

Patrick Minder

Abraham Bernstein

CrowdLang: programming human computation

systems

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

–
N

o.
IF

I-
20

12
.0

3

2012

Patrick Minder, Abraham Bernstein
CrowdLang: programming human computation systems
Technical Report No. IFI-2012.03
Dynamic and Distributed Information Systems
Department of Informatics (IFI)
University of Zurich
Binzmuehlestrasse 14, CH-8050 Zurich, Switzerland
http://www.ifi.uzh.ch/ddis/

CrowdLang - Programming Human Computation Systems
Interweaving Human and Machine Intelligence in a Complex Translation Task

Patrick Minder
University of Zurich

Dynamic and Distributed
Information Systems Group

minder@ifi.uzh.ch

Abraham Bernstein
University of Zurich

Dynamic and Distributed
Information Systems Group

bernstein@ifi.uzh.ch

ABSTRACT
Today, human computation systems are mostly used for batch
processing large amount of data in a variety of tasks (e.g., im-
age labeling or optical character recognition) and, often, the
applications are the result of extensive lengthy trial-and-error
refinements.
A plethora of tasks, however, cannot be captured in this
paradigm and as we move to more sophisticated problem
solving, we will need to rethink the way in which we coor-
dinate networked humans and computers involved in a task.
What we lack is an approach to engineer solutions based on
past successful patterns.

In this paper we present the programming language and
framework CrowdLang for engineering complex computa-
tion systems incorporating large numbers of networked hu-
mans and machines agents incorporating a library of known
successful interaction patterns. CrowdLang allows to design
complex problem solving tasks that combine large numbers
of human and machine actors whilst incorporating known
successful patterns.
We evaluate CrowdLang by programming a text translation
task using a variety of different known human-computation
patterns. The evaluation shows that CrowdLang is able to
simply explore a large design space of possible problem solv-
ing programs with the simple variation of the used abstrac-
tions.

In an experiment involving 1918 different human actors we,
furthermore, show that a mixed human-machine translation
significantly outperforms a pure machine translation in terms
of adequacy and fluency whilst translating more than 30 pages
per hour and that the mixed translation approximates the
human-translated gold-standard to 75% using the automatic
evaluation metric METEOR. Last but not least, our evalua-
tion illustrates that a new human-computation pattern, which
we call staged-contest with pruning, outperforms all other re-
finements in the translation task.

Author Keywords
CrowdLang, Programming Language, Human Computation,
Collective Intelligence, Crowdsourcing, CrowdLang,
Translation Software, Pattern Recombination

A short research note summarizing this technical paper with the title “How
to Translate a Book Within an Hour - Towards General Purpose Pro-
grammable Human Computers with CrowdLang” was published at ACM
WebSci Conference 2012. Copyright held by the authors.

ACM Classification Keywords
H.1.2 User/Machine Systems : H.4.1 Workflow management

General Terms
Algorithms, Human Factors, Languages

1. INTRODUCTION
Much of the prosperity gained by the industrialization of the
economy in the 18th century arose from the increased pro-
ductivity by dividing work into smaller tasks performed by
more specialized workers. Wikipedia, Google and other stun-
ning success stories show that with the rapid growth of the
World Wide Web and the advancements of communication
technology, this concept of Division of Labour can also be
applied on knowledge work [24, 23]. These new modes
of collaboration— whether they are called collective intelli-
gence, human computation, crowdsourcing or social comput-
ing1 —are now able to routinely solve problems that would
have been unthinkably difficult only a few years ago by inter-
weaving the creativity and cognitive capabilities of networked
humans and the efficiency and scalability of networked hu-
mans in processing large amount of data [5]. The advent of
crowdsourcing markets such as Amazons Mechanical Turk
(MTurk)2, Clickworker3, or CrowdFlower4 even fosters this
development and Bernstein et al. suggest that, as the scale
and scope of these human-computer networks increase, we
can view them as constituting a kind of a global brain [5].

