

Matthias Hert

Gerald Reif

Harald Gall

Ontoaccess – an extensible platform for RDF-

based read and write access to relational

databases

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

–
N

o.
IF

I-
20

12
.0

5

2012

Matthias Hert, Gerald Reif, Harald Gall
Ontoaccess – an extensible platform for RDF-based read and write access to relational
databases
Technical Report No. IFI-2012.05
Software Evolution and Architecture Lab
Department of Informatics (IFI)
University of Zurich
Binzmuehlestrasse 14, CH-8050 Zurich, Switzerland
http://seal.ifi.uzh.ch

OntoAccess – An Extensible Platform for
RDF-based Read and Write Access to Relational Databases

Matthias Herta, Gerald Reifb, Harald Galla

as.e.a.l. – Software Evolution and Architecture Lab, Department of Informatics, University of Zurich, Binzmuehlestrasse 14, 8050 Zurich, Switzerland
bipt – Innovation Process Technology, Switzerland

Abstract

Relational Databases (RDBs) are used in most current enterprise environments to store and manage data. The semantics of the data
is not explicitly encoded in the relational model, but implicitly at the application level. Ontologies and Semantic Web technologies
provide explicit semantics that allows data to be shared and reused across application, enterprise, and community boundaries.
Converting all relational data to RDF is often not feasible, therefore we adopt a mediation approach for RDF-based access to
RDBs. Existing RDB-to-RDF mapping approaches focus on read-only access via SPARQL or Linked Data but other data access
interfaces exist, including approaches for updating RDF data (e.g., Semantic Web frameworks such as Jena, Sesame, and RDF2Go;
ChangeSet). In this paper we present OntoAccess, an extensible platform for RDF-based read and write access to existing relational
data. It encapsulates the translation logic in the core layer that provides the foundation of an extensible set of data access interfaces
in the interface layer. We further present the formal definition of our RDB-to-RDF mapping, the architecture and implementation
of our mediator platform, a semantic feedback protocol to bridge the conceptual gap between the relational model and RDF as well
as a performance evaluation of the prototype implementation.

Keywords: RDF-based Data Access, Mediation Platform, Relational Databases

1. Motivation

Relational Databases (RDBs) are used in most current enter-
prise environments to store and manage data. While RDBs are
well suited to handle large amounts of data, they were not de-
signed to preserve the data semantics. The meaning of the data
is implicit at the application level but not explicitly encoded in
the relational model.

The Semantic Web provides a common framework that al-
lows data to be shared and reused across application, enterprise,
and community boundaries [1]. Although developed for the
Web, these Semantic Web technologies have proven to be use-
ful in other domains as well, especially if data from different
sources has to be exchanged or integrated (e.g., [2, 3, 4]).

Ontologies and RDF are used to build a semantic layer that
lifts data processing and exchange from the syntactic to the se-
mantic level. In existing systems, however, it is not always
possible or desirable to convert all relational data to RDF as
other applications rely on the relational representation. Adapt-
ing or replacing these applications would require a prohibitive
migration effort. Therefore, we suggest a mediation approach
that performs an on demand translation of Semantic Web re-
quests. This results in a cooperative use of the data in RDF-
based as well as relational applications. In addition, mediation
allows one to further exploit the advantages of the well estab-

Email addresses: hert@ifi.uzh.ch (Matthias Hert),
gerald.reif@ipt.ch (Gerald Reif), gall@ifi.uzh.ch (Harald Gall)

lished database technology such as query performance, scala-
bility, transaction support, and security.

In the area of Semantic Web technologies, SPARQL [5] is
the standard language for querying RDF data but other popu-
lar access interfaces exist such as Semantic Web frameworks
(e.g., Jena,1 Sesame2, RDF2Go3) and Linked Data.4 Further,
the Semantic Web currently lacks a standard data manipula-
tion language (DML). SPARQL/Update [6] was proposed to
the World Wide Web Consortium (W3C) as a DML and is be-
ing incorporated in the upcoming SPARQL 1.15 recommenda-
tion. In the meantime, several other approaches for updating
RDF data have emerged (e.g., ChangeSet,6 GUO7). Although
not approved as standards, these approaches are implemented
and used in applications. The upcoming SPARQL 1.1 will fur-
ther introduce a new data access interface in the form of the
Graph Store HTTP Protocol [7]. Therefore, a RDB-to-RDF
mediator should not be limited to a single data access interface
(e.g., SPARQL). Instead, it should be flexible and extensible to
support multiple and also future data access interfaces.

The conceptual gap between the relational model and RDF
affects the processing of Semantic Web requests if ontology
terms are referenced that cannot be mapped to the RDB schema

1http://openjena.org/
2http://openrdf.org/
3http://rdf2go.semweb4j.org/
4http://linkeddata.org/
5http://www.w3.org/2009/sparql/wiki/Main_Page
6http://n2.talis.com/wiki/ChangeSets
7http://webr3.org/specs/guo/

1

or if a (write) request would violate constraints of the RDB
schema. While a read-only query will simply return no re-
sults, a write request may not be processable and result in an
error. Rejecting such requests may be confusing to an RDF-
based client if the request is valid in RDF. An RDB-to-RDF
mediator should provide feedback about rejected requests in a
semantic format understandable by the client, i.e., in RDF.

The contributions of this paper are the extensible RDB-to-
RDF mediation platform OntoAccess [8] and a formal defini-
tion of its RDB-to-RDF mapping. The formal definition in-
cludes proofs that mappings expressed in this language are bidi-
rectional, i.e., support for read and write access to the data is
provided. We present the architecture and implementation of
the OntoAccess platform, including a semantic feedback pro-
tocol that provides recommendations to the client on how to
change invalid write requests for the better.

The remainder of this paper is structured as follows. Sec-
tion 2 presents an overview of related work in the area of RDB-
to-RDF mapping. In Section 3, we formally define our RDB-to-
RDF mapping and present examples in the RDF-based syntax
called R3M. Section 4 explains the architecture and implemen-
tation of our mediator platform in detail. Section 5 introduces
our semantic feedback protocol that bridges the conceptual gap
between the relational model and RDF. The evaluation in Sec-
tion 6 demonstrates the extensibility of our platform and shows
that our approach performs comparable or better than the state-
of-the-art. It further summarizes a case study we performed in
the domain of software evolution analysis. Section 8 concludes
this paper with a summary and an outlook on future work.

2. Related Work

Mapping RDBs to RDF is an active field of research resulting
in many mapping languages and approaches (e.g., [9, 10, 11, 12,
13, 14]).

D2R [13] is an approach for publishing existing relational
databases on the Semantic Web. Based on mappings expressed
in the D2RQ [9] mapping language, it enables browsing the re-
lational data as RDF via dereferenceable URIs (i.e., as Linked
Data) and querying it via SPARQL. Further, D2R provides ex-
tensions for the Semantic Web frameworks Jena and Sesame
that enable accessing the mapped RDBs via those APIs. How-
ever, D2R is limited to read-only data access, updating RDF
data is not supported. D2R/Update8 was an attempt to add write
access to the D2R approach, but it turned out to be impractical
without restricting the existing D2RQ mapping language.

The Virtuoso Universal Server features RDF Views [10] to
expose relational data on the Semantic Web. A declarative Meta
Schema Language is used for defining the mapping of SQL data
to RDF vocabularies. This enables the use of SPARQL as an al-
ternative query language for the relational data. Likewise, Vir-
tuoso implements a Linked Data interface to these views. RDF
Views are limited to read-only queries, updating the relational
base data is not supported.

8http://d2rqupdate.cs.technion.ac.il/

R2O [11] is an extensible and fully declarative language to
describe mappings between relational database schemata and
ontologies. R2O is aimed at situations where the similarity be-
tween the ontology and the database model is low. It has been
conceived to be expressive enough to cope with complex map-
ping cases where one model is richer, more generic/specific, or
better structured than the other. This high expressiveness ren-
ders R2O mappings read-only.

