaElement out of a Java element of the eclipse model

22 Chapter 5. Implementation

with help of the JdtContextModelAdapter which builds an interface between the context model and
eclipse’s JDT.

The central class in the prototype is ContextModel which stores all JavaElements and offers sev-
eral conveniance methods to query JavaElements e.g. by their relevance. In order to keep the
ContextModel in sync with the generated context model diagram the JavaElement implements the
Observer design pattern [GHJV93].

5.1.3 Rule Engine
Because in the beginning of the development of the prototype it was not clear which heuristics
would be most suitable to define the relevance of the code elements, we wanted to create a central
point to define these heuristics. This point should also be flexible to allow optimizing the rules.
For this purpose we defined a embedded domain specific language [FP06]. To make the language
extensible and clear we described the language in an Java interface with inner interfaces in a way
that the file looks similar to a definition in EBNF.

public interface RulesDsl {

TimeUnit every(int number);

JavaElementAction onEvent(Class<? extends Event> event);

interface TimeUnit {

JavaElementSelector miliseconds();

JavaElementSelector seconds();

JavaElementSelector minutes();

}

interface JavaElementSelector {

JavaElementAction withJavaElement(JavaElement element);

JavaElementAction forAllJavaElements();

}

interface JavaElementAction {

void increaseRelevancyBy(double number);

void setActive();

void findStructuralDependencies();

void log(String logMessage);

JavaElementAction forAllJavaElements();

JavaElementAction ifSingleton();

}

}

Listing 5.3: Definition of the DSL as nested Java Interfaces

5.1 Components 23

(* int, double and String are defined in the Java Language *)

(* Event and JavaElement are omitted here and can be any

class extending Event and JavaElement, respectively *)

Rule = ’every(’ int ’).’ TimeUnit |

’onEvent(’ Event ’.class).’ JavaElementAction;

TimeUnit = ’miliseconds()’ | ’seconds()’ | ’minutes()’;

JavaElementSelector = ’withJavaElement(’ JavaElement ’).’ |

’forAllJavaElements()’;

JavaElementAction = ’increaseRelevancyBy(’ double ’);’ |

’setActive();’ |

’findStructuralDependencies();’ |

’log(’ String ’);’ |

’forAllJavaElements().’ JavaElementAction |

’ifSingleton().’ JavaElementAction;

Listing 5.4: The same definition in EBNF

The ability to configure global settings that have an influence on the relevancy setting is im-
plemented as static methods in a separate Relevance class and can be added to the rule engine with
a static import.

The Relevance class adds the properties to the logic of the prototype. The relevancyThreshold
defines whether an element is relevant (all elements which have a relevance value over relevan-
cyThreshold are candidates to be displayed on the diagram). The minimalRelevancy makes sure
code elements do not get a very low relevance value. If a code element would have such a value
it would take too long to make it relevant again and display it on the visualized context model.
The third value the Relevance class adds to the model is an importanceThreashold. All elements with
a relevance higher that importanceThreashold are displayed more prominently in the diagram.

With this rule engine the degree-of-interest model as defined in [KM05] can be easily imple-
mented. The degree-of-interest model of Mylar (the predecessor of Eclipse Mylyn [myl]) defines
three rules:

• Whenever a code element is selected the degree-of-interest for this element increases by one
unit and all other elements in the model decrease their degree-of-interest by 0.1.

• Whenever a key stroke is issued, the affected code element increases the degree-of-interest
by 0.1.

• Only display elements with a degree-of-interest over −10.

In the DSL of the rule engine of this prototype the code would look like that:

24 Chapter 5. Implementation

import static ch.uzh.ifi.seal.contextmodels...Relevance.setRelevancyThreshold;

//...

setRelevancyThreshold(-10);

onEvent(JavaElementSelectedEvent.class).increaseRelevancyBy(1.1);

onEvent(JavaElementSelectedEvent.class).forAllJavaElements()

.increaseRelevancyBy(-0.1);

onEvent(JavaElementKeyPressEvent.class).increaseRelevancyBy(0.1);

Listing 5.5: Mylar’s degree-of-interest model implemented in the DSL

The Mylar degree-of-interest model was used as the starting point to generate heuristics for
this prototype.

Heuristics

To come up with a set of rules we started with the rules that were implemented in [KM05]. We
then used this rules to generate a set of relevant elements by simulating the developer interaction
from a transcript that was recorded during the study. We incrementally altered the rules to get
better results in terms of the number of elements that are displayed and what elements were
categorized as relevant. To reverence of relevant elements, we took the developer models drawn
by the same subject of which we used the transcript to simulate the interaction steps. We also
altered the initial set of rules based on the insights gathered from the exploitative study as well as
we used our subjective impression of the outcome of the simulations. After altering the heuristics,
the size of the diagram was about the average size of the developer models from the study (about
4.1 classes). As a second test, all navigation steps of the developers were ran through and the end
result was again compared to the developer models. After these tests and a second iteration of
altering the heuristics we came up the following set of heuristics:

• Relevancy Threshold: 0 (only elements with relevance over 0 are being displayed in the
diagram).