Even though there exist hundreds of human computation sys-
tems that harness the potential of this “global brain”, our un-
derstanding of how to “program” these systems is still poor
because human computers are different from traditional com-
puters due to the huge motivational, error and cognitive di-
versity within and between humans [5]. As a consequence,
today, human computation is only used for massive parallel
information processing for tasks such as image labeling or
tagging. These tasks share in common that they are massively

1There is an ongoing debate in the research field about the clear
distinction between these concepts [28, 17, 23]. In the context of
this paper and in analogy to Law et al. [17], we simply consider
human computation as computation that is carried out by humans
and likewise the term human computation systems (HCS) describes
“paradigms for utilizing human processing power to solve problems
that computers cannot yet solve” [29].
2http://www.mturk.com
3http://www.clickworker.com/
4http://www.crowdflower.com/

parallelizable, have a low interdependence between single as-
signments in the task decomposition, and use relatively little
cognitive effort.

A plethora of tasks, however, cannot be captured in this
paradigm. Consider, e.g., the joint editing of lengthy texts
as accomplished on Wikipedia. Here, a large number of
actors work on highly interdependent tasks that would be
very difficult to cast into a bulk parallelization with low in-
terdependence. Hence, to harness the full potential of hu-
man computation systems, we need new powerful program-
ming metaphors that support the design and implementation
of human computation systems, as well as general-purpose
infrastructure to execute them. Specifically, we need a pro-
gramming language that supports the whole range of possi-
ble dependencies between single tasks, allows for the seam-
less reuse of known human computation patterns incorpo-
rating both human and machine operators to exploit prior
experience, and integrates multiple possible execution plat-
forms such micro task markets as well as games-with-a-
purpose platforms to leverage a large ecosystem of partici-
pants. Furthermore, to move from a culture of “wizard of
oz”-techniques, in which applications are the result of exten-
sive trial-and-error refinements, this programming language
has to support the recombination [4] of interaction patterns to
systematically explore the design space of possible solutions.

Recent research only partially addresses these challenges by
providing programming frameworks and models [21, 14, 1]
for massive parallel human computation, concepts for plan-
ning and controlling dependencies [3, 33], and theoretical de-
ductive analysis of emergent collective intelligence [23].

In this article, we present the human computation program-
ming language and framework CrowdLang for interweav-
ing networked humans and computers. CrowdLang supports
cross-platform workforce integration, the management of la-
tency caused by human computers, as well as incorporates
abstractions for group decision, contest, and collaborative in-
teraction patterns to exploit prior experience, as proposed
by Malone et al. [23]. Furthermore, in contrast to several
MapReduce inspired approaches [14, 1], CrowdLang sup-
ports the management of arbitrary dependencies among tasks
and workers and not only synchronous parallelization. We il-
lustrate CrowdLang’s feasibility and strength in interweaving
human and machine actors by programming a collection of
text translation programs. We show that the resulting trans-
lation programs are capable to speedily translate non-trivial
texts from German to English achieving a significantly better
quality than pure machine translation approaches. In addi-
tion, given the simple recombination of patterns supported by
CrowdLang, we were able to unearth a novel human com-
putation pattern called “Staged-Contest with Pruning” that
outperforms all other known patterns in the translation task.

As such, the contributions of the paper are as follows: (1)
We present CrowdLang. (2) We introduce the CrowdLang
execution environment and its plug-and-use architecture for
generic language extensions. (3) We provide the ‘pattern re-
combinator’ methodology – a translation of the process re-
combination approach [4] to human computation tasks. (4)

We present a set of human computation programs that allow
translating more than 30 pages per hour with a “good” quality
when compared to professional translations. (5) Finally, we
present a new human computation interaction pattern called
“Staged-Contest with Pruning” that outperforms all other pat-
terns in the translation task.

