
Quality Estimation and
Provider Selection

Mechanism

András Heé
of Zurich, Switzerland

Student-ID: 08-982-142
andras.hee@uzh.ch

Bachelor Thesis Nov 22, 2012

University of Zurich
Department of Informatics

Advisor: Mengia Zollinger

Prof. Abraham Bernstein, PhD
Department of Informatics
University of Zurich
http://www.ifi.uzh.ch/ddis

Acknowledgements

I would like to thank the following persons for their support in writing this thesis:
First and foremost my advisor Mengia Zollinger for her time, efforts and encouragements

during the thesis. Her helpful and qualified support was very motivating. Professor Abraham
Bernstein for giving me the opportunity to write the thesis at the Dynamic and Distributed Infor-
mation Systems Group at the University of Zurich. And last but not least my family and all my
friends who supported me.

Abstract

This paper documents the algorithms and key aspects of a Quality Estimation and Provider Selection
Mechanism (QEPSM) for SPARQL endpoints. The prototype implements a mechanism that crawls
the Web for SPARQL endpoints and then collects metadata about the data providers to estimate
the quality of their provided data. This data quality is determined by an assessment of the data
providers and their SPARQL endpoints using three different algorithms. They rank the reputation
analysing the relationships between the datasets similar to Google’s PageRank, the availability
of the SPARQL endpoints, the support of SPARQL functionalities and the quality of the used
vocabularies. With this information the tool offers a list of data providers ordered by decreasing
data quality, which can support other metrics to elicit an optimal allocation of federated queries.
A web interface visualises the data and ranks.

Zusammenfassung

Dieses Dokument beschreibt die Architektur und die Umsetzung eines Quality Estimation and
Provider Selection Mechanism (QEPSM) für SPARQL Endpoints. Das Tool implementiert einen
Crawler, welcher das Web nach SPARQL Endpoints absucht und danach mit Hilfe von zusätzlich
gesammelten Metadaten die Qualität der Daten schätzt. Diese Qualität wird aufgrund einer Anal-
yse des Datenanbieters und dessen SPARQL Endpoints anhand von drei verschiedenen Algorith-
men ermittelt. Diese bewerten die Reputation anhand einer Analyse der Verbindungen zwischen
den Datensätzen ähnlich wie der PageRank von Google, die Verfügbarkeit der SPARQL End-
points, die Unterstützung von SPARQL Funktionen und die Qualität des gebrauchten Vokabu-
lars. Mit diesen Informationen kann das Tool eine Liste mit Datenanbietern generieren, sortiert
nach absteigender Datenqualität. Diese erlaubt die Unterstützung von anderen Metriken für eine
optimale Anbieterzuweisung bei SPARQL Anfragen. Ein Webinterface bereitet die Daten grafisch
auf und erlaubt einen schnellen Überblick über die Datenanbieter.

Table of Contents

Table of Contents ix

1 Introduction 1
1.1 QueryManager . 2
1.2 Work Description . 2
1.3 Thesis Outline . 3

2 Related Works 5

3 Describing Datasets 7
3.1 VoID Vocabulary . 7
3.2 vRank Vocabulary . 9
3.3 EndS Vocabulary . 9

4 Data Crawling 11
4.1 Introduction . 11

4.1.1 CKAN Catalogues . 11
4.2 Crawling VoID Descriptions . 12

4.2.1 Discovery . 12
4.2.2 Indexing . 13

4.3 Metadata from Catalogues . 14
4.4 Comparison . 14

5 Data Analysis 17
5.1 Introduction . 17
5.2 Link Analysis . 17

5.2.1 Transitive Trust Mechanism . 17
5.2.2 Related Works . 18
5.2.3 Implementation . 19
5.2.4 Strategic Manipulations . 20
5.2.5 Ranking Result . 20

5.3 Availability & SPARQL Support . 22
5.3.1 Introduction . 22
5.3.2 Related Works . 22
5.3.3 Implementation . 22
5.3.4 Strategic Manipulations . 24
5.3.5 Ranking Result . 25

x TABLE OF CONTENTS

5.4 Used RDF Vocabulary . 25
5.4.1 Introduction . 25
5.4.2 Related Works . 26
5.4.3 Implementation . 26
5.4.4 Strategic Manipulations . 27
5.4.5 Ranking Result . 27

5.5 Overall Rank . 28
5.5.1 Introduction . 28
5.5.2 Implementation . 28
5.5.3 Ranking Results . 28

6 Implementation 31
6.1 Architecture . 31
6.2 Dependency Injection . 32
6.3 Configuration . 33
6.4 Code Quality & Documentation . 34
6.5 Web Interface . 34

7 Limitations 37

8 Future Work 39

9 Conclusions 41

List of Figures 43

List of Tables 45

List of Listings 47

Bibliography 49

1
Introduction

One of the main problems of the current web is that it connects only unstructured websites. The
semantics of web pages is hardly interpretable by algorithms. This makes it very difficult to ex-
tract and query the data in a structured way. The Linked Open Data Project (LOD)1 addresses this
problem by using the Web to connect related data that were not previously linked and to generate
processable data. The Resource Description Framework (RDF)2 allows to describe information in the
formal form of subject-predicate-object triples. Each of them is represented by a URI, but objects
can be string literals as well. A collection of RDF triples represents a labelled, directed multi-
graph. Subject and object are the nodes and the predicate is represented as an edge between the
two nodes. RDF data is often persisted in repositories called triple stores. However, most triple
stores also store other information with each triple, which makes the name confusing. SPARQL3 is
a query language for RDF. It can be used to express queries across diverse data sources, whether
the data is part of a Semantic Web project or a relational database is viewed as RDF via middle-
ware. We call the web service that allows to send SPARQL queries a SPARQL endpoint. RDF and
SPARQL are both part of the W3C Semantic Web Activity4.

The goal of the LOD community is to extend the existing data on the Web with additional
metadata. They publish various open datasets in RDF format on the Web and define RDF links
between the different data entities. Tim Berners-Lee [Berners-Lee, 2006], famous for being the
inventor of the World Wide Web, outlines a set of principles for publishing linked data on the
Web:

• Use URIs as names for things.

• Use HTTP URIs so that people can look up those names.

• When someone looks up a URI, provide useful information, using standards like RDF or
SPARQL.

• Include links to other URIs, so that they can discover more things.

1http://linkeddata.org
2http://www.w3.org/RDF/
3http://www.w3.org/TR/rdf-sparql-query/
4http://www.w3.org/2001/sw/

2 Chapter 1. Introduction

1.1 QueryManager
This tool is part of the project QueryManager developed by Mengia Zollinger at the Dynamic and
Distributed Information Systems Group (DDIS)5 at the University of Zurich. The Linked Data Project
is mainly funded by non-profit organisations and several governments. Since the data are pub-
lished for free, data publishers cannot charge consumers for their services even though it takes
much effort. This leads to a market breakdown when government subventions are omitted.

The QueryManager solves this problem by introducing a pricing model for data providers. It
presents an intermediate auction mechanism to elicit an optimal allocation and pricing of queries.
Along with the offered price, the quality of the data provider should be considered as well to
suggest which data provider should be invited to a forthcoming auction given a data requester’s
query. This is where this tool comes into play.

1.2 Work Description
Figure 1.1 presents the process of the mechanism. In a first step the tool crawls the web to
find datasets providing a SPARQL endpoint service. It collects further metadata about the data
providers. It estimates then the data providers’ quality by analysing all available data. We assess
the quality of the datasets and their SPARQL endpoints globally, as opposed to a local assessment.
This means that the quality is estimated query independently. The quality metrics and algorithms
are based on provider reputation, data accessibility and degree of integration of the RDF triples.
In the third and last step we retrieve the crawled data and calculated ranks.

The tool implementing the presented mechanism is built modularly and can therefore be
used as a standalone framework for the SPARQL endpoint discovery and ranking. The crawled
datasets and their ranking values can be accessed either using SPARQL queries or a wrapper
library coded in Python. The tool further provides a web interface that allows to browse the
datasets. Interactive line chart plots visualise the distribution of the ranking values.

Crawling

SPARQL Endpoints

Analysis

Reputation

Data Accessibilty

Degree of
Integration

Retrieval

Data Retrieval

Metadata

Figure 1.1: Process Flow of QEPSM.

5http://www.ifi.uzh.ch/ddis.html

1.3 Thesis Outline 3

1.3 Thesis Outline
We start with an overview of the related works. Chapter 3 specifies the framework used to de-
scribe the datasets, their metadata and the resulting ranking values. The following chapter 4
discusses the techniques we have applied to crawl the SPARQL endpoints and the additional
metadata. After having the required information we discuss in chapter 5 the algorithms which
estimate the global data quality of a data provider. Chapter 6 illustrates the architecture and im-
plementation details of the tool. In chapter 7 and 8 we discuss some limitations of the tool and
subsequent future works. This leads to the final chapter 9 which summarises the thesis.

2
Related Works

In this chapter we shortly present some related works. The existing works for ranking entities in
the Semantic Web are mainly based on link analysis. In chapter 5, the existing mechanisms and
algorithms are discussed in more detail.