The W3C has recognized the importance of mapping rela-
tional data to the Semantic Web by starting the RDB2RDF In-
cubator Group9 (XG) to investigate the need for standardiza-
tion. The XG recommended [15] that the W3C initiates a work-
ing group (WG) to define a vendor-independent RDB-to-RDF
mapping language. The RDB2RDF WG10 started its work on
R2RML [14] in late 2009. According to their charter [16], the
requirements for updating relational data are out of scope and
are therefore not addressed by the WG. It was further shown
in [17] that adding write support to the R2RML approach is
impractical.

pushback11 is a W3C community project to develop a
methodology for writing back changes in RDF data generated
by wrappers of Web 2.0 APIs. Write support is enabled with
RDF-annotated HTML forms, so-called RDForms, and map-
pings to the native write interfaces of the Web 2.0 APIs. Since
pushback is focused on Web applications, direct support for
modifying RDBs is not in the scope of the project.

We further refer the reader to the survey [18] conducted by
the W3C RDB2RDF Incubator Group12 for a detailed overview
of existing RDB-to-RDF mapping approaches and to [19] for a
feature-based comparison of the mapping languages.

3. OntoAccess Mapping

Mediation requires a mapping from concepts in a RDB
schema to vocabulary terms defined in an ontology. Several
of such mapping languages exist. However, thorough investi-
gations revealed that they are unsuitable for RDF-based write
access to relational data (cf. Section 2). Existing mapping lan-
guages would need to be extended to include additional infor-
mation about the database schema required to support write ac-
cess. For instance, detailed information about foreign key re-
lationships and other integrity constraints is needed to detect
invalid write requests. The mapping languages would also need
to be restricted to avoid the view update problem [20]. Most ex-
isting approaches employ SQL views on the relational schema
to define mappings. While this results in a high expressivity, it
also means that in the case of write access such mappings are af-
fected by the view update problem, i.e., write access in general
is impractical. Therefore, we designed our mapping language
R3M to explicitly address write support. It extends the mapping

9http://www.w3.org/2005/Incubator/rdb2rdf/
10http://www.w3.org/2001/sw/rdb2rdf/
11http://esw.w3.org/PushBackDataToLegacySources
12http://www.w3.org/2005/Incubator/rdb2rdf/

2

approach described in [21] (cf. [19] for a feature-based compar-
ison of R3M and other state-of-the-art RDB-to-RDF mapping
languages). R3M is sufficient to cover use cases as described
in [22] and, in general, to map normalized RDB schemata (e.g.,
schemata generated by object-relational mappers such as Hiber-
nate13).

In [23], we presented an example-driven definition of our
RDB-to-RDF mapping approach. We now introduce a formal
definition of our RDB-to-RDF mapping language R3M fol-
lowed by examples in the RDF-based syntax. The rationale of
the formal definition and the proofs is to show that our mapping
language R3M is bidirectional and therefore not affected by the
view update problem.

Definition 1. In OntoAccess, a mapping is defined as an eight-
tupleM = {R, A, L,C, P,T ,A,L} with:

• R = {R1, ...,Rl} the set of relations of the source database
schema

• A = {A1, ..., Al} the set of attribute sets with Ai =

{ai1, ..., aim} the set of attributes of relation Ri

• L = {L1, ..., Lk} ⊂ R the set of relations that represent N:M
relationships with all Li satisfying the condition: (∀ai j ∈

Ai : ai j ∈ PK(Li) ∨ ai j ∈ FK(Li)) ∧ |FK(Li)| = 2 with
PK(X) and FK(X) being the sets of primary and foreign
keys of relation X and |FK(X)| being the number of foreign
keys of relation X

• C the set of classes of the target ontology

• P the set of properties of the target ontology

• T : R\L → C an injective and surjective partial function
mapping tables (without link tables) to ontology classes

• A = {A1, ...,Al} the set of injective and surjective partial
functionsAi : Ai → P mapping attributes of relation Ri ∈

R\L to ontology properties

• L : L → P an injective and surjective partial function
mapping link tables to ontology properties

Lemma 1. Mappings as defined in Definition 1 are bidirec-
tional.

Proof. The mapping functions T ,A1, ...,Al,L are defined
as injective and surjective partial functions, hence there ex-
ist unique inverses T −1,A−1

1 , ...,A
−1
l ,L

−1 that map ontology
terms to elements of the database schema.

The functions T ,A1, ...,Al, and L are defined as partial be-
cause we do not require that all tables or attributes of a database
schema are mapped to terms in the ontology. But defining these
functions incautiously may result in invalid mappings. For ex-
ample, if a foreign key attribute of a table is mapped but the
referenced table is not. This results in an invalid mapping since

13http://hibernate.org/

the mapped attribute would be dangling, referencing resources
that are not mapped to a table in the database schema. We there-
fore define the notion of a valid mapping.

Definition 2. A mapping M is called valid if and only if it is
defined according to Definition 1 and if and only if it satisfies
the following two conditions:

(i) ∀ai j ∈ Ai : ai j ∈ NN(Ri) ⇒ ai j ∈ domAi with NN(X)
being the set of attributes with a not null constraint of re-
lation X and domF the domain of function F , i.e., all at-
tributes of a mapped relation with a not null constraint
must be mapped

(ii) ∀ai j ∈ domAi : ai j ∈ FK(Ri) ⇒ re f (ai j) ∈ domT
with FK(X) being the set of foreign keys of a relation X,
re f (Y) :

⋃
Ai → R being a function that returns the ref-

erenced relation for a foreign key attribute Y, and domF
the domain of function F , i.e., if a foreign key attribute
is mapped, the relation that it references must also be
mapped

We further define the notion of a complete mapping.

Definition 3. A mapping M is called complete if and only if
the mapping functions T , A1, ..., Al, L are total, i.e., all rela-
tions and attributes of a source database schema are mapped to
classes and properties in the target ontology.

Lemma 2. Complete mappings are valid.

Proof. A complete mappingM has the properties:

(i) ∀Ri ∈ R\L : Ri ∈ domT , i.e., all relations (without link
tables) are mapped to ontology classes

(ii) ∀Ai ∈ A : ∀ai j ∈ Ai : ai j ∈ domAi, i.e., all attributes are
mapped to ontology properties

(iii) ∀Li ∈ L : Li ∈ domL, i.e., all link tables are mapped to
ontology properties

and therefore trivially satisfies conditions (i) and (ii) of Defini-
tion 2.

For the remainder of the paper, we assume that mappings are
always at least valid if not complete.

We now present selected examples in the RDF-based syntax
of our mapping language R3M to further illustrate our mapping
approach. The namespace prefixes used in the examples are
defined as follows: r3m represents our mapping language on-
tology http://ontoaccess.org/r3m# while ex is used for
the namespace http://example.com/mapping/ of our ex-
ample mapping. foaf and dc represent the namespaces of the
well-known Friend of a Friend14 and Dublin Core15 projects.
Listing 1a) depicts a TableMap representing the mapping of
a database table to a class in the ontology. The set of all
TableMaps in a mapping definition implements the mapping
function T of Definition 1. A TableMap contains the name
of the table (line 2) and the ontology class it is mapped to

14urlhttp://xmlns.com/foaf/0.1/
15http://purl.org/dc/elements/1.1/

3

(line 3). The URI pattern (line 4, abbreviated) is used to gener-
ate the URIs for instances of this table based on values of table
attributes that are specified between double percentage signs
(e.g., %%id%% where id is the name of the primary key at-
tribute). A TableMap further contains a list of AttributeMaps
(lines 5 to 8).

Listing 1b) presents an example of an AttributeMap that
maps a database attribute to a property in the ontology. The
set of all AttributeMaps in a mapping definition implements
the set of mapping functions A of Definition 1. An At-
tributeMap contains the name of the attribute in the database
schema (line 11) and the ontology property it is mapped to
(line 12). Additionally, an AttributeMap includes information
about constraints defined on that attribute (e.g., a not null con-
straint; line 13). Currently the constraints r3m:PrimaryKey,
r3m:ForeignKey, r3m:NotNull, and r3m:Default are sup-
ported.

