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Zusammenfassung

Rdfbox ist ein nativer Tripel-Speicher und implementiert das Hexastore-Indexierungs-
konzept. Hexastore permutiert die RDF Tripel-Elemente (Subjekt, Prädikat, Objekt)
und baut daraus sechs Indexe auf. Rdfbox übernimmt dieses Konzept und wendet es auf
Key-Value-Speicher an. Rdfbox nutzte dafür bisher Tokyo Cabinet und das Ziel dieser
Arbeit ist es, Rdfbox um Kyoto Cabinet-, LevelDB- und Redis-Backends zu erweitern.
Diese Backends sollen einfach austauschbar sein, auch für einzelne Indexe. Das Einle-
sen der Tripel soll analysiert und verbessert werden und zudem an die hinzugefügten
Backends angepasst werden. Die Leistung dieser Backends wird dann verglichen and
analysiert anhand von synthetischen und realen Datenbeständen und Abfragen.





Abstract

Rdfbox is a native triple store and implements the Hexastore indexing concept. Hex-
astore permutes RDF triple elements (subject, predicate, object) to build six indexes.
Rdfbox takes this indexing scheme and maps it to key-value storage. Prior to this work,
it used the Tokyo Cabinet key-value store as its indexing backend. This work extends
it with Kyoto Cabinet, LevelDB and Redis backends and enables to easily exchange
them, even on a per-index level. Further, Rdfbox’s triple loading is analyzed, improved
and adapted to the added backends. The backends’ performance is then compared and
analyzed with synthetic and real-world data sets and queries.
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1
Introduction

The Semantic Web[1] is a concept developed by the W3C1. Its goal is to enable machine-
readable data on the web in a common format and to integrate data collections from
multiple sources, as well as to further reuse this data across application and organization
boundaries.

The Semantic Web concept is implemented using the Resource Description Framework
[3] (RDF). RDF is a data representation format for graphs and this graph format is stored
as a list of edges. These edges are triples (or quads) and consist of subject, predicate
(or property) and object. The subjects and objects (also called resources) are nodes in
a directed graph, with predicates as edges.

An increasing amount of RDF data is published on Web [2] and extracting information
from these inter-linked graphs is becoming increasingly important. To efficiently query
this data, RDF data is managed by so-called triple stores. These triple stores vary in
their approach to store, index and retrieve RDF data. Relational-based triple stores
use relational database systems to store RDF data and map the RDF graph data to a
relational model. In contrast to them, native triple stores commonly employ a custom
storage mechanism and try to adapt to the RDF graph data model.

Hexastore is part of a family of native triple store approaches and suggests a storage
scheme for RDF data that employs six indexes corresponding to the six permutations of
subject, predicate and object. With this extensive indexing approach, single statement
queries with any combination of unbound variables are equally expensive to execute.
This is a significant advantage compared to most relational-based triple stores, which
often favor queries with bound predicates.

Motivation Rdfbox is an implementation of the Hexastore concept written in Python.
It is designed to use key-value stores as indexing backends. Prior to this work, Rdfbox
solely used Tokyo Cabinet, a key-value store, as its indexing backend. The goal for this
work is to include additional key-value stores and enable to exchange them, even on a
per-index basis. Further, a diverse set of backends should be included to compare the

1http://www.w3.org/2001/sw/
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B+ tree approach by Tokyo Cabinet with other storage techniques. The added backends
are Kyoto Cabinet, LevelDB and Redis.

In addition, the goal is to analyze and improve triple loading and to adapt it to the
indexing backends used.

Outline The remainder of this work is structured as follows. Chapter two introduces
the ideas and tools behind the Semantic Web vision and explains the Hexastore indexing
scheme in detail. Then in chapter three, the indexing backends are presented and the
Hexastore index mapping to a key-value store is explained. Further, it is explained how
Rdfbox optimizes query execution plans and the Rdfbox architecture related to indexing
is outlined. Chapter four discusses implementation details regarding the configuration
and integration of indexing backends and explains the unit testing approach. Further,
the triple loading work-flow and its variants are examined. After that, chapter five
evaluates the triple loading performance for all indexing backends and further evaluates
their query execution performance. The last chapter discusses the results and concludes
this work.

2



2
Background and Related Work

This section introduces the ideas behind the Semantic Web and explains its core tech-
nologies. First, the Resources Description Framework (RDF) is explained. After that,
ontologies and linked data are discussed. This is followed by an introduction to SPARQL,
a query language for RDF data and after that, triple stores and their storage mechanisms
are explained. At the end, Hexastore and its indexing scheme is introduced.

2.1 Resource Description Framework
The Semantic Web idea is implemented using RDF[3], the Resource Description Frame-
work1, a model for Semantic Web data exchange. RDF allows to merge data sources
with different schemas and to evolve schemas without the need to notify consumers
necessarily.

RDF data is represented as triples in the form of subject, predicate (or property) and
object. A triple in this form is also called a statement. One such triple statement in a
RDF database could be: Alice knows John. Alice is the subject, knows is the predicate
or property and John is the object. The subjects are also called resources and triples
are statements about these resources.

The object in a triple might also appear as the subject of another triple. In the case
above, the object John could be the subject in: John knows Linda. The collection of
triples can be understood as a directed graph, where subjects and objects are nodes and
the predicates are edges. However, not all objects are necessarily resources (or subjects)
themselves. Objects may be literals as well. Consider this triple: Alice familyName
’Miller’. In this case, the object is a literal and the triple is a statement about the
resource Alice.

In RDF, resources (subjects) and predicates have to be uniquely identifiable. For this
purpose, URIs are used to distinguish between them. The following could be a collection
of triples:

1http://www.w3.org/RDF/
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http://uzh.ch/p#alice http://uzh.ch/p#john

http://uzh.ch/p#linda

http://uzh.ch/p#eric

Miller linda@example.org

                                                             http://xmlns.com/foaf/0.1/familyName

http://xmlns.com/foaf/0.1/knows http://xmlns.com/foaf/0.1/knows

                                                     http://xmlns.com/foaf/0.1/knows

http://xmlns.com/foaf/0.1/mbox

Figure 2.1: A directed graph representation of the triple collection. Resources (blue el-
lipses) and literals (green boxes) are nodes, predicates are edges (arrows).

<http://uzh.ch/p/alice> <http://xmlns.com/foaf/0.1/knows> <http://uzh.ch/p/john>

<http://uzh.ch/p/john> <http://xmlns.com/foaf/0.1/knows> <http://uzh.ch/p/linda>

<http://uzh.ch/p/john> <http://xmlns.com/foaf/0.1/knows> <http://uzh.ch/p/eric>

<http://uzh.ch/p/alice> <http://xmlns.com/foaf/0.1/familyName> "Miller"

<http://uzh.ch/p/linda> <http://xmlns.com/foaf/0.1/mbox> "linda@example.org"

The RDF elements that are not literals are placed inside angle brackets. Since RDF
data are part of the Semantic Web, URIs commonly use http:// as their protocol and
a domain name and path that reflects the resource it describes. These URIs may be
actual, resolvable Web resources, but this is not a requirement. The only restriction is
that they must be unique.

Subjects may be URI references or blank nodes, but not literals. Blank nodes may
appear as objects and subjects, but do not have a unique URI, but a placeholder name
that is only unique for the data set they are part of. Blank nodes are mentioned here
for completeness. Explaining their purpose is not in the scope of this introduction.

In figure 2.1, the same triples represented in textual form are visualized as a graph.
Resources are visualized as blue ellipses, while literals are green boxes. The edges be-
tween them are predicates. Two nodes connected with an arrow form a triple. In the
graph it is easily visible that John is the object in the triple formed with Alice, and the
subject in both triples with Eric and Linda.

In the triples presented above, the predicates knows, familyName and mbox are well
established predicates defined by the FOAF (Friend Of A Friend) vocabulary2. In this
vocabulary, a collection of other predicates are defined, such as birthday, gender or
firstName to describe a person’s attributes or relationships of this person to other
persons or entities. FOAF also includes concepts, such as Person or Document, which
allow to categorize resources. All these predicates and concepts have a well-defined
URI such as the predicates knows and mbox used above. This collection of well-defined
predicates and concepts is also called an ontology.

2.2 Ontologies and Linked Data
Many ontologies for a diverse set of subject matters exist. The most popular ontologies
are Dublin Core3 for document meta-data, FOAF for people and organizations and

2http://xmlns.com/foaf/spec/
3http://dublincore.org/

4



2.2. ONTOLOGIES AND LINKED DATA 5

their social network, and several smaller ontologies such as Basic Geo Vocabulary4 which
defines spatial data such as longitude, latitude and altitude, and BIO, a vocabulary for
biographical information.

Most of these ontologies are, however, not formal standards. They are conceptual
proposals on how to structure and format data in a specific domain. When publishing
RDF data, it is always possible to use own, custom predicates and concepts. Reusing
existing ontologies, however, enables the published RDF data to be combined with other
data in the same domain.

It is always possible to add a triple to a collection of RDF data. This makes it possible
to change a schema over time. When using custom predicates and concept for domain
data, it is still possible to introduce an ontology at a later point in time, by adding
statements about the same resources. For example, if the FOAF vocabulary did not yet
exist, information about the email address of a resource could be expressed with the
custom predicate http://uzh.ch/ont#hasEmailAddress. At a later point in time, the
FOAF vocabulary could be supported by adding a triple with the same subject, but
the foaf:mbox predicate and the same email address as a literal object. The old triple
could still be part of the RDF database and the new triple would just be an extension to
the original data. This RDF feature makes RDF data management flexible, and allows
database schemas to evolve over time. However, old data needs to be converted to a new
schema. For data describing the same domain in different ontologies, ontology mediation
can be a solution to the problem.

RDF is therefore only a representation format. The ontologies used define the se-
mantics, but RDF enables multiple schemas and ontologies to co-exist. Further, two
databases may easily be merged, even if they use different ontologies. By adding state-
ments about resources, a progressive schema alignment is still possible.

The uniqueness of RDF resources lead to a key feature in the Semantic Web concept:
the possibility to link resources between RDF databases. This concept is called Linked
Data and plays a key role in the Semantic Web. Arguably the most popular collection
of RDF data is a project called DBpedia5. DBpedia aims to extract information taken
from the online encyclopedia Wikipedia, and builds a RDF database based on it. The
information is, among other sources, based on the Wikipedia article info boxes and
the article categories. When publishing RDF data, not only existing ontologies can be
reused, but links may be established to resources defined in popular RDF databases,
such as the DBpedia database. Resources in these data hubs are often linked to and
resources are linked to other, popular databases. These linked data hubs are depicted
in figure 2.2.

DBpedia is perhaps most popular, because of its inherent universal scope, but other,
more specialized databases are often linked to as well, such as GeoNames6, which is a
database with geographic and spatial data. It describes resources such as cities, federal
states and countries, but also mountains, roads and other geographical concepts. Every

4http://www.w3.org/2003/01/geo/
5http://dbpedia.org/
6http://www.geonames.org/
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Figure 2.2: Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch.
http://lod-cloud.net/

item, called “feature” in GeoNames, has a stable, unique URI which other databases can
link to. Moreover, these features are linked to each other internally. For example, cities
are linked to federal states, and federal states are linked to their countries. Therefore
when publishing RDF data, any resource could link to a geographical concept in Geo-
Names, without having to specify any further information. Moreover, links to equivalent
concepts in other popular databases may be established in addition. For example, when
describing the location of a person in a local RDF database, it is possible to link to a
resource in GeoNames.

<http://uzh.ch/p/alice> <http://xmlns.com/foaf/0.1/based_near>

<http://sws.geonames.org/2657896/>

This RDF triple states that Alice is based near Zürich, Switzerland. When consulting
the GeoNames database, we could find triples for the linked resource.

<http://sws.geonames.org/2657896/> <http://www.geonames.org/ontology#name> "Zurich"

<http://sws.geonames.org/2657896/> <http://www.geonames.org/ontology#population> 341730

<http://sws.geonames.org/2657896/> <http://www.w3.org/2003/01/geo/wgs84_pos#lat> 47.37

<http://sws.geonames.org/2657896/> <http://www.w3.org/2003/01/geo/wgs84_pos#long> 8.55

<http://sws.geonames.org/2657896/> <http://www.geonames.org/ontology#parentCountry>

<http://sws.geonames.org/2658434/>

6



2.3. SPARQL 7

This is an extract from the GeoNames database. It shows statements about the name
for the resource, the population, the latitude and longitude – using the aforementioned
Basic Geo Vocabulary – and the parent country, a link to a resource in the same database.
With a stable, unique URI for the city of Zürich it is possible for any entity to publish
data that is related to Zürich with a link to the GeoNames URI. With this information,
the two data sets may be combined. When extracting information about a resource
in the local database, with a link to a GeoNames concept, suddenly richer queries are
conceivable. For example, with the intial triple collection, statements about the city the
people reside in could be added. Then, a query to find people in a specific country is
feasible, even though only a link to the city in the GeoNames database is expressed.
The information on which country a city belongs to is part of the GeoNames database.
Further, information added at a later point in time to the GeoNames database enable
even richer queries, without changing the local database.

2.3 SPARQL
As demonstrated in the Linked Data example, a query mechanism for RDF data is
essential. SPARQL is the most widely used query language for RDF data and its syntax
is similar to SQL. Although SQL and SPARQL share some keywords and syntax, the
underlying data model is quite different. SQL is designed to retrieve relational data,
whereas SPARQL retrieves RDF elements based on a graph of data. Consider this
query:

SELECT ?name WHERE {
<http :// uzh . ch/p/ a l i c e > <http :// xmlns . com/ f o a f /0 .1/ knows> ?name

}
Listing 2.1: SQ1, SPARQL query

This query (2.1) is a statement-based query. It includes one triple pattern, in which
the subject and the predicate are specified, but the object is a variable, which is marked
as ?name. The subject and predicate are called bound variables, while the object in this
query is unbound.

This query returns a list of objects that appear in triples with the subject http://uzh
.ch/p/alice and the predicate http://xmlns.com/foaf/0.1/knows. Applied to the
triples presented in Section 2.1, the result would be a list with one element, the resource
http://uzh.ch/p/john.