2. BACKGROUND AND RELATED WORK
In this section, we review the state-of-the-art in the research
field of human computation. Especially relevant to this pa-
per is research about frameworks for supporting automated
execution of human computation “programs”, the design
of novel interaction patterns, and several analysis of human
computation systems.

2.1 Management and Programming Frameworks
Recently, the research community has proposed a number of
programming frameworks and concepts that address the dis-
tinct challenges in engineering human computation systems.
Little et al. [19, 21, 20] proposed the use of the imperative
programming framework TurKit. In particular, investigating
workflows composed by iterative and parallel traditional pro-
gramming constructs, they explored basic technical problems
caused by the high latency associated with waiting for a re-
sponse from a human worker, writing, and debugging human
computation code. Hence, they support the idea of a “crash-
and-rerun” programming model, which allows a programmer
to repeatedly rerun and debug processes without republish-
ing costly previously completed human computation tasks. A
similar approach is used in the crowdsourced database query
processing system CrowdDB proposed by Franklin et al. [11].

Several programming frameworks inspired by the MapRe-
duce [10] programming metaphor have been proposed to
coordinate arbitrary dependencies between interdependent
tasks. These frameworks model complex problems as a se-
quence of partition, map, and reduce subtasks. For exam-
ple, Kittur et al.’s CrowdForge programming framework [14]
starts by breaking down large problems into discrete subtasks
either by using human or machine computers. Then human or
machine agents are used to collect a set of solutions. Finally,
the results of multiple workers are merged and aggregated
into the solution of the larger problem. Built on top of the
crowdsourcing market CrowdFlower5, they also presented a
visual approach for developing and managing these work-
flows by visually drag-and-dropping operators into a work-
flow model. Similarily, Ahmad et al.’s Jabberwocky program-
ming environment [1] extended this idea by providing an ad-
ditional human and resource management system for integrat-
ing workforces from different markets, as well as a high-level
procedural programming language. Finally, Noronha et al.
[26] suggest a divide-and-conquer management framework
inspired by corporate hierarchies.

These studies highlight the importance of designing new
environments for programming human computation sys-
tems but still are limited in the restrictions to the struc-
tural, synchronous rigidness of the MapReduce programming

5http://crowdflower.com/

metaphor when modeling workflows with arbitrary depen-
dencies [22]. Further, they lack in providing any explicit
treatment of cognitive diversity in and between human actors
[5], the lack of abstractions for complex coordination patterns
such a group decision procedures [23], and assume that com-
putation can be fully specified ex-ante. In particular, many
complex problem-solving processes are difficult to specify
ex-ante and only gain more specific definitions during exe-
cution, when the problem to be solved clarifies, or may start
out as well defined tasks and then lose their specific definition
due to some unexpected exceptions. Thus, we proposed the
notion that processes move along a specificity frontier from
well-defined and static to loosely defined and dynamic [3].
To harness the full potential of human computation systems,
we believe that programming languages designed for this pur-
pose should exhibit all these features.

Furthermore, several systems are proposed that exploits self-
organizing crowds to solve a planing under constraints prob-
lem [33], to decompose large search queries [18, 32], or to
iteratively decompose a task in finer-grained subtasks [15,
16]. These systems illustrate the crowd-based solutions of
a completely different coordination problem than the ones
introduced above. It is, however, not a general-purpose ap-
proach suitable to most problems.

2.2 Interaction Patterns
In analogy to software engineering design patterns human
computation researchers look for generalizable human com-
putation patterns in various fields. Bernstein et al. [?], for
example, suggests the use of the Find-Fix-Verify pattern for
qualitative crowd sourced proofreading. Zhang et al. [9] an it-
erative dual pathway pattern for speech-to-text transcription.
These studies suggest that programming human computation
system is likely to incorporate a number of such patterns.

2.3 Deductive Analysis of Human Computation Systems
Complementing these almost empirical explorations of pos-
sible patterns several studies [28, 17, 30, 7, 12] taxonomize
various aspects of human computation systems.