Listing 1c) shows a LinkTableMap representing the map-
ping of a link table to an ontology property. The set of all
LinkTableMaps in a mapping definition implements the map-
ping function L of Definition 1. A LinkTableMap specifies the
name of the link table in the database (line 16) and the prop-
erty it is mapped to (line 17). A link table always contains two
foreign key attributes that point to the tables of the N:M re-
lationship. These attributes are represented as AttributeMaps
(line 18 and 19; the definitions of those AttributeMaps are not
shown in the example) that provide the names of the attributes,
the foreign key references to the tables, and the direction of the
relationship (from subject to object).

Listing 1: Example mappings

1 a) ex : a u t h o r a r3m : TableMap ;
2 r3m : hasTableName ” a u t h o r ” ;
3 r3m : mapsToClass f o a f : P e r so n ;
4 r3m : u r i P a t t e r n ” h t t p : / / . . . / a u t h o r%%i d %%”;
5 r3m : h a s A t t r i b u t e ex : a u t h o r i d ,
6 ex : a u t h o r e m a i l ,
7 ex : a u t h o r f i r s t n a m e ,
8 ex : a u t h o r l a s t n a m e .

10 b) ex : a u t h o r e m a i l a r3m : A t t r i b u t e M a p ;
11 r3m : h a s A t t r i b u t e N a m e ” e m a i l ” ;
12 r3m : m a p s T o O b j e c t P r o p e r t y f o a f : mbox ;
13 r3m : h a s C o n s t r a i n t [a r3m : NotNul l] .

15 c) ex : p u b l i c a t i o n a u t h o r a r3m : LinkTableMap ;
16 r3m : hasTableName ” p u b l i c a t i o n a u t h o r ” ;
17 r3m : m a p s T o O b j e c t P r o p e r t y dc : c r e a t o r ;
18 r3m : h a s S u b j e c t A t t r i b u t e ex : p a p u b l i c a t i o n ;
19 r3m : h a s O b j e c t A t t r i b u t e ex : p a a u t h o r .

4. OntoAccess Platform Architecture and Implementation

The goal of OntoAccess is to provide a platform for RDF-
based read and write access to data stored in existing RDBs. It
supports a broad number of data access interfaces and is exten-
sible for future development in data access approaches. The
main idea of the OntoAccess platform is to encapsulate the

RDB-to-RDF translation logic into basic core operations and
thus avoid repeated implementation of the translation function-
ality. This simplifies the development of additional data access
interfaces and increases the flexibility of the platform.

On the basis of the well-known CRUD16 operations, we
define three basic operations for Semantic Web data access:
(1) querying for a single triple pattern; (2) adding a set of triples
to the data; and (3) removing a set of triples from the data. In
principle, it is possible to implement any data access based on
these core operations, ignoring for the moment any concerns
about performance and atomicity of requests.

Figure 1 depicts the architecture of the OntoAccess platform.
It is split into two layers. The lower part, called core layer, is re-
sponsible for the actual RDB-to-RDF translation as well as the
interaction with the database system. The upper part, called in-
terface layer, exposes the functionality of the OntoAccess core
to the individual data access approaches. The interfaces are ei-
ther accessed directly by applications or over the network via a
service endpoint. We explain both layers in more detail in the
following sections.

4.1. Core Layer

The core layer is composed of four modules, namely Uni
Core, Query Core, Update Core, and TA Manager. It imple-
ments the three basic operations described above for RDB-to-
RDF translation and it is responsible for the interactions with
the database system.

The Uni Core module provides the API of the core layer to
the data access interface layer. It acts as a controller of the other
three modules to manage the correct execution of requests in-
cluding their encapsulation in database transactions. This API
basically consists of two methods, one for query requests and
one for update requests. The query method is a simple wrapper
for the query method of the Query Core described below. The
update method, on the other hand, takes as parameters one set
of insert requests and one set of delete requests to execute all
of them in the scope of a single database transaction (e.g., for a
SPARQL/Update request). Data access interfaces are required
to collect requests that belong to a single transaction themselves
and submit them all at once. This has the advantages that data
access interfaces are relieved from managing transactions and
the runtime of the transactions can be kept as short as possible.
The Uni Core further isolates the Query Core and the Update
Core from the database as it is responsible for collecting trans-
lated requests and for passing them to the database system.

The TA Manager module is responsible for database trans-
action management. It is used for starting, committing, and
rolling back transactions based on instructions it receives from
the Uni Core module.

The main parts of the core layer are the Query Core and Up-
date Core modules that implement the RDB-to-RDF translation
logic. In the following, we present them in more detail.

16Create, Read, Update, Delete

4

Uni Core

Update CoreTA ManagerQuery Core

R
D

F2
G

o

R
D

F
D

um
p

...

NetworkApplicationsApplicationsApplications

Relational
Database

C
ha

ng
eS

et

SP
AR

Q
L

1.
1

Li
nk

ed
 D

at
a

Service
Endpoint

In
te

rfa
ce

 L
ay

er
C

or
e

La
ye

r

Je
na

Se
sa

m
e

Figure 1: Platform Architecture

4.1.1. Query Core

The Query Core implements the basic operation of querying
for an arbitrary triple pattern. Based on a given mapping, it
translates the pattern to a single or multiple SQL queries de-
pending on the type of pattern. For instance, a pattern asking
for the object of a given subject and predicate will generate just
a single SQL query whereas a pattern with variable subject and
predicate but given object will result in multiple SQL queries as
this object value could appear in multiple tables (and attributes)
of the database.

Algorithms 1–4 illustrate this translation of triple patterns to
SQL queries. First, we differentiate triple patterns that feature
a concrete subject and such with a variable as subject (Algo-
rithm 1). If the subject is concrete (i.e., a resource URI) we use
it to identify the table the pattern matches (line 2). On the other
hand, a variable subject means that we potentially have to gen-
erate a SQL query for each mapped table (lines 5–7). Next, we
check if the predicate of the pattern is concrete or a variable (Al-
gorithm 2). A concrete predicate is translated to the matching
attribute (line 2) while in the case of a variable predicate we can
not know which attribute will match a given (object) value. We
therefore have to incorporate all mapped attributes of a given
table into the query (lines 5–6). Next, we differentiate con-
crete and variable objects (Algorithm 3). The database value is
extracted from a concrete value according to the mapping defi-
nition (e.g., extracting part of an URI). Otherwise, if the object

is a variable we mark the value as null (line 4). Finally, we as-
semble the SQL query (line 6; Algorithm 4). The primary key
of the affected table is added to the list of projected variables
(i.e., the select clause; line 1) and the table itself is added to
the from clause. Then, we iterate over the attributes to add con-
ditions to the where clause (lines 3–8). If the value is null, we
add the attribute to the select list (lines 4–6) and a condition that
this attribute must not be null to the where clause. Otherwise, a
condition is added that states that the attribute must match the
value. In any case, multiple conditions are combined using the
or operator (line 7). Last, the query is built from the select,
from, and where parts and returned (line 9).

Algorithm 1 translatePattern(subject, predicate, object)
1: if sub ject.isVariable() is false then
2: table← identi f yTable(sub ject)
3: queries← translateTable(table, predicate, ob ject)
4: else
5: for all table in getTables() do
6: queries← translateTable(table, predicate, ob ject)
7: end for
8: end if
9: return queries

After the translation, the resulting SQL queries are
encapsulated in a TripleIterator that implements the

5

Algorithm 2 translateTable(table, predicate, object)
1: if predicate.isVariable() is false then
2: attribute← identi f yAttribute(table, predicate)
3: queries← translateAttribute(table, attribute, ob ject)
4: else
5: attributes← getAttributes(table)
6: queries← translateAttribute(table, attributes, ob ject)
7: end if
8: return queries

Algorithm 3 translateAttributes(table, attributes, object)
1: if ob ject.isVariable() is false then
2: value← extractValue(ob ject)
3: else
4: value← NULL
5: end if
6: queries← assembleQuery(table, attributes, value)
7: return queries

java.util.Iterator interface to provide a standard means
for iterating over the results of a triple pattern query. The triples
are generated on demand from the results of the SQL queries,
which are evaluated sequentially. At any moment there is only
one active SQL query, this means in the beginning the first SQL
query is evaluated and its result are used for generating the re-
sult triples. Only after this SQL ResultSet is exhausted the
next SQL query is evaluated, and so on. This has two major
advantages. First, it reduces the memory consumption as at any
time only one SQL ResultSet object must be held in main
memory, the remaining queries are stored as strings. Second,
if the caller is not interested in all results (e.g., only the first
twenty result triples are of interest) it is possible that only a
subset of the generated SQL queries need to be evaluated. In
that case, this approach can also have a positive effect on per-
formance by exploiting the given partitioning of the data into
tables.