The query in 2.1 can also be formulated as in 2.2, where RDF elements are written
with prefixes. Prefixes are a way to shorten RDF elements and using keywords instead
of lengthy base URIs. When using RDF elements with prefixes, the angle brackets
are omitted and the prefix, followed by a colon and the rest of the URI is written.
Instead of writing <http://uzh.ch/p/alice>, a prefix uzh is defined, which expands to
http://uzh.ch/p/, and the resource can be rewritten as uzh:alice. The same principle
applies to the foaf keyword in the query.

7
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PREFIX uzh : <http :// uzh . ch/p/>
PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>

SELECT ?name WHERE {
uzh : a l i c e f o a f : knows ?name

}
Listing 2.2: SQ1.1, SPARQL query

PREFIX uzh : <http :// uzh . ch/p/>
PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>

SELECT ? f r i endOfFr i end ? emai lAddress WHERE {
uzh : a l i c e f o a f : knows ? f r i e n d .
? f r i e n d f o a f : knows ? f r i endOfFr i end .
? f r i endOfFr i end f o a f : mbox ? emai lAddress

}
Listing 2.3: SQ2, SPARQL query

SPARQL of course allows for more complicated terms. Consider the query in 2.3. It is
a combination of three query patterns, called a basic graph pattern. The first statement
queries for all objects that Alice knows. The second statement reuses the variable ?friend
from the first statement and queries for all objects that Alice’s friends know. These
are eventually Alice’s friends of friends. These friends of friends are captured in the
?friendOfFriend variable and are reused for the third and last statement. The third
statement searches for triples with an mbox predicate and captures the objects in the
?emailAddress variable.

When two statements use one or more of the same variables, these statements are
joined.

In the SELECT clause we define the projections ?friendOfFriend and ?emailAddress
as the variables which are part of the result, disregarding the ?friend variable which is
part of the basic graph pattern.

The basic graph pattern in query 2.3 follows a chain pattern, as the object of the first
query statement is an unbound variable, which is used for the subject of the following
statement, effectively chaining query statements.

Applied to the original triple collection, there is only one result which fulfills this
query:

friendOfFriend emailAddress
<http://uzh.ch/p/linda> linda@example.org

The SPARQL query can also be viewed as a graph pattern that has to be matched.
The results are the sets of RDF elements that can be substituted with the variables

8
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in the query statements to match a part of the RDF data graph. Each set of RDF
elements that fulfill the query pattern is a result of the query. Therefore, applied to the
query above and the original collection of triples as the graph, the first query statement
matches uzh:john as the object. In the second statement, the ?friend variable can
thus be replaced with uzh:john. The second query statement then matches with two
triples and the objects for ?friendOfFriend are uzh:linda and uzh:eric. The third
query statement thus may match either of these two objects as the subjects. However,
uzh:linda is the only subject that matches with the mbox predicate, as no triple exists
with the subject uzh:eric and the predicate foaf:mbox. Therefore, only one set of
RDF elements matches with the basic graph pattern. Translated to natural language,
the query tries to find Alice’s friends of friends with an email address entry.

If the email address entry is not mandatory, the third query pattern can be defined
as optional :
PREFIX uzh : <http :// uzh . ch/p/>
PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>

SELECT ? f r i endOfFr i end ? emai lAddress WHERE {
uzh : a l i c e f o a f : knows ? f r i e n d .
? f r i e n d f o a f : knows ? f r i endOfFr i end .
OPTIONAL { ? f r i endOfFr i end f o a f : mbox ? emai lAddress }
}

Listing 2.4: SQ3, SPARQL query

Note that compared to the previous query, this query uses an OPTIONAL basic graph
pattern for the third statement. For this query, there are two result sets:

friendOfFriend emailAddress
<http://uzh.ch/p/eric>
<http://uzh.ch/p/linda> linda@example.org

This time, uzh:eric matches as well, because the foaf:mbox predicate is optional.
To readopt the GeoNames example from Section 2.2, a query for all people based in

Switzerland could be:
PREFIX rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
PREFIX gn : <http ://www. geonames . org / onto logy#>

SELECT ? person ?cityName WHERE {
? person rd f : type f o a f : Person .
? person f o a f : based near ? c i t y .
? c i t y gn : name ?cityName .
? c i t y gn : parentCountry ? parentCountry .
? parentCountry gn : name ” Switzer land ”

}
Listing 2.5: SQ4, SPARQL query

9
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The query in 2.5 is based on two assumptions. First, it is assumed that resources
describing a person feature a triple that matches the first query statement and that
these resources have information about their location via the foaf:based near predi-
cate (second statement). If a resource does not feature triples with the rdf:type and
foaf:based near predicates, it will not match the query. Second, it is assumed that the
?city variable in the second statement is a GeoNames resource. This is the link from the
local RDF database to the public GeoNames database. It is assumed that the GeoNames
data set is not part of the local data set. Therefore to be able to match the third, fourth
and fifth statement, access to the GeoNames database is expected. This consideration
is, however, at the semantic level. SPARQL does not infer which statements link to
external sources.

These example queries only show a small subset of the SPARQL query language. It
features more sophisticated constructs, but these are not in the scope for this paper.
The W3C Recommendation for SPARQL7 is the official reference specification.

2.4 Triple Stores

An increasing amount of RDF data is produced and published, containing millions, or
in some cases even billions of triples. An instrument to query this data – SPARQL –
was introduced in Section 2.3. However, the mechanisms to store and index RDF data
becomes more important as the RDF data sets grow.

There are many different ways to store RDF data and solutions to this problem are
called triple stores. One approach to store triples builds on top of relational databases.

Relational-based triple stores may put all triples into a (possibly large) table, with
three columns for subjects, predicates and objects. To speed up querying, one or more
indexes on either of the columns are used. The advantage to this approach is, that
already available relational database systems — a proven technology — can be reused
to store the triples. The disadvantage is the limited scalability. With queries consisting of
many statements, expensive self-joins are necessary. If not all three columns are indexed,
these joins become more expensive, as the database engine has to perform table-scans.

A more sophisticated approach to store triples in relational databases is to apply
a “vertical partitioning” scheme. Triples are not all put into one table but are split
based on their predicate. For each distinct predicate, a table is built with subject and
object columns. This reduces the problem of the one-table-approach, but does not solve
the scalability issue at large. This approach still works best for queries with a small
number of statements. The more statements the query includes, the more table joins
are necessary. Moreover, if predicates are unbound, all tables have to be joined, which
is even worse.

Therefore triple stores based on relational databases commonly favor query patterns
where either the subject, predicate or object is bound (known).

7http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
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triple name subject predicate object
T1 Jack knows Emma
T2 Jack knows Ben
T3 Jack knows Nicki
T4 Jack likes Basketball
T5 Emma knows Ben
T6 Emma knows Nicki
T7 Emma likes Football
T8 Ben knows Nicki
T9 Ben likes Basketball
T10 Ben likes Football

Table 2.1: A collection of ten example triples. Elements are simplified to a name instead
of a full URI.

2.5 Hexastore

Hexastore[5] is a triple store architecture developed at the University of Zürich. Unlike
some of the competing triple store solutions, it does not rely on relational database
infrastructure, but is a native approach to store RDF triples. As explained in Section
2.4, many triple stores based on relational databases favor query patterns with bound
subjects, predicates or objects. For example, triple stores that implement vertical par-
titioning favor queries for graph patterns where predicates are bound. If a triple store
based on vertical partitioning executes a query with unbound predicates, all tables have
to be consulted to answer the query, which is expensive.

Hexastore, however, indexes triples without favoring any query pattern. Therefore, to
answer single-statement queries, it does not matter if the query pattern has an unbound
subject, predicate or object; any query pattern is equally expensive to evaluate. Consider
the triples in table 2.1 as the collection of triples to index. The RDF elements use
generic names instead URIs for the sake of simplicity. The triples use the subjects Jack,
Emma and Ben and the predicates used are knows and likes. Some subjects appear
again as objects, these are: Emma and Ben. The other objects – Nicki, Basketball
and Football – appear as objects only. The objects in these triples are all resources,
although Basketball and Football could be string literals as well.

2.5.1 Index Operations

Hexastore now permutates every RDF triple consisting of the subject (S), the predicate
(P) and the object (O) to form six indexes named after the order of the RDF elements
they represent: SPO, SOP, PSO, POS, OSP, OPS. Consider figure 2.3, where the col-
lection of triples is indexed. Note that not all indexes are depicted – OSP and SOP are
missing – and the indexes themselves are not fully elaborated to avoid an overcrowded
figure. In all indexes, only one subject, predicate or object is depicted as a starting

11
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Type2
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Type1

JackSPO 
index
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Nicki

knows
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index
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Jack
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Figure 2.3: A graphical representation of the Hexastore index. The OSP and SOP indexes
are missing. Each index has only one heading RDF element to avoid an
overcrowded figure.

point, although there are more elements. For example, in the SPO index, only Jack is
depicted as a starting point. The subjects Emma and Ben are not depicted, although they
are part of the SPO index.

These indexes, as explained above, store triples in permuted order. Each of these six
indexes has a primary RDF element (subject, predicate or object) and prioritizes the
remaining two RDF elements. If the primary element is defined as Type1, the secondary
element as Type2 and the third element as Type3, each index has two levels. The
first-level index stores Type1 elements each with a pointer to a second-level index with
Type2 elements. In this second-level index, each Type2 element points to a set of Type3
elements. The first-level index provides the following operation:

getLevel2Index(a) : Type1 −→ Index[Type2]

The first operation, getLevel2Index returns for a given Type1 element its second-level
Type2 index. The second operation is provided by the second-level index:

getType3Set(b) : Type2 −→ Set[Type3]

The second operation, getType3Set, returns for the given Type2 element the set of
Type3 elements.

12



2.5. HEXASTORE 13

name query pattern index operation
QP1 < s, ?p, · > SPO getLevel2Index(subject)
QP2 < s, p, ?o > SPO getType3Set(predicate)
QP3 < s, ·, ?o > SOP getLevel2Index(subject)
QP4 < s, ?p, o > SOP getType3Set(object)
QP5 <?s, p, · > PSO getLevel2Index(predicate)
QP6 < s, p, ?o > PSO getType3Set(subject)
QP7 < ·, p, ?o > POS getLevel2Index(predicate)
QP8 <?s, p, o > POS getType3Set(object)
QP9 <?s, ·, o > OSP getLevel2Index(object)
QP10 < s, ?p, o > OSP getType3Set(subject)
QP11 < ·, ?p, o > OPS getLevel2Index(object)
QP12 <?s, p, o > OPS getType3Set(predicate)

Table 2.2: The query patterns and the equivalent index operations.

For the SPO index, Type1 is S (subject), Type2 is P (predicate) and Type3 is O (ob-
ject). The SPO index therefore provides two operations. First, getLevel2Index(Type1)
for a given subject (Type1) returns an index with corresponding predicates (Type2).
Second, getType3Set(Type2) returns, for a given predicate (Type2) a set of objects
(Type3). The SPO index is therefore able to answer two kinds of queries. First, the query
< s, ?p, · >, where the subject is bound (known) and a list of predicates for the given
subject is requested: this can be answered with the operation getLevel2Index(Type1).
Second, the query < s, p, ?o >, where the subject and the predicate are bound (known),
and a list of objects for the given subject and predicate is requested: this can be an-
swered with the operation getType3Set(Type2). Table 2.2 shows all single statement
based query patterns and their index operation to answer the query.

2.5.2 Shared Indexes

The main advantage of the Hexastore indexing scheme is its ability to answer any single-
statement query with a single index lookup. No merging or (table) joining is necessary to
answer queries, no matter which RDF elements are unbound. This exhaustive indexing,
however, comes at a price. Compared to other triple stores, the storage space demands
are higher, as Hexastore trades query answering efficiency with space. However, some
index data structures have duplicates. In table 2.2, QP2 and QP6 are the same (<
s, p, ?o >). These two queries retrieve a set of objects for a given subject and predicate.
In the index operation, Type1 and Type2 can be switched to retrieve the same Type3 set.
Hence, to get a list of objects for a given subject and predicate, getType3Set(Type2)
can be executed on the SPO or PSO index, only Type1 and Type2 have to be switched
to receive the same Type3 set of objects. The same principle holds true for the query
pairs QP4 and QP10, and QP8 and QP12. Therefore in three indexes, the Type3 sets
can be shared. This results in a worst-case fivefold size increase, instead of a worst-case

13
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SELECT ? s WHERE {
? s <knows> <Ben> .
? s <knows> <Nicki>

}
Listing 2.6: SQ5, SPARQL query

sixfold size increase for the index storage space, compared to triple stores with only one
index. Experiments in [7] show, however, that the storage penalty compared to real-
world triple stores is much lower. In their evaluation, a B-tree indexed MySQL triple
store with indexes on each column used only 33% less storage.

2.5.3 Example Query
Consider the query in 2.6. It finds all subjects – or resources – that know both Ben and
Nicki, or: this query returns a set of subjects that have triples with predicate knows and
the objects Ben and Nicki. The query can be translated to our single-statement query
form as a combination of <?s, knows, Ben > and <?s, knows, Nicki >. Each of these
two queries can be answered by the POS or OPS index (see table 2.2). The POS index
is consulted for the first triple pattern <?s, knows, Ben >. The operation translates
to getType3Set(Ben), which returns the set of subjects: Jack and Emma. The second
part of the query is <?s, knows, Nicki >. The same operation (getType3Set(Nicki))
returns the set of subjects: Jack, Emma and Ben. To solve the query, the two sets are
intersected and result in the set of subjects: Jack and Emma. This is consequently the
result of the query.

This query can be answered graphically as well by means of figure 2.3. The POS index
is consulted for the predicate knows. The predicate knows points to an index with the
corresponding objects Nicki, Ben and Emma, which are all objects that appear in triples
with the predicate knows. To solve the query, the (subject) vectors are retrieved from
the objects Ben and Nicki and intersected. Subjects that appear in both vectors are
valid solutions to the query.