• Importance Threshold: 2 (elements with a relevance over 2 are being highlighted)

• Minimal Relevancy: -0.9 (no element can get a relevancy under -0.9)

• Increase Relevancy of an Element by 1 when the Element is Selected in any Eclipse Window
or Editor (including the diagram).

• Decrease Relevancy of all other elements by 0.1.

• Set Elements Active when they are Selected.

• Whenever an Element Becomes Relevant, find Structural Dependencies (Composition, In-
heritance and Method Calls) of that Element.

• Increase Relevancy by 0.1 when a Connection to an other Relevant Element is Found.

5.1.4 Structural Dependency Analyzer
The static code analysis is handled by a syntax tree analyzer which uses eclipse’s Java Develop-
ment Tools [jdt] to retrieve the relevant elements from eclipse’s syntax tree. The basic functional-
ity is analyzing type hierarchies, type compositions and method call hierarchies. While the class
relations are used to display the structure, the call hierarchies should help the user of the proto-
type to see methods which might be relevant for the current task. The AST Analyzer issues an

5.2 Visualization 25

event whenever a new relation is found which can then be handled by the rule engine and finally
influence the relevance of elements and relations.

In future work the AST analyzer could be used to analyze more complex structures like design
patterns which could then be presented in a diagram and give the developer a deeper insight into
the design of the source code.

In the current prototype there is an implementation of a Singleton [GHJV93] design pattern
detector. This implementation is thought more as a proof-of-concept than a useful feature. It
shows that the design of the prototype is easily extensible. To access the feature a corresponding
method which calls the singleton detector was added to the rule engine.

5.2 Visualization

5.2.1 Initial Design Requirements
Not all information to develop the prototype was available when we started developing it. While
some design considerations were clear from the beginning, the exact heuristics that have to be
applied to determine the relevant elements and the appearance and functionality of the diagram
were not clear. In this paragraph a list of design considerations which should not be altered dur-
ing the development process is listed:

Integration into Eclipse. If the visualized context model should be used by developers in their
every-day work it should become a well connected part of Eclipse. The same icons that Eclipse
uses should also be used so that users see visually that the elements of the diagram are linked to
Eclipse’s Java Editor.

Interactivity. The developer should have the possibility to click on code elements. We already
know that developers often revisit code but we are still not so sure about what information they
exactly need in a revisit. Probably the structure of the diagram and the name of the code elements
is not enough information. When a developer clicks on a code element this element should be
opened in the appropriate editor (e.g. a click on a Java Method should open the Java Editor and
scroll to the element inside the class).

Intuitiveness. Often users stop or do not even start using a software if it is not intuitive from
the beginning. A visualization can be very powerful and show all relevant data within a small
area but it might have to be learned first. In software development there exist a lot of well known
notations like Unified Modeling Language (UML) [BJR00]. Even if the visualization only resem-
bles a well known notation and does not implement it in all details it will be easy for developers
to understand it without a prior learning phase.

Responsiveness. The prototype should be designed to help developers to compete tasks
faster. The plug-in has to take a lot of considerations (heuristics) into account when determin-
ing the relevant code elements. Even tough there is a lot of data to be processed the visualization
should work in real time and the users should not have to wait after each navigation step for yet
another Eclipse plug-in.

To us, the most basic idea to develop such a prototype was to to visualize the relevant code
elements in a UML-like [BJR00] diagram and show this graphic next to the Java Editor in Eclipse
(see Figure reffig:prototype1). The diagram would be updated every time a developer interacts
with Eclipse in a way that the relevance of a code element changes according to simple heuristics.

26 Chapter 5. Implementation

To start with, we used the same heuristics as described in [KM05] for the Mylyn project (see Page
23).

Figure 5.2: The Prototype showing three classes with methods and structural dependencies.

Technical Background

The prototype was implemented using the Zest toolkit [zes] which is part of the Eclipse’s Graph-
ical Editing Framework [gef]. Zest includes a set of visualization components which can be used
in Eclipse. It especially includes the ability to draw directed and undirected graphs and several
algorithms to layout the nodes of the graph. Some limitations of Zest came apparent during the
development of the prototype: the included layout algorithms are either changing the the whole
layout after each small alteration of the model (spring layout), use too much space between nodes
are not suitable for a UML diagram (e.g. Tree Layout or Radial Layout). Another limitation of
Zest is that it was hard to alter the decoration of the edges of the graph. for our UML Diagram
we wanted to have at least composition and inheritance implemented into the diagram which
would require an arrow for inheritance and a diamond for composition. Since the relevant code
elements in Zest were set private in an abstract class we had to use Java’s reflection API to access
these fields. Finally it was impossible for us to resize nodes of the graph although there is func-
tionality built into Zest the elements disappeared completely when custom graphics were used
for nodes and the option that they should keep their original size was enabled.

Because Zest is built upon Draw2D [dra], which is also part of the Graphical Editing Frame-
work is was easy to draw very detailed graphics for the classes using Eclipse’s icons.