Swoogle1 [Ding et al., 2004; Finin et al., 2005] is an indexing and retrieval system for the Seman-
tic Web. It discovers Semantic Web documents, extracts metadata for each discovered document
and calculates relations among them. The authors introduce with OntoRank a metric for the im-
portance of a Semantic Web document. TripleRank [Franz et al., 2009] presents another mechanism
and prototype which ranks RDF triples. Spring [Mulay and Kumar, 2011] follows a similar setup
to rank the results of SPARQL queries. In contrast to the works mentioned, we operate on the
granularity of datasets rather than documents or RDF triples. DING! [Ding et al., 2005] uses for-
mal descriptions of datasets to rank datasets and works therefore on the same granularity level.
Its ranking algorithm uses also the relationships of the datasets as input.

In our mechanism we extended the ranking mechanism to consider as well the data accessi-
bility and the degree of integration of the datasets in addition to the reputation calculated by the
link analysis.

1http://swoogle.umbc.edu

3
Describing Datasets

We need an appropriate framework to save and to retrieve the information we crawl and analyse.
Every dataset should be associated with metadata, which allows to estimate its quality. For the
sake of consistency we use also RDF for describing our analyses. The three main vocabularies
(VoID, vRank, EndS) used are described in detail in the next sections. VoID is the standard to
describe datasets defined by W3C, vRank is a vocabulary for algorithm values and EndS is useful
to track availabilities of endpoints. We use always the same vocabulary regardless of the crawling
methods and algorithms applied. Figure 3.1 gives an overview of all classes and properties. The
orange-coloured entities are used for the final retrieval of the SPARQL endpoints, while the white
ones are used in intermediate steps. The rectangular boxes represent RDF classes and the oval
ones properties.

3.1 VoID Vocabulary
The Vocabulary of Interlinked Datasets (VoID)1 is a vocabulary that allows to formally describe RDF
datasets, providing a set of instructions. It acts as a bridge between the providers and consumers
of data.

The fundamental entity in VoID is the class void:Dataset2. In the W3C Interest Group Note a
dataset is defined as “set of RDF triples that are published, maintained or aggregated by single
provider” [Alexander et al., 2011]. In contrast to RDF graphs3, which consist also of a set of RDF
triples, but are purely mathematical constructs, a dataset has a more semantic dimension. A
dataset is a meaningful collection of triples, which deal for example with a certain topic. For our
purposed triples form a dataset if they are accessible by the same SPARQL endpoint.

Every dataset can be associated with general metadata like its name, its creator or a link to its
homepage. We are especially interested in information about the access and the structure.

Access metadata is used to describe methods of accessing the actual RDF triples of the dataset.
Since our goal is to rank SPARQL endpoints we use the void:sparqlEndpoint4 property to establish
a link between the dataset and the url of the SPARQL access. Furthermore, we can filter out all
datasets that do not provide a SPARQL endpoint since they are not relevant for us.

1http://www.w3.org/TR/void/
2http://rdfs.org/ns/void#Dataset
3http://www.w3.org/TR/rdf-concepts/#section-rdf-graph
4http://vocab.deri.ie/void#sparqlEndpoint

8 Chapter 3. Describing Datasets

vrank:Rank

xsd:float vrank:Algorithm

xsd:string

void:Dataset

xsd:string

vrank:hasRank

vrank:rankValue vrank:computedBy

vrank:name

void:sparqlEndpoint

void:Linkset

void:subset

xsd:string

void:triples

xsd:anyURI

void:vocabulary

void:target

xsd:datetime

vrank:hasRankTimeStamp

ends:EndpointStatus

ends:status

xsd:float

rdf:value

xsd:datetime

dcterms:date

Figure 3.1: Used RDF Vocabulary.

Structural metadata provides high-level information about the schema and internal structure of
a dataset. This includes statistics about the size of the dataset, examples of typical resources in the
dataset and information about which vocabularies are used. The last point is of special interest for
our tool, analysing the reputation of the used vocabularies given in the void:vocabulary5 property.

Link metadata deals with the interlinking of datasets. The void:Linkset6 class inherits from
void:Dataset, hence all elements for describing datasets can be used for linksets as well. Linksets
are collections of RDF links between two distinct datasets. An RDF link is an RDF triple whose
subject and object are described in different datasets. The void:target7 predicate is used to express
the link.

A linkset allows to express two different viewpoints of directionality for RDF links: ”Which
dataset provides the subjects of the triples, and which the objects?” [Alexander et al., 2011] We can
use the properties void:subjectsTarget8 and void:objectsTarget9, both inherit from the target property.
This describes the subject-object direction of the links explicitly. Secondly, we can ask which
dataset does contain the links. This is expressible by declaring the linkset a void:susbet10 of the
respective dataset.

For our link analysis we are mainly interested in describing outgoing links from one dataset

5http://vocab.deri.ie/void#vocabulary
6http://vocab.deri.ie/void#Linkset
7http://vocab.deri.ie/void#target
8http://vocab.deri.ie/void#subjectsTarget
9http://vocab.deri.ie/void#objectsTarget

10http://vocab.deri.ie/void#subset

3.2 vRank Vocabulary 9

to another. The link analysis discussed in section 5.2 uses relationships to estimate quality. We are
able to represent this by using the subset notation. To further differentiate between the datasets
providing the subjects and the objects is not relevant for our purposes. The statistics property
void:triples11 quantifies the relationship between two datasets based on the number of RDF links.

3.2 vRank Vocabulary
The Vocabulary for Ranking (vRank)12 provides a standardised and formal way of representing
ranking computations. Its structure allows to describe the result of rankings which are produced
by different algorithms. The entity vrank:Rank13 consists of the properties vrank:rankValue contain-
ing the value of the rank and vrank:hasRankTimeStamp14 describing the time of the computation.
It is connected with the analysed dataset using the vrank:hasRank15 property. Every rank is asso-
ciated with an instance of the vrank:Algorithm16 class. [Roa-Valverde et al., 2012]

3.3 EndS Vocabulary
The Endpoint Status (EndS)17 vocabulary is an extension for the VoID vocabulary. It defines spe-
cific elements to periodically monitor the availability of an endpoint. We are using a subset of
the available vocabulary. A dataset is connected to multiple ends:EndpointStatus18 classes. For
our purposes the class contains two properties: dcterms:date19 saves the time of the sample and
rdf:value20 the result value.

11http://vocab.deri.ie/void#triples
12http://vocab.sti2.at/vrank
13http://vocab.sti2.at/vrank#Rank
14http://vocab.sti2.at/vrank#hasRankTimeStamp
15http://vocab.sti2.at/vrank#hasRank
16http://vocab.sti2.at/vrank#Algorithm
17http://labs.mondeca.com/vocab/endpointStatus/
18http://labs.mondeca.com/vocab/endpointStatus#EndpointStatus
19http://dublincore.org/usage/terms/history/#dateT-001
20http://www.w3.org/TR/rdf-schema/#ch value

4
Data Crawling

4.1 Introduction
In this chapter we discuss our approaches to crawl SPARQL endpoints and relevant information
we can use for the quality assessment. As entry point we use catalogues collecting datasets.
The most frequent used framework to build a catalogue is CKAN1 and discussed in the next
subsection. We distinguish two different methods to crawl datasets and metadata about them.
We can use the catalogues to find links to raw VoID files created by the data providers or we can
use the metadata given directly in the catalogues. The first method will be discussed in section
4.2 and the second one in 4.3.

4.1.1 CKAN Catalogues
The Comprehensive Knowledge Archive Network (CKAN) is an open-source data cataloguing plat-
form. It is written and maintained by the Open Knowledge Foundation (OKFN)2. The software is
a web-based system for the publishing and searching of data. CKAN powers a large number of
data catalogues like the one of the public data of most European countries3.

Rufus Pollock (co-founder and director of the OKFN) argues that componentization is a crucial
factor for the distribution of data. This is the process of atomising given resources into smaller,
more reusable packages. The software provides a platform for this package management and is
intended to be the ”apt-get of Debian for data” [Dietrich and Pollock, 2009].

The quantity and quality of the information available in CKAN records depends heavily on
the catalogue using the software. It usually contains a description of the data, a list of formats
and access points available, it states who is the provider, whether it is freely available and what
subject areas the data is about.

The CKAN is not only reachable using a web browser, but the data is fully accessible through
an API4. Further, there are code modules for the most frequently used programming languages,
including Python. These provide convenient wrappers around many functionalities of the CKAN
API.

1http://ckan.org
2http://okfn.org
3http://publicdata.eu
4http://docs.ckan.org/en/latest/api.html

12 Chapter 4. Data Crawling

4.2 Crawling VoID Descriptions
One attempt to crawl metadata is to use catalogues to find links to raw VoID files. These files can
be parsed and the aggregated information relevant for the quality estimation can be saved in a
central database. The implemented VoID discovery mechanism consists of two main steps:

1. The mechanism crawls catalogues to find as many links to VoID files as possible, regardless
of whether they provide a SPARQL endpoint or not. These are saved temporarily in a central
RDF database.

2. An indexer tries to connect the datasets and to create a directed graph. All VoID descrip-
tions of datasets without a SPARQL endpoint and no influence to others providing one are
removed from the graph. This decreases dramatically the amount of datasets to be investi-
gated by the analysis algorithms.

The process is illustrated in figure 4.1.