2.5.4 Dictionary Encoding
As explained in Section 2.1, RDF elements are commonly variable-length URIs or literals.
Instead of storing these URI and literal strings in their full representation, all RDF
elements (subjects, predicates and objects) are encoded to integer identifiers. This has
two main advantages. First, RDF elements can be stored more efficiently due to their
fixed-size nature. Second, RDF elements commonly appear in more than one triple and
each time they are stored in an index, only the identifier integer is stored, and not the
full representation. This saves more storage space the more the particular RDF element
appears in the collection. This holds true only for URIs or literals that require more
space than their identifier, which is usually the case.

14
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The disadvantage to this approach is, that a mapping from URI or literal to its
identifier, and a mapping from identifier to its URI or literal have to be maintained.
Further, when answering queries with many results, all these results have to be converted
from their identifier to their URI or literal representation.

Please note that Hexastore does not store a table of RDF triples. The identifiers are
stored in the six indexes, and a mapping from identifier to URI or literal, and a mapping
from URI or literal to its identifier is stored. Therefore, the indexes and the two-way
dictionary are the database.

15





3
Rdfbox

Rdfbox is a native triple store and an implementation of the Hexastore indexing scheme.
It is implemented in Python and Cython. The Cython programming language is dis-
cussed in Section 4.1 in more detail.

Rdfbox is designed to be modular and uses open source key-value stores as storage
engines. The details on how the Hexastore vector storage is applied in a key-value store
context are discussed in Section 3.2. First, however, the index backends and their key
features are discussed.

3.1 Index Backends

The index backends are open source key-value stores. They all provide basic operations
to store, retrieve and delete key-value records. Further, they allow to iterate over records
sorted by key. Moreover, they allow to jump to a specific key or jump to a key prefix
and iterate over the records in sorted order.

The index backends are discussed in the following. A comparison can be found in
table 3.1.

Tokyo Cabinet Tokyo Cabinet[13] is a key-value store written in C. Keys and values
may be either character strings or binary strings. It is further possible to iterate over
the records, sorted by key. Records are stored in a B+ tree, hash table or fixed length
array. These data structures are persisted in a file.

It is a successor to the GNU dbm (GDBM)1 and QDBM2. Tokyo Cabinet offers APIs
for several programming languages, including C, Perl, Ruby, Java and Lua.

1http://www.gnu.org.ua/software/gdbm/
2http://fallabs.com/qdbm/
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Tokyo Cabinet Kyoto Cabinet LevelDB Redis

written in C C++ C++ C

licence LGPL GPL BSD BSD

sorted yes yes yes no

values BCS BCS BCS BCS, data
structures

architecture embedded embedded embedded client/server

data struc-
tures

B+ tree, hash ta-
ble, fixed-length
array

B+ tree, hash ta-
ble

Log-
structured
merge tree
(LSM)

custom

persistence file, IM file, directory, IM directory file, IM
BCS = binary/character strings, IM = in memory

Table 3.1: The used key-value stores and their properties.

Kyoto Cabinet Kyoto Cabinet[14] is a successor to Tokyo Cabinet, written in C++.
Its features are similar to Tokyo Cabinet, i.e. it is a key-value store, where keys and
values may be either character or binary strings. Kyoto Cabinet allows to iterate over
records, sorted by key. It offers to store records in a hash table or B+ tree. The records
may be either stored in main memory, or persisted to a file or directory based structure.

Kyoto Cabinet offers APIs for C, Java, Python, Ruby, Perl and Lua.

LevelDB LevelDB[15] is a key-value store developed at Google. It is based on the
ideas of BigTable[10] tablets and the log-structured merge tree[11]. Keys and values are
arbitrary byte arrays and records are stored sorted by key. Further, LevelDB allows for
efficient batch inserts.

Records may be compressed, using Google’s Snappy3 compression library. Snappy is
designed to be fast at compression and decompression, but results are less efficiently
compressed, compared to modern fast compression algorithms. LevelDB uses Snappy
by default, claiming no significant performance loss, but using significantly less storage
space.

Redis Redis[16] is a key-value store, based on the client-server model. Keys are arbi-
trary character or byte strings. Values may be either arbitrary character or byte strings
as well, but Redis allows for more sophisticated data structures as values, such as hashes
(dictionary structures), lists, sets and sorted sets.

Redis instances are accessed via TCP or Unix sockets, and communication between
client and server uses a custom protocol. Redis includes a command-line client, which

3http://code.google.com/p/snappy/
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triple name subject predicate object S ID P ID O ID
T1 Jack knows Emma 101 201 102
T2 Jack knows Ben 101 201 103
T3 Jack knows Nicki 101 201 104
T4 Jack likes Basketball 101 202 150
T5 Emma knows Ben 102 201 103
T6 Emma knows Nicki 102 201 104
T7 Emma likes Football 102 202 160
T8 Ben knows Nicki 103 201 104
T9 Ben likes Basketball 103 202 150
T10 Ben likes Football 103 202 160

Table 3.2: The original ten triples, with made-up three-digit identifiers.

allows to create, update and delete records and data structures with human-readable
commands.

Redis may be operated to run in main memory only, or it can be configured to persist
its records to a file.

The Redis backend had to be abandoned. The reasons are discussed in Section 4.4.

3.2 Mapping Hexastore Indexes to Key-Value Stores

Rdfbox implements the Hexastore vector storage on top of a key-value store. The map-
ping of Hexastore’s index vectors to a key-value store is depicted in figure 3.1. In this
figure, the triple collection from Section 2.5 is reused. This time, the full SPO index is
pictured. In the Hexastore index, all resources, the three subjects Jack, Emma and Ben
are Type1 in the SPO index. All three subjects form triples with the predicates knows
and likes (Type2). However, this is arbitrary, as subjects could form triples with any
predicates, and in real-world data, subjects would most likely not share the exact same
set of predicates as they do in this example. In the bubbles next to the RDF elements
their identifiers are marked. These identifiers correspond to the identifiers used in table
3.2. In this table, the original triple collection from Section 2.5 is reused and made-up
dictionary-encoded triple identifiers are marked next to them.

The mapping from Hexastore vectors to key-value pairs works as follows. The first-
level index just uses Type1 identifiers as keys. The second-level index concatenates Type1
and Type2 identifiers and uses them as keys. The third-level sets are all Type identifiers
concatenated. To navigate the indexes, the identifiers have to be concatenated. To
“collect” second-level or third-level element identifiers, Rdfbox jumps to a key prefix
and iterates over the records until the prefix changes. Because the keys are concatenated
fixed-length identifiers, they may easily be extracted from the record keys.

In the SPO index as used by Rdfbox (figure 3.1), only identifiers are used. These are
the same identifiers that are marked in the bubbles in the Hexastore index above. In the

19
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Type3 / Level 2

Type3

Type2

Type1Jack

SPO Index, Hexastore

knows likes

BasketballEmma

Ben

Nicki

Emma Ben

FootballBen

Nicki

BasketballNicki

Football

knows likes knows likes

SPO Index, Rdfbox key-value store

Type1 / Level 0101 → 2 102 → 2 103 → 2

Type2 / Level 1101201 → 3 101202 → 1 102201 → 2 102202 → 1 103201 → 1 103202 → 2

101201102 → ∅

101 102 103

202201

104

150

160

101201103 → ∅

101201104 → ∅

101202150 → ∅

102201103 → ∅

102201104 → ∅

102202160 → ∅

103201104 → ∅

103202150 → ∅

103202160 → ∅

Figure 3.1: An SPO index, graphically represented as a Hexastore index (top) and
mapped to a key-value store in Rdfbox (bottom).

Rdfbox index mapping, the SPO index is splitted into levels. These levels correspond to
the Types used in Hexastore. Type1 corresponds with level 0, Type2 with level 1, and
Type3 with level 2. Each of these levels can be stored as separate indexes. Remember
that the Hexastore vectors are mapped to key-value stores, therefore these levels are a
collection of key-value records. In the figure, each record is symbolized as a green box,
where each key on the left points to its value with the “→” symbol.

In the Rdfbox SPO index level 0, the subject identifiers appear as keys, with integers
as their values. The values indicate the number of distinct Type2 elements that are
stored in the index vector belonging to this Type1 element. This number is called the
cardinality. In the example, all subjects (Type1) have two distinct predicates (knows
and likes), therefore all level 0 records have cardinality 2.

In the SPO index level 1, the same principle applies. This time, however, the key is a
concatenation of Type1 and Type2 identifiers. The values are cardinalities (the number
of Type3 elements) for the combination of subject and predicate. In the first record of
level 1, the key is 101201, which is a concatenation of the identifiers for the subject Jack
and the predicate knows. The cardinality (value) in this record is 3, since there are three
objects for this combination of subject and predicate.

In the last level, the key is a concatenation of all three element identifiers, and since
the cardinality for a whole triple is always 1, the value is unused. This is marked with
the “∅” symbol. The first key in level 2 is 101201102, which is a concatenation of the
element identifiers for the triple <Jack, knows, Emma>. The arrows in the index level
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2 show that these records continue in the next column. If there was enough space, the
boxes that symbolize the records would be placed next to each other, as they are in level
0 and 1.

By default, Rdfbox uses 8 bytes (=64 bits) for the (integer) identifier. Thus, when
using 8 bytes for identifiers, in level 0 the keys are 8 bytes long, in level 1 they are 16 bytes
long, and in level 2 they are 24 bytes long. In the example, however, all identifiers are
three-digit numbers for the sake of simplicity. Thus, in level 1, concatenated identifiers
span six digits, and in level 2 nine digits.

How are the Hexastore index operations applied to the indexes in Rdfbox? In Section
2.5.1, two different operations are defined on each index: getLevel2Index(Type1) and
getType3Set(Type2).

In the first operation, a set of Type2 elements for the given Type1 element is returned.
In the SPO example, a list of predicates is returned for the given subject. To implement
this operation in Rdfbox, the possibility to jump to a key prefix becomes important. To
receive a list of Type2 elements for a given Type1 element, Rdfbox jumps to the key
prefix that is the Type1 identifier and then iterates over the records until the key prefix
changes. In the SPO example, to retrieve a list of predicates for the subject Emma, Rdfbox
jumps to the key prefix 102 and iterates over the records until the prefix changes (to
103). In these records Rdfbox is able to extract the identifiers for the (Type2) predicates,
as the key is a concatenation of Type1 and Type2 identifiers.

The second operation (getType3Set(Type2)) works similar. To receive a set of Type3
elements for given Type1 and Type2 elements, the level 2 index is used. The Type1 and
Type2 identifiers are concatenated and form the key prefix to jump to. For example, to
get a set of all objects for the subject Emma and the predicate knows, Rdfbox concate-
nates the subject and predicate identifiers to 102201. Then Rdfbox iterates over the
records until the key prefix changes (to 102202). For each record, the object identifier
is extracted from the key, as seen in the first operation. Of course, this indexing scheme
based on the SPO index applies to all other indexes as well.

The important feature for the key-value based indexing backend is the ability to jump
to a key prefix and iterating over the records sorted by key. These two features allow for
a mapping of Hexastore vectors to a key-value store.

The sorted storage and iteration becomes important as well when executing queries
with more than one statement. Consider this query:

SELECT ?name WHERE {
<Emma> <knows> ?name .
<Ben> <knows> ?name

}
Listing 3.1: SQ6, SPARQL query

This query in 3.1 finds objects that form a triple with the subjects Emma and Ben
via the predicate knows. To execute the query, Rdfbox consults the SPO index level
2, jumps to the key prefix that form Emma and knows (102201) and extracts all object
identifiers, which are 103 and 104 – the objects Ben and Nicki. Rdfbox then continues
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with the second query statement and again consults the SPO index level 2, and jumps
to the key prefix that form Ben and knows (103201) and extracts all object identifiers,
which in this case is only 104, the identifier for the object Nicki. The result of the query
are the objects that appear in both object sets, which is only Nicki in this case.

To intersect these two object sets, a simple merge-join is possible, since the two object
sets are sorted. If the two object sets were unsorted, a sort-merge join would be necessary,
or any other join-algorithm, which will be expensive for larger object sets than those
in this simplistic case. This is an important characteristic for Hexastore vectors: the
identifiers are always stored in sorted order, or at least the iteration sorted by key is
efficient.

3.3 Query Plan Optimization with Cardinalities
Up until now, the level 0 index was unused, so were the cardinalities (values) in level 0
and level 1. These play an important role in the query execution optimization.

Reconsider query 3.1, where the query consists of two statements which are joined
by the unbound object variable. Each of the two query statements has a set of objects
as their result set. The result for the query as a whole is a merge-join of these two
object lists. For two statements, this merge-join is straight-forward, as the object lists
are retrieved from the index in sorted order. The engine that executes this query could
first retrieve the object list for the first statement and then retrieve the object list for
the second statement and merge-join them. The engine could also reverse the order and
first retrieve the object list for the second statement, the end result is still the same and
the merge-join is equivalent.

When adding a third statement to the query that also joins with the unbound ?var
variable, the order of execution is significant:

SELECT ? var WHERE {
<subject1 > <pred icate1 > ? var . # 1 s t statement , 1000 r e s u l t s
<subject2 > <pred icate2 > ? var . # 2nd statement , 100 r e s u l t s
<subject3 > <pred icate3 > ? var . # 3rd statement , 10 r e s u l t s

}
Listing 3.2: SQ7, SPARQL query

When executing the query in 3.2, the number of objects retrieved for each individual
statement is important. The number of triples a query statement matches is called the
selectivity. A high selectivity matches few triples in the graph, whereas low selectiv-
ity matches many triples in the graph. To optimize the execution of this query, the
cardinalities stored in the indexes are used.

When starting with the statements that yields the least number of objects, subsequent
merge-joins have to merge smaller lists, which is more efficient. For example, in the query
3.2, the objects are joined over the same variable, each of the statements individually
yield a fixed number of elements that match the RDF data graph. This number is the
cardinality for the given subject and predicate. The cardinality is in the range between

22



3.3. QUERY PLAN OPTIMIZATION WITH CARDINALITIES 23

zero and the number of triples in the data graph. It is equal to zero if no triples match
and equal to the number of triples in the data graph, if all triples match the statement.

Now assume that the first statement yields 1000 results, the second statement 100
results and the third 10 results. The final result for all three statements is the intersection
of all these lists, which is minimum zero if no element is in all three result lists and
maximum 10, if all elements from the third statement appear in the result list of the
other two statements.