5.2 Visualization 27

Functionality

The visualization of the prototype shows all relevant types (which have a relevancy over the rel-
evanceThreshold field in the ContextModel class). Then the types get connected with each other
if there was a composition or inheritance found. If both a inheritance and a compositional con-
nection was found between the same two classes, only the inheritance is shown. The inheritance
is analyzed with Eclipse’s built in Type Hierarchy functionality it is displayed with an arrow be-
tween the two types pointing to the parent type. Compositions are found by analyzing the fields
of the relevant classes. If such a field is of the same type as displayed relevant type then this is
categorized as a composition and displayed with a connecting line between the types and a di-
amond symbol on the connection next to the class with the field. If several of these connections
are found between two types, only one is shown. By clicking on a connection with an arrow, the
field is selected in Eclipse’s Java Editor. Inside the type boxes in the diagram the relevant fields
and methsods are shown each with a symbol (the same symbol as used in other Eclipse plug-ins)
indicating the properties of the members (access level, abstractness and so on). Clicking on a
method or field opens the corresponding source code location in the Java Editor of Eclipse.

Proactive Navigation Support

Whenever a method is selected, either in the source code or on the diagram, this method is being
highlighted and two blue boxes pop up which show an ordered list of methods that call the
selected method and in the other box methods that are being called by the selected method. The
methods are ordered in a why that the one more likely to be selected next is on top. This is not
the relevancy used by the rest of the diagram, because these navigation to methods could be done
over more than one step i.e. the developer could reach a more relevant method by first navigating
to one method which will then show the developer a more relevant method. To calculate this
relevancy the ASTAnalyzer calculates all possible paths over three steps, sums up the relevancy
values of all methods in the path, the it builds the average over all summed relevancies that have
the same method as origin. This average is then used to sort the methods inside the caller and
callee boxes.

Alternative Usage

While the plug-in was initially indented to be displayed next to the Java Editor in Eclipse, the
idea came up that with a sophisticated visualized context model, this model could be located
in the center of the development environment (see Figure 5.3). This window reflects the esti-
mated model that the developer has in his mind and should therefore give the developer a good
overview of the current task. When the developer clicks on an element in the model, the code is
shown next the diagram and can be edited.

This way the plug-in could in many cases replace the Package Explorer and if the model would
be composed well enough be the most important point of navigation. This however would require
a much more detailed view with more elements but could certainly be matter of future work.

Shortcomings of the Prototype

While working with the first iteration of the prototype it was noticeable that the layout of the
diagram changed substantially when the developer navigates to a different class. Although in
most cases it seams easy to associate the diagram with the code again after such a change in the
layout, the developer needs time to comprehend the diagram and gets distracted from the actual
task.

28 Chapter 5. Implementation

Figure 5.3: The Prototype showing the Visualized Model in Full Screen and the Associated Code in the
Corner

Also since with the chosen framework all boxes in the diagram have the same size, precious
space gets lost between the elements and not all names inside the boxes are readable anymore.
While this shortcoming is not that relevant in full-screen mode or with a high screen resolution,
when the diagram is displayed next to the Java Editor with a lot of relevant elements, the problem
becomes more present.

5.2.2 Improvements to the Prototype
With a second iteration of the prototype, we wanted to focus on the original usage again - dis-
playing the diagram next to the Java Editor as a visual representation of the context model and as
a navigation help which also provides proactive navigation support. But the shortcomings of the
first iteration of the prototype should be resolved as well as possible. Since the layout algorithm
of the Zest toolkit and the strictness of it (e.g. that the decoration of a connection can hardly be
changed) were the cause of most of the limitations, we used Draw2d directly this time this for
instance allowed the classes to be drawn in their original size so that not all classes have the same
size set by a layout algorithm. The heuristics are the same as for the first iteration of the prototype,
only the visual representation changed for the second iteration of the prototype.

To make the diagram more static, a fixed layout scheme was chosen. The whole window is
divided into 9 sectors (three columns and three rows). The active class (e.g. the class that is
selected in the Java Editor or the class that was clicked on in the diagram) always is displayed in
the center of the screen. If a method is active the calling methods are displayed left of the active
class and the methods that are being called by the active method are displayed right of the active
class. In a next step, relevant super types of the active class are displayed in the top row of the

5.2 Visualization 29

Figure 5.4: The second iteration of the prototype showing detected inheritance between classes and a call
chain of the currently selected element.

window (starting with the middle sector in the top row). Relevant subtypes are then displayed
below the active class (again starting with the middle sector of the bottom row). The remaining
sectors are first filled with relevant classes the have a connection (e.g. a composition) to the active
class and then with relevant classes that have no connection the the active class. In Figure 5.4 5
of the 9 sectors are shown (active class in the middle, interface of the active class on top, subtype
on the bottom, callers and callees on each side of the active class). Connections are always drawn
to the active class. Other connections are only drawn, if they don’t cross another class. The callers
and callees are now separated and drawn in a box for each method.

Shortcomings of the Second Iteration of the Prototype

In comparison to the first iteration of the prototype, the prototype with this changes is highly
focused on the active element. Relevant classes that are not connected to the active class but are
connected to another relevant classes might not be connected in the diagram. That puts the focus
away from the composition of the model but makes the diagram more static and less jumpy. In
the first iteration of the prototype, all callers and all callees were grouped in one box, even if they
are not in the same class. The second iteration of the prototype separates all these methods into
single boxes even if they are in the same class. That allows the methods to be sorted according to
their relevance but again puts the focus away from the structure of the model. Also if a method is
already displayed in another relevant class the method can appear twice in the diagram without
pointing this duplication out to the developer.