Discovery

DataCatalogs.org

VoID Description File

CKAN Catalogs
Raw

Database

Semantic Search
Engines

Indexing

Final
Database

Datasets

Figure 4.1: Architecture VoID Crawling and Indexing.

4.2.1 Discovery
We use the meta-catalogue DataCatalogs.org5 as an entry point to find the VoID files published
by the data provider itself. It lists currently 270 catalogues containing records to data providers.
Amongst others there is a group of catalogues powered by the CKAN software - there are cur-
rently 36 available. DataCatalogs.org itself runs also on an CKAN instance. We are concentrating
on catalogues using CKAN because the software allows to associate various kinds of resources
with a package. A package in the CKAN language is the smallest entity in the catalogue. In our
case the term package is identical to a dataset.

We retrieve every package in each of these catalogues looking for a URL to a VoID description
file. We then copy the RDF triples of the VoID description into the intermediate triple store.

5http://datacatalogs.org

4.2 Crawling VoID Descriptions 13

4.2.2 Indexing
The description of datasets using the VoID framework is a relative new possibility for expressing
metadata about RDF datasets. The first version of the W3C note was published by its authors
starting in 2008. For this reason, not for every dataset a corresponding VoID description is pub-
lished by the data provider as well.

To enrich the quantity of the information gathered, we utilise semantic search engines which
are indexing VoID descriptions. In the current configuration of the tool we are using Sindice6

and the VoID Store of rkbexplorer.com7. Sindice is a general lookup index of resources crawled on
the Semantic Web. It provides an interweaving framework for the decentralised Semantic Web.
[Oren et al., 2008; Dietrich and Pollock, 2009] The VoID Store of rkbexplorer.com gathers VoID
documents and stores them in a SPARQL repository. The available datasets are focused on VoID
descriptions published in the RKBExplorer8 domain. The explorer provides a framework for
publishing and aggregating Linked Data, focused in the domain of scientific endeavour. [Glaser
et al., 2009]

Of all available information, we are only interested in a VoID description of a dataset if it fulfils
one of following criteria:

• the dataset provides a SPARQL endpoint

• an outgoing link of the datasets leads in a finite number of steps to a SPARQL endpoint

Hence we remove all datasets which do not provide a SPARQL endpoint and their outgoing
links lead to a subgraph which consists only of datasets without a SPARQL endpoint. We keep
the datasets without a SPARQL endpoint but with relevant connections to other datasets in this
intermediate step to have a more complete graph for the link analysis in a later step.

Algorithm 1 illustrates the basic outline of the implemented algorithm in pseudocode. Pro-
grammatically we start with querying all available sources (raw VoID database, Sindice, VoID
Store of RKBExplorer) to retrieve a distinct list of datasets which provide a SPARQL endpoint.
From this point on, we use the url to the SPARQL endpoint as an unique identifier and subject
for the RDF triple, rather than the subject of the original sources. This avoids inconsistency and
duplicates because of different naming used in the different sources. We then follow recursively
all incoming links of this datasets until we do not detect new datasets. In this step we consider
also endpoints which do not provide SPARQL access, because their outgoing links to SPARQL
datasets are relevant for the link analysis.

Listing 4.1 shows the query used to retrieve the datasets which link to a given one. The vari-
able {dataset} is given and replaced in the query. If our dataset is a dataset without a SPARQL
endpoint we retrieve all datasets which have a void:subset which directly links to the given dataset
using the void:objectsTarget or void:target property. Otherwise, we check the target links in the
linkset using the void:sparqlEndpoint property. In the optional sections we collect the information
we want to copy to the final database.

From the remaining datasets we copy only the properties which are relevant for our analysis
algorithms. This is for example the list of used vocabularies and the subset properties. To nor-
malise all link information we use always the void:target property, rather than the more specific
void:objectsTarget or void:subjectsTarget.

At the moment of writing this thesis, there are overall 4203 distinct datasets registered in the
three sources (raw VoID database, Sindice, VoID Store of RKBExplorer). After the elimination
only 397 (< 10%) relevant datasets remain to be investigated. This not very relevant given the
current amount of datasets, but allows a better scaling in the future.

6http://sindice.com
7http://void.rkbexplorer.com
8http://www.rkbexplorer.com

14 Chapter 4. Data Crawling

Algorithm 1 Indexing SPARQL Endpoints.
for all sources do

retrieve all SPARQL endpoints
end for
for all sparql endpoints do

CRAWL(sparql endpoint)
end for
procedure CRAWL(dataset)

if dataset is not yet crawled then
for all sources do

retrieve all incoming links from dataset
end for
for all incoming links do

CRAWL(incoming link)
end for

end if
end procedure

Listing 4.1: SPARQL Query to Retrieve Incoming Links.
1 PREFIX void : <http :// r d f s . org/ns/void#>
2 SELECT DISTINCT ? o r i g i n ? sparql
3 WHERE {
4 ? o r i g i n void : subset ? l i n k s e t .
5 { ? l i n k s e t void : o b j e c t s T a r g e t | void : t a r g e t <{d a t a s e t}> . }
6 UNION {
7 ? l i n k s e t void : o b j e c t s T a r g e t | void : t a r g e t ? t a r g e t .
8 ? t a r g e t void : sparqlEndpoint <{d a t a s e t}> .
9 }

10 OPTIONAL { ? o r i g i n void : sparqlEndpoint ? sparql . }
11 OPTIONAL { ? o r i g i n void : vocabulary ? vocabulary . }
12 }

4.3 Metadata from Catalogues
To crawl the metadata directly from a catalogue we use the platform Data Hub9, powered also by
the CKAN software. It is an openly editable community-run catalogue listing public datasets. In
contrast to other catalogues it provides an additional information: quantified links between the
datasets. Part of this data is also the source for the Linking Open Data cloud diagram10. This image
displays relationships between datasets with at least 1000 triples. We convert the information
available on Data Hub into the RDF vocabulary plotted in figure 3.1.

4.4 Comparison
A deeper analysis of the different crawling approaches is shown in the table 4.1. Crawling the
VoID description as described in the previous chapter has not yet a very high coverage. Using the

9http://datahub.io/
10http://richard.cyganiak.de/2007/10/lod/

4.4 Comparison 15

VoID VoID + search engines Data Hub
Nr of datasets 131 397 4635
Nr of SPARQL endpoints 86 278 446
Nr of links 552 1279 14173
Nr of SPARQL endpoints with incoming links 48 (56%) 59 (21%) 164 (37%)
Nr of SPARQL endpoints with outgoing links 12 (14%) 120 (43%) 291 (65%)
Avg outgoing links / SPARQL endpoint 0.24 1.47 3.37

Table 4.1: Data Sources Comparison.

raw VoID files without extending it with the data of semantic search engines the crawler finds 86
SPARQL endpoints. Adding the searching engines we can increase it to 278. Data Hub however
lists 446. More important for the link analysis discussed in the next chapter is the number of
SPARQL endpoints which have been linked at least once. The algorithm used can only rank this
subset of the endpoints. In the raw VoID files this a set of only 48 entries. In the Data Hub data
there are at least 164 SPARQL endpoints with an incoming link.

Using the metadata collected by the catalogues leads to the questioning which sources they
take. For example how does the community of Data Hub define which dataset links to another
and how does it estimate the quantity of the RDF links? The platform just allows you to enter
the relationships in plain text. It does not include a mechanism to crawl the links. So it is up to
the contributor to do this analysis. The problem is that the metrics to calculate or estimate the
relationships are not standardised. Every user can apply its own algorithm. The question is if the
power of the crowd can flatten these inconsistencies.

The community-based approach has several positive properties. Firstly, the quantity of de-
scribed links is very high in comparison to the VoID descriptions. Secondly, the misleading values
are controlled by the community, hence it is more difficult for the data provider to manipulate the
values. The system has a revision feature which allows to track all changes made to a dataset.
Looking at the users list11 there are currently 36680 users registered. 8656 (24%) have made at
least one edit to a dataset, 1851 (5%) have made two ore more edits. The Data Hub publishes
some statistics12 of their datasets and the usage. Figure 4.2 illustrates that the total number of
datasets increases exponentially. Figure 4.3 shows that the effort put into the creation of new
datasets and the one put into updating existing ones balance each other approximately.

11http://thedatahub.org/user
12http://thedatahub.org/stats

16 Chapter 4. Data Crawling

����

�
�
�
�
�
	

�����������	��

���
��
���
���
��

���
��

��

�

��

��

��

�������� ������

Figure 4.2: Data Hub Statistics: Number of Datasets.

����

�
�
�
�
�
	

�������������	�
�����

������������

���� ���� ���� ���� ���� ����
�

��

���

���

���

���

���

�������� ������

Figure 4.3: Data Hub Statistics: Revisions.

5
Data Analysis

Based on the formal and high-level description of a dataset’s content and interlinking provided
by the vocabulary defined in section 3.1, the tool should rank datasets in an efficient way.

5.1 Introduction
We are using only algorithms which do not require manually-created categorisations. Our mech-
anism should work without any maintenance effort. This includes for example a manual grading
of all currently available license types. As the licenses are not fixed and new ones can be created
in the future, without a constant maintenance effort there is a possibility of unmapped licenses.