When merge-joining the first two statements, the resulting list of elements may have
a size between 0 and 100, depending on how many elements intersect. These worst-
case 100 elements then are merge-joined with the 10 results of the third statements,
yielding between 0 and 10 elements as the final result. However, when merging these
lists in reversed order starting with the third statement, a list of 10 elements is merge-
joined with 100 elements from the second statement. These worst-case 10 elements then
are merge-joined with the 1000 elements from the first statement, which again yields a
maximum of 10 elements. Therefore the size of the intermediate, merge-joined result
lists are minimized when starting with the statement that yields the least number of
results.

To optimize the query execution plan, Rdfbox stores the cardinality for the combina-
tion of RDF elements coded in the key as the value of the record. In the index level 0,
the keys are identifiers for the Type1 elements it stores. The value (cardinality) therefore
is the number of distinct Type2 elements this Type1 element yields. In level 1, the key is
a concatenation of Type1 and Type2 elements and its value (cardinality) is the number
of distinct Type3 elements it yields. Derived from this are two operations:

getCardinality1(a) : Type1 −→ Int(E)

getCardinality2(a, b) : Type1, Type2 −→ Int(E)

Therefore, the first operation uses index level 0, the second operation uses index level
1. In the index level 2, the keys are a concatenation of all three element identifiers, which
encodes a whole triple. The values are therefore unused and reserved for later use.

Applied to query 3.2, the number of results each statement yields can be answered
with the operation getCardinality2(Type1, Type2) on the SPO index.

The first operation is used in the following query:

SELECT ?p WHERE {
<subjec t > ?p ? var . # f i r s t statement
? var <pred i cate > ”a l i t e r a l ” . # second statement

}
Listing 3.3: SPARQL query

Either of these statements could match the least number of triples and would therefore
be chosen as the first statement in the query execution plan. Note that the statements
are joined with the ?var variable. To build an execution plan, Rdfbox first analyzes
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Figure 3.2: A stripped-down UML diagram of the Rdfbox indexing module with its back-
ends.

the first statement. The cardinality for the predicate for the given subject is answered
with getCardinality1(subject) on the SPO index. The cardinality for the object
for the given subject is answered with getCardinality1(subject) on the SOP index.
Rdfbox then continues with the second statement, where getCardinality2(predicate,
"a literal") returns the cardinality for the subject. Either of these cardinalities could
be the lowest and Rdfbox would then retrieve the elements and merge-join these with
the list of elements with the next higher cardinality.

To summarize, query optimization is an important and non-trivial task for triple
stores. The cardinalities stored in the Rdfbox indexes offer the possibility optimize the
query execution plan. The order in which query statements are joined influences the size
of intermediate results and thus are the starting point for optimization. The mechanism
presented above is an insight to the mechanisms in Rdfbox. The work in [21] offers a
more detailed discussion.

3.4 Rdfbox Architecture
In this section, the Rdfbox architecture relevant to the indexing is discussed.

The Rdfbox architecture for the indexing is depicted in the UML diagram in figure
3.2. The IndexManager is the interface to the indexing backend and is one of the central
components in Rdfbox and offers a uniform access to the indexing backends.
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The IndexManager holds an Index object for each index level, i.e. in theory three
Index object for each index permutation (SPO, SOP, PSO, POS, OSP, OPS) resulting
in 18 Index objects. However, three level 2 Index objects are shared (see Section 2.5.2)
and access to them is relayed by the IndexManager and transparent to the client.

Each index level is a separate key-value store, represented by an Index object as
an interface. Each Index offers, among others, operations to open() and close() the
index, and to add and remove records (put(key, count) and remove(key)). The value
for a key, which denotes its cardinality, is retrieved with get count(key). All records
are removed with clear(). To optimize an index for the expected number of records
to store, tune to records(nrec) is offered. The Index offers more methods, which are
not relevant in this context and are left out of the UML diagram for clarity.

To iterate over records stored in the index level, Index objects offer a Cursor with
get cursor(). The Cursor is an interface as well and offers the methods jump first()
to jump to the first record in the index (sorted by key) and jump last() to jump to
the last record. With jump(key), the cursor jumps to the first record that matches the
key. With prev() and next(), the cursor jumps to the previous or next record. With
get idkey() the current record’s key is retrieved, and its cardinality value is retrieved
with get count(). All methods return a boolean True if successful, and False if the
operation was unsuccessful or the method is not implemented, except get idkey() and
get count(), which return NULL if the cursor does not point to a record.

The key-value stores that are used as indexing backends must implement the Index
and Cursor interface. The classes IndexImpl and CursorImpl act as base classes which
implement the Index and Cursor interfaces. Therefore, indexing backends inherit from
IndexImpl and offer a CursorImpl object via get cursor(). The index backends dis-
cussed in Section 3.1 are depicted in the storage module on the right.

This section provides a broad overview to the Rdfbox architecture. Details are dis-
cussed in Section 4.
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4
Implementation

This chapter focuses on the implementation details for the indexing backends and the
triple loading. It begins with an introduction to the Cython programming language.
Then, the configuration mechanism is discussed. After that, the indexing backend im-
plementations are examined. This is followed by a discussion about the Redis and Tokyo
Cabinet in-memory backend problems.

The last part discusses the triple loading workflow and its variants.

4.1 Cython
Rdfbox is implemented using the Cython programming language1. Cython is a super-
set of the Python programming language and Cython code is translated to C and then
compiled by a C compiler. The compiled modules are accessible from Python code, as
the translated Cython code makes use of the CPython API.

Cython is designed to provide two use-cases. First, Cython allows to write C extensions
in Python. The idea is to speed up Python code by decorating it with C types. This
is especially useful for looping constructs where a lot of run time is spent in. When
implementing these in Cython and annotating them with proper C types, code often
runs orders of magnitude faster than its Python equivalent[12]. Because Cython is
a super-set of Python, code might be gradually optimized where needed, since pure
Python is valid Cython code.

The second use case is to call native C and C++ code. As Cython is compiled to
C code, native C code may be called from Cython, allowing C libraries to be included
into Cython code. This second use case enables Rdfbox to seamlessly include indexing
backends with C APIs and making these modules available to other Cython and Python
code.

The listing in 4.1 shows a simple Cython code example. It defines a Cython class
called CythonClass with three functions. The first function normal python function
is regular, pure Python inside a Cython class.

1http://www.cython.org
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cdef class CythonClass :

def normal python funct ion ( s e l f , var1 , var2 ) :
return var1 + var2

cpdef cython func t i on ( s e l f , some var ) :
cdef i n t i
cdef long r e s u l t = 0
for i in range ( some var ) :

r e s u l t += i
return r e s u l t

cdef long cy thon on ly func t i on ( s e l f , i n t some var ) :
cdef i n t i
cdef long r e s u l t = 0
for i in range ( some var ) :

r e s u l t += i
return r e s u l t

Listing 4.1: A simple Cython code example

The second function cython function uses cpdef instead of def to define a method.
This denotes that the method is callable from Python as well as Cython code. The
variables i and result are prefixed with cdef and their C type. The rest of the method is
regular Python. This method may be optimized in parts, but wrapper code is generated
for it to be callable from Python code.

The third function cython only function is fully decorated with C types. It uses
the cdef keyword to mark the function as callable from Cython only. All variables are
declared as C types. This includes the return type. This function may be translated to
a C equivalent and can therefore be fully optimized.

4.2 Configuration

As discussed in Section 3.4, all Index objects are wrapped in IndexImpl classes and
managed by the IndexManager. The index backend that is chosen is based on the Rdfbox
configuration. The configuration file is a YAML file in which the backend configuration
is defined. It may look like in listing 4.2.

The sample configuration in 4.2 uses Tokyo Cabinet as its default index backend. To
use a different index backend, this value may be set to any of the supported backends,
which is either tokyocabinet for Tokyo Cabinet, kyotocabinet for the file-based Ky-
oto Cabinet backend, omkyotocabinet for the on-memory-based (main memory) Kyoto
Cabinet backend, or leveldb for the LevelDB backend.

The index storage block allows for a more fine-grained setting of index backends.
Each index and index level may be set to a custom backend. The configuration in the
index storage block works with prefix matching. The key is the index prefix that
defines which backends to use for all indexes. The first line (key: ’s’) defines that all
indexes starting with an S should be stored in a Kyoto Cabinet file-based index. These

28



4.3. INDEXES 29

# backend keywords:
# tokyocabinet , kyotocabinet , omkyotocabinet , leveldb
default_index_storage: ’tokyocabinet ’

index_storage: {
s: ’kyotocabinet ’,
p: ’omkyotocabinet ’,
o: ’leveldb ’,
spo: ’leveldb ’,
spo2: ’tokyocabinet ’,

}

Listing 4.2: A sample configuration file

indexes include all levels of the SPO and SOP indexes. The same principles applies to
the configuration with the keys ’p’ (all levels of POS and POS indexes) and ’o’ (all levels
of OPS and OSP indexes). The last two lines, however, override some of the settings
made with the ’s’ key for the SPO and SOP indexes. The ’spo’ key sets all levels of
the SPO index to LevelDB. Further, the ’spo2’ key sets the SPO index level 2 to Tokyo
Cabinet.

As a general rule applies: settings made by longer, more specific keys override shorter,
less specific keys. If no specific setting for an index level is made in the index storage
block, the default index backend is set.

The YAML configuration file is directly mapped to a Python object, in which the
top-level keys are attributes for the configuration object. Key-value blocks like index -
storage are mapped to a dictionary.

If no configuration is detected, the IndexManager chooses Tokyo Cabinet as a backend.
This also applies if an index backend is misspelled or any other errors occur.

4.3 Indexes

As discussed in Section 3.4, all index backend implementations follow the Index and
Cursor interface, by inheriting from IndexImpl and CursorImpl respectively. To imple-
ment this interface, relevant calls are made to the actual C API of the key-value store.
In this section, the APIs to these key-value stores are discussed as well as their mapping
to the Rdfbox interface.

4.3.1 Tokyo Cabinet

The Tokyo Cabinet index backend can be found in the rdfbox.storage.tokyocabinet.
index package. The index is implemented in the TCIndexImpl class and its cursor is
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implemented in the TCCusrsorImpl class. The design of the Tokyo Cabinet backend,
which was part of Rdfbox before this work, influenced the design of the other backends.

The TCIndexImpl object has to mediate between the Rdfbox object-oriented world
and the C API of Tokyo Cabinet. A new B+ tree data structure is created with
tcbdbnew(), which returns a pointer to the TCBDB struct. This struct pointer is held
by the TCIndexImpl object and used for subsequent calls. This struct is then used for
other C API methods to manipulate the tree data structure. Because the data structure
is file-based, it has to be opened first with tcbdbopen(TCBDB* tcb, char* path, int
omode). The first parameter is the struct returned by tcbdbnew(), the second parame-
ter is the string to the file path and the third parameter is a flag parameter. The flag
parameter uses an integer in which options may be enabled and disabled bit-wise. The
flags provided indicate whether to open the data structure read-only, whether locking
should be enabled and if the file should be created if it does not exist. The API details
can be found in the “Fundamental Specification of Tokyo Cabinet”2. The Tokyo Cabinet
indexes have a .tcb file suffix.

To iterate over records and jump to a key or key prefix, a cursor has to be created
with tcbdbcurnew(TCBDB* bdb). This method returns a pointer to a BDBCUR struct,
which represents the cursor and is held by the TCCursorImpl object. To jump to a
key prefix, the method tcbdbcurjump(BDBCUR* cursor, void* key, int key size)
is used. The key may be any data type (cast to a void pointer), provided with the key
size. The method tcbdbcurnext(BDBCUR* cursor) jumps to the next record.

These API calls are just a selection of some of the index and cursor interface, to give
a broad overview on how the index and cursor interfaces are translated to the C API.

4.3.2 Kyoto Cabinet

The Kyoto Cabinet index backend is structured similarly to the Tokyo Cabinet backend.
Because Kyoto Cabinet is a successor to Tokyo Cabinet, the two C APIs are very similar.

The index and cursor implementations can be found in the rdfbox.storage.kyoto
cabinet.index package as KCIndexImpl and KCCursorImpl.

The Kyoto Cabinet API uses polymorphic databases. Therefore access to all kinds of
data structures is achieved with the same API methods. A new data structure is created
with kcdbnew(), which returns a pointer to a KCDB struct. This could be any data struc-
ture Kyoto Cabinet offers. Not until the data structure is opened with kcdbopen(KCDB*
kcdb, char* path, int omode), the data structure used is known. The data struc-
ture is chosen by file path suffix. The suffix .kct indicates a file tree data structure. The
omode integer uses the same flags mechanism as in Tokyo Cabinet. Other parameters
may be appended to the file path with the “#” symbol, followed by a list of key=value
pairs. Pairs are separated with the “#” symbol. The Kyoto Cabinet files have a .kct
suffix.

A cursor for the data structure is created with kcdbcursor(KCDB* kcdb), which re-
turns a pointer to a KCCUR struct. The API is equivalent to the Tokyo Cabinet API.

2http://fallabs.com/tokyocabinet/spex-en.html
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The method kccurjumpkey(KCDB* kcdb, void* key, int key size) jumps to a key
prefix, and kccurstep(KCDB* kcdb) jumps to the next record.

The mechanisms on how to translate the index and cursor interfaces to Kyoto Cabinet
API calls is similar to the Tokyo Cabinet API. The Kyoto Cabinet API documentation3

provides more details on the API usage.

4.3.3 Kyoto Cabinet On Memory
The Kyoto Cabinet On Memory backend can be found in the rdfbox.storage.kyoto
cabinet.omindex package. The index implementation is OMKCIndexImpl and inherits
from the Kyoto Cabinet KCIndexImpl. The index implementation shares all interface
implementations, but overloads the open() and close() methods to use an on-memory
tree data structure. Instead of using an actual file path for the kcdbopen(...) method,
the file path is “%”. The percentage symbol indicates the on-memory tree data structure.
Additional parameters may be added with the “#”, followed by key=value pairs, equal
to the Kyoto Cabinet file-based usage.