In addition, based on an examination of 250 different hu-
man computation systems, Malone et al. [23] provide a de-
ductive analysis of collective intelligence and human com-
putation systems. In particular, their Collective Intelligence
Genome identified the characteristics (“genes”) that are re-
combined to the basic building blocks (“genome”) in those
applications. Their conceptual classification framework sug-
gests to characterize each building block by using two pairs
of related questions. First, they considered staffing (Who is
performing the task?) and different kind of incentives (Why
are they doing it?). Second, they analyzed a specific system
by defining the goal of a task (What is being done?) and
problem-solving process (How is it being done?).

Malone et al.’s classification framework is particularly rele-
vant to this paper because it supports the idea that human
computation systems can be built by recombining those basic
building blocks as Bernstein [4] also proposed in the context
of business processes.

3. CROWDLANG
In this section we introduce CrowdLang [25]— our human
computation programming language and framework. We will
first present the design goals. This will be followed by a dis-
cussion of the system’s architecture, the programming lan-
guage, and its implementation of the collective intelligence
genes.

3.1 Key Ideas and Design Goals
Conventional programming languages and framework are
developed to interoperate with deterministic machines and,
thus, provide only a limited set of sophisticated abstractions
for coordinating the behavior of a program (e.g., loops or con-
ditionals). When moving from programming pure machine
computation to hybrid machine-human or pure human com-
putation systems these languages are not a good match due to
the cognitive, error, and motivational diversity within and be-
tween humans [5] and the varying degrees of detail in many
human task definitions. Additionally, the proposed human
computation frameworks (see Section 2.1) are also restricted
by the structural rigidness of the MapReduce programming
metaphor.

The objective of CrowdLang is to build a general-purpose
programming language and framework for interweaving hu-
man and machine computation within complex problem solv-
ing. CrowdLang intends to incorporate explicit methods for
handling (cognitive, error, and motivational) diversity, com-
plex coordination mechanisms (and not only batch process-
ing) and abstractions for human computation tasks such as
group decision processes. In future version, the framework
will also support the specificity frontier to allow unstructured,
constraint-restricted computation and for run-time task de-
composition as well as the modeling of of non-functional con-
straints such as budget, completion time, or quality. Last but
not least, the CrowdLang engine has to address the technical
challenges associated with crowd worker latency (waiting for
the response by humans) [19]. In designing the first prototype
of CrowdLang we pursued the following design goals:

(1) Interweaving human and machine intelligence: Crowd-
Lang simplifies the management of computation algorithms
incorporating human and machine actors. It provides a
model-based programming language, an application pro-
gramming interface for the asynchronous integration of hu-
man computation, and provides abstractions for the manage-
ment of a wide range of dependencies between algorithmic
elements.

(2) Simplify the design of new human computation algorithms
through the seamless reuse of existing interaction patterns
and pattern recombinations: The CrowdLang framework
limits the effort for the development of ad-hoc infrastructure
(e.g., work list management, cross-platform workforce inte-
gration or latency management). Additionally, CrowdLang
actively supports the exploration of the design space of hu-
man computation algorithms solutions through (1) the seam-
less integration of existing interaction patterns6 and (2) pat-
6see http://www.ifi.uzh.ch/ddis/research/CrowdLang.html for a cat-
alogue of typical human computation interaction patterns in Crowd-
Lang

tern recombinations as proposed for business process man-
agement [4]. Also, CrowdLang is extensible through the use
of a plug-in infrastructure.

(3) Support of cross-platform workforce integration and the
management of crowd worker activities: Additionally,
CrowdLang fosters cross-platform human computation and
limit the drawbacks of crowd worker anonymity by integrat-
ing different type of workforce sources and tracking crowd
worker histories. Using the latter, we enhance the alloca-
tion (or routing) of new task to skilled workers and limit the
amount fraudulent behavior within crowd markets.

3.2 Architecture
The CrowdLang framework architecture (see Figure 1) con-
sists of three main components: the IDE, the Engine and In-
tegrator.