All of the algorithms that will be discussed generate ranks in the range from 0 to 1. However
the algorithms do not always use the entire bandwidth. Hence the maximum rank value can
be much smaller than 1 or the smallest value can be higher than 0. To avoid this, we add a
normalisation step after calculating the ranks to transform the distribution in such a way that
the highest rank value equals 1 and the lowest 0. Mathematically this is computed as shown in
equation 5.1.

Ri = Ri ×
1

max(R)−min(R)
(5.1)

5.2 Link Analysis

5.2.1 Transitive Trust Mechanism
Using the void:Linkset class and void:subset property we can build a graph with the datasets as
nodes and the directed links as edges. Our goal is to calculate a rank for every dataset in order to
estimate how trustful its quality is. We assume that the network of datasets fulfils the transitivity
property. Transitivity means that if node i trusts node j and node j trusts node k, then node i also
trusts node k to some degree. [Seuken and Parkes, 2012]

Transitive-trust algorithms are very widely used for estimating the quality of a website. The
most famous link analysis algorithms which have been successfully applied to measure the influ-
ence of a website are Hyperlink-Induced Topic Search (HITS) [Kleinberg et al., 1999] and PageRank
[Page et al., 1999]. HITS which is also known as Hubs and Authorities algorithm is the forerunner

18 Chapter 5. Data Analysis

of PageRank. It distinguishes two different types of nodes in the web graph: hubs are nodes which
point to many other nodes and authorities represent pages that are linked by many different hubs.
The algorithm assigns this two scores to every node. The authority score stands for the quality of
the content of the page and the hub value for the value of its links to other pages. This bipartite
graph structure is not possible or reasonable to calculate for every domain.

The PageRank algorithm does not separate the graph into hubs and authorities, but calculates
one single rank for every node. It is named after Larry Page, one of the founders of Google
and was invented in 1998. It was the core of Google’s webpage ranking method. It starts with
counting the number of incoming links and then it applies the principle of repeated improvement.
The current PageRank score of a node corresponds to the current trustfulness of the node. In every
iteration it passes its rank forward to other nodes via its outgoing links. Hence a node with a high
rank can endorse other nodes more strongly. A one of the problems with this basic definition of
the algorithm is that nodes without outgoing links ultimately end up with all of the PageRank.
We can avoid this by introducing a damping factor. This is the probability that the user will jump to
a random node by directly accessing it, rather than by following a link. There are various studies
testing different damping factors, but the original suggestion of 0.85 by Brin and Page is the most
used one.

Equation 5.2 captures the calculation of the PageRank for one iteration. The PageRank i is
the sum of the probability d that a user calls a given node either by directly addressing it or by
following one of the links pointing to it. The second probability is dependent on the PageRank
values for each page j contained in the set Ii consisting of all pages linking to page i, divided by
the number of outgoing links freq(j) of page j. Initialising all nodes with a PageRank value of
the inverse of the number of all nodes, the overall PageRank sums always to 1. It is a property of
the PageRank algorithm that the ranks of the nodes converges after a finite step of iterations.

PR(i) = PRdirect(i) + PRlink(i)

PRdirect(i) = (1− d)

PRlink(i) = d(
∑
j∈Ii

PR(j)

freq(j)
)

(5.2)

5.2.2 Related Works
DING! [Ding et al., 2005] has a very similar setup to ours. The authors describe a ranking method
using as data VoID descriptions and a modified PageRank algorithm. In contrast to our imple-
mentation, they use the PageRank version without the damping factor. VoID offers with the
void:linkPredicate1 predicate a possibility to describe the type of the link between two datasets.
DING! presents an algorithm based on TF-IDF, a well known algorithm from the information
retrieval domain. They use the principle of the Inverse Document Frequency (IDF) to calculate the
weight of a link predicate. If a link predicate appears in many VoID descriptions its weight is
less than a predicate appearing in a fews only. In our opinion, there is no correlation between the
frequency of a link predicate and the weight to be associated with it. IDF is useful for a classic in-
formation retrieval task. If a query consists of several terms it is reasonable to weight a rarer and
hence more specific term higher than a very general one. In the PageRank algorithm, however,
the weight represents the probability of a user following the link. From our point of view, this
is not dependent on how often the link predicate is used in other relationships, rather than how
strong the type of the connection is.

The Swoogle search engine2 proposes with OntoRank [Ding et al., 2004; Finin et al., 2005] an

1http://vocab.deri.ie/void#linkPredicate
2http://swoogle.umbc.edu

5.2 Link Analysis 19

adaption of PageRank for semantic web resources. They differentiate three levels of granularity
in their computation: documents, terms and RDF graphs. Our goal to rank datasets using VoID
descriptions operates on a coarser granularity. They distinguish between different types of rela-
tions among semantic web resources. We could create such a classification also for classes and
properties used in the link property of a linkset. However, the set of possible values is not re-
stricted. Without continuous human administration effort this would lead to values which are
not associated with a corresponding weight. Because of a missing machine learning algorithms
with reasonable results, we do not consider the link predicates to calculate the weights for a link.

Spring [Mulay and Kumar, 2011] uses also link analysis algorithms to rank the results of
SPARQL queries. In addition to the links between datasets they also take inter-dataset links into
consideration.

5.2.3 Implementation
The adaption from the ranking web documents to datasets in the semantic web is done in the
following way. The web pages are now datasets defined by void:dataset. A hyperlink corresponds
to linksets (void:Linkset) which are connected declaring it as subset (void:subset) of a dataset.

In addition to a web page link we have quantified links available. VoID supports to describe
how many triples are linked. In practice almost all descriptions contain this information. This
allows to modify the original PageRank algorithm to a weighted one. In our implementation we
use a logarithmic distribution of the number of triples, rather than a linear one. The idea is to
rank datasets with incoming links from many other datasets higher than datasets with a lot of
incoming links from few datasets. Equation 5.3 shows an example of this constraint. Lu→v stands
for a link from dataset u to v. The freq function stands for the number of links from u to v.

freq(L1→3) = 500

freq(L2→3) = 500

freq(L1→4) = 1000

R(3)
!
> R(4)

(5.3)

The natural logarithms discriminates links with a high quantity of triples very hard. For this
reason we decided to take the logarithms to the base of 2. This leads to the final algorithm listed
in 5.4. Oj represents the set of outgoing links from node j. w(Lu→v) is the value of the link from
node u to v after applying the weighting function.

R(i) = (1− d) + d(
∑
j∈Ii

R(j)× w(Lj→i)∑
k∈Oj

w(Lj→k)
)

w(Lu→v) = log2 freq(Lu→v)

(5.4)

The resulting rank results in a power law distribution. This does not surprise because studies
have shown that the PageRank distribution of the web graph follows a power law of exponent
2.1. [Pandurangan et al., 2002] We are not only interested in the ranking order of the dataset but
also in the rank score. To have a more linear distribution of the final ranks we are taking the
logarithm of the calculated rank as shown in 5.5. The constant α defines how strong the flattening
impact should be.

R(i) = log(1 + (α×R(i)))× 1

log(1 + (α×max(R)))
(5.5)

20 Chapter 5. Data Analysis

5.2.4 Strategic Manipulations
We can consider two different kinds of robustness to manipulation. The first is rank-strategyproofness.
This means in our case that a data provider cannot increase the dataset’s relative position in the
rank order with respect to the view of any other dataset. The second one is value-strategyproofness.
This means that a data provider cannot increase the dataset’s ranking score from the perspective
of any other dataset. Our adapted PageRank algorithm is neither value-strategyproof nor rank-
strategyproof. By misreporting a data provider (for example by not declaring some outgoing
links), it can reduce the rank-position and rank-score of another dataset. Creating multiple sybils
linked to the original dataset is another manipulation method. The sybil link to each other and
form a star. So it is possible to keep the rank in this subgraph, once the random walk reaches the
dataset. This leads to a higher rank for the original dataset. However, this robustness perspective
is only one side. Another important property is the informativeness of a trust algorithm. It is easy
to construct a robust mechanism like for example a random mechanism. However, the informa-
tiveness of this example is very low. There is a trade-off we need to make when designing and
choosing trust algorithms. Informative mechanism tends to be less robust and otherwise around.
[Seuken and Parkes, 2012]

How manipulable the algorithm is depends also what input we choose to build the graph. Us-
ing the raw VoID descriptions of the data providers is the easiest to manipulate. The data provider
can create fake datasets and leave away other outgoing links. Using the data from community-
based sources like the Data Hub we can use the wisdom of the crowd to control the declarations
to some extent.

5.2.5 Ranking Result

Distribution

The line chart in figure 5.1 plots the distribution of the rank value versus the rank position. This
plot uses the normalised rank values. As illustrated in section 4.4, the Data Hub provides much
more detailed relationship information than the crawling of raw VoID files. So it is not a surprise
that the outcomes in this ranking algorithm are more facetted using the Data Hub source.

Looking at the Data Hub data we can observe that there is one dataset with a lot of incoming
links (Dbpedia.org3), outperforming the second one with a high difference. The rank value de-
creases then with increasing rank position relatively constantly until rank position 151. For the
next 12 datasets the rank value remains the same. These SPARQL endpoints are all referenced by
one other dataset. After rank 164 the datasets do not have any incoming links at all. Overall we
do have 145 distinct rank values for totally 446 SPARQL endpoints - this is 33%.