The on-memory tree structure needs to be persisted nevertheless. Kyoto Cabinet
allows the on-memory based data structures to be saved as snapshots. These snapshots
may be loaded and saved to files. Therefore, in the open() method, the snapshot is
loaded into memory. If the file does not exist, the loading request is ignored by Kyoto
Cabinet. In the close() operation, the snapshot is persisted to disk. The snapshot files
have a .kcbdump suffix.

Other than loading and saving snapshots and the special file path, the Kyoto Cabinet
file-based and on-memory index backend are identical. Thus, the on-memory implemen-
tation inherits from the file-based implementation and only overloads the open() and
close() method. The cursor implementation is identical.

4.3.4 LevelDB
The LevelDB index backend can be found in the rdfbox.storage.leveldb.index pack-
age. The implementation is LVLDBIndexImpl and uses the LevelDB C API. The index
is persisted to a directory and may be opened with leveldb open(leveldb options t*
options, char* path, char** error message). The first parameters is a struct that
defines options and parameters for the LevelDB index. The second parameter is the
index directory path and the third parameter is a string pointer to an error message, if
an error occurs. Otherwise the pointer is NULL. The open method returns a pointer to
a leveldb t struct. The index directories have a -leveldb suffix.

The cursor concept is called iterator and created with leveldb create iterator(
leveldb t* db, leveldb readoptions t* options). Each iterator is configured with
its own “read options”. The method returns a pointer to a leveldb iterator t struct.
The method leveldb iter seek(leveldb iterator t* iterator, char* key, size
t key size) jumps to a key prefix. The method leveldb iter next(leveldb iter

3http://fallabs.com/kyotocabinet/api/kclangc 8h.html
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index level key value (list)

SPO level 0 spo subj [101, 102, 103]

SPO level 1 101 [201, 202]

102 [201, 202]

103 [201, 202]

SPO level 2 101201 [102, 103, 104]

101202 [150]

102201 [103, 104]

102202 [160]

103201 [104]

103202 [150, 160]

Table 4.1: A Redis SPO index.

list index
tuples

concatenated keys

(0, 0) 101201

(0, 1) 101202

(1, 0) 102201

(1, 1) 102202

(2, 0) 103201

(2, 1) 103202

(A, B) A = list index, level 0

B = list index, level 1

Table 4.2: Iterating over the SPO level 1 in-
dex in Redis. The tuple denotes
the list index for the current key.

ator t* iterator) jumps to the next record. Iterators have to be destroyed with
leveldb iter destroy(leveldb iterator t* iterator), otherwise closing the index
fails.

Unfortunately, LevelDB does not offer a mechanism to count the records, which is part
of the Index interface. To keep track of the number of records, a naive approach would
keep a list of all keys stored in the index, which would almost double the index size
and is therefore not feasible. Cardinality counters provide a solution to this problem.
All keys added to the index are also added to the cardinality counter, which returns
an estimate of the number of keys added. Cardinality counters trade memory size with
estimate accuracy. A state of the art cardinality counter is the HyperLogLog[17] counter.
In an index with 160 million 24-bytes keys, the serialized HyperLogLog counter takes 7
kilobytes, which is negligible compared to the index size of 2.1 gigabytes.

4.4 Problems with Index Backends

Unfortunately, not all index backends could be successfully added to Rdfbox. The Redis
backend turned out to be unsuitable, mainly because Redis does not allow to iterate
over records sorted by key. Tokyo Cabinet also offers an in-memory tree data structure
with a similar API to the file-based tree, but did not allow for multiple cursors on the
same tree data structure.

In the following, the issues with these backends are examined.
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4.4.1 Redis

Applying the Hexastore concept to a Redis key-value store has proven difficult. Using
Redis in Rdfbox has two main disadvantages.

First, Redis is built as a server, and to store records, a connection to the Redis server
has to be established. This connection is either via TCP or Unix socket. Although Unix
sockets enable a connection with less overhead compared to TCP sockets, performance
is still poor compared to a solution that runs in-process. Unfortunately, Redis is not
embeddable and communication is limited to TCP or Unix sockets.

The second main disadvantage is that records in a Redis database may not be iterated
sorted by key, which is essential for index cursors. Because the iteration over key ranges
and consequently, jumping to a key prefix is not supported, the Hexastore indexes have
to be mapped differently to a Redis key-value store.

As explained in Section 3.1, Redis allows character or binary strings as keys, and
character or binary strings as values. Values may be data structures as well, such as
lists. These lists are used to map Hexastore indexes to the Redis key-value paradigm.
In table 4.1, the example triples from table 3.2 are demonstrated in a Redis SPO index.
In the SPO index level zero, only one records exists, which is at the same time the entry
point to the SPO index itself. In this record, which uses a well-known, configurable key
(in this case, “spo subj”), all the subjects are stored. Remember that subjects are Type1
in the SPO index. In this record, all SPO Type1 identifiers are stored. Each of these
subject identifiers is a key in the SPO level 1. There, each subject identifier key stores
a list of Type2 identifiers (in this case predicates) that belong to this Type1 subject. In
level 2, for each combination of subject identifier and predicate identifier, a concatenated
key is stored in the SPO index level 2. The value is a list of Type3 identifiers (objects)
that belong to this Type1 and Type2 element, i.e. the object identifiers for the given
subject and predicate. To summarize, for the SPO index, in level 0 all the subject
identifiers are stored in a list with a well-known, configurable key. In level 1, all the
subject identifiers are keys, and each key stores a list of predicate identifiers. In level 2,
the keys are a concatenation of subject and predicate identifiers. They each store a list
of object identifiers. Of course, the same principle applies for all other indexes.

For example, the triple <Emma, likes, Football> the identifiers are <102, 202, 160>.
The subject can be found in the SPO level 0 values. In level 1, each subject identifier
has its own key with the predicate identifiers list as their value. The subject 102 has
the predicates 201 (“knows”) and 202 (“likes”). In level 2, The concatenation of sub-
ject identifier and predicate identifier (102202) serves as the key, with a list of object
identifiers as its value. In this case, the only object is 160 (“Football”).

To offer a cursor to the index level 0 is relatively straightforward. Redis offers a
command to return a list value by index. This enables iterating over the level 0 index
by requesting list values by index. First, the list size for the key “spo subj” has to be
determined. In the example in table 4.1, the list size is 3.

To iterate over all subjects, the list index is saved in the cursor, and for the next()
operation, this list index is incremented until the list index reaches the list size, in which
case the end of level 0 is reached and next() returns False. Therefore to iterate over all
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level 0 elements, the list size has to be determined, which is a round-trip to the server
and then for each next() a round-trip to the server is used to receive the next Type1
identifier.

For the index level 1, the procedure becomes more complex. Now the subject list
from level 0 has to be combined with the records from level 1. To iterate over all level
1 records, the list size for “spo subj” (level 0) has to be determined. Next, the first
identifier from this list is retrieved. This identifier serves as the key for the list in level
1. Then, the size of this level 1 list is determined and the first identifier from the list is
retrieved as well. These two identifiers are then concatenated and form the first element
for the level 1 index.

In table 4.2, the iteration over the SPO index level 1 is illustrated. Note that, compared
to level 0, in level 1 two list indexes have to be maintained by the cursor. These list
indexes are depicted as tuples. The first tuple element (“A”) is the list index from level
0 (“spo subj”), the second tuple (“B”) element is the list index for level 1. In this table,
the complete level 1 iteration is depicted, with the resulting key concatenations that are
returned by the cursor get idkey() operation. Note that the first tuple element runs
over the values in the “spo subj” list until the end reaches. The second tuple element
runs over the three level 1 lists, which are each of size 2. For every list overflow, the size
for the next list has to be determined. To iterate over all elements in this example, there
are 4 round-trips to determined the list sizes plus 6 round-trips to retrieve the identifiers
that have to be concatenated.

For the level 2 index, the same principle applies, but the list index tuple has three
elements. To iterate over all the SPO index level 2, 10 round-trips are necessary to
determine list sizes, and 19 round-trips to retrieve identifiers to be concatenated.

A Redis index was built on a small dataset containing 481 triples and a simple query,
that executed in split seconds on a Tokyo Cabinet index took about 20 seconds with the
Redis index. Optimizations that tried to pre-fetch batches of identifiers from identifier
lists improved the performance significantly to the range of several seconds, but was still
orders of magnitude worse compared to Tokyo Cabinet.

4.4.2 Tokyo Cabinet In Memory

Tokyo Cabinet offers an on-memory B+ tree data structure that can be persisted to disk.
The iteration over records, however, is solved differently to the file-based API. Instead
of returning a C struct for the cursor, the TCNDB struct, which is the tree struct itself,
is used. The state of the cursor is therefore directly stored in the tree data structure
itself. Therefore only one cursor may be used simultaneously, which makes this data
structure unusable for the purpose, as Rdfbox may use more than one cursor for an
index simultaneously.

A work-around which copied the TCNDB struct failed, because a deep-copy including
all records would have been necessary. This would defeat the purpose, since copying a
complete index level for a cursor is not feasible.

Therefore support for a Tokyo Cabinet in-memory backend had to be dropped.
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4.5 Unit Testing Indexes
The index backends were all unit tested in isolation and written in Python. To test index
backends in isolation, however, it was not possible to directly manipulate the IndexImpl
objects, because the methods were written to be accessed from Cython code only for
performance reasons. Therefore, a layer between the Cython index objects and the
Python unit tests had to be written. The solution was to create proxy objects that are
written in Cython. The proxy objects implement the same Index interface, but provide
these methods in an API that is accessible to Python code as well. These proxy objects
are not as fast as the index objects themselves, but performance was not a criterion in
the unit tests.

As a first step, the existing Tokyo Cabinet index backend was taken as a template and
was unit tested. These tests were later used for the other backends as well. Following
this method, it was possible to capture the index and cursor behavior of Tokyo Cabinet
and therefore to ensure that other backends followed the same behavior.

In the unit tests, three index objects are instantiated, that represent level 0, 1 and
2 for the SPO index. The test data is the same as presented in table 3.2. The data
involves only ten triples, which is extremely little, but has a significant advantage: the
amount of triples is small and can easily be memorized. Therefore the index integrity
can be examined easily in unit tests. Even though the test data is small, the triples
cover essential features of RDF data, such as more than one predicate per subject and
objects that are reused as subjects. Further, some objects only appear as such and thus
resemble literals.

The unit tests reuse the identifiers assigned in table 3.2. The identifiers are therefore
three-digit numbers. Subjects are assigned a number between 101 and 104, predicates
use a number that starts with the digit 2 and objects that are not reused as subjects
use a number that is higher or equal to 150 and lower than 200 to not be confused with
predicates. This numbering scheme enables to memorize RDF elements easily while still
providing a fixed-size identifier.

These triple identifiers are tested in two versions. The first version uses ASCII char-
acters as identifiers, i.e. identifiers such as “201” are stored as number characters. The
second version uses binary identifiers, i.e. identifiers such as “104” are stored as three-
byte identifiers, in which every digit’s value is represented as a byte. Because most of the
identifiers have a zero-byte in the middle, these identifiers should catch errors where the
middle zero-byte is interpreted as the end of a string by accident. This is an important
aspect, because the indexes are implemented in Cython code that makes heavy use of
C methods and APIs, where the distinction between character strings and byte strings
is a common source of errors. Rdfbox uses 8-bytes integer identifiers by default, which
may have zero-bytes as well.

All unit tests are therefore performed twice, first on the ASCII identifiers and then
on the binary identifiers. The unit tests covered basic index operations, such as putting
records into the index and retrieving them, but focus on the cursor. The unit tests cover
each index level’s cursor thoroughly, including jumping to full keys and key prefixes.
This ensures that all index operations works correctly, i.e. retrieving Type2 elements
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for a given Type1 and retrieving Type3 elements for given Type1 and Type2 elements.
Further, cardinalities on each level are checked for integrity.

The unit tests are designed to be easily extensible for new indexing backends. New
indexing objects need to provide a proxy object. These are easily created by inher-
iting from a proxy base class that provides an implementation for most of the index
methods and may be customized where needed. New index unit tests inherit from
RdfboxTestHelper and instantiate all three index level proxy objects and provide them
via the get indexN() methods.

This unit test design ensures that the tested index operations are the same for any
index backend and that new backends may easily be checked for conformity with existing
index backends.

4.6 Loading Triples
In this section, the process of encoding, sorting and inserting triples into the indexes is
discussed.

This process is divided into two phases: phase one is encoding and sorting, and phase
two is merging and loading into index.

The triples are loaded into the index in encoded form, i.e. triple elements (subject,
predicate or object) are not in their URI or literal form, but encoded as 8-bytes integer
identifiers. The encoding was discussed in Section 2.5.4. 8-bytes integers is the default
identifier size, which may be configured. The triples are sorted because the Tokyo Cab-
inet and Kyoto Cabinet are B+ tree data structures, which perform best with sorted
input. The LevelDB backend uses a log-structured merge tree. The performance impli-
cations of sorted and unsorted inputs for LevelDB are discussed in chapter 5.

4.6.1 Encoding and Sorting
Figure 4.1 provides an overview to phase 1. The triples are stored in their standard SPO
form and Rdfbox reads them in and parses them. All RDF elements are then encoded
to their integer identifiers. At the end of this step, the triples are in their encoded SPO
form. In the next step, the encoded triples are permuted to all six permutations. In
figure 4.1, the permutation to the OPS form is depicted. After the triples are permuted,
each triple is concatenated. Since the triples are in their encoded form, the concatenated
triple is 24 bytes long, given that RDF elements are encoded with 8-bytes identifiers.
This list of concatenated triples is then sorted and stored to a file. In the sorted file,
the triples are stored continuously, without any extra characters that separate them. It
is assumed that the identifier size is known, as well as the triple permutation, which is
encoded in the file name.