CrowdLang Engine

Cross-platform human workforce integration

Computation
Instance Database

Human Worklist Handler

MTurkCrowdFlower GamesClickWorker ...

Worker Activity
History

Control Flow Manager and Event Handler

Machine Worklist Handler

CrowdLang Interpreter CrowdLang API

Cloud

Active Directory

CrowdLang IDE

CrowdLang Editor

CrowdLang Pattern Framework V1

Pattern Recombinator

Third-Party Applications

Figure 1. CrowdLang Architecture

The CrowdLang IDE provides a source code editor for the
design of human computation algorithms. In a future ver-
sion, we will also integrate the CrowdLang pattern recombi-
nator, which simplifies the automated exploration of the de-
sign space through pattern recombination.

The CrowdLang Engine is responsible for managing the ex-
ecution of CrowdLang algorithms. The engine consists of
five different components. (1) The Interpreter translates the
problem statement (source code) into an executable control
flow. (2) The API allows to call single operators from a third-
party application using Web service calls. (3) The Control
Flow Manager manages the problem solving process by han-
dling incoming events (e.g. results from the human work-
list handler) and routing the problem solving process. Fur-
thermore, it manages different types of events such as fin-
ished assignments by crowd worker or exceptions by stor-
ing the state of the problem solving process in the Computa-
tion Instance Database. Similar to the Crash-and-Rerun pro-
gramming model [21] it ensures error recovery after excep-
tions. (4) The Human Work-list Handler manages the (asyn-
chronous) interactions with the crowd: publishing new tasks
to the crowd (e.g. to MTurk), providing resources for the task
(web interface), and recognizing finished tasks. (5), Finally
the Machine Work-list Handler manages the interaction with
computational operators such as Web services.

To conclude, at the bottom level, the CrowdLang Integrator
builds the interface to different human workforce crowds and
machine operators in the cloud.

3.3 CrowdLang - A Programming Language
In accordance with Malone et al.’s [23] empirical exploration
of emergent collective intelligence, the CrowdLang program-
ming language provides operators for the task decomposition,
the management of producer-consumer relationships and re-
source allocation, as well as the seamless reuse of known hu-
man computation patterns.

3.3.1 Fundamental Operators of CrowdLang
CrowdLang provides language constructs for defining basic
operators (performed by humans or machines), data items,
and control flow constructs (see Figure 3). A Task represents
the transformation of a given problem statement into a solu-
tion. The transformation is performed either by humans (Hu-
man Computation) or machines (Machine Computation). A
Problem Statement defines a task in terms of a question and
the required input data. A Solution represents the computed
results for a Problem Statement. Finally, a Sequence Flow de-
fines the execution order of single tasks and manages there-
fore classical producer/consumer relationships in the form of
a prerequisite constraint, where the produced output of a pre-
vious task is consumed as an input in the next task.

Task

Comp.
H

Comp..
M

:=

:=

P S

P S

:= Comp.
H

OR Comp.
M

Task

Human Computation

Machine Computation

P

Problem
Statement

S

Solution Sequence Flow Data Flow

D

Decision

Figure 2. Fundamental CrowdLang Operators

3.3.2 Task Decomposition and Distribution
To enable more sophisticated problem-solving CrowdLang
provides a set of routing operators to distribute computation
and aggregating results (see Figure ??). The Divide-and-
Conquer operator decomposes a problem statement into mul-
tiple parallelizable, distinct subproblems. The Aggregate op-
erator, in contrast, aggregates the results of several subtasks
to a solution of the initial problem statement.

Divide-and-Conquer

P

DC

Reduce

S* R

S*

{S}

P' P''

Aggregate Multiply

X XOR

P +

P*

P*

S

A

S' S''...