The source of the raw VoID files and semantic search engines a rate only the first 59 datasets.
There are 52 distinct ranking scores for totally 278 endpoints, this is 19%.

Rank Correlation

It is interesting to find out whether the ranks calculated using the VoID files and the ranks using
the Data Hub catalogue lead to the same result. Rank correlation metrics measure the degree of
similarity between two rankings comparing the relative ordering. The rank correlation coefficient
is defined inside the interval [−1, 1]. A value of 1 indicates a perfect agreement, 0 complete inde-
pendence and−1 perfect disagreement. Two popular metrics are Spearman’s rho and Kendall’s Tau.
The first coefficient takes the sum of the squares of the differences for each pair of rankings. The

3http://dbpedia.org

5.2 Link Analysis 21

Rank 1 Rank 2 Spearman’s Rho Kendall’s Tau Nr. Datasets
Data Hub VoID Files 0.451 0.321 38
Data Hub Google’s PageRank 0.054 0.050 36
Data Hub Alexa’s Rank 0.038 0.029 159

Table 5.1: Link Analysis: Rank Correlations.

second looks for all ordered pairs if the difference of the rank positions have the same sign. [Hill
and Lewicki, 2006]

Table 5.1 displays the result of the calculations. We first compare the ranks using the Data
Hub and the VoID files crawling methods. The intersection of the two sources contains only
38 datasets, although a Spearman’s rho of 0.451 and a Kendall’s Tau of 0.321 indicate moderate
correlation of the rankings for this subset. Even tough the link relationships are coming from two
complete different sources, this result implies that the link analysis of the VoID files and Data Hub
metadata leads to similar ranks.

We further measure the similarity of the Data Hub ranks with two well-known rankings for
web pages. We checked Google’s PageRank4 and Alexa’s Rank5 of the URL linking to the SPARQL
endpoint of the dataset. Surprisingly, with correlation ranks smaller than 0.06 our rankings using
the RDF links of the datasets do not correlate at all with the rankings of Google and Alexa for
the website hosting the SPARQL endpoints. The ranks calculated by Google are no longer based
only on the calculated PageRank value of the webpage alone, but also on many other metrics.
Nevertheless, the results indicate that the directed graph of the webpages and the one of RDF
links differ fundamentally.

Figure 5.1: Link Analysis: Distribution of Rank Values.

4http://www.google.com/competition/howgooglesearchworks.html
5http://www.alexa.com

22 Chapter 5. Data Analysis

5.3 Availability & SPARQL Support

5.3.1 Introduction

The degree of availability is crucial for the quality of a SPARQL endpoint. If the server is down at
the moment of the execution of a query, it is completely useless. Another important aspect is how
well the endpoint implements the SPARQL language constructs. The first W3C Working Draft of
SPARQL 1.1 was released in October 2009 and the last version was published in November 20126.
This illustrates that the new version 1.1 is still very new. Many of the used SPARQL engines do
not yet support all features.

5.3.2 Related Works

Mondeca7 is a French software company. Their core products are located in the semantic web
domain. Their tool SPARQL Endpoints Status8 monitors SPARQL endpoint availability. As source,
they use the CKAN repository Data Hub as we did to crawl datasets. It tests the server accessibility
and response time every hour and publishes the results on the web. All data generated is also
available through it SPARQL endpoint9. In order to express the collected data they extend the
VoID vocabulary and define specific elements for availability status definition. The vocabulary is
published under the name Endpoint Status Ontology (EndS)10 and is described in section 3.3.

5.3.3 Implementation

Tests made by us have shown that calling an unavailable SPARQL endpoint often returns a suc-
cess HTTP status code of 2XX, rather than an error like 4XX or 5XX. This is often caused by a
wrongly configured web proxy server of the data provider. For this reason, we do no just ping
the server to check if the SPARQL endpoint functionalities are available, but request always real
queries. This is a crucial difference with the implementation of the Mondeca service. Mondeca
expresses the availability as a binary function - available if the server answers positively and of-
fline if a time-out occurs or an error returns. We are defining a set of SPARQL queries which, in
addition to the availability, test also the capabilities of a SPARQL endpoint. If the endpoint does
not answer for all queries, we know that it is offline; if it answers 1 of 10 queries, we know that it
is available, but it supports only a few of the SPARQL functions. This allows a more finely graded
assessment of the endpoints. The queries are defined as independent from each other as possible
to avoid interferences in the results. This is not possible for all keywords, basic constructs like
LIMIT are used in several queries. Table 5.2 lists the topic and SPARQL constructs tested in the
currently 14 queries. The queries are formulated in a way that the number of results is constant
independent of the SPARQL endpoint to be checked. It is important to avoid queries which pos-
sibly return an empty result set, because some SPARQL endpoint also return an empty set when
they cannot handle the query. This requires a careful design of the queries. In our implementation
the only generality constraint is that we assume that the dataset has at least one entry.

6http://www.w3.org/TR/2012/PR-sparql11-query-20121108/
7http://mondeca.com
8http://labs.mondeca.com/sparqlEndpointsStatus/index.html
9http://labs.mondeca.com/endpoint/ends

10http://labs.mondeca.com/vocab/endpointStatus/index.html

5.3 Availability & SPARQL Support 23

Description SPARQL Constructs
Retrieve one triple SELECT, WHERE, LIMIT
Eliminate duplicate results DISTINCT
Assign value to variable, condition BIND, IF
Concat lexical values CONCAT
Filter results with regex FILTER, REGEX
Set operations UNION, MINUS
Alternative property path |
Sequence property path /
Count aggregation COUNT
Complex aggregation COUNT, GROUP BY, HAVING
Sort the results ORDER BY
Subqueries SELECT {SELECT}
String manipulations UCASE, SUBSTR
Type testing isBlank, isLiteral, isNumeric, isIri, isUri

Table 5.2: Query Testing Set.

Ranking One Sample

For every query in the set we get a boolean value if the request was successful or not. We combine
the availability and SPARQL functionality check in one ranking. Equation 5.6 shows how we
calculate the rank for one sample. It consists of two different ranking functions: the first one
evaluates the response latency and the second one, how many queries are answered correctly.
w is a constant that defines the weight how much the response time of a query is considered.
In the current implementation we set a value of 0.1. We attach more importance that the query
is answered, the influence of the speed performance is small. τtime out stands for the maximum
time within which the query has to be answered by the data provider for it to be considered
as successful. The functionality rank is simply calculated by taking the percentage of answered
queries nsuccesses and total number of queries tested ntotal queries.

Y = w ∗ τtime out − avg(τresponse time)

time out
+ (1− w)

nsuccesses
ntotal queries

,

w ∈ [0, 1], ntotal queries > 0, avg(τresponse time) > 0, τtime out > 0

(5.6)

Ranking Multiple Samples

These samples are collected continuously. Our final rank considers all data samples over the
whole time period. The more up-to-date of the collected samples should be given more weight
than the old samples. It is more important how the SPARQL endpoint performs at the current
time than in the past. Equation 5.7 illustrates this constraint. Yt(i) stands for the rank sampled at
time t for the SPARQL endpoint i. R(i) is the final rank for endpoint i.

Y2(1) = 1, Y1(1) = 0.5, Y0(1) = 0.5

Y2(2) = 0.5, Y1(2) = 1, Y0(2) = 0.5

R(1)
!
> R(2)

(5.7)

24 Chapter 5. Data Analysis

The exponential moving average (EMA)11 applies weighting factors to the samples which decrease
exponentially. Equation 5.8 displays the basic formula to calculate the average. n stands for the
number of available samples - if we have only one the average is the value itself. a is a coefficient
to represent the degree of weighting decrease. If the value is higher, older samples are discounted
more quickly. Yt stands for the value of the sample at time t and Rt is the exponential moving
average at time t.

R =

{
Y0 if n = 1∑t=n−1

t=1 α× Yt + (1− α)×Rt−1 otherwise
,

a ∈ [0, 1], Yt ∈ [0, 1], Rt ∈ [0, 1], n > 0

(5.8)

We can transform the equation to isolate the coefficient a as shown in equation 5.9. This allows us
to code the algorithm using the + = operator. With this formula we have implemented the initial
constraint given in 5.7.

R =

{
Y0 if n = 1∑t=n−1

t=1 Rt−1 + α(Yt −Rt−1) otherwise
,

a ∈ [0, 1], Yt ∈ [0, 1], Rt ∈ [0, 1], n > 0

(5.9)

The exponential moving average with a constant coefficient a has one drawback. It discounts
the samples by the number of samples, but not by time. If the samples are collected at varying
times the average can be distorted. Equation 5.10 shows this additional constraint. The SPARQL
endpoint 1 is sampled at time 0, 2, 3, where at time 2 it has a lower rank. Endpoint 2 is sampled
at time 0, 1, 3, and its lower rank is at time 1. Because the bad rank of endpoint 1 is more current,
it should have more weight. Hence the final average R should be lower for endpoint 1.