The work-flow in figure 4.1 is, however, just an overview to the general process in
phase 1. Figure 4.2 depicts the phase in its actual form. The triples may span multiple
input files. If there are multiple files, they are treated as one input source and split
into chunks. The file chunk size may be configured. These file chunks are then put
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<S1> <P1> <O1>
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sorted triples
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Figure 4.1: An overview to the sorted loading work-flow. It starts on the top left.
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process 1 process Nrepeat until queue is empty

Figure 4.2: The sorted loading work-flow, executed in parallel by a process pool. The
process is the same as in figure 4.1, but executed by many processes in chunks.
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Figure 4.3: The second part of the sorted-loading process: merging all sorted, temporary
files to 6 resulting files for each index.

into a queue. Note that they, however, consist of the file path and a range of bytes
that represent the file chunk, not the actual content of the file. After that, a pool of
processes is started which begins to process the queue. The number of processes may
be configured as well, but is by default equal to the number of CPUs the host system
provides. Each process performs the steps discussed in figure 4.1. Therefore, for each
file chunk in the queue, six sorted, encoded, temporary triple files are produced. These
temporary files are the input for the next phase.

The first phase of loading triples is processed by a pool of processes. Processes are
used instead of threads to scale to multiple CPUs, as Python uses the Global Interpreter
Lock, which limits threads to run on a single CPU[18]. Access to the module that uses
dictionary-encoding is guarded by a lock. This is necessary, because dictionary encoding
has to provide the same identifier for the same resources. If two or more processes access
the dictionary encoding module, it can not be guaranteed that two resource URIs are
assigned the same identifiers. Therefore, access to the dictionary encoding is locked.

4.6.2 Merging and Loading into Index

The first phase produces for each tuple permutation at least one file with sorted, encoded
triples. These triple files have to be merged into one, large triple file for each index, which
is part of phase 2. The second phase is depicted in figure 4.3. At the end of phase two, six
files with permuted, sorted and encoded triples are ready to be loaded into the indexes.

If the first phase produced a lot of temporary triple files, multi-pass merging is nec-
essary. This multi-pass merging is depicted in figure 4.3 at the bottom. The multi-pass
merging works as follows. The number of files N to merge in one iteration has to be
defined. In the figure, the number of files to merge is N=3. In practice, this number
is higher. Then, all temporary files that belong to the same permutation have to be
found. These temporary input files are defined to be in level 0. From these, the first
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N are merged and produce a merged file in level 1. The next N are again merged and
produce yet another file in level 1, and so on. After all initial files are merged in batches
of size N, a number of merged, temporary files are in level 1. If the number of files in
level 1 is equal or less than N, these files are merged to produce the final, sorted triples
file. If there are more than N files in level 1, the same procedure continues until a level
is reached where there are less than (or equal to) N files.

The optimal number N is not automatically calculated at the moment. It is, among
other factors, certainly determined by the maximum number of files that may be opened
per process defined by the underlying operating system. An optimal solution is still to
be done.

After the multi-pass merging, all the initial temporary files and all intermediate-level
temporary files can be deleted. In fact, the temporary files may be deleted as soon as
they are merged in to a higher-level temporary file.

4.6.3 Iterative Loading
The two phases described above are necessary for the sorted input into indexes which
are based on B+ trees. For other indexes, a sorted input may not be necessary. In this
case, iterative loading is possible. The process is similar to the process in figure 4.2.
The triple input is divided into chunks and put into a queue. A process pool starts to
process the chunks, i.e. reading the triples in and parsing them. After that, they are
encoded and permuted. After permutation, however, triples are not sorted and stored
to a file, but directly put into the index.

Phase two is completely skipped, as there is no sorting involved and therefore no
temporary files are written. However, the dictionary encoding problem remains. The
triple encoding is still guarded by a lock, to avoid that the same resources are assigned
to different identifiers.
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5
Evaluation

To evaluate the index backends, two aspects were considered. First, the performance
when loading triples. Second, the performance when executing queries.

The Tokyo Cabinet und Kyoto Cabinet backends are built using B+ trees. Therefore,
the triples loaded into the index have to be sorted. For each of the six indexes, a file with
encoded, permuted and sorted triples is loaded into these backends. In the evaluation,
the default identifier size of 8 bytes was chosen. This allows for 264 ≈ 1.8 ∗ 1019 different
RDF element identifiers.

Three differently sized data sets were chosen to evaluate the performance. These data
sets were loaded into the indexes. For each of these data sets, a set of queries were
executed to compare their querying performance.

5.1 Datasets and Queries
The data sets were taken from the FedBench[19] research project. They are listed in
table 5.1.

The goal of FedBench was actually to provide a benchmark for federated queries.
The idea is to test query engines that execute queries over distributed data sets. The
FedBench data sets are therefore designed to be distributed to many triple store instances
and to evaluate distributed query execution strategies. The data sets and queries are,
however, suited for centralized queries as well. Because the FedBench data sets and
queries are widely used, they were chosen for this evaluation.

The FedBench data sets consist of many different, collected data sets. The individual
data sets span a variety of domains. These individual data sets are grouped to form
larger data sets.

The smallest group is a single data set from the SP2Bench SPARQL Benchmark[20].
SP2Bench provides a data generator which can produce arbitrary large data sets. A
generated data set with 10 million triples is part of FedBench and forms the first data
set group, which is referred to as “sp2bench” or “sp2b” in this work.
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Dataset Group Dataset Domain Triples (mill.)
SP2Bench SP2B-10M Bibliographic (synthetic) 10
Life Science DBPedia subset Generic 43.6
52.8 M triples KEGG Chemicals 1.09

Drugbank Drugs 0.767
ChEBI Compounds 7.33

Cross Domain DBPedia subset Generic 43.6
159.2 M triples NY Times News about people 0.335

LinkedMDB Movies 6.15
Jamendo Music 1.05
Geonames Geography 108
SW Dog Food SW Conf. and publ. 0.104

Table 5.1: The FedBench data sets. Each Data set group consists of one or more individ-
ual data sets. The groups are named after their data domain. The smallest
group consists of 10 million triples, the largest of almost 160 million triples.

The second group consists of data sets from the life science domain. These are real-
world, non-synthetic data from the chemistry and biology domain. Added to this group
is also a subset of the DBpedia data set. All data sets from this group combined consist
of 52.8 million triples. This data set is referred to as “life-science”.

The third and largest group is the cross domain data set. It includes the same DBpe-
dia subset used in the life-science group and adds five other data sets: a New York times
data set (news about people), LinkedMDB (movies), Jamendo (music), GeoNames (geo-
graphical and spatial data), and Semantic Web Dog Food, a small data set on Semantic
Web conferences and publications.

The two largest individual data set are DBpedia with 43.6 million triples and Geo-
Names with 108 million triples. The DBpedia subset is used in the cross-domain group
as well as the life-science group.

To summarize, FedBench provides three data set groups. The smallest group is
sp2bench with 10 million triples. The second group is life-science with 52.8 million
triples and the largest group is cross-domain with 159.2 million triples.

FedBench provides a set of SPARQL queries for each of these groups. A complete
listing of queries may be found in the appendix A.1. The queries used are, however, not
all equal to the FedBench queries, because Rdfbox does not support all SPARQL features
yet. The queries were, however, rewritten to equivalents where possible or simplified.

The queries are named after their groups. For sp2bench data set, the queries are
S-Q1 to S-Q4, for the life-science data set, the queries are L-Q1 to L-Q11 and for the
cross-domain data set, the queries are C-Q1 to C-Q11.
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Figure 5.1: The loading time in seconds for the three data sets, plotted for each backend.
LevelDB is loaded twice, with sorted input and iteratively.

5.2 Loading Data

Test Setup The evaluation was performed on an 8-core 2.933 GHz Intel machine with
72 GB of main memory running Linux. It was setup with Python 2.7.2, Cython 0.17.1,
and GCC 4.4.3.

Loading FedBench Data Loading the data was performed with sorted data input on
all four index backends. Additionally, the triples were loaded iteratively for the LevelDB
backend. Figure 5.1 shows the results for all three FedBench data sets.

For the sp2bench and life-science data sets, Tokyo Cabinet outperforms all other
backends. For sp2bench, Tokyo Cabinet takes 10% less time than the second-fastest
backend (LevelDB, sorted input) and 14% less time than the slowest backend (Kyoto
Cabinet on-memory).

For the life-science data set, Tokyo Cabinet takes 1.5% less time than the second-
fastest backend (LevelDB, iterative input) and 7.5% less time than the slowest backend
(Kyoto Cabinet on-memory).

For the cross-domain data set, the figures changed. The iteratively loaded LevelDB
backend wins by a small margin. The second-fastest is Tokyo Cabinet, followed by
LevelDB with sorted input and Kyoto Cabinet on-memory. The slowest backend was
the file-based Kyoto Cabinet, which takes 14% more time than Tokyo Cabinet.

Loading GeoNames Data To further analyze how loading times change with in-
creasing data sizes, the GeoNames data set was split up into 10 million triple chunks.
Data was then loaded into indexes in 10 million triple increments. The results are plotted
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Figure 5.2: The loading time for the GeoNames data set. The data is split in 10 million
triple chunks to analyze the backend behavior with an increasing number of
triples.
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Figure 5.3: On the left: The loading time for the GeoNames data set with an indicated
time for the sort-merge work-flow before the data is ready to be inserted into
the indexing backends. On the right: The loading time without this process
for pre-sorted data.
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Figure 5.4: Loading time for cross-domain data set, split in individual steps. The encod-
ing step takes 90% of the overall time.

in figure 5.2. Tokyo Cabinet is fastest for smaller chunks and is only second-fastest for
40 million and 50 million triples. At 90 million triples, Tokyo Cabinet is fastest again.

The iteratively loaded LevelDB backend is second-fastest for bigger data sets and even
fastest for 80 million triples.

In figure 5.3, the loading time is compared to the time the sorting and merging takes.
On the left the black lines show the time to sort and merge the triple batches. On the
right, the net loading times with pre-sorted data are plotted. This chart shows that
LevelDB performs bad for small inputs but is second-best with 90 million triples.

Bottlenecks In figure 5.3, it is clearly visible that most of the time is spent in parsing,
encoding, sorting and merging, and not much time loading the triples into the index
backends.

In figure 5.4, the different steps are split up. The parsing and sorting/merging steps
do not take much time. The actual dictionary encoding is the major part in the whole
process. When comparing the overall time including loading the data into the Tokyo
Cabinet backend, 90% of the time is spent dictionary-encoding the triples. Therefore,
dictionary encoding is a clear bottleneck in the loading process. This affects the iterative
loading in LevelDB as well.

Index Sizes In table 5.2, the index sizes for all three data sets are listed. Figure 5.5
and 5.6 show complementary charts.

A general observation is that LevelDB produces the smallest index sizes. This is due
to the Snappy compression that is enabled by default. For the cross-domain data set,
LevelDB indexes are 42% the size of the Kyoto Cabinet on-memory index sizes. The
Kyoto Cabinet on-memory indexes are in most scenarios the second-smallest indexes,
followed by the Tokyo Cabinet indexes. The biggest indexes are produced by the Kyoto
Cabinet file-based backend.

The pie chart on the right in figure 5.6 shows the index sizes for all indexes com-
bined. This shows again that LevelDB indexes are smaller in size compared to the other
backends.

As explained in Section 4.3, the Kyoto Cabinet on-memory backend stores its data
as snapshots to a file. Loading these snapshots takes a significant amount of time: for
the cross-domain data set, loading all indexes takes 1152 seconds (≈ 19 min). This is
the time to open all index levels serially. Opening the indexes could be parallelized, but
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Figure 5.5: The index sizes for each individual index, plotted for all backends for the
life-science (left) and sp2bench (right) data sets.
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for the cross-domain data set. On the right: the overall index size for the
cross-domain data set for all backends relative to each other.
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dataset backend OPS OSP POS PSO SOP SPO total
CD tokyo 2,576.0 4,990.0 7,352.2 3,828.4 10,110.8 9,906.6 38,764.0

k-file 4,522.5 7,205.6 9,218.3 5,083.7 12,829.8 12,602.2 51,462.1
k-om 2,434.6 4,771.1 6,872.7 3,643.9 9,543.8 9,346.1 36,612.2

leveldb 1,231.4 2,430.7 2,605.7 1,427.0 4,142.3 3,704.7 15,541.9
LS tokyo 821.8 1,602.3 2,318.4 819.6 3,282.3 2,793.0 11,637.4

k-file 1,431.7 2,217.9 2,861.9 1,110.4 4,152.5 3,653.8 15,428.2
k-om 776.5 1,531.9 1,422.3 773.5 3,099.8 2,626.2 10,230.1

leveldb 383.3 784.4 823.5 298.9 1,402.0 1,106.3 4,798.5
SP2B tokyo 253.2 377.6 516.0 246.7 673.4 644.7 2,711.6

k-file 355.8 479.0 611.4 298.0 796.4 768.7 3,309.4
k-om 241.6 362.0 484.1 234.9 636.5 608.8 2,567.9

leveldb 113.4 183.6 183.3 86.7 263.6 231.4 1,062.1

Table 5.2: The index sizes for the three data sets, for each index individually and in total.
All sizes are in megabytes.

would most probably still take a few minutes. This is a big disadvantage, as all other
backends take less than a second to open all indexes for the cross-domain data set.

Iterative Loading Rdfbox allows for customized identifier sizes. By default, 8-bytes
identifers are used. When choosing between 1 and 8 bytes for the identifiers, a dictionary
encoding is applied; i.e. parsed RDF elements are searched in a dictionary that maps
RDF elements to their identifier. If the RDF element is found, it was inserted into the
indexes before and its identifier is returned. If the element is not found, it is “new”
and a new identifier is assigned to it and added to the dictionary. In addition to that,
the reverse pair is added to a second dictionary. This dictionary returns for a given
identifier the original RDF element. It is used when returning results from the index.
Both dictionaries are essential. The first dictionary ensures that equal RDF elements
receive equal identifiers, and the second dictionary ensures that results returned by the
indexes can be translated back to the URIs or literals.

The first dictionary, however, can be replaced with a hash function. A hash function
would return for a given RDF element an identifier that can be computed without
consulting a dictionary, which is potentially faster for large data sets. The disadvantage
is that hash functions return bigger identifiers. The SHA-1 hash function returns a 20-
bytes identifier, which is more than double the size of the dictionary-encoded 8-bytes
identifier.