The TripleIterator is implemented as a look-ahead itera-
tor, i.e., it always generates the next triple in advance and caches
it until next() is called. Then the cached triple is returned
and the next one is generated and cached. This approach was
taken due to the differences in the APIs of SQL ResultSet and
Java Iterator. Iterators have a hasNext() method to check

Algorithm 4 assembleQuery(table, attributes, value)
1: select ← table.getPK()
2: f rom← table
3: for all attribute in attributes do
4: if value == NULL then
5: select ← attribute
6: end if
7: where

OR
← getCondition(attribute, value)

8: end for
9: return buildQuery(select, f rom,where)

if there are any further results, the SQL API does not offer such
a method. Instead, a boolean value is returned after moving
the cursor to the next result that indicates if there are additional
results. Look-ahead iterators allow to bridge this API gap el-
egantly and with good performance by avoiding unnecessary
movement of the result cursor.

4.1.2. Update Core
The Update Core implements the remaining two basic oper-

ations of adding and removing sets of triples. In either case, the
triples are translated to (typically multiple) SQL DML state-
ments. The translation is performed according to a generalized
version of the algorithm presented in [23] for translating SPAR-
QL/Update insert data and delete data operations. We briefly
recapitulate the basic idea of the algorithm and refer the reader
to [23] for more details. The translation for adding and remov-
ing triples is basically the same, the difference is only in the
generated SQL statements (insert vs. delete). First, the triples
are grouped into so-called subject groups based on equal sub-
jects (i.e., these triples have the same subject and therefore af-
fect the same record in the database). This allows us to translate
each such group of triples individually. Second, the affected ta-
ble is identified via the subject URI. In a third step, the map-
ping is used to check if the submitted triples satisfy certain in-
tegrity constraints of the database schema. Step four generates
the SQL statement for adding or deleting this group of triples
based on the mapping definition. The predicate of each triple
is translated to an attribute of the affected table. The object is
used as the data value either directly or if it is a resource URI by
matching it against the template in the mapping and extracting
the predefined substring. Each subject group is processed that
way and the resulting SQL statements are collected. Finally,
the statements are executed within a single database transaction
to ensure the atomicity of the original request.

4.2. Data Access Interface Layer

The data access interface layer is responsible for establish-
ing the connection between the core layer of OntoAccess and
Semantic Web applications. This is realized with an extensible
set of data access interfaces that are exposed to the applications
either directly (e.g., the Jena interface) or indirectly via the ser-
vice endpoint described in the next section (e.g., the Linked
Data interface). The job of the individual interfaces is to trans-
late the interface-specific operations to the basic OntoAccess
operations and possible results back into the interface-specific
format. The idea is that such interfaces are very lightweight
and therefore simple to develop as the main translation work is
performed in the core layer. Currently, the OntoAccess plat-
form implements data access interfaces for multiple Semantic
Web Frameworks (Jena, Sesame, RDF2Go), RDF Dump (for
dumping all data as RDF to a file), Linked Data, ChangeSet,
and a subset of SPARQL 1.1 that includes SPARQL/Update as
proposed in [6].

As an example, we present the Jena data access interface in
more detail. Jena [24] uses a two-layer API to interact with
RDF data. It is composed of the Model and the Graph APIs.

6

graphBaseFind(TripleMatch m) : ExtendedIterator<Triple>
+ performAdd(Triple t) : void
+ performDelete(Triple t) : void
+ getTransactionHandler() : TransactionHandler

- core : OntoAccessCore
- deleteCache : Set<org.ontoaccess.Triple>
- insertCache : Set<org.ontoaccess.Triple>
- taHandler : TransactionHandler

OntoAccessGraph

+ begin() : void
+ commit() : void
+ abort() : void
+ isTransactionActive() : boolean
+ transactionsSupported() : boolean
+ executeInTransaction(Command c) : Object
- clearCaches() : void

- core : OntoAccessCore
- deleteCache : Set<org.ontoaccess.Triple>
- insertCache : Set<org.ontoaccess.Triple>
- taActive : boolean

OntoAccessTransactionHandler

+ hasNext() : boolean
+ next() : boolean
+ close() : void
+ toSet() : Set<Triple>
+ toList() : List<Triple>

- tripleIterator : TripleIterator
JenaIterator

+ convertTriple(Triple t) : org.ontoaccess.Triple
+ convertTriple(org.ontoaccess.Triple t) : Triple

Util

Figure 2: Jena Interface UML Class Diagram

The Graph API represents the lower layer and is responsible
for retrieving and storing triples. It provides methods to add,
delete, and find triples. The Model API is the layer facing
the user and provides convenience methods for working with
RDF data. These APIs are designed to be extended, i.e., to add
support for additional triple storage schemes. Jena itself pro-
vides multiple implementation for storing triples in memory or
on disk. For the Jena interface of OntoAccess, we provide an
implementation of the Graph API. Extending the Model API
was not necessary as Jena contains a bridge to create a standard
model from any implementation of the Graph API. Figure 2
depicts the UML class diagram of our Jena interface. It pro-
vides an implementation that interacts with the core layer of
OntoAccess. The OntoAccessGraph class represents the main
API class that contains the methods for adding, deleting, and
finding triples. It maps them to the basic operations of Onto-
Access. Further, the JenaIterator class implements the it-
erator interface that is returned from a call of the find method
of the OntoAccessGraph class. It is basically a wrapper of
our TripleIterator described in Section 4.1.1. Jena pro-
vides support for transactions by introducing dedicated transac-
tion handler classes. Our OntoAccessTransactionHandler
implements this by collecting the triples intended to be added
to or deleted from the data and forwarding them to the Onto-
Access core to commit the transaction. The Util class contains
convenience methods for converting between the triple repre-
sentations of Jena and OntoAccess.

4.3. Service Endpoint

The Service Endpoint of OntoAccess is a server application
that exposes data access interfaces as services to the network.
Data access interfaces can be registered at the endpoint by pro-
viding the name of the implementing handler class and the
HTTP request target (e.g., http://example.org/sparql?
query=... where sparql is the HTTP request target for the
SPARQL service). If a request matches the target, its query
string is forwarded to the respective data access interface for
processing. Request strings that do not match any defined tar-

get are per default interpreted as Linked Data requests if the
corresponding data access interface is installed or else as an er-
ror.

The service endpoint is implemented based on Java servlet
technology17 and the Jetty embedded Web server.18

5. Semantic Feedback Protocol

The conceptual gap between the relational model and RDF
has a greater effect on translating RDF-based write requests to
the database level than on read-only queries. If a query uses
ontology terms (or instances) that cannot be mapped to the
database schema (or data), the query can be processed with-
out error but simply returns no results. However, if a write
request contains such non-mappable ontology terms it cannot
be fully processed and results in an error. Further, a write re-
quest can be underspecified w.r.t. the constraints defined in the
database schema (e.g., not null constraints). In such situations
it is possible to simply reject the whole request or ignore the
parts that cannot be mapped. In both approaches, the client
does not know why the request was not fully processed, espe-
cially if the client is unaware of the RDB-based foundation of
the data storage system. Having said that, it cannot be expected
(neither is it desirable) that all clients know about the specifics
of the RDB schema if their usage is limited to the RDF-based
data access interfaces. We therefore propose a semantic feed-
back protocol to alleviate this problem. The main idea of this
feedback approach is to detect requests that are invalid w.r.t. the
RDB schema already during request translation and in a second
step provide feedback to the client in a semantic format such as
RDF. In this way, there is no conceptual break between request
and (error) response.