30 Chapter 5. Implementation

5.3 Technical Aids for the Implementation

5.3.1 Evaluation Support
Since the whole system is only triggered through events, a developer’s navigation through the
code can be simulated by sending a series of events to the EventBus. To find the code ele-
ments that are needed for the events, a utility method was added for each type of code element
(e.g. class(String fullyQulifiedClassName) or method(String fullyQulifiedClassName, String method-
Name, String... argumentTypes)). Since only the actions in the transcriptions are needed that have
an influence on the diagram, no additional Events had to be implemented for the evaluation sup-
port. An example for a formalized transcript could look like that:

public class Transcript9 extends AbstractTranscriptRunner {

@Override

public void runTranscript() {

fire(new JavaClassSelectedEvent(

clazz("freemind.modes.ControllerAdapter")));

fire(new JavaMethodSelectedEvent(

method("freemind.modes.ControllerAdapter", "save")));

fire(new JavaMethodSelectedEvent(

method("freemind.modes.MapAdapter", "save")));

fire(new JavaMethodSelectedEvent(

method("freemind.modes.mindmapmode.MindMapMapModel", "save")));

// ...

}

}

Listing 5.6: Example for simulated developer code navigation

To be able to detect re-visitations we added a navigation history which stores all elements that
are navigated through in a simulation. The navigation history can be extended with triggers that
listen to specific events like the code event of the current developer interaction was previously
visited 3 times.

We also added support to automatically calculate precision and recall between the generated
model and a random model that can be added to the evaluation support module. Since we imple-
mented the module to later compare the models drawn by the developers during the study with
the generated model, the module was called developer model.

To allow us to not only see the model at the end when the whole developer interactions passed,
we added functionality that stops after a certain amount of steps and waits until the user contin-
ues with the evaluation. By default the number of executed steps was is to 10. This can also help
when simulating very long transcripts. The structural dependency analyzer traverses all depen-
dencies of a code element which is very memory consuming. In a large transcript, when executing
all interactions after each other without a break, the garbage collector fails to free the memory.

5.3 Technical Aids for the Implementation 31

5.3.2 Testing
To separate test code from production code we used maven to structure the project into three
modules. A parent module which keeps the common settings and two child modules, one fore
production code and one for test code. That way we could also separate the dependencies (e.g.
packages like JUnit [jun] should not be part of production code). The use of maven also made it
easier to continuously test the integration.

Chapter 6

Evaluation

The purpose of the presented eclipse plug-in is to help developers understand the code relative
to a given task. In the exploratory study, we showed that developers need to revisit code often to
understand the relations between code elements. To measure how the plug-in could reduce such
revisits, we enabled our plug-in and replayed the user interactions with the IDE that are recorded
from the study. Our system detects if a code element was visible in the diagram each time when
the developers revisited that code element.
We also analyzed the diagrams generated during the replayed interactions. In the study the sub-
jects provided us with the model about relevant code elements in their mind(see section 3.1.2 -
Developer Models). We compared the extracted elements of the developer models and compared
them with the elements classified as relevant by the plug-in after each developer interaction that
had an impact on the plung-in’s internal model.
Building an unnecessarily large model would not help the developers much. Therefore we also
analyzed the size of the visualized model. On the one hand it should have a similar size to the de-
veloper model, as it should carry the same amount of information the developers had in mind. On
the other hand it should not exceed the limited space of the window and thus make the elements
too small to read.

6.1 Method
To simulate the same interaction that the developers of the exploratory study did, we automati-
cally extracted a list of events that could be received by the plug-in as described in Section 5.3.1.
Since the transcripts did not include the fully qualified class names and several class names ap-
pear multiple times in the code, the list of events had to be manually extended by the fully quali-
fied class names. The transcripts contain a lot of steps that are not (yet) handled by the prototype
like scanning or debugging steps. Therefore only steps that have an influence on the diagram
were simulated for this evaluation. The automatic calculations in the plug-in include the preci-
sion and recall values between the elements of the developer model (acting as relevant elements)
and the code elements that were classified as relevant by the plug-in (acting as retrieved ele-
ments). For that purpose the elements of the developer model had to be added to the plug-in.
To determine the number of revisits that were shown in the diagram at the time of revisiting the
element, a navigation model was added to the plug-in, which stores a history of all navigation
elements and which is completely uncoupled with the context model (so it does not have an in-
fluence on it). That way all revisits can be determined even if the element is not yet in the context
model of the plug-in. Then the element of revisit looked up in the context model. If it is catego-
rized as relevant in the context model (and thus shown in the diagram) it is added to the number
of revisits that were shown in the diagram during the re-visitation.