Y3(1) = 1, Y2(1) = 0.5, Y0(1) = 1

Y3(2) = 1, Y1(2) = 0.5, Y0(2) = 1

R(2)
!
> R(1)

(5.10)

We can achieve this by replacing the constant coefficient with a time varying one as shown in
equation 5.11. This the final algorithm implemented in our tool. τ is the overall time period from
the first sample till the last. ∆ represents the time difference in regard to the previous sample.

R =

{
Y0 if n = 1∑t=n−1

t=1 Rt−1 + e−∆/τ (Yt −Rt−1) otherwise
,

∆ > 0, τ > 0, Yt ∈ [0, 1], Rt ∈ [0, 1], n > 0

(5.11)

5.3.4 Strategic Manipulations

For the availability of the server there is no manipulation possible other than to have a reliable
server. Of course the queries requested by our mechanism can be analysed and the SPARQL
endpoint could send just the correct amount of results back rather than the correct answers, but
this is rather improbable.

11http://lorien.ncl.ac.uk/ming/filter/filewma.htm

5.4 Used RDF Vocabulary 25

5.3.5 Ranking Result
After one iteration we get a resulting ranking distribution as shown in figure 5.2. The ranking
values form a staircase-shaped function. SPARQL endpoints coming from the same domain and
institution are often grouped together and have very similar ranks. We are guessing that they
use the same SPARQL engine. The small differences result from the consideration of the response
time which of course varies always in a certain degree. The constant rank value around 0.27 is so
because there are a lot of SPARQL endpoints hosted at RKBExplorer12.

It is rather surprising that the rank has many different values. There is not a binary behaviour
like engine supports SPARQL 1.1 or not. The degree of the support of the SPARQL functionalities
are manifold.

Using the Data Hub source only 217 of total 446 SPARQL endpoints are available. This is only
48.7%. In VoID file source there are 144 of 278 available, which is 51.8%. This illustrates that
the availability check is very important. The reliability and life-time of a SPARQL endpoint is not
comparable with other web services. They are often built for research and testing purposes, rather
than to provide a constant service. With more samples the information will be more detailed. A
continuously refreshed web interface is discussed in section 6.5.

Figure 5.2: Availability & SPARQL Support: Distribution of Rank Values.

5.4 Used RDF Vocabulary

5.4.1 Introduction
The Linked Data project attemps to connect semantic related data that was not previously linked
in the heterogenous and unstructured Web. The basic idea of the Linked Data is not only to enable
clients to discover new data sources by following RDF links, but also to help them to integrate
data from these sources. One approach to dealing with heterogeneous data representation is to
advocate the reusage of terms from widely used vocabularies. There exists a set of vocabularies
which has emerged in the Linked Data community. The more these vocabularies are used, the

12http://www.rkbexplorer.com

26 Chapter 5. Data Analysis

more the data are structured and consistent. Heath and Bizer [Heath and Bizer, 2011] propose the
following workflow: First search for terms from widely used vocabularies that could be reused.
Create only a new vocabulary if no existing one fits the requirements. Wherever possible, the
data provider should publish the new vocabulary and seek wider adoption for it from others
with related data.

With VoID descriptions for a dataset, the void:vocabulary property can be used to list vocabu-
laries contained in a dataset. We investigate this list for every dataset using a similar approach
to the term frequency - inverse document frequency (tf–idf), a well-known method coming from the
information retrieval area. [Baeza-Yates and Ribeiro-Neto, 1999]

5.4.2 Related Works
To the best of our knowledge, there is no other work which ranks datasets using as data input the
used vocabularies.

5.4.3 Implementation
The tf-idf method is often used as a weighting factor to reflect how important a word is for a docu-
ment. Its value increased proportionally to the number of times a word appears in the document,
but it is offset by the frequency of the word in the corpus. The inverse document frequency assumes
that a word has less value if it is very common. For our case we assume exactly the opposite. In
our implementation, often-used vocabularies should have a higher weight than proprietary ones.

We define the dataset frequency dfv of a vocabulary v as the fraction of the number of documents
in which the vocabulary is used fv and the total number of documents ND as shown in 5.12. At
best, when all documents use the vocabulary this value is 1. At worst, it is the reciprocal of the
number of documents. This is still strictly greater than 0. We use this distribution to encourage
the declaration of vocabularies. A declared proprietary vocabulary is still better than declaring
no vocabulary at all.

dfv =

{
fv
ND

,

ND ≥ fv > 0

(5.12)

The distribution of the rank should not be linear. The difference between a vocabulary used by
1 or by 2 of 10 documents should be much higher than the difference between one used by 9 or
10 documents. This leads to the logarithmic dataset frequency ldfv as shown in equation 5.13. The
constant α is used to adjust the importance of changes in the lower range of the ranks even more.

ldfv = log(1 + α× dfv),
dfv ∈ [0, 1]

(5.13)

The maximum logarithmic dataset frequency mldf represents the transformed value of the highest
rank, if all documents implement a vocabulary.5.14

mldf = log(1 + α× 1) (5.14)

This leads to a distribution of the ranks as plotted in figure 5.3. The x-axis represents the input
rank as calculated in dfv and the y-axis is the transformed value. Analog to the term frequency

5.4 Used RDF Vocabulary 27

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 5.3: Used Vocabulary: Distribution of the ldfv Function.

in the information retrieval we define the vocabulary frequency vfv,d. In our case this is a trivial
function: if a vocabulary v occurs in a dataset d the weight is 1 otherwise 0.

vfv,d =

{
1 if v ∈ d
0 otherwise (5.15)

The vocabulary frequency - dataset frequency for a document d is calculated by iterating through all
vocabularies and getting the product of vfv, d and ldfv .

vfdfd =
∑
v∈V

vfv,d × ldfv (5.16)

Using our binary vocabulary frequency function this can be simplified to the equation 5.17.

vfdfd =
∑
v∈Vd

ldfv (5.17)

Because our rank should be normalised in the range from 0 to 1 we divide it through the maxi-
mum possible rank for the given number of vocabularies. This leads to the final rank algorithm
shown in equation 5.18.

Rd =

∑
v∈Vd

ldfv∑
v∈Vd

mldf
, (5.18)

5.4.4 Strategic Manipulations
Using the declarations of the raw VoID files this algorithm is not very robust. Proprietary vocab-
ularies which reduce the rank of the dataset can be ignored and just one frequent vocabulary can
be declared. However, if the data is generated by analysing the used vocabularies at RDF triple
level, the manipulations are much more difficult. The only way to increase the rank is to reduce
the proprietary elements and to increase the amount of frequently used vocabularies. This leads
to the desired higher connectivity.

In our implementation we do not use self-generated statistics about the vocabularies. For this
reason we do not consider this algorithm in our configuration of the tool and should be considered
as a theoretical idea.

5.4.5 Ranking Result
The Data Hub source does not contain information about the vocabularies used. Therefore we
have only data from the VoID descriptions. 135 (49%) datasets of total 278 have declared at least

28 Chapter 5. Data Analysis

one vocabulary used and can be ranked. All of the first 52 (19%) datasets declare vocabularies
used with the same frequency. In the most cases this is the void vocabulary.

��������	
 	��

�
�
�
�
��
�
�
�

���������	
��

� �� ��� ��� ��� ���
�

���

���

���

���

�

�
������ �����

Figure 5.4: Used Vocabulary: Distribution of Rank Values.

5.5 Overall Rank

5.5.1 Introduction
The ranks calculated by the algorithms discussed before have to be aggregated to one single rank
to be able to order the datasets.

5.5.2 Implementation
With a weighted average we are using a straightforward solution. Every rank is associated with a
weight, all summing to 1 in total. However there is one exception. If the rank of the Availability &
SPARQL Support analysis is zero, the overall rank should be zero as well, regardless of the result
of the other algorithms. This means that the SPARQL endpoint has never been available or could
never answer the most trivial SPARQL test query. In this case the endpoint is not useful and
should be ranked with the minimal rank.

5.5.3 Ranking Results
A sample distribution of the ranks used in the final configuration of the tool is displayed in figure
5.5. It bases on the Data Hub source. The distribution of the values is similar. Because the overall
rank is set to 0 when the SPARQL endpoint have been down for every sample, its null point is at
the same point as the SPARQL Support rank.

5.5 Overall Rank 29

Figure 5.5: Overall Rank: Distribution of Rank Values.

6
Implementation

6.1 Architecture
In this chapter we describe some key aspects of the implementation of the tool. The program is
coded in Python 2.7. All used libraries are available as open-source software and declared in a
requirements file for an easy installation using the Python Package Index (PyPI)1. As RDF repository
we use Sesame22 which provide also the SPARQL endpoint. Every other SPARQL engine which
support SPARQL UPDATE statements should work as well.

The core of QEPSM consists of three main submodules: crawling, analysis and retrieval. Further
the submodule util contains common used functions. Although the main modules have no code
dependencies to each other they use the same triple store and RDF URIs. Every main module
represents one step in the generation of a ranked list of SPARQL endpoints.

QEPSM class It is the entry point to start the program by command-line. It parses the command-
line arguments using argparse3 and starts the corresponding submodule. Calling it with -h or –help
shows an instruction how to work with the tool. Alternatively the services of the tool can be called
using the public methods of the class.

Submodules Every module has a Manager class which connects it to the QEPSM class. All
public methods of the submodules are callable from the QEPSM class as well.