Because the LevelDB indexes were smaller by a large margin, an additional experiment
was started, where the first dictionary was replaced with the SHA-1 function. Because
the encoding takes 90% of the overall loading time (as shown in figure 5.4), the hypothesis
was that loading time could be reduced by replacing the first part of dictionary encoding
with SHA-1 hashing. This resulted in bigger indexes, because identifiers were more than
twice the size. Instead of 8, 16 and 24 bytes keys in index levels, keys were 20, 40 and
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60 bytes long. This was, however, justified with the Snappy compression that would
compress the indexes to a size comparable to the other indexes with 8-bytes identifiers.

The hypothesis, however, turned out to be wrong. Iteratively loading the cross-domain
data set into the index took 39387 seconds (≈ 11.9h) and was slower compared to the
8-bytes identifier variant, which took 32904 seconds (≈ 9.1h). The 20-bytes identifier
experiment took therefore 19.7% more time. Experiments with the smaller data sets
showed even worse numbers. The life-science data set group took 50.2% more time and
the sp2bench data set group took 32.6% more time.

The overall index size grew to roughly 41 gigabytes, which is a bit larger than the
Tokyo Cabinet 8-bytes identifier index. Therefore Snappy compression was as effective
as predicted.

5.3 Queries
The second part of the evaluation compared query execution times for all backends. The
execution time for each query is measured with cold cache and warm cache. The queries
were repeated 3 times for the warm cache figures.

The actual measurements were taken for non-materialized results, i.e. results were the
identifiers return by the indexes themselves. When materializing results, the dictionary
encoded identifiers have to be translated to their original RDF elements. This step is
identical for all backends and is therefore excluded to avoid this potentially disruptive
influence.

Note that all query charts are plotted on a logarithmic scale, therefore each grid line
marks a ten-fold increase. The full listing of SPARQL queries can be found in the
appendix A.1.

In the following, the backends are abbreviated: TC for the Tokyo Cabinet, KCF for the
Kyoto Cabinet file-based backend, KCOM for the Kyoto Cabinet on-memory backend
and LDB for LevelDB.

Cross Domain Queries The cold-cache cross-domain queries in figure 5.7 show that
query execution times vary greatly. TC performs generally bad, except for query C-Q2.
KCF is equally bad, except for query C-Q8. KCOM and LDB generally perform best,
although they balance each other.

For the warm-cache cross-domain queries in figure 5.8, both Kyoto Cabinet backends
perform equally well and are comparable to the performance of TC, except for the
queries C-Q8 and C-Q10, where TC and LDB perform significantly worse. In general,
LDB performs worse or equally at best compared to the other backends. Performance
is significantly worse for the queries C-Q3, C-Q5, C-Q7 and C-Q11.

The query execution times for cold and warm caches are listed in table 5.3.

Life Science Queries For the cold-cache life-science queries, the figures are less clear
compared to the cross-domain queries. LDB performs generally worse or equal to the
other backends, except for query L-Q2, where it is best. KCOM generally performs best,
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Figure 5.7: The cross-domain queries, measured in seconds with cold caches.

for some queries even orders of magnitude faster, such as query ranges L-Q3 to L-Q8.
TC and KCF perform equally well.

For the warm-cache queries, the difference is less distinct. TC and KCF again perform
equally well, except for L-Q9, where TC performs best. In general, LDB performs worst;
in some queries even orders of magnitude (L-Q1, L-Q4, L-Q6, L-Q7, L-Q9, L-Q10).
KCOM is comparable to KCF, except for the queries L-Q7 and L-Q8, where it performs
significantly better than all others.

The query execution times for cold and warm caches are listed in table 5.3.

SP2Bench Queries The sp2bench queries are listed in figure 5.11. For the cold-cache
queries, all queries perform equally well on all backends, except for two outliers: LDB
performs significantly worse in S-Q1 and KCF does so in query S-Q4.

The warm-cache queries perform equally well on all backends, except for LDB which
performs worse in S-Q2 and S-Q4.

The query execution times for cold and warm caches are listed in table 5.4.
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cold cache warm cache
query tokyo k-file k-om leveldb tokyo k-file k-om leveldb
C-Q1 0.9126 0.5560 0.0415 0.0167 0.0017 0.0029 0.0021 0.0028
C-Q2 0.0008 0.3085 0.0505 0.0034 0.0007 0.0007 0.0008 0.0008
C-Q3 25.62 25.58 0.1222 0.3231 0.0175 0.0145 0.0275 0.3018
C-Q4 2.1091 2.9294 0.0393 0.0324 0.0040 0.0045 0.0060 0.0286
C-Q5 0.9264 3.2173 0.0480 0.4653 0.0081 0.0142 0.0255 0.4640
C-Q6 0.8913 0.6119 0.0498 0.1899 0.0346 0.0169 0.0254 0.1875
C-Q7 2.1286 4.5266 0.0963 0.0298 0.0016 0.0020 0.0027 0.0252
C-Q8 4.3695 0.0958 3.6086 3.1467 1.8828 0.0008 0.0012 2.5854
C-Q9 0.3587 0.3399 0.0885 0.0048 0.0007 0.0008 0.0008 0.0008
C-Q10 0.5953 2.3056 0.0566 1.3586 0.0872 0.0018 0.0019 0.0549
C-Q11 19.58 33.17 0.1484 9.4357 0.0425 0.0432 0.0614 0.7379

Table 5.3: A listing with the measured query execution times for the cross-domain
queries, cold and warm cache.

cold cache warm cache
query tokyo k-file k-om leveldb tokyo k-file k-om leveldb
L-Q1 0.0718 0.3150 0.0511 0.4882 0.0233 0.0276 0.0295 0.4877
L-Q2 0.0114 0.0086 0.0009 0.0006 0.0006 0.0006 0.0006 0.0006
L-Q3 0.3759 0.4643 0.0113 0.3769 0.0083 0.0098 0.0059 0.0061
L-Q4 862.02 162.46 4.5808 5179.9 25.17 1.8559 1.4106 2356.2
L-Q5 0.8189 0.9581 0.0014 0.5990 0.0011 0.0012 0.0009 0.0086
L-Q6 25.04 69.85 0.3392 9.1710 0.2096 0.1728 0.0506 8.7319
L-Q7 1.5483 7.9158 0.0012 1.5888 0.0051 0.0106 0.0007 0.1040
L-Q8 261.83 222.60 0.0012 6250.4 265.46 101.28 0.0011 2305.5
L-Q9 0.1607 12.71 0.7323 12.54 0.0010 0.5489 0.2818 12.01
L-Q10 1.2487 1.1730 1.9244 3.4531 1.2248 0.5806 1.9413 26.52
L-Q11 0.4755 0.4297 0.1994 0.4133 0.1585 0.1705 0.3067 0.8758

Table 5.4: A listing with the measured query execution times for the life-science queries,
cold and warm cache.

cold cache warm cache
query tokyo k-file k-om leveldb tokyo k-file k-om leveldb
S-Q1 0.0016 0.0018 0.0015 0.0276 0.0007 0.0007 0.0007 0.0008
S-Q2 6.4822 14.93 8.9029 2.1385 0.0956 0.1106 0.1039 0.8001
S-Q3 0.0014 0.0014 0.0013 0.0014 0.0006 0.0008 0.0007 0.0008
S-Q4 0.0043 0.2080 0.0048 0.0063 0.0037 0.0044 0.0044 0.0880

Table 5.5: A listing with the measured query execution times for the sp2bench queries,
cold and warm cache.
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Figure 5.8: The cross-domain queries, measured in seconds with warm caches.
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Figure 5.9: The life-science queries, measured in seconds with cold caches.
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Figure 5.10: The life-science queries, measured in seconds with warm caches.
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Figure 5.11: The sp2bench queries, measured in seconds with cold and warm caches.
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6
Discussion and Conclusion

6.1 Discussion
Evaluation showed that for loading data, the Tokyo Cabinet and LevelDB backends were
superior to the other backends, but not by a large margin. Loading the GeoNames data
showed that, when gradually increasing the number of triples, LevelDB performs better
in relation to the Kyoto Cabinet backends, but is still outperformed by Tokyo Cabinet.
For the cross-domain data set, iteratively loading the triples into the LevelDB index was
already marginally faster than Tokyo Cabinet. For larger data sets, LevelDB’s advantage
could be more distinct. Therefore experiments with larger data sets are necessary.

Both Kyoto Cabinet backends performed worst for loading the cross-domain data set.
Performance will probably be even worse for larger data sets, as the GeoNames trend
suggests. Moreover, Kyoto Cabinet on-memory index loading time (from file snapshots)
will aggravate for larger data sets. Its utility will depend on the use case: for long-
running setups where the index is loaded once at the beginning, the loading time will
amortize. In use cases where the time to load an index matters, other backends are
better suited.

An important benefit of LevelDB is its small index size. Indexes are significantly
smaller compared to the indexes produced by all other backends due to the Snappy
compression used by default. This advantage is of importance for Rdfbox as a whole,
since the Hexastore indexing scheme produces larger databases than competing triple
stores. LevelDB’s compressed indexes help improve this drawback, even more so because
performance is still competitive.

Evaluation also showed, however, that the overall loading time is dominated by dic-
tionary encoding. The dictionary encoding module has to maintain two dictionaries.
The first translates from RDF element to identifier, the second from identifier to RDF
element. When replacing the first dictionary with a hash function, a lookup is not neces-
sary which potentially speeds up the encoding. The disadvantage to hashing is its larger
identifiers. However, this can be compensated with compressed LevelDB indexes. An
experiment with the cross-domain data set, however, showed that this approach is 20%
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slower. This could have several reasons. First, larger identifiers also produce more data
that has to be persisted to disk, as index level keys are larger. Second, computing the
hash might be slower than looking up the identifier in a dictionary. Experiments with
larger data sets could verify these theories.

One issue with the current dictionary encoding module is, however, that both steps
— assigning an identifier and adding the identifier with its RDF element mapping to the
second dictionary — are coupled. When loading triples, these steps could be decoupled.
The hashed identifier can be computed in parallel and the second step (store identifier
to RDF element mapping) could be omitted altogether for just building the indexes.
Even when omitting the second step, the index can be built, as the second dictionary is
needed for materializing results only. Therefore, the second step can be decoupled and
be executed independently.

If these steps are independent, all processes in the loading work-flow can compute
identifiers independently. The computed identifiers with their RDF elements could be
queued and then processed separately. A separate process could add all the mappings
to the dictionary. This process could then be improved independently, for example with
an efficient mechanism to decide if an identifier was already added to the dictionary to
quickly discard previously added RDF elements.

This is, of course, only one proposal to solve the dictionary-encoding bottleneck. Other
solutions which preserve the original two-dictionaries strategy could be developed. Un-
fortunately, time constraints prevented a thorough exploration for improvements and
future work needs to address this issue.

When examining the query performance for the most efficient backends in the loading
evaluation — Tokyo Cabinet and LevelDB — LevelDB excels for the cold cache scenarios.
In the warm cache scenarios, the opposite holds true.

Query performance for the Kyoto Cabinet on-memory backend is, contrary to expec-
tations, not significantly better than other (file-based) backends. Although it performs
better than Tokyo Cabinet and Kyoto Cabinet (file-based) for cold-cache queries, this
advantage is lost for warm-cache queries. Moreover, LevelDB performs better for half of
the cold-cache queries in the cross-domain data set.

Overall, Tokyo Cabinet and LevelDB are the most profitable backends. Both store
triples faster than the Kyoto Cabinet backends. LevelDB performs better for cold-
cache queries and Tokyo Cabinet is favorable for warm-cache queries. LevelDB’s smaller
indexes may, however, be a decisive factor, especially for large data sets.

6.2 Conclusion
The goal of this work was to extend Rdfbox — a native triple store that implements
the Hexastore indexing scheme — with alternative indexing backends to the already
implemented Tokyo Cabinet backend. Tokyo Cabinet is a key-value store, therefore
other key-value stores were evaluated and integrated into Rdfbox.

One of them was Kyoto Cabinet, which is a successor to Tokyo Cabinet. Due to their
relatedness, the integration was seamless, as the Kyoto Cabinet C API is very similar to
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the one of Tokyo Cabinet. Contrary to Tokyo Cabinet, the Kyoto Cabinet API provides
a polymorphic key-value data structure that offers a uniform API to all data structures
with varying storage mechanisms provided by Kyoto Cabinet.

This uniform API allowed to provide two Kyoto Cabinet backends, one being file-based
and the other being in-memory, with shared code bases for most parts.

The third backend was LevelDB, a key-value store that uses a log-structured merge
tree to store records instead of the B+ trees used by Tokyo Cabinet and Kyoto Cabinet.

Redis, another key-value store, proved difficult to integrate. Because iterating over
records sorted by key is not supported by Redis, an alternative mapping of Hexastore
vectors to key-value records had to be implemented. This turned out to be technically
possible, but not feasible due to many round-trips that are necessary for iterating over
records. Efficient iterating over records and the possibility to jump to a key prefix are
key requirements for Rdfbox backends. The fact that Redis does not support iteration
by key and the fact that it is based on a client-server model and not embeddable made
it unusable for its purpose.

Efforts to use the Tokyo Cabinet in-memory tree data structure as an index failed
because of Tokyo Cabinet design decisions. Iterating over a Tokyo Cabinet in-memory
tree simultaneously is not possible, because the iterating state is stored in the tree data
structure itself. Therefore the Tokyo Cabinet in-memory backend was abandoned.

Evaluation showed that triple loading was fastest with the Tokyo Cabinet and LevelDB
backends, although not by a large margin to the other backends. In the triple loading
work-flow, dictionary-encoding the triples turned out to be a major bottleneck. Parsing,
sorting the triples and storing them in the indexes only have a small proportion of the
total loading run-time. Experiments to tackle this bottleneck with hashed identifiers
were attempted, but did not improve loading time. A solution to this problem could be
part of future work.

In general, the Tokyo Cabinet and LevelDB backends turned out to be most perfor-
mant. Both are faster when loading the triples into the index than the Kyoto Cabinet
backends. For query performance, LevelDB performs better in cold-cache scenarios,
and Tokyo Cabinet is faster in warm-cache scenarios. LevelDB’s indexes are, however,
significantly smaller because of the Snappy compression used by default.