34 Chapter 6. Evaluation

6.2 Revisits
From the in average 54.4 steps that were simulated for that evaluation, 19.8 were revisits. During
the simulation, all revisited elements were visible in the diagram before they were revisited (see
table 6.1). To see if the developers would not need to revisits the elements because they were
visible in the diagram, an extended study with new subjects would have to be performed. To
get comparable results from such a study we would need a statistically significant number of
subjects and the previous study also would have to be extended to have enough developers. The
presented numbers only show the maximal number of revisits that could possibly be eliminated.
From personal experience, we would assume that only a fraction of the revisits could effectively
be prevented because only the structure of the elements is shown in the diagram and not the
code. Since the diagram was designed so it is interactively usable, the revisits could be executed
in a more structured way and developers with a distinct visual memory could probably keep the
structure better in mind.

Project ID Job Years Time Dev. Model Diagram Nav. Steps Simulated Navigation Steps
Pr.Exp. Cl Me Avg. Cl Avg. Me All All Revisits D

Freemind F1 pro 10 39.7min 4 0 5.12 5.8 116 93 26 26
F2 pro 11 22.0min 4 0 5.8 6.27 106 44 4 4
F3 grad 8 59.7min 5 2 4.72 3.51 341 61 20 20
F4 grad 9 70.9min 4 3 5.81 2.39 177 120 56 56

JPass J1 pro 12 8.6min 4 5 4 1.75 67 8 0 0
J2 pro 12 64.5min 4 0 5.25 1.3 408 20 7 7
J3 pro 11 62.0min 5 7 3.51 1.25 140 55 26 26

Rachota R1 fac 15 53.8min 6 0 2.63 4.19 349 29 10 10
R2 grad 11 100.6min 4 6 3.13 0 553 52 16 16
R3 pro 15 36.6min 6 0 3.61 4.47 326 62 33 33

Average 4.6 2.3 4.36 3.09 281.5 54.4 19.8 19.8

Table 6.1: This table presents a summary of the results collected from the evaluation of the prototype,
compared with the results of the exploratory study (pro = professional, grad = graduatestudent, fac =

faculty, Cl = classes, Me = methods, D = RevisitsV isibleInDiagram).

6.3 Relevancy
The models drawn by the subjects of the exploratory study do not follow any common structure
and have different notations. Some show which classes are used in which order, others make use
of a UML-like notation. One thing that all drawings have in common are classes. To be able to
compare the diagrams in a unified way we only used classes in a unordered set and compared
it to the classes categorized as relevant in the plug-in. We also only used the transcripts of those
developers from the study that succeeded with their task for the evaluation so that the data can
be used to later improve the prototype. In our result, 2 out of 12 subjects are eliminated. A unsuc-
cessful developer could in some cases drive the tool in a direction that it would not help develop-
ers but make them fail when following the recommendations. Surprisingly, when rerunning the
transcripts, the developers that worked with the Freemind-task already had a good precision and
recall values after a few steps (See Figure 6.1). For this task three out of four developers found
the relevant elements started with a higher precision after a few initial steps and then they ended
the task. The precision usually declined when the developers started to edit code. Then the auto-
mated eclipse tools helped the developers navigate to further code elements. For example when

6.3 Relevancy 35

a developer changes the signature of an inherited method then eclipse’s quick-fix functionality
automatically leads the developer to the parent class, which might not be relevant to understand
the context of the task but is needed in order to complete the task. In most simulated sessions

Figure 6.1: Precision and Recall for the Subjects Working on the Freemind-Task (Relevant Elements:
Classes of Developer Models, Retrieved Elements: Classes Categorized as Relevant by the Plug-in)

the recall values are significantly higher than the precision values. These values show that some
of the classes that were relevant were not shown in the diagram. The model of the plug-in was
designed in a way that there should not be too many classes so that they can fit to the screen. In
average of all simulated runs, the diagrams showed 4.36 classes, which is about the same size of
the developer implicit models (4.6 classes in average).
The precision and recall values for the Jpass and Rachota tasks (Figures 6.2 and 6.3) are close to
our expectation. These values start lower and raise until the last navigation steps. Also the values
are better than the ones of the Freemind task, except the one of Subject J2, which is surprisingly
low. The developer model of subject J2 looks similar to the ones of the other developers, but
during the navigation, the subject spent most time going through each class folding the methods
in Eclipse’s JavaEditor only leaving the ones open that seemed relevant the the Subject. Since
we evaluated the navigation of all developers the same way we did not especially extract the
methods that seemed relevant to subject J2. Also the folding and unfolding actions were not cap-
tured with the eclipse plug-in, what explains the low number of steps with more than one and

36 Chapter 6. Evaluation

half hour work on the task. After a long time folding and unfolding methods (one hour and
15 minutes), the subject started to work more similar as the others which can also be seen in the
precision and recall diagram in step 13, where both precision and recall raised slightly. Subject J1

Figure 6.2: Precision and Recall for the Subjects Working on the JPass-Task (Relevant Elements: Classes
of Developer Models, Retrieved Elements: Classes Categorized as Relevant by the Plug-in)

only performed 8 steps that were captured by the eclipse plug-in. This developer was extremely
successful and finished the task within 8.6 minutes. As we can see in the precision and recall
diagram (Figure 6.2), the developer navigated to a precision value of 0.67 and a recall value of 1.0
within only 8 captured steps. Each step increased both precision and recall (except the last one
that had a slightly lower precision value). None of the captured steps was a revisit. Presumably,
there is little help that the proposed tool can provide to developers that are skilled like Subject J2
in an easy task like the JPass task.
Subject J3 came to the highest possible values for precision and recall within less than 20 steps,
staying there until the task was fixed. That result shows that the developer used most of the
navigation steps in the same classes that the developer drew in the developer model.