In OntoAccess, the semantic feedback protocol is imple-
mented as a cross-layer feature. The detection of invalid write

17http://java.sun.com/products/servlet/
18http://jetty.codehaus.org/jetty/

7

requests is performed in the Update Core where incoming re-
quests are analyzed and translated. Requests are always fully
analyzed to identify and report all invalid elements. The result-
ing feedback is stored in an internal format in the Update Core
and it is exposed in a feedback interface to the Data Access
Interface Layer and the Service Endpoint. The data access in-
terfaces can implement the processing according to their needs
(e.g., the Jena interface could convert the feedback to Java ex-
ceptions). The Service Endpoint converts the feedback to an
RDF-based format adhering to our semantic feedback ontology
described later in this section. The feedback is published in this
RDF-based format at the HTTP request target feedback of the
Service Endpoint (i.e., http://example.org/feedback) and
can be retrieved with a simple GET request on that URL.

The remainder of this sections introduces the different types
of feedback supported by our approach and our semantic feed-
back ontology. At last, we present a concrete example of feed-
back in the RDF-based format implemented in the Service End-
point.

5.1. Feedback Types

We identified five causes for invalid write requests that can
be detected during request translation. All of them arise from
the conceptual gap between the relational model and RDF. We
defined five corresponding feedback types which we present in
detail.

5.1.1. MissingTriple
A MissingTriple feedback is generated if a request lacks data

for a mandatory attribute in the RDB, i.e., an attribute with a
not null constraint. There are two cases that can lead to such a
feedback. First, if data should be inserted that would create a
new record in the database but the data of at least one mandatory
attribute is missing in the request. Second, if data should be
delete that corresponds to a subset of an existing record and
includes data of a mandatory attribute. Both cases would lead
to a database record with mandatory attributes set to null – a
violation of constraints that would be prevented by the database
management system. Requests that generate a MissingTriple
feedback are always aborted.

5.1.2. UnknownSubject
An UnknownSubject feedback is generated if a request con-

tains an RDF triple with a subject that cannot be mapped to
a table of the RDB schema and can therefore not be stored.
This type of feedback is exclusive to insert requests, because
deleting a non-existing triple results in no operation on the data
and can be silently ignored according to [25]. It is a matter
of configuration if requests that generate an UnknownSubject
feedback should be aborted or continued without the affected
triples. However, the feedback is always generated for infor-
mation purposes.

5.1.3. UnknownTriple
An UnknownTriple feedback is generated if a request con-

tains an RDF triple with a predicate that cannot be mapped to

an attribute of the RDB schema and can therefore not be stored.
In this feedback case the subject of the triple can be mapped to
a table of the RDB schema or else it is classified as a Unknown-
Subject feedback as mentioned above. This type of feedback
is exclusive to insert requests, because deleting a non-existing
triple results in no operation on the data and can be silently
ignored according to [25]. It is a matter of configuration if
requests that generate an UnknownTriples feedback should be
aborted or continued without the affected triples. However, the
feedback is always generated for information purposes.

5.1.4. NonMatchingTriple
A NonMatchingTriple feedback is generated if a request con-

tains an RDF triple that can be mapped to the RDB schema but
the value of the affected database record is already set and is dif-
ferent from the value of the object in the triple. This leads to an
error because RDBs do not support storing multiple values for a
single attribute. If the object value and the database value match
it is not an error as inserting an already existing triple is silently
ignored according to [25]. In this feedback case the subject and
predicate can be mapped to the RDB schema or else it would
be classified as either a UnknownSubject or an UnknownTriple
feedback as mentioned above. This type of feedback is exclu-
sive to insert requests, because deleting a non-existing triple
can be silently ignored [25]. It is a matter of configuration if
requests that generate an NonMatchingTriple feedback should
be aborted or continued without the affected triples. However,
the feedback is always generated for information purposes.

5.1.5. DefaultTripleAdded
A DefaultTripleAdded feedback is generated if a request

lacks data for an attribute in the RDB that has a default value de-
fined. Default values in RDBs are silently added to new records
if they are not provided by the client. The DefaultTripleAdded
feedback informs the client about the additional data that was
generated by translating it to an RDF triple. There are two cases
that can lead to such a feedback. First, if data is inserted that
would create a new record in the database but the data of at
least one attribute with default value is not explicitly given in
the request. Second, if data is deleted that includes the data of
an attribute with default value. In this case the original data
is deleted but the data is restored with the default value by the
RDB system. The feedback is always generated for informa-
tion purposes. Requests are never aborted because of a De-
faultTripleAdded feedback.

An invalid write request may generate multiple feedback in-
stances of the same or different types. The semantic feedback
ontology in the next section is used to combine all feedback in
a single feedback message for the client.

5.2. Semantic Feedback Ontology
The semantic feedback that is collected during the translation

of write requests is provided to the client in an RDF-based for-
mat. This format is defined by our semantic feedback ontology
described in this section. Table 1 presents an overview of the
ontology with a list of all classes and short descriptions. The

8

descriptions also include the most important ontology proper-
ties that are used with the respective class (i.e., have that class
as their rdfs:domain).

5.2.1. Examples
Listing 2 shows an example feedback document in the RDF-

based format. It contains three individual feedback instances
that we will explained in detail.

The first part of the feedback document is the definition of
namespace prefixes as required by the Turtle RDF serializa-
tion [27] (lines 1 to 5). Then, the main feedback message is
listed (lines 7 to 11) that consists of the individual feedback in-
stances (lines 8 to 10) and the date this request was processed
(line 11). The rest of the document contains the three feed-
back instances. First, fb:FB1 describes a MissingTriple feed-
back (line 13). As it is not possible to execute a request where
mandatory triples are missing, the request was therefore aborted
(line 14) leading to a severity of fb:Fatal (line 15). It can fur-
ther be seen in the feedback that the request was an insert re-
quest (line 16). A MissingTriple feedback always includes in-
formation about what kind of triple was missing. The expected
subject (line 17) is taken from the original request, the expected
predicate (line 18) and the expected datatype of the object (line
19) are extracted from the mapping definition. At last, hu-
man readable descriptions of the feedback are given (lines 20
and 21; abbreviated). The second feedback is of type Default-
TripleAdded (line 23). This feedback would not result in the
request being aborted, it is for information purposes (line 25)
and could be ignored (line 23). The triple representation of the
automatically added data is provided in the feedback as well
using RDF reification [26] (lines 27 to 29). The final feedback
for this request is a NonMatchingTriple feedback (line 34). It
shows that it also leads to the the request being aborted (line 35)
with a severity of fb:Error (line 36). This severity means that it
would be possible to execute the request but this specific triple
would not be stored. Instead the existing triple would remain
valid. It is a matter of configuration if requests are aborted on
feedback of severity fb:Error. The feedback contains the sub-
mitted triple (lines 38 to 40) as well as the object that exists
already in the database (line 41).

Note that although each feedback instance has a fb:action
property, a request is aborted if at least one of the feedback
instances sets this property to fb:Abort.

6. Evaluation

The evaluation of our approach is split into three parts. First,
in Section 6.1 we demonstrate by example how simple it is to
extend the OntoAccess platform with data access interfaces.
Second, in Section 6.2 we compare the performance of Onto-
Access with D2R, Jena SDB,19 a RDB-backed triple store, and
Jena TDB,20 a native RDF triple store. The benchmark experi-
ment is based on basic Jena API calls for querying, adding, and

19http://openjena.org/SDB/
20http://openjena.org/TDB/

deleting triples since all evaluated approaches provide support
for the Jena framework. Lastly, we summarize a case study we
performed with OntoAccess in the domain of software analysis
platforms.

6.1. Extensibility
In this paper, we claim that the OntoAccess platform pro-

vides simple extensibility to meet the requirement for devel-
oping additional data access interfaces. We will demonstrate
this simple extensibility with three example implementations
of data access interfaces, namely for Jena, Linked Data, and
ChangeSet.

6.1.1. Jena
The Jena interface is an example that requires both read and

write data access. Its implementation was already described in
detail in Section 4.2, therefore we just add that it is one of the
more complex interfaces and that it was implemented in about
300 lines of Java code.