An evaluation with larger data sets to determine which backend performs best might
be considered for future work.
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A
Appendix

A.1 SPARQL Queries

Listing A.1: Cross Domain SPARQL
Queries

PREFIX owl : <http ://www.w3 . org /2002/07/ owl←↩
#>

PREFIX r d f s : <http ://www.w3 . org /2000/01/←↩
rdf−schema#>

PREFIX rd f : <http ://www.w3 . org /1999/02/22−←↩
rdf−syntax−ns#>

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
PREFIX : <http :// dbpedia . org / r e sou r c e/>
PREFIX dbpedia2 : <http :// dbpedia . org /←↩

property/>
PREFIX dbpedia : <http :// dbpedia . org/>
PREFIX dbo : <http :// dbpedia . org / onto logy/>
PREFIX skos : <http ://www.w3 . org /2004/02/←↩

skos / core#>
PREFIX swc : <http :// data . semanticweb . org /←↩

ns/swc/ onto logy#>
PREFIX swrc : <http :// swrc . ontoware . org /←↩

onto logy#>
PREFIX drugbank : <http ://www4. wiwiss . fu−←↩

b e r l i n . de/drugbank/ re sour c e /drugbank/>
PREFIX drugbankcat : <http ://www4. wiwiss . fu←↩

−b e r l i n . de/drugbank/ r e sour c e /←↩
drugcategory/>

# C−Q1

SELECT ? p r ed i c a t e ? ob j e c t WHERE {
: Barack Obama ? pr ed i ca t e ? ob j e c t .

}

# C−Q2

SELECT ? party ?page WHERE {
: Barack Obama dbo : party ? party .
?x <http :// data . nytimes . com/ elements /←↩

topicPage> ?page .
?x owl : sameAs : Barack Obama .

}

# C−Q3

SELECT ? paper ?p ?n WHERE {
? paper swc : i sPartOf <http :// data .←↩

semanticweb . org / con f e r ence / iswc←↩
/2008/ poster demo proceed ings> .

? paper swrc : author ?p .

?p rd f s : l a b e l ?n .
}

# C−Q4

SELECT ? proceed ings ? paper ?p WHERE {
? proceed ings swc : relatedToEvent <http←↩

: // data . semanticweb . org / con f e r ence /←↩
eswc/2010> .

? paper swc : i sPartOf ? proceed ings .
? paper swrc : author ?p .

}

# C−Q5

SELECT ? paper ?p ?x ?n WHERE {
? paper swc : i sPartOf <http :// data .←↩

semanticweb . org / con f e r ence / iswc←↩
/2008/ poster demo proceed ings> .

? paper swrc : author ?p .
?p owl : sameAs ?x .
?p rd f s : l a b e l ?n .

}

# C−Q6

SELECT ? r o l e ?p ?paper ? proceed ings WHERE ←↩
{

? r o l e swc : i sRoleAt <http :// data .←↩
semanticweb . org / con f e r ence /eswc←↩
/2010> .

? r o l e swc : heldBy ?p .
? paper swrc : author ?p .
? paper swc : i sPartOf ? proceed ings .
? proceed ings swc : relatedToEvent <http←↩

: // data . semanticweb . org / con f e r ence /←↩
eswc/2010> .

}

# C−Q7

SELECT ?a ?n WHERE {
?a dbo : a r t i s t : Michael Jackson .
?a rd f : type dbo :Album .
?a f o a f : name ?n .

}

# C−Q8

SELECT ?drug ? id ? s ?o ? sub WHERE {
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?drug drugbank : drugCategory drugbankcat :←↩
micronutr i ent .

?drug drugbank : casRegistryNumber ? id .
?drug owl : sameAs ? s .
? s f o a f : name ?o .
? s skos : sub j e c t ? sub .

}

# C−Q9

SELECT ?x ?p WHERE {
?x skos : sub j e c t <http :// dbpedia . org /←↩

r e sou r c e /Category : FIFA World Cup−←↩
winn ing countr i e s > .

?p dbo : managerClub ?x .
?p f o a f : name ”Luiz Fe l ip e S c o l a r i ” .

}

# C−Q10

SELECT ?n ?p2 ?u WHERE {
?n skos : sub j e c t <http :// dbpedia . org /←↩

r e sou r c e /Category :←↩
Chancel lors of Germany> .

?n owl : sameAs ?p2 .
?p2 <http :// data . nytimes . com/ elements /←↩

l a t e s t u s e > ?u .
}

# C−Q11

SELECT ?x ?y ?d ?p ? l WHERE {
?x dbo : team : E int racht Frank fur t .
?x r d f s : l a b e l ?y .
?x dbo : birthDate ?d .
?x dbo : b i r thP lace ?p .
?p rd f s : l a b e l ? l .

}

Listing A.2: Life Science SPARQL Queries

PREFIX owl : <http ://www.w3 . org /2002/07/ owl←↩
#>

PREFIX r d f s : <http ://www.w3 . org /2000/01/←↩
rdf−schema#>

PREFIX rd f : <http ://www.w3 . org /1999/02/22−←↩
rdf−syntax−ns#>

PREFIX dc : <http :// pur l . org /dc/ elements←↩
/1.1/>

PREFIX : <http :// dbpedia . org / r e sou r c e/>
PREFIX dbo : <http :// dbpedia . org / onto logy/>
PREFIX drugbank : <http ://www4. wiwiss . fu−←↩

b e r l i n . de/drugbank/ r e sour c e /drugbank/>
PREFIX drugbankcat : <http ://www4. wiwiss . fu←↩

−b e r l i n . de/drugbank/ re sour c e /←↩
drugcategory/>

PREFIX kegg : <http :// b i o2 rd f . org /ns/kegg#>
PREFIX desease : <http ://www4. wiwiss . fu−←↩

b e r l i n . de/ diseasome/ r e sou r c e / d i s e a s e s←↩
/>

PREFIX b io2 rd f : <http :// b i o2 rd f . org /ns/←↩
b io2 rd f#>

# L−Q1

SELECT ?drug ?melt WHERE {
?drug drugbank : melt ingPoint ?melt .

}

# L−Q2

SELECT ?drug ?melt WHERE {
?drug <http :// dbpedia . org / onto logy /drug/←↩

meltingPoint> ?melt .
}

# L−Q3

SELECT ? p r ed i c a t e ? ob j e c t WHERE {
<http ://www4. wiwiss . fu−b e r l i n . de/←↩

drugbank/ r e sou r c e /drugs /DB00201> ?←↩
pr ed i ca t e ? ob j e c t .

}

# L−Q4

SELECT ?Drug ? IntDrug ? I n tE f f e c t WHERE {
?Drug rd f : type dbo : Drug .
?y owl : sameAs ?Drug .
? Int drugbank : inte ract ionDrug1 ?y .
? Int drugbank : inte ract ionDrug2 ? IntDrug ←↩

.
? Int drugbank : t ext ? I n tE f f e c t .

}

# L−Q5

SELECT ?drugDesc ?cpd ? equat ion WHERE {
?drug drugbank : drugCategory drugbankcat :←↩

c a t h a r t i c s .
?drug drugbank : keggCompoundId ?cpd .

?drug drugbank : d e s c r i p t i o n ?drugDesc .
?enzyme kegg : xSubstrate ?cpd .
?enzyme rd f : type kegg : Enzyme .
? r e a c t i on kegg : xEnzyme ?enzyme .
? r e a c t i on kegg : equat ion ? equat ion .

}

# L−Q6

SELECT ?drug ? keggUrl ? chebiImage WHERE {
?drug rd f : type drugbank : drugs .
?drug drugbank : keggCompoundId ?keggDrug ←↩

.
?keggDrug b i o2 rd f : u r l ? keggUrl .
?drug drugbank : genericName ?drugBankName←↩

.
? chebiDrug dc : t i t l e ?drugBankName .
? chebiDrug b i o2 rd f : image ? chebiImage .

}

# L−Q7

SELECT ?drug ? t i t l e WHERE {
?drug drugbank : drugCategory drugbankcat :←↩

micronutr i ent .
?drug drugbank : casRegistryNumber ? id .
?keggDrug rd f : type kegg : Drug .
?keggDrug b io2 rd f : xRef ? id .
?keggDrug dc : t i t l e ? t i t l e .

}

# L−Q8

SELECT ?drug ?enzyme ? r ea c t i on WHERE {
?drug1 drugbank : drugCategory drugbankcat←↩

: a n t i b i o t i c s .
? drug2 drugbank : drugCategory drugbankcat←↩

: an t i v i r a lAgen t s .
? drug3 drugbank : drugCategory drugbankcat←↩

: ant ihyper tens iveAgents .
? I1 drugbank : inte ract ionDrug2 ?drug1 .
? I1 drugbank : inte ract ionDrug1 ?drug .
? I2 drugbank : inte ract ionDrug2 ?drug2 .
? I2 drugbank : inte ract ionDrug1 ?drug .
? I3 drugbank : inte ract ionDrug2 ?drug3 .
? I3 drugbank : inte ract ionDrug1 ?drug .
?drug owl : sameAs ?drug5 .
?drug5 rd f : type dbo : Drug .
?drug drugbank : keggCompoundId ?cpd .
?enzyme kegg : xSubstrate ?cpd .
?enzyme rd f : type kegg : Enzyme .
? r e a c t i on kegg : xEnzyme ?enzyme .
? r e a c t i on kegg : equat ion ? equat ion .

}

# L−Q9

SELECT ?drug WHERE {
?drug1 drugbank : po s s i b l eD i s ea s eTarge t ←↩

d i s e a s e :302 .
?drug2 drugbank : po s s i b l eD i s ea s eTarge t ←↩
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d i s e a s e :53 .
?drug3 drugbank : po s s i b l eD i s ea s eTarge t ←↩

d i s e a s e :59 .
?drug4 drugbank : po s s i b l eD i s ea s eTarge t ←↩

d i s e a s e :105 .
? I1 drugbank : inte ract ionDrug2 ?drug1 .
? I1 drugbank : inte ract ionDrug1 ?drug .
? I2 drugbank : inte ract ionDrug2 ?drug2 .
? I2 drugbank : inte ract ionDrug1 ?drug .
? I3 drugbank : inte ract ionDrug2 ?drug3 .
? I3 drugbank : inte ract ionDrug1 ?drug .
? I4 drugbank : inte ract ionDrug2 ?drug4 .
? I4 drugbank : inte ract ionDrug1 ?drug .
?drug drugbank : casRegistryNumber ? id .
?keggDrug rd f : type kegg : Drug .
?keggDrug b i o2 rd f : xRef ? id .
?keggDrug dc : t i t l e ? t i t l e .

}

# L−Q10

SELECT ?d ?drug5 ?cpd ?enzyme ? equat ion ←↩
WHERE {

?drug1 drugbank : po s s i b l eD i s ea s eTarge t ←↩
d i s e a s e :261 .

? I1 drugbank : inte ract ionDrug2 ?drug1 .
? I1 drugbank : inte ract ionDrug1 ?drug .
?drug drugbank : po s s i b l eD i s ea s eTarge t ?d←↩

.
? drug owl : sameAs ?drug5 .
?drug5 rd f : type dbo : Drug .
?drug drugbank : keggCompoundId ?cpd .
?enzyme kegg : xSubstrate ?cpd .
?enzyme rd f : type kegg : Enzyme .
? r e a c t i on kegg : xEnzyme ?enzyme .
? r e a c t i on kegg : equat ion ? equat ion .

}

# L−Q11

SELECT ?drug5 ?drug6 WHERE {
?drug1 drugbank : po s s i b l eD i s ea s eTarge t ←↩

d i s e a s e :319 .
?drug1 drugbank : po s s i b l eD i s ea s eTarge t ←↩

d i s e a s e :270 .
? I1 drugbank : inte ract ionDrug1 ?drug1 .
? I1 drugbank : inte ract ionDrug2 ?drug .
?drug1 owl : sameAs ?drug5 .
?drug owl : sameAs ?drug6 .

}

Listing A.3: SP2Bench SPARQL Queries
PREFIX owl : <http ://www.w3 . org /2002/07/ owl←↩

#>
PREFIX xsd : <http ://www.w3 . org /2001/←↩

XMLSchema#>
PREFIX r d f s : <http ://www.w3 . org /2000/01/←↩

rdf−schema#>
PREFIX rd f : <http ://www.w3 . org /1999/02/22−←↩

rdf−syntax−ns#>
PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
PREFIX dc : <http :// pur l . org /dc/ elements←↩

/1.1/>
PREFIX dcterms : <http :// pur l . org /dc/ terms←↩

/>
PREFIX : <http :// dbpedia . org / r e sou r c e/>
PREFIX dbpedia2 : <http :// dbpedia . org /←↩

property/>
PREFIX dbpedia : <http :// dbpedia . org/>
PREFIX skos : <http ://www.w3 . org /2004/02/←↩

skos / core#>
PREFIX swrc : <http :// swrc . ontoware . org /←↩

onto logy#>
PREFIX sp2b : <http :// l o c a l h o s t / vocabulary /←↩

bench/>

# S−Q1

SELECT ? yr WHERE {
? j ou rna l rd f : type sp2b : Journal .
? j ou rna l dc : t i t l e ” Journal 1 (1940) ” .
? j ou rna l dcterms : i s sued ? yr

}

# S−Q2

SELECT ? inproc ? author ? b o ok t i t l e ? t i t l e ?←↩
proc ? ee ?page ? u r l ? yr WHERE {

? inproc rd f : type sp2b : Inproceed ings .
? inproc dc : c r e a t o r ? author .
? inproc sp2b : b o ok t i t l e ? b o ok t i t l e .
? inproc dc : t i t l e ? t i t l e .
? inproc dcterms : partOf ? proc .
? inproc r d f s : s eeAlso ? ee .
? inproc swrc : pages ?page .
? inproc f o a f : homepage ? u r l .
? inproc dcterms : i s su ed ? yr

}

# S−Q3

SELECT DISTINCT ? person ?name WHERE {
? a r t i c l e rd f : type sp2b : A r t i c l e .
? a r t i c l e dc : c r e a t o r ? person .
? inproc rd f : type sp2b : Inproceed ings .
? inproc dc : c r e a t o r ? person .
? person f o a f : name ?name

}

# S−Q4

SELECT ? sub j e c t ? p r ed i ca t e WHERE {
? sub j e c t ? p r ed i c a t e <http :// l o c a l h o s t /←↩

persons /Paul Erdoes>
}
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