The diagrams for the Jpass and Rachota tasks (Figures 6.2 and 6.3) also do not show the same
decline of precision and recall in the end of the tasks. That is possible because the changes of the
code lie directly in the classes drawn by the developers in the developer models.

6.4 Visualization and Interactivity 37

Figure 6.3: Precision and Recall for the Subjects Working on the Rachota-Task (Relevant Elements: Classes
of Developer Models, Retrieved Elements: Classes Categorized as Relevant by the Plug-in)

6.4 Visualization and Interactivity
We compared the generated visualization with the models drawn by the developers in the ex-
ploratory study to see if the model fits into the available space in the Eclipse IDE.
The diagrams drawn by the study subjects were all very different but mostly they resembled a
UML-like diagram with classes and sometimes also methods. The diagrams did not discriminate
between a lot of different relationship types but usually used a generalized form of inheritance
and association. The visualizations of both prototypes also only use these two forms of relation-
ships.
In average, 4.1 classes were drawn in each developer model (4.6 classes in the diagrams of the suc-
cessful developers). The relevant elements in the generated context model of the Eclipse plug-in
contains 4.36 classes in average. 7 out of the 12 developer models contained methods, in average
3.86 (only 5 of the models of the successful developers contained methods). The Eclipse plug-in
contained 3.09 methods in average during the simulated developer interactions. The generated
visualization and the developers’ drawn model have similar numbers of classes and methods.
These classes and methods are easily placeable in a small window beside the code in the Eclipse
IDE.

To evaluate the usefulness and effectiveness of our approach, in particular with respect to

38 Chapter 6. Evaluation

its visualization and interactivity, a user study with developers using our prototype would be
required. This will be further investigated in future work.

Chapter 7

Discussion

7.1 Threats to Validity
The exploratory study was conducted with 12 participants, six from industry and six from academia.
From the 12 developers 10 completed their task successfully. The study subjects were assigned
to three tasks resulting in three or four successful developers per task. This number of devel-
opers does not allow us to make statistically significant statements about developers in general
and having three tasks does not allow us to make statistically significant assertions about tasks
in general or bug fixing tasks in particular. The number of developers and tasks however allows
us to get an exemplary insight about how bug fixing tasks are handled. Together with personal
experience it also allowed us to find participants that work in a uncommon way, as subject J2 who
used the code folding functionality in the source code to mark the relevant methods (see Section
6.3).

The prototype was only evaluated using the previously gathered information from the ex-
ploratory student. It was never in a explicitly demonstrated to developers and it was never used
to perform a task like the ones investigated in the study. Also the performance of the prototype
was only tested on the authors computers and only with the tasks from the study. From this data
we can not asses if developers are willing to use the prototype. This would depend on several
factors like if the visualization is intuitive enough, if it runs with adequate performance and does
not slow down the developer and if the developers could associate the code elements in the di-
agram with the actual code elements, to just name a few factors. These factors and more would
have to be tested in an extended study.

7.2 Future Work

Improve Heuristics

To have a better assessment of the relevant and important code elements obviously, the heuristics
could be improved. A larger study with more developers that point out which elements are
important for them could be used as base data. Moreover with the automatic recordings of the
eclipse interaction the correlation between each type of interaction on a element to the relevance
(given by the developer models from the study) could be calculated. Out of the correlations, the
heuristics can easily be generated.

40 Chapter 7. Discussion

Share Navigation History to get Better Results

Since on large projects, where it is particularly difficult to get an overview of the relevant elements
usually multiple developers work on the same files. The interaction of all developers could be
recorded and uploaded to a central server. The server could then look for similar tasks that have
already been completed and could show the relevant elements from the similar task of an other
developer or of the same developer from a past task.

Incremental Exploration

In Relo [SKM06] developers are able to explore the code in an UML like diagram by clicking on
buttons which are embedded in the diagram and lead the developer to more information. Such an
approach could also be implemented into this work. Irrelevant code elements are already filtered
out but they might be classified as irrelevant because the developer never navigated there. If the
developer would not only have the possibility to explore new code in the source code editor but
also in the diagram, it would be possible to see code not recognized as relevant in the diagram
without first being explored in the source code editor.

Showing the use of Common Structures

To make code better understandable, sometimes developers name code elements after best prac-
tices like design patterns (see [GHJV93]) to help other developers understand the structure easier.
The prototype could use automated design pattern recognition (e.g. as presented by as a research
team of the IBM Software Solutions Division in Toronto Canada [BFVY96]). The recognized de-
sign patterns could be visualized in the diagram. A singleton class, for example could be anno-
tated with an icon indicating the pattern or a factory pattern could be indicated with an additional
"creates"-relation between the factory and the types that it generates.