& AND

Figure 3. Routing, Aggregation, and Task Decomposition

A given problem can be distributed to actors in three differ-
ent ways. The Multiply control flow operator indicates that
a given problems gets transformed multiple times in paral-
lel. Hence, copies of the original problem statement get al-
located to multiple independent actors potentially leading to
different solutions (in particular when perfumed by human
actors). Hence, the result of such an execution is a set of so-
lutions. The Reduce operator takes a set of solutions and de-
termines the “best” solution candidate employing a decision
procedure. Together the Multiply and Reduce are the building
block for many parallelizing crowd computing patterns.
In addition, CrowdLang provides the established exclusive
(XOR) and parallel (AND) control flow operators. XOR is
used to create or synchronize alternative paths; AND can be
used to create and synchronize parallel paths.

3.3.3 Building Blocks of Collective Intelligence
Based on the previously defined operators, CrowdLang de-
fines a set of basic building blocks for interweaving human
and machine computation in the CrowdLang framework. In
accordance to [23], we distinguish Create and Decide inter-
action patterns.

Create Interaction Patterns CrowdLang defines two varia-
tions of create interaction patterns: Collection and Collabora-
tion.

A Collection occurs when actors independently contribute to
a task. Malone et al. [23] illustrated the Collection in terms
of posting videos on YouTube.In CrowdLang a Collection is
defined as a multiplied independent transformation of a prob-
lem statement into a proposed solution using the Multiply op-
erator. CrowdLang defines two variations of the Collection
gene. First, A Job (see Figure 4) is a simple Multiply-AND
combination resulting in a set of solutions.

Job P +:=

Task

Task

...

+ {S}Classical
Collection =

Figure 4. Classical Collection

Second, a Contest (see Figure 5) is a Job followed by a Re-
duce selecting the Job’s best solution based on a decision.

P +:=

Task

Task.

...

+Contest R SD

Figure 5. Contest

A Collaboration occurs when actors cooperate by contribut-
ing either iteratively or by solving different parts of a prob-
lem. CrowdLang supports two variations of the collabora-
tion gene (see Figure ??C/D). First, an Iterative Collabora-
tion models problem solving as an iterative process of inter-
dependent solution improvement whereas the submitted con-
tributions are strongly interdependent on previous ones. It

can be likened to the repeat ... until <condition> con-
struct of a typical programming language. A typical example
of this process is article writing in the Wikipedia, iterative la-
beling, or OCR [?]. Based on a problem statement a crowd
worker builds an initial version of the solution followed by
a decision process where either the crowd or a machine de-
cide whether the proposed solution needs further refinement.
This procedure will be repeated until the decision procedure
accepts the solution.

P x x {S}D
Iterative
Collaboration := Task

Figure 6. Iterative Collaboration

Second, a Parallelized Interdependent Subproblem Solving
represents the combination between a divide-and-conquer of
the initial problem, the parallel execution of the partial prob-
lems, and the aggregation of the results to the final solution.
The main advantage of this pattern is that it allows to first split
a problem into a set of independent subproblems that can then
be solved in parallel. Open source programming is an exam-
ple for this pattern, where an overall problem specification is
divided into subsystem, each of which are programmed and
then linked together to build the resulting system.

Collaborative
Subproblem
Solving

:= P DC

Job

Job

D

D A S

...

Figure 7. Parallelized Interdependent Subproblem Solving

Decide Interaction Patterns CrowdLang currently supports
both group and individual decision. A Group Decision is de-
fined as a mechanism that determines the best solution by us-
ing multiple crowd worker in an independent manner. Exam-
ples of group decisions are the evaluation of different solu-
tions by voting, forced agreement, or parallel guessing with
aggregation. An Individual Decision is a decision is the result
of an evaluation by a single human or machine agent. Note
that these specifications depart from Malone et al.’s frame-
work. There a group decision is defined as a decision that a
group make that subsequently holds for all participants (e.g.,
elections, ballot questions for new laws, etc.). Our opera-
tionalization allows for group based decisions that affect only
individual actors or affect all individuals differently exempli-
fied by the use of a recommendation system to aid movie se-
lection.