Crawling module The CrawlerManager class contains a list of crawlers. Its method start all crawlers
calls iteratively the crawl method defined in the abstract base class CrawlerBase. All crawler inherit
from this class and have to implement a custom crawl method.

Analysis module The structure is identically to the one of the crawling module. A manager starts
the analysing process of all analysers. In addition the base class implements some utility functions
to delete old rankings and save the newly calculated ones.

1http://pypi.python.org/pypi
2http://www.openrdf.org
3http://docs.python.org/2/library/argparse.html

32 Chapter 6. Implementation

Retrieval module The RetrievalManager allows to retrieve a list of the crawled datasets and their
quality estimations. Beside the SPARQL repository itself, it is the main interface to extract the data
by other tools.

RetrievalAnalysisCrawling

start_crawling()
start_analysis()
start_statistic()
get_datasets()
get_details(dataset)
print_dataset_list()

QEPSM

start_all_analysers()
AnalyserManager

start_all_crawlers()
CrawlerManager

crawl()
CrawlerBase

analyse()
AnalyserBase

get_datasets()
get_details(dataset)
print_dataset_list()

RetrievalManager

*
1

*
1

1

1

1

1

1

1

CKANVoid

Datahub

Linkset

SparqlSupport

Interlinking

SparqlSupport

Vocabulary

Overall

Figure 6.1: Simplified Architecture of QEPSM.

6.2 Dependency Injection
A high degree of modularity and extensibility was a primary goal developing the architecture
of QEPSM. We therefore decided to use the architectural concept Dependency Injection (DI) - also
known as Inversion Of Control (IoC) - to build the three submodules. The idea is to decouple
classes depending on one another from inheriting other dependencies and to link them instead at
interfacing level only. The instantiation of the concrete objects is done by a DI container instead of
directly by the code itself. This allows to transfer the responsibility for creating and linking objects
to an externally configurable element like a XML file. This shows code dependencies more clearly
and allows for a comfortable configuration of the tool without touching any code.

Spring4 is one of the most popular frameworks for Java. One key functionality is the support
of DI. Although implementing DI in dynamically typed languages is much easier than in static
typed and does not require necessarily a framework, with Spring Python5 there exists an offshoot

4http://www.springsource.org
5http://springpython.webfactional.com

6.3 Configuration 33

of the Java-based Framework which is very pleasant to use.
Spring Python offers multiple formats to define your objects. You can use XMLConfig, Python-

Config, PyContainerConfig or the original SpringJavaConfig. We decided to use the XML-based
IoC configuration. The full documentation can be found on the official website of the tool6.

In total QEPSM uses four configuration files. One for global settings affecting the entire tool.
This includes the urls to the RDF repositories where the crawled data is saved, RDF URIs of the
ranking algorithms and URIs of used namespaces. Every submodule has its own configuration
file for the module specific objects. There you can define which crawler or analyser should be
used and with which configurations. Listing 6.1 shows a simplified XML configuration for the
analysis module. The first object defined is the AnalyserManager. The Manager has a member
variable analysers of type List. The analysers which should be used are referenced as entries of
this list. How they should be instantiated is defined directly after the AnalyserObject. You can
define the constructor parameters as well as all public variables. When you want to use the
AnalyserManager in the Python code you can call it using its ID. All dependent objects (like all
analysers in this case) are instantiated automatically. By commenting out an entry in the list, it is
possible to easily adjust which analyser respective crawler should be used without touching any
Python code.

Listing 6.1: Simplified Spring XML Configuration.
1 <o b j e c t s>
2 <o b j e c t id=”AnalyserManager” c l a s s =”AnalyserManager”>
3 <property name=” ana lysers ”>
4 < l i s t>
5 <r e f o b j e c t =” A n a l y s e r I n t e r l i n k i n g ”/>
6 <r e f o b j e c t =” AnalyserSparqlSupport ”/>
7 <r e f o b j e c t =” AnalyserOveral l ”/>
8 </ l i s t>
9 </property>

10 </ o b j e c t>
11 <o b j e c t id=” A n a l y s e r I n t e r l i n k i n g ” c l a s s =” A n a l y s e r I n t e r l i n k i n g ”>
12 < !−− A l l c o n s t r u c t o r p a r a m e t e r s −−>
13 < !−− A l l p u b l i c v a r i a b l e s −−>
14 </ o b j e c t>
15 </ o b j e c t s>

6.3 Configuration
The process flow is determined by what input source is chosen. Figure 6.2 illustrates two possible
setups. The first process takes VoID Files as source as described in 4.2. The CKANVoid crawler
uses meta-catalogues to find VoID resources and saves these in a temporarily RDF repository. The
Linkset crawler then uses this data to detect all relationships between the datasets and eliminates
the irrelevant datasets.

Alternatively, the Datahub crawler uses directly the metadata collected by the catalogue the
Data Hub7. The details are illustrated in section 4.3. Because the dataset relationships are already
explicitly available in the catalogue, the Linkset crawler is not used when this source is chosen.

Regardless of the input used, the SparqlSupport queries all SPARQL endpoints periodically and
takes note of how many queries have been answered successfully.

6http://springpython.webfactional.com/1.1.0/reference/html/objects.html
7http://thedatahub.org

34 Chapter 6. Implementation

The input has also an impact on the analysis level. The Vocabulary analyser cannot be applied
using providers from the Data Hub. There is no information available regarding the vocabularies
used by the datasets.

The intention is to decide initially to use either the Data Hub or the VoID Files data. As seen in
the comparison in section 4.4, the interlinking data of Data Hub is of higher quality. Therefore, we
recommend to take the Data Hub as input.

Crawling

1. CKANVoid

2. Linkset

3. SparqlSupport

1. Datahub

2. SparqlSupport

Analysis

1. Interlinking

2. SparqlSupport

3. Vocabulary

4. Overall Ranker

1. Interlinking

2. SparqlSupport

3. Overall Ranker

Retrieval

RetrievalManager

RetrievalManagerThe Data Hub

VoID Files

Figure 6.2: Process Flow of Two Configurations.

6.4 Code Quality & Documentation
A high code quality has been a crucial goal when developing the framework. We use the tool
pylint8 to analyse the source code looking for bugs and signs of poor quality. The source code is
fully documented with docstrings9. In addition, there is a HTML documentation available gener-
ated by Sphinx10.

6.5 Web Interface
Separated from the core tool, we implemented a web interface11 which allows to browse the
crawled datasets. It visualises the datasets with their corresponding rankings in a table. A search
field allows to filter the datasets. Further, the datasets can be ordered by all ranking algorithms.
This makes it easy to compare the results of the different ranking approaches.

On the same page the web interface illustrates the distribution of the values of the various
ranks. The charts plot the rank position of a dataset on the x-axis and the calculated rank value,
distributed between 0 and 1, on the y-axis. Figure 6.3 shows a screenshot of the overview page.

8http://www.logilab.org/project/pylint
9http://www.python.org/dev/peps/pep-0257/

10http://sphinx-doc.org
11http://qepsm.philippundhee.ch

6.5 Web Interface 35

On the detail page there are displayed further data and a link to the SPARQL endpoint. A line
plot displays the history of the trend of the availability of the endpoint. The availability analysis
is executed every fourth hour.

11.11.12 16:32Quality Estimation and Provider Selection Mechanism

Seite 1 von 1http://qepsm.philippundhee.ch/

Show 10 entries Search all columns:

Showing 1 to 10 of 446 entries Previous Next

Quality Estimation and Provider Selection Mechanism

Name Overall Interlinking
Sparql
Support

dbpedia 1.000000 1.000000 0.577494

statistics-data-gov-uk 0.907529 0.707310 0.991271

reference-data-gov-uk 0.851496 0.634698 0.997598

education-data-gov-uk 0.801194 0.675222 0.756620

geospecies 0.797877 0.748984 0.574855

revyu 0.784922 0.736902 0.565337

transport-data-gov-uk 0.781260 0.670010 0.710762

semantic-web-dog-food 0.771336 0.537205 0.991750

italian-public-schools-linkedopendata-it 0.771230 0.662718 0.698576

bio2rdf-pubchem 0.769170 0.669644 0.676419

Rank Position

R
an

k
 V

al
u
e

Distribution Rankings

Overall Rank
Interlinking Rank
Sparql Support Rank

0 50 100 150 200 250 300 350 400
0

1

0.25

0.5

0.75

Highcharts.com

Figure 6.3: Web Interface.

7
Limitations

There exist works to generate automatically VoID descriptions for large datasets. The tool voiD-
gen1 [Böhm et al., 2011] uses a MapReduce [Dean and Ghemawat, 2008] based approach to anno-
tate sets of RDF resources. With LODStats [Demter et al., 2012] there exists another framework for
generating statistics of RDF data. They tried to apply their tool to SPARQL endpoints available
via the CKAN repository. At 71.2% of the endpoints the generation of the statistics failed. Prob-
lems most likely originate from performance restrictions of the SPARQL endpoints or from not
supporting necessary SPARQL 1.1 functionalities required to do computations on the endpoint
side. RDFStats [Langegger and Woss, 2009] suffers from the same problem. It generates statistics
of RDF sources like SPARQL endpoints and RDF documents including link analysis, as long as
the endpoint is very performant and the bandwidth is not restricted.