7.2.1 Considerations for the Layout of a Future Prototype

Visualization and Interactivity

Both previous prototype have advantages. The first prototype layouts the model, focusing on the
structure (inheritance and composition) and does a better job with that. The second prototype
has a more static layout where all the elements in the diagram have their fixed location but the
connections between the elements are not always shown. Also both prototypes do not scale very
well when the window is resized. The first prototype does a better job here by enlarging the
classes but neither prototype shows more elements when the window has more space.

For a future prototype we propose a grid layout similar to the second prototype which should
(additionally to the second prototype) be scalable so it shows more elements when the window
has more space. If the window size is larger and more elements can be placed in the diagram, the
more relevant elements should be located in the middle of the window around the active class.
When more classes are shown in the window it is also possible to arrange the classes in a way
that more connection can be shown without crossing classes. To mark the importance of classes,
the size of the classes can be adjusted to the relevance (see Figure 7.1).

A nice feature of the first prototype was that the model could be shown over the whole screen,
replacing the Java Code as central element of the IDE. In the future prototype the elements could
be arranged so that on the large full-screen diagram a corner can be left free, when the code is
shown there.

7.2 Future Work 41

Assign Methods from the Call Chain to Classes

In the current prototype the methods for the proactive navigation support are displayed isolated
from their classes even if the classes to which the methods belong are displayed. The reason for
that is that the classes might be located in an other position in the diagram due to other constraints
(e.g. a super class should be located on top of the subclass). A more intuitive diagram could be
achieved by two steps:

1. The methods should be grouped into types i.e. methods belonging to the same type should
be displayed in the same box.

2. All types should be annotated with a unique property (e.g. a color code) so that the type-
boxes in the call-chain can easily be associated with the types displayed in the diagram.

Screen Real Estate

Since developers use the IDE in a different way (with different windows open) and because they
have different screen resolutions, the proposed grid layout could gain or loose cells depending
on the size of the diagram window in Eclipse. For example if the the window has a large height
but only a small width the could loose two columns (one on the left and one on the right). If the
screen is set to full, there should be space in one corner for the code. To optimize this empty space,
the size of the Java Editor should then equal the size of a whole number of sections.

Figure 7.1: The layout of a possible future prototype when displayed in a maximized window: the call chain
may contain more than direct callers and callees, there is a specific place left empty so that the source code
editor does not overlap the diagram and the size of code elements depends on the relevancy value of the
code element.

Chapter 8

Conclusion

We proposed an approach which helps developers navigating and understanding code by cap-
turing the developer’s interaction and visualizing the relevant code structure.

First, we have presented an exploratory study with twelve developers performing bug fixing
tasks on three open source systems. The study shows that developers often revisit code when
they explore the relevant code elements before they complete their task. It also shows that de-
velopers that use structural navigation aids from the IDE can complete the task faster. When the
developers were asked to draw the essential code structure which they had to understand in or-
der to complete the task, they only used few code elements (in average 4.1 classes).

Based on the study, we developed an approach that captures a developer’s navigation steps,
analyzes the underlying code structure, and determines relevant elements based on a set of
heuristics. The relevant elements together with their structural dependencies are presented to
the developer in a UML-like diagram. This diagram also shows a call chain which gives the de-
veloper proactive navigation support.

We implemented a prototype of the approach as an Eclipse plug-in. The diagram was imple-
mented to be interactive and maps the code elements to the source code editor of the IDE. The
prototype was developed in two iterations showing two different visualizations of the generated
model.

We have evaluated the approach with the data of our initial exploratory study. We simulated
the transcribed developer interactions which induced the prototype to generate the diagram af-
ter each step of interaction. The results show that in the simulations, the code elements that were
revisited by the developers have been visible before the revisits happened. We think that the selec-
tion of code elements in the generated diagram is a promising compromise between the available
screen real estate, which limits the number of displayable elements and the need of having all
relevant code elements in the diagram.

Future work includes a more flexible diagram that shows more details when the diagram has
more space in the IDE and resizes the displayed code elements according to their relevance.

44 Chapter 8. Conclusion

Bibliography

[arc] Architexa, http://www.architexa.com/.

[BFVY96] Frank J. Budinsky, Marilyn A. Finnie, John M. Vlissides, and Patsy S. Yu. Automatic
code generation from design patterns. IBM Systems Journal, 35(2):151–171, 1996.

[BJR00] Grady Booch, Ivar Jacobson, and Jim Rumbaugh. Omg unified modeling language
specification. Object Management Group ed: Object Management Group, page 1034, 2000.

[BRZ+10] Andrew Bragdon, Steven P Reiss, Robert Zeleznik, Suman Karumuri, William Che-
ung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J LaViola Jr.
Code bubbles: rethinking the user interface paradigm of integrated development en-
vironments. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, pages 455–464. ACM, 2010.

[bug] Bugzilla, http://www.bugzilla.org/.

[DAB08] Wojciech J Dzidek, Erik Arisholm, and Lionel C Briand. A realistic empirical evalu-
ation of the costs and benefits of uml in software maintenance. Software Engineering,
IEEE Transactions on, 34(3):407–432, 2008.

[DP06] Brian Dobing and Jeffrey Parsons. How uml is used. Communications of the ACM,
49(5):109–113, 2006.

[dra] Draw2d. http://www.eclipse.org/gef/draw2d/index.php.