6.1.2. Linked Data
The Linked Data interface is an example for read-only data

access. It is one of the simpler interfaces and was implemented
in about 100 lines of Java code. It provides support for linked
data typed queries via the Service Endpoint. It takes an URI
as input and returns all triples that have this URI as their sub-
ject. For that, it constructs a triple pattern with the given URI
as subject and variables as predicate and object. This pat-
tern is forwarded to the OntoAccess core for translation and
evaluation. The resulting TripleIterator is wrapped in a
HtmlPartIterator that emits the individual triples in HTML
markup so that the Service Endpoint can directly stream the re-
sult page to the caller.

6.1.3. ChangeSet
The ChangeSet interface is an example for write-only data

access. It is accessible via the Service Endpoint and it imple-
ments the ChangeSet protocol.21 Its implementation was re-
alized in about 200 lines of Java code and consists of the ac-
tual interface, the ChangeSet parser, and the implementation
of the protocol. ChangeSet requests are RDF graphs adhering
to the ChangeSet ontology.22 They contain a so-called subject
of change and two sets of matching triples. One triple set is
meant for removal and the other for addition. Our ChangeSet
interface implementation uses the Jena framework to parse the
request and to extract the subject of change as well as the two
triple sets. It then converts the parsed triples to the triple repre-
sentation of OntoAccess and passes them via the Uni Core to
the Update Core for addition and removal. To ensure the atom-
icity of a ChangeSet request, the addition and removal of the
triples are executed within a single database transaction.

This brief description of implemented data access interfaces
demonstrates how simple it is to develop such interfaces. It

21http://n2.talis.com/wiki/Changeset_Protocol
22http://purl.org/vocab/changeset

9

Listing 2: Semantic Feedback Example

1 @pref ix fb : < h t t p : / / o n t o a c c e s s . o rg / f e e d b a c k /> .
2 @pref ix r d f : < h t t p : / / www. w3 . org /1999 /02 /22 − r d f −syn t ax −ns#> .
3 @pref ix r d f s : < h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f −schema#> .
4 @pref ix xsd : < h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema#> .
5 @pref ix dc : < h t t p : / / p u r l . o rg / dc / e l e m e n t s / 1 . 1 / > .

8 fb : FeedbackMessage1 a fb : FeedbackMessage ;
9 fb : hasFeedback fb : FB1 ,

10 fb : FB2 ,
11 fb : FB3 ;
12 dc : d a t e ”2011−10−05T13 : 3 7 : 2 1 ” .

15 fb : FB1 a fb : M i s s i n g T r i p l e ;
16 fb : a c t i o n fb : Abor t ;
17 fb : l e v e l fb : F a t a l ;
18 fb : s o u r c e fb : I n s e r t ;
19 fb : e x p e c t e d S u b j e c t h t t p : / / l o c a l h o s t : 4 0 4 0 / uuc / S t u d e n t 3 0 0 2 ;
20 fb : e x p e c t e d P r e d i c a t e h t t p : / / xmlns . com / f o a f / 0 . 1 / mbox ;
21 fb : e x p e c t e d O b j e c t D a t a t y p e xsd : anyURI ;
22 r d f s : l a b e l ” M i s s i n g T r i p l e ” ;
23 r d f s : comment ”A mandatory t r i p l e i s m i s s i n g . . . ” .

26 fb : FB2 a fb : D e f a u l t T r i p l e A d d e d , r d f : S t a t e m e n t ;
27 fb : a c t i o n fb : I g n o r e ;
28 fb : l e v e l fb : I n f o ;
29 fb : s o u r c e fb : I n s e r t ;
30 r d f : s u b j e c t h t t p : / / l o c a l h o s t : 4 0 4 0 / uuc / S t u d e n t 3 0 0 2 ;
31 r d f : p r e d i c a t e h t t p : / / o n t o a c c e s s . o rg / edu # g r a d e ;
32 r d f : o b j e c t ” 1 ” ;
33 r d f s : l a b e l ” D e f a u l t T r i p l e A d d e d ” ;
34 r d f s : comment ”A d e f a u l t t r i p l e was added . . . ” .

37 fb : FB3 a fb : NonMatch ingTr ip le , r d f : S t a t e m e n t ;
38 fb : a c t i o n fb : Abor t ;
39 fb : l e v e l fb : E r r o r ;
40 fb : s o u r c e fb : I n s e r t ;
41 r d f : s u b j e c t h t t p : / / l o c a l h o s t : 4 0 4 0 / uuc / S t u d e n t 1 0 0 1 ;
42 r d f : p r e d i c a t e h t t p : / / xmlns . com / f o a f / 0 . 1 / f i r s t N a m e ;
43 r d f : o b j e c t ” John ” ;
44 fb : e x p e c t e d O b j e c t ”Bob ” ;
45 r d f s : l a b e l ” NonMatch ingTr ip l e ” ;
46 r d f s : comment ”A t r i p l e was d e t e c t e d . . . ” .

10

Table 1: Semantic Feedback Ontology – Overview

Class Description (including class specific properties)
FeedbackMessage The collection of all feedback generated by a single write request. It lists all feedback instances

(→ hasFeedback) that can be of any subclass of FeedbackType. It further contains the date (→
dc:date) this request was processed.

FeedbackType The superclass for all types of feedback. It lists information about the severity of the feedback
(→ level: info, warn, error, fatal), if it was generated during an insert or delete request (→
source), and if the request was aborted or the source of the feedback was ignored (→ action).
The feedback further contains human readable descriptions of the feedback type (→ rdfs:label
and→ rdfs:comment). If the feedback affects a single triple, it is included in the feedback using
RDF reification [26], i.e., its subject (→ rdf:subject), predicate (→ rdf:predicate), and object
(→ rdf:object) are listed.

MissingTriple A subclass of FeedbackType that uses additional properties of the ontology. It lists information
about the expected subject (→ expectedSubject), the expected predicate (→ expectedPredicate),
and the expected datatype of the object value (→ expectedObjectDatatype) that the missing
triple should be composed of.

UnknownSubject A subclass of FeedbackType that uses an additional property of the ontology. It contains a list
of triples (→ triples) that use the unknown subject.

UnknownTriple A subclass of FeedbackType that uses no additional properties of the ontology.
NonMatchingTriple A subclass of FeedbackType that uses no additional properties of the ontology.
DefaultTripleAdded A subclass of FeedbackType that uses no additional properties of the ontology.
FeedbackAction Indicates if the feedback resulted in aborting the request or not. The ontology defines two

instances of this class named Abort and Ignore.
FeedbackLevel Describes the severity of the feedback. The ontology defines four instances of this class named

Info, Warn, Error, and Fatal. Depending on this severity level a client may react differently to
the feedback. For instance, Fatal means the request was not executed at all while Info means it
was successful, but some feedback was generated for information purposes.

FeedbackSource Indicates if the feedback was generated during an insert or a delete request. The ontology
defines two instances of this class named Insert and Delete.

shows how few lines of code it requires compared to the trans-
lation logic in the core layer which consists of more than 8000
lines of Java code.

6.2. Performance

The layered architecture of the OntoAccess platform may
suggest a disadvantage in performance compared to other RDB-
to-RDF mapping approaches. In this section, we compare the
performance of OntoAccess with D2R, Jena SDB, a RDB-
backed triple store, and Jena TDB, a native RDF triple store.
The benchmark experiment is based on basic Jena API calls for
querying, adding, and deleting triples since all evaluated ap-
proaches provide support for the Jena framework. We show that
OntoAccess delivers comparable or better performance than
D2R and Jena SDB.

6.2.1. Experimental Setup
The experiment was conducted on a Apple MacBook Pro

notebook with a 2.33GHz Intel Core 2 Duo dual core CPU,
3GB of DDR2 667MHz RAM, a 320GB SATA HDD with
7200rpm running Mac OS X 10.6.3 as the operating sys-
tem. As Java runtime we used version 1.6.0 17 provided
with Mac OS X. As database system, MySQL version 5.1.45

was used for all systems with the default settings except
innodb buffer pool size which was increased to 64MB via
the my.cnf configuration file. The benchmark was run with a
heap space allocation of 1024MB (-Xmx1024m).