We tried to implement our own relationship crawler looking for links at triple level. If there
is an object in a dataset with a link predicate like owl:sameAs2 and this object is not described as
a subject in the same dataset, it is very likely that this object is declared in another dataset. By
finding this object defined as a subject in another dataset, it is possible to establish a directed link
from the first dataset to the second one.

We know of two possible approaches to investigate the data of an SPARQL endpoint at triple
level. Either we use SPARQL queries or we use the RDF dumps if they are available. Using the
SPARQL queries to apply the mechanism described fails because of the same reasons described
for the LODStats. Most SPARQL endpoints limit the number of triples they answer. You can try
to retrieve the triples in multiple steps using OFFSET and LIMIT. However, this requires that the
returned triples are sorted which increases the load of the SPARQL endpoint and leads to a block-
ade after just a few queries. Trying to compute more on the endpoint side instead of retrieving
a lot of triples is hardly possible because of the missing support of SPARQL 1.1 functionalities at
the majority of endpoints.

Despite processing challenges because of the enormous quantity, RDF dumps of the datasets
are hardly offered for download.

1http://www.hpi.uni-potsdam.de/naumann/news/beitrag/tool-voidgen-released.html
2http://www.w3.org/TR/owl-ref/#sameAs-def

8
Future Work

As mentioned in the previous chapter, it would be interesting to crawl more metadata about a
SPARQL endpoint by using the underlying data instead of self-descriptions and data from meta
catalogues. This would improve both the quality and quantity of the available data to be analysed
using the framework discussed in this thesis. This includes for example developing heuristics to
query SPARQL endpoints for relationships with other datasets with simpler and less complicated
queries. With the better support of SPARQL 1.1, functionalities like aggregation of the endpoints
and the extraction of statistical information will be more extensive. Beyond the links between the
datasets, the used vocabulary could be retrieved. Further, additional variables like the currentness
of data could be interpreted and ranked.

9
Conclusions

With QEPSM we have presented two mechanisms to crawl RDF datasets and metadata. We have
illustrated the possibilities and constraints when crawling VoID files or using meta-catalogues
like Data Hub. This paper has discussed algorithms to rank the crawled datasets. The analysis
of the modified PageRank algorithm showed that, with in the light of the current data available
there is no correlation between the rank of the webpage of a dataset generated by Google or
Alexa and the calculated ranks using the relationships on the RDF layer. The SPARQL support
testing mechanism introduced a new method to evaluate the availability and functional range of
SPARQL endpoints in a finely graded form. The analysis has shown that the degree of supported
functionalities differs at multiple levels and is not a binary function. Applying the algorithm
periodically also allows to interpret and to estimate how quickly the new SPARQL 1.1 standard
will be implemented by the endpoints in the future. Testing and ranking the vocabulary of a
dataset, we introduced a new theoretical metric to check how well a dataset is integrated.

Our prototype offers a extensible framework to crawl and analyse datasets. It can be used with
the crawlers and analysers discussed in this paper or with custom-created ones. The included web
interface allows to display the calculated data.

List of Figures

1.1 Process Flow of QEPSM. 2

3.1 Used RDF Vocabulary. 8

4.1 Architecture VoID Crawling and Indexing. 12
4.2 Data Hub Statistics: Number of Datasets. 16
4.3 Data Hub Statistics: Revisions. 16

5.1 Link Analysis: Distribution of Rank Values. 21
5.2 Availability & SPARQL Support: Distribution of Rank Values. 25
5.3 Used Vocabulary: Distribution of the ldfv Function. 27
5.4 Used Vocabulary: Distribution of Rank Values. 28
5.5 Overall Rank: Distribution of Rank Values. 29

6.1 Simplified Architecture of QEPSM. 32
6.2 Process Flow of Two Configurations. 34
6.3 Web Interface displays all datasets and their rankings. 35

List of Tables

4.1 Data Sources Comparison. 15

5.1 Link Analysis: Rank Correlations. 21
5.2 Query Testing Set. 23

List of Listings

4.1 SPARQL Query to Retrieve Incoming Links. 14

6.1 Simplified Spring XML Configuration. 33

Bibliography

[Alexander et al., 2011] Alexander, K., Cyganiak, R., Hausenblas, M., and Zhao, J. (2011). De-
scribing linked datasets with the void vocabulary. http://www.w3.org/TR/void/.

[Baeza-Yates and Ribeiro-Neto, 1999] Baeza-Yates, R. A. and Ribeiro-Neto, B. (1999). Modern In-
formation Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[Berners-Lee, 2006] Berners-Lee, T. (2006). Linked data - design issues.
http://www.w3.org/DesignIssues/LinkedData.html.

[Böhm et al., 2011] Böhm, C., Lorey, J., and Naumann, F. (2011). Creating void descriptions for
web-scale data. Web Semantics: Science, Services and Agents on the World Wide Web, 9(3):339–345.

[Dean and Ghemawat, 2008] Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified data pro-
cessing on large clusters. Communications of the ACM, 51(1):107–113.

[Demter et al., 2012] Demter, J., Auer, S., Martin, M., and Lehmann, J. (2012). Lodstats – an ex-
tensible framework for high-performance dataset analytics. In Proceedings of the EKAW 2012,
Lecture Notes in Artificial Intelligence (LNAI). Springer. To be published.

[Dietrich and Pollock, 2009] Dietrich, D. and Pollock, R. (2009). Ckan: apt-get for the debian of
data. 26th Chaos Communication Congress.

[Ding et al., 2004] Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R. S., Peng, Y., Reddivari, P., Doshi,
V., and Sachs, J. (2004). Swoogle: a search and metadata engine for the semantic web. In Pro-
ceedings of the thirteenth ACM international conference on Information and knowledge management,
CIKM ’04, pages 652–659, New York, NY, USA. ACM.

[Ding et al., 2005] Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., and Kolari, P. (2005). Finding and
ranking knowledge on the semantic web. In Gil, Y., Motta, E., Benjamins, V., and Musen, M.,
editors, The Semantic Web – ISWC 2005, volume 3729 of Lecture Notes in Computer Science, pages
156–170. Springer Berlin / Heidelberg.

[Finin et al., 2005] Finin, T., Ding, L., Pan, R., Joshi, A., Kolari, P., Java, A., and Peng, Y. (2005).
Swoogle: Searching for knowledge on the semantic web. In In AAAI 05 (intelligent systems demo,
pages 1682–1683. The MIT Press.

[Franz et al., 2009] Franz, T., Schultz, A., Sizov, S., and Staab, S. (2009). Triplerank: Ranking
semantic web data by tensor decomposition. In Proceedings of the 8th International Semantic Web
Conference, ISWC ’09, pages 213–228, Berlin, Heidelberg. Springer-Verlag.

50 BIBLIOGRAPHY

[Glaser et al., 2009] Glaser, H., Millard, I., and Carr, L. (2009). Rkbexplorer: Repositories, linked
data and research support. In Eprints User Group, Open Repositories 2009. Event Dates:
20/05/2009.

[Heath and Bizer, 2011] Heath, T. and Bizer, C. (2011). Linked data: Evolving the web into a
global data space. Synthesis Lectures on the Semantic Web: Theory and Technology, 1(1):1–136.

[Hill and Lewicki, 2006] Hill, T. and Lewicki, T. (2006). Statistics: Methods and Applications : a
Comprehensive Reference for Science, Industry, and Data Mining. StatSoft.

[Kleinberg et al., 1999] Kleinberg, J., Kumar, R., Raghavan, P., Rajagopalan, S., and Tomkins, A.
(1999). The web as a graph: Measurements, models, and methods. In Asano, T., Imai, H.,
Lee, D., Nakano, S.-i., and Tokuyama, T., editors, Computing and Combinatorics, volume 1627 of
Lecture Notes in Computer Science, pages 1–17. Springer Berlin / Heidelberg.

[Langegger and Woss, 2009] Langegger, A. and Woss, W. (2009). Rdfstats - an extensible rdf statis-
tics generator and library. In Proceedings of the 2009 20th International Workshop on Database and
Expert Systems Application, DEXA ’09, pages 79–83, Washington, DC, USA. IEEE Computer So-
ciety.

[Mulay and Kumar, 2011] Mulay, K. and Kumar, P. (2011). Spring: Ranking the results of sparql
queries on linked data.

[Oren et al., 2008] Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., and Tummarello,
G. (2008). Sindice.com a document-oriented lookup index for open linked data. Int. J. Metadata
Semant. Ontologies, 3(1):37–52.

[Page et al., 1999] Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The pagerank citation
ranking: Bringing order to the web.

[Pandurangan et al., 2002] Pandurangan, G., Raghavan, P., and Upfal, E. (2002). Using pagerank
to characterize web structure. In Ibarra, O. and Zhang, L., editors, Computing and Combinatorics,
volume 2387 of Lecture Notes in Computer Science, pages 330–339. Springer Berlin Heidelberg.

[Roa-Valverde et al., 2012] Roa-Valverde, A. J., Toma, I., Thalhammer, A., and Sicilia, M.-A.
(2012). Towards a formal model for sharing and reusing ranking computations. In 6th In-
ternational Workshop on Ranking in Databases.

[Seuken and Parkes, 2012] Seuken, S. and Parkes, D. (2012). Economics and computation.