[FP06] Steve Freeman and Nat Pryce. Evolving an embedded domain-specific language in
java. In Companion to the 21st ACM SIGPLAN symposium on Object-oriented program-
ming systems, languages, and applications, pages 855–865. ACM, 2006.

[fre] FreeMind. http://sourceforge.net/projects/freemind/.

[FSB12] Thomas Fritz, David Shepherd, and Christoph Bräunlich. Supporting search and
navigation through code context models. Technical report, 2012.

[gef] GEF: Graphical Editing Framework. http://www.eclipse.org/gef/.

[GHJV93] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
Abstraction and reuse of object-oriented design. ECOOP’93—Object-Oriented Pro-
gramming, pages 406–431, 1993.

[gua] Guava Libraries. https://code.google.com/p/guava-libraries/.

[jdt] Eclipse JDT. http://www.eclipse.org/jdt/.

46 BIBLIOGRAPHY

[jpa] Java PasswordSafe. http://sourceforge.net/projects/jpwsafe/.

[jun] JUnit. http://junit.org/.

[KAM05] Andrew J Ko, Htet Htet Aung, and Brad A Myers. Eliciting design requirements for
maintenance-oriented ides: a detailed study of corrective and perfective maintenance
tasks. In Software Engineering, 2005. ICSE 2005. Proceedings. 27th International Confer-
ence on, pages 126–135. IEEE, 2005.

[KKD+11] Thorsten Karrer, Jan-Peter Krämer, Jonathan Diehl, Björn Hartmann, and Jan
Borchers. Stacksplorer: Call graph navigation helps increasing code maintenance
efficiency. In Proceedings of the 24th annual ACM symposium on User interface software
and technology, pages 217–224. ACM, 2011.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.
ECOOP’97—Object-Oriented Programming, pages 220–242, 1997.

[KM05] Mik Kersten and Gail C Murphy. Mylar: a degree-of-interest model for ides. In Pro-
ceedings of the 4th international conference on Aspect-oriented software development, pages
159–168. ACM, 2005.

[KM06] Mik Kersten and Gail C Murphy. Using task context to improve programmer produc-
tivity. In Proceedings of the 14th ACM SIGSOFT international symposium on Foundations
of software engineering, pages 1–11. ACM, 2006.

[KMCA06] Andrew J Ko, Brad A Myers, Michael J Coblenz, and Htet Htet Aung. An exploratory
study of how developers seek, relate, and collect relevant information during soft-
ware maintenance tasks. Software Engineering, IEEE Transactions on, 32(12):971–987,
2006.

[LGHM07] Thomas D LaToza, David Garlan, James D Herbsleb, and Brad A Myers. Program
comprehension as fact finding. In Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering, pages 361–370. ACM, 2007.

[LM10] Thomas D LaToza and Brad A Myers. Developers ask reachability questions. In
Software Engineering, 2010 ACM/IEEE 32nd International Conference on, volume 1, pages
185–194. IEEE, 2010.

[LM11] TD LaToza and BA Myers. Visualizing call graphs. In Visual Languages and Human-
Centric Computing (VL/HCC), 2011 IEEE Symposium on, pages 117–124. IEEE, 2011.

[MKRČ05] Gail Murphy, Mik Kersten, Martin Robillard, and Davor Čubranić. The emergent
structure of development tasks. ECOOP 2005-Object-Oriented Programming, pages
734–734, 2005.

[myl] Mylyn. http://www.eclipse.org/mylyn/.

[rac] Rachota. http://sourceforge.net/projects/rachota/.

[RCM04] Martin P Robillard, Wesley Coelho, and Gail C Murphy. How effective developers
investigate source code: An exploratory study. Software Engineering, IEEE Transactions
on, 30(12):889–903, 2004.

BIBLIOGRAPHY 47

[RM02] Martin P Robillard and Gail C Murphy. Concern graphs: finding and describing con-
cerns using structural program dependencies. In Proceedings of the 24th international
conference on Software engineering, pages 406–416. ACM, 2002.

[RM03] Martin P Robillard and Gail C Murphy. Feat: a tool for locating, describing, and
analyzing concerns in source code. In Proceedings of the 25th International Conference
on Software Engineering, pages 822–823. IEEE Computer Society, 2003.

[SDRF12] David Shepherd, Kostadin Damevski, Bartosz Ropski, and Thomas Fritz. Sando: an
extensible local code search framework. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, page 15. ACM, 2012.

[SKM06] Vineet Sinha, David Karger, and Rob Miller. Relo: Helping users manage context
during interactive exploratory visualization of large codebases. In Visual Languages
and Human-Centric Computing, 2006. VL/HCC 2006. IEEE Symposium on, pages 187–
194. IEEE, 2006.

[SLVA10] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil. An exam-
ination of software engineering work practices. In CASCON First Decade High Impact
Papers, pages 174–188. ACM, 2010.

[stua] Artifacts of the Exploratory Study. https://github.com/abb-iss/study-artifacts-for-
code-context-models/.

[stub] Study Artifacts. https://github.com/abb-iss/study-artifacts-for-code- context-
models.

[zes] Zest: The Eclipse Visualization Toolkit. http://www.eclipse.org/gef/zest/.