We reused the dataset from the Berlin SPARQL Benchmark
(BSBM) [28] in sizes equivalent to one million, ten millions,
and hundred millions of triples. The datasets were generated
with the BSBM data generator as described in the BSBM spec-
ification [29]. The mapping for D2R was reused from a prior
benchmark experiment conducted by the BSBM team. It is
publicly available from their benchmark results website.23 The
mapping for OntoAccess was specifically developed for this
evaluation. It is a complete mapping according to Definition 3.

The experiment consists of two parts, a query part and an up-
date part. The query part tests the evaluation performance of
single triple pattern queries. There exist eight such patterns in-
cluding the one containing no variables (i.e., a concrete triple)
and the one containing only variables (i.e., resulting in a dump
of the database). The times reported below include the transla-
tion and evaluation of the queries as well as the retrieval of at

23http://www4.wiwiss.fu-berlin.de/bizer/

BerlinSPARQLBenchmark/results/

11

most fifty result triples. The update part tests the performance
of adding and deleting A a single triple, B a set of eight triples
that affect a single table in the RDB, and C a set of thirteen
triples that affect multiple tables. The results presented below
were measured as the average of five benchmark runs after two
warmup runs. The query part was executed for all systems un-
der test (SUTs), the update part for OntoAccess, Jena SDB, and
Jena TDB as D2R lacks support for data updates.

We used the following releases of the SUTs. OntoAccess in
version 0.3,24 D2R in version 0.7, Jena SDB in version 1.3.0
with the index-based database layout, and Jena TDB in version
0.8.4. All SUTs were used with default settings.

6.2.2. Results
Table 1 depicts the results of the query benchmark for data-

sets equivalent to one, ten, and hundred millions of triples. The
first column names the approach and the dataset size. The re-
maining eight columns show the benchmark result times in mil-
liseconds for each of the eight possible triple patterns. The
triple patterns are depicted as a combination of the letters s,
p, o that represent concrete subjects, predicates, objects and the
question mark ? that represents variables. For instance, the
triple pattern (s p ?) represents a pattern with concrete subject
and predicate but variable object.

The results show that for triple patterns with known subject,
OntoAccess performs comparable to D2R and better than Jena
SDB and Jena TDB. For triple patterns with unknown subject
the results are mixed. Compared to D2R, OntoAccess performs
comparable for the patterns with known predicate and in gen-
eral better for the patterns with unknown predicate. The per-
formance of Jena TDB for triple patterns with unknown subject
is similar to patterns with known subject and therefore better
than OntoAccess. Jena SDB performs better than OntoAccess
for the patterns (? p o) and (? ? o) but worse for the other two.
The performance of evaluating patterns with known predicate
could be improved in OntoAccess and D2R if a database in-
dex is created on the attribute that is mapped to the property p.
Tests showed that this reduces evaluation times to the levels of
triple patterns with known subject. Also note that Jena SDB is
only able to evaluate the (? ? ?) pattern in the one million triple
dataset. It crashes with a java.lang.OutOfMemoryError er-
ror in larger datasets even if the heap memory allocation is dou-
bled to 2048MB.

Table 2 depicts the results of the update benchmark for
datasets equivalent to one, ten, and hundred millions of triples.
The first column names again the approach and dataset size.
The remaining six columns show the benchmark result times in
milliseconds for adding and removing the three different triple
sets. A represents the single triple, B the set of eight triples
affecting a single table in the RDB, and C the set of thirteen
triples affecting multiple tables. We report results for Onto-
Access, Jena SDB, and Jena TDB as D2R is limited to read-only
queries.

The results show that OntoAccess performs better than Jena
SDB in adding and removing triples irrespective of the triple set

24available for download at http://ontoaccess.org/

or dataset size. The performance difference is especially strik-
ing in the removal of triples. A closer examination revealed that
Jena SDB translates the removing of each individual triple to a
SQL statement that needs to perform multiple joins on large ta-
bles. OntoAccess, on the other hand, translates the removing of
triples to a single, join-less SQL statement for each affected ta-
ble. Compared to Jena TDB OntoAccess performs better on the
two larger data sets and the performance difference increases
with the number of triples to add or remove.

6.3. Case Study
In [30], we presented a case study on how OntoAccess can be

used to facilitate the transition from legacy systems to Semantic
Web-enabled applications in practice. The case study showed
how we successfully used OntoAccess to advance our Eclipse-
based software evolution analysis framework Evolizer [31] to
Sofas [32], a service-oriented, distributed, and collaborative
software analysis platform. To motivate our case study, we
present use cases that require interoperability between Evolizer
and Sofas. These use cases need a bidirectional data exchange,
i.e., from Evolizer to Sofas and vice versa. First, Evolizer
contains data about the software life-cycle of hundreds of soft-
ware systems. Re-importing this vast amount of data in So-
fas from version control and bug tracking systems would take
months, and some of these repositories might not even be avail-
able online anymore. Therefore, RDF-based read access to the
Evolizer database is needed. Second, Evolizer implements im-
porters to import source code and history data from central-
ized version control systems, such as CVS and SVN. Lately
decentralized version control systems, such as Git or Mercu-
rial, gained popularity. Therefore, respective import services
were developed for the Sofas platform. The data produced by
these importer services is modeled in RDF. It would also be
valuable to Evolizer because existing tools could be used to
leverage it. This, however, requires RDF-based write access
to the Evolizer database. Lastly, Sofas implements an extensi-
ble framework to compute software metrics on the data. Again,
this data is modeled in RDF, but matching relations are avail-
able in the Evolizer database schema. RDF-based write ac-
cess to the RDB is needed to make the metrics data available
to Evolizer. These use cases indicate that, for making a bridge
between Evolizer and Sofas, a RDB-to-RDF mapper such as
OntoAccess is needed that provides RDF-based read and write
access to RDBs.

7. Limitations

The expressivity of our RDB-to-RDF mapping language
R3M is lower than some of the existing, read-only mapping
languages (cf. [19]). The reason is the additional requirement
of enabling RDF-based write access to the RDB while avoiding
the view update problem. This difference in expressivity is rel-
evant if the similarity between the RDB schema and the target
ontology is low. However, we showed in [30] that R3M can
be applied on real world application scenarios where a certain
similarity between the RDB schema and the target ontology is
given.

12

Table 2: Result times for query benchmark [ms]

1M (s p o) (s p ?) (s ? o) (s ? ?) (? p o) (? p ?) (? ? o) (? ? ?)
OntoAccess 1 1 2 2 5 8 724 39
D2R 2 2 7 5 8 9 267 110
JenaSDB 16 11 6 13 5 71 4 36 427
JenaTDB 12 9 13 16 17 23 13 2

10M (s p o) (s p ?) (s ? o) (s ? ?) (? p o) (? p ?) (? ? o) (? ? ?)
OntoAccess 1 1 3 4 203 224 216 489
D2R 2 2 7 6 202 235 1 051 1 369
JenaSDB 34 21 26 33 25 520 20 –*
JenaTDB 24 24 31 28 93 10 87 2

100M (s p o) (s p ?) (s ? o) (s ? ?) (? p o) (? p ?) (? ? o) (? ? ?)
OntoAccess 2 1 3 4 1 962 2 222 1 952 5 130
D2R 2 2 8 7 1 998 2 341 3 650 13 725
JenaSDB 42 30 45 60 70 5 320 100 –*
JenaTDB 38 32 53 43 316 10 99 3

* crashed with a java.lang.OutOfMemoryError

Table 3: Result times for update benchmark [ms]
1M add A remove A add B remove B add C remove C
OntoAccess 4 3 5 4 6 8
JenaSDB 11 1 311 42 10 328 60 16 776
JenaTDB 2 3 10 8 12 12
10M add A remove A add B remove B add C remove C
OntoAccess 5 3 5 5 6 8
JenaSDB 11 13 601 44 111 150 78 180 532
JenaTDB 9 4 47 13 98 17
100M add A remove A add B remove B add C remove C
OntoAccess 4 3 4 5 5 7
JenaSDB 30 329 184 198 2 676 356 238 4 356 603
JenaTDB 15 3 77 13 134 16

Note: D2R is missing from this table as it is limited to read-only queries

OntoAccess is currently limited to a single RDB as a data
source. It does not incorporate any query or update federa-
tion. However, the explicit information provided in the map-
ping about what kind of data (i.e., classes and properties of an
ontology) are stored in each data source could be leveraged to
add federation support.