{S} S:= TaskID

{S} Vote SR:=GD

Single Agent Decision:

Group Decision:

Figure 8. The Decide Gene: Single Agent and Group Decisions

4. DESIGN A NEW APPLICATION WITH CROWDLANG
In this section we show how to program a new application
with CrowdLang by interweaving networked humans and
computers. Therefore, we illustrate how CrowdLang supports
high-level pattern recombination by developing a family of 9
non-trivial text translation programs.

4.1 Translating Texts with CowdLang
Using CrowdLang, we developed a prototype of a text transla-
tion engine incorporating human crowd worker and machine
translation. In the development process we used the Crowd-
Lang Library and Intelligent Assistant for recombining differ-
ent workflow refinements. The development process included
the following five steps:

1. Identify the Core Activities: A programmer starts with
the definition of an abstract solving algorithm by iden-
tifying abstract core activities (operations) and Producer-
Consumer dependencies [22] among them.

2. Define the Design Space: Then, (s)he selects a set of
suitable interaction patterns from the CrowdLang Library
which can be applied as operators for the abstract core ac-
tivities.

3. Generate the Recombinations: Then the Intelligent As-
sistant systematically generates a set of alternative re-
finements by recombining the selected patterns from the
CrowdLang Library.

4. Execution: The programmer executes the alternative re-
finements.

5. Evaluation: Finally, (s)he evaluates the generated varia-
tions and selects the best algorithm among the set of alter-
native refinements.

In the following, we illustrate some of the steps in the context
of the translation task in more detail.

4.1.1 Identify core activities
We started by defining an abstract problem-solving work-
flow for the translation task and modeled the core activ-
ities and producer-consumer dependencies among them in
Figure 9. This workflow starts by first iteratively splitting
the input—an article—into paragraphs and then sentences
(Task Decomposition); then processes the resulting sen-
tences in parallel by sequentially applying machine transla-
tion (MT) and crowd-based rewriting (Rewrite) ; The us-
ing an aggregate operator (A) the sentences are combined to
paragraphs that are then assigned to crowd-workers to im-
prove the language quality by enhancing paragraph transi-
tions and enforcing a consistent wording (Improve Language

Quality). Finally, the grammatical correctness is improved
(Check Syntax) by eliminating syntactical and grammatical
errors.

4.1.2 Define the Design Space and Generate the Recombina-

tions
We systematically generated a set of 9 alternative refine-
ments for the algorithm by recombining existing patterns.
For each refinement we chose of 3 patterns for both Rewrite

and Improve Language Quality. The chosen patterns (all
shown in Figure 9B) were (1) Contest with Six Sigma Prun-
ing, (2) Iterative Improvement, and (3) an Iterative Dual Path-
way Structure first presented in the context of Speech-to-Text
transcription [9]. Further, we used an adaption of the spell
checking pattern Find-Fix-Verify [6] for Check Syntax.

Contest with Six Sigma Pruning (CP) uses an adapted con-
test interaction pattern for generating semantical correct sen-
tences and improve text quality (see Figure 5). First, 3 differ-
ent worker generate solutions. Then, these proposed solutions
are pruned using the six sigma rule [8, p. 320 - 330]. The
six sigma rule—a statistical method originally used in oper-
ations research—intends to improve the output quality of a
process by minimizing variability. Specifically, we compared
the crowd-workers’ working time on a task compared to a pre-
viously collected average. Defining the average work time as
bw we hypothesizes that tasks should be accomplished within
the interval bw ± 3� with � as the standard deviation of the
normal distribution. We minimize the number of “lazy turk-
ers” (someone who tries to maximize his earnings by cheat-
ing) by rejecting results of workers when the working time
is shorter than the lower bound bw � 3�. We also identify
so called “eager beavers” (people, who are going beyond the
task requirements) with an upper bound on execution time of
bw + 3�. Finally, we select the best solution among the re-
maining ones using a group decision. In particular, we ask
5 workers to rank the proposed solutions and then apply the
borda rule [31] to determine the winning solution.