In this paper, we introduced a semantic feedback protocol
to bridge the conceptual gap between the relational model and
RDF in case of invalid write requests. We provided a proof-of-
concept implementation, but a thorough evaluation is needed to
show the usability of this feedback approach.

8. Conclusion

In this paper, we presented OntoAccess as an extensible plat-
form for RDF-based read and write access to data stored in ex-
isting RDBs. We discussed that there are many different data
access approaches in current Semantic Web applications and

that a platform-based approach is needed to avoid repeated im-
plementation effort in RDB-to-RDF translation. We identified
three basic operations that such a platform has to provide in
its core implementation, namely (1) querying for a single triple
pattern, (2) adding triples, and (3) removing triples. These ba-
sic operations are implemented in the core layer of OntoAccess
and we discussed that this architectural decision enables the
simple implementation of various data access interfaces in the
interface layer.

We introduced a semantic feedback protocol to bridge the
conceptual gap between the relational model and RDF. It in-
forms the client about invalid write request in an RDF-based
format and provides recommendation on how to change the re-
quest for the better. We presented the semantic feedback ontol-
ogy and the implementation in OntoAccess.

We showed that this platform-based approach performs com-
parable or better than existing read-only RDB-to-RDF mapping

13

approaches as well as current triple stores.
We further introduced a formal definition of our RDB-to-

RDF mapping and proofs of its bidirectional properties. The
rationale of the formal definition and the proofs is to show that
our mapping language R3M is bidirectional and therefore not
affected by the view update problem.

References

[1] World Wide Web Consortium, W3C Semantic Web Activity, http://
www.w3.org/2001/sw/, 2011.

[2] C. Patel, S. Khan, K. Gomadam, TrialX: Using Semantic Technologies
to Match Patients to Relevant Clinical Trials Based on Their Personal
Health Records, in: Proceedings of the 8th International Semantic Web
Conference.

[3] L. Ma, X. Sun, F. Cao, C. Wang, X. Wang, Semantic Enhancement for
Enterprise Data Management, in: Proceedings of the 8th International
Semantic Web Conference.

[4] A. Langegger, W. Wöss, M. Blöchl, A Semantic Web Middleware for
Virtual Data Integration on the Web, in: Proceedings of the 5th European
Semantic Web Conference.

[5] E. Prud’hommeaux, A. Seaborne, SPARQL Query Language for
RDF, W3C Recommendation. http://www.w3.org/TR/2008/

REC-rdf-sparql-query-20080115/, 2008.
[6] A. Seaborne, G. Manjunath, C. Bizer, J. Breslin, S. Das, I. Davis,

S. Harris, K. Idehen, O. Corby, K. Kjernsmo, B. Nowack,
SPARQL Update – A Language for Updating RDF Graphs, W3C
Member Submission. http://www.w3.org/Submission/2008/

SUBM-SPARQL-Update-20080715/, 2008.
[7] C. Ogbuji, SPARQL 1.1 Graph Store HTTP Protocol,

W3C Working Draft. http://www.w3.org/TR/2011/

WD-sparql11-http-rdf-update-20110512/, 2011.
[8] M. Hert, Relational Databases as Semantic Web Endpoints, in: Proceed-

ings of the 6th European Semantic Web Conference.
[9] C. Bizer, A. Seaborne, D2RQ – Treating Non-RDF Databases as Virtual

RDF Graphs, in: Proceedings of the 3rd International Semantic Web
Conference.

[10] O. Erling, I. Mikhailov, RDF Support in the Virtuoso DBMS, in: Pro-
ceedings of the SABRE Conference on Social Semantic Web.

[11] J. Barrasa, O. Corcho, A. Gómez-Pérez, R2O, an Extensible and Seman-
tically Based Database-to-Ontology Mapping Language, in: Proceedings
of the 2nd Workshop on Semantic Web and Databases.

[12] S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, D. Aumueller, Triplify
– Light-Weight Linked Data Publication from Relational Databases, in:
Proceedings of the 18th International World Wide Web Conference.

[13] C. Bizer, R. Cyganiak, D2R Server – Publishing Releational Databases
on the Semantic Web, in: Proceedings of the 5th International Semantic
Web Conference.

[14] S. Das, S. Sundara, R. Cyganiak, R2RML: RDB to RDF Map-
ping Language, W3C Working Draft. http://www.w3.org/TR/2010/
WD-r2rml-20101028/, 2010.

[15] A. Malhotra, W3C RDB2RDF Incubator Group Report, http://www.
w3.org/2005/Incubator/rdb2rdf/XGR-rdb2rdf-20090126/,
2009.

[16] H. Halpin, I. Herman, RDB2RDF Working Group Charter, http://www.
w3.org/2009/08/rdb2rdf-charter, 2009. Last visited July 2011.

[17] A. Garrote, M. N. M. Garcia, RESTful Writable APIs for the Web of
Linked Data Using Relational Storage Solutions, in: Proceedings of the
WWW2011 Workshop on Linked Data on the Web.

[18] S. S. Sahoo, W. Halb, S. Hellmann, K. Idehen, T. T. Jr, S. Auer, J. Se-
queda, A. Ezzat, A Survey of Current Approaches for Mapping of Re-
lational Databases to RDF, http://www.w3.org/2005/Incubator/
rdb2rdf/RDB2RDF_SurveyReport.pdf, 2009. Last visited July 2011.

[19] M. Hert, G. Reif, H. C. Gall, A Comparison of RDB-to-RDF Mapping
Languages, in: Proceedings of the 7th International Conference on Se-
mantic Systems.

[20] F. Bancilhon, N. Spyratos, Update Semantics of Relational Views, ACM
Transactions on Database Systems (1981).

[21] T. Berners-Lee, Relational Databases on the Semantic Web, http://
www.w3.org/DesignIssues/RDB-RDF.html, 2009. Last visited July
2011.

[22] C. Fürber, Ontology-Based Data Quality Management: Methodology,
Cost, and Benefits, in: Proceedings of the 6th European Semantic Web
Conference.

[23] M. Hert, G. Reif, H. C. Gall, Updating Relational Data via SPARQL/Up-
date, in: EDBT Workshop Proceedings.

[24] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne,
K. Wilkinson, Jena: Implementing the Semantic Web Recommendations,
in: Proceedings of the 13th International World Wide Web Conference.

[25] S. Schenk, P. Gearon, A. Passant, SPARQL 1.1 Up-
date, W3C Working Draft. http://www.w3.org/TR/2010/

WD-sparql11-update-20101014/, 2010.
[26] F. Manola, E. Miller, RDF Primer, W3C Recommendation. http://

www.w3.org/TR/2004/REC-rdf-primer-20040210/, 2004.
[27] D. Beckett, T. Berners-Lee, Turtle – Terse RDF Triple Language, W3C

Team Submission http://www.w3.org/TeamSubmission/turtle/,
2011.

[28] C. Bizer, A. Schultz, The Berlin SPARQL Benchmark, International
Journal on Semantic Web and Information Systems (2009).

[29] C. Bizer, A. Schultz, Berlin SPARQL Benchmark (BSBM) Spec-
ification – V2.0, http://www4.wiwiss.fu-berlin.de/bizer/

BerlinSPARQLBenchmark/spec/, 2008.
[30] M. Hert, G. Ghezzi, M. Würsch, H. C. Gall, How to ”Make a Bridge to the

New Town” using OntoAccess, in: Proceedings of the 10th International
Semantic Web Conference.

[31] H. C. Gall, B. Fluri, M. Pinzger, Change Analysis with Evolizer and
ChangeDistiller, IEEE Software (2009).

[32] G. Ghezzi, H. C. Gall, SOFAS: A Lightweight Architecture for Software
Analysis as a Service, in: Proceedings of the 9th Working IEEE/IFIP
Conference on Software Architecture.

14