Iterative Improvement (II) uses a iterative collaboration in-
teraction pattern for generating semantical correct sentences
and improve text quality (see Figure 6). We define three ter-
mination conditions: (1) two out of three crowd worker assess
a sentence as semantically correct, (2) the result of an itera-
tion step is equivalent to the previous one, or (3) we exceed
the number of three iterations.

Iterative Dual Pathway Structure (DP) is an adaptation of
[9]. Here we assign the same problem (e.g., an initial trans-
lation) to two different paths (see Figure 10). In each of the
two paths a worker is asked to improve a given translation
Comp

H1 and Comp

H2. At the end of this step the solution of
the two paths are compared. If the two solutions are equiva-
lent based on an individual decision by a third crowd-worker
then we have a final result. Else, we iterate by sending each
of the results back along its path for additional improvements
until they are judged equivalent.

Find-Fix-Verify (FFV) checks the grammatical and syntac-
tical correctness of a text fragment by first ask crowd worker
to find misspellings and grammatical errors. Then a group of

A DC

...

P DC S

...

MT M S' S'' P*A P' P'' A A*

...

...

...
... ...

...

Rewrite Improve
Language

Quality

Check
Syntax

Processing of a single sentenceTask Decomposition Fluency of Paragraphs Grammar and SyntaxGerman
Article

English
Article

Figure 9. Abstract translation algorithm

! !"

###

" !" #

###

$% $ #& #&&

!"#$
%&'()*

+",-
$(.

"'

!.%&$
(&'()/

011"(
&

$ "&
()*+,-) ./)012

#34-56
789+:;)2
<54=>5=)2
?>5@,-3

"&&

23-"%
&)4$1

$51$6
78

$50/,
4)2%+5

4A@5-,
:4

$!'

###

###

###
$592,

4-:295
+5=+59

/A

$592,
4-:2A)

4-)40
)A

###

###

% &'()*+' %,

&'()*+'% %,

!"#$"%&'()*'$+(),&-)'./,$"-0/(.'12$3.'1$+)&4$56*/27/&.'./,$),8$9/(6$"*'.:.'.6&$(67(6&6,'68$.,$9(/38;),0

!<#$=6*/2%.,68$>)''6(,&$.,$'16$5.??6(6,'$@)(.)'./,&

- . . /

"012#
3

4!

5!"#$%&"'()*" "0))'6+7+(),- /

5-, !"#$%&"'.&/)01 ..

"012#
3

4!

8"-97"0:+';+7(*+<7=*>7=*?1@7-)A:*:?

8BB97B+')@+*C'7B12)0C'1':+

8!-97B+')@+*C'7B12)0C'1':+ 8DDE97$F@2+'F7D*:FGD*>GE')*HI

.%

> "012#
JK

"012#
JL

.

>

B!

>. %,

Figure 10. Iterative Dual Pathway Structure (DP)

crowd worker is asked to propose a solution for the identified
problems. Finally, the solutions are verified by three indepen-
dent crowd worker (see Figure 11). Additionally, we adapted
this pattern slightly by introducing also a spell checking soft-
ware Comp

M .

! !"

###

" !" #

###

$% $ #& #&&

!"#$
%&'()*

+",-
$(.

"'

!.%&$
(&'()/

011"(
&

$ "&
()*+,-) ./)012

#34-56
789+:;)2
<54=>5=)2
?>5@,-3

"&&

23-"%
&)4$1

$51$6
78

$50/,
4)2%+5

4A@5-,
:4

$!'

###

###

###
$592,

4-:295
+5=+59

/A

$592,
4-:2A)

4-)40
)A

###

###

% &'()*+' %,

&'()*+'% %,

!"#$"%&'()*'$+(),&-)'./,$"-0/(.'12$3.'1$+)&4$56*/27/&.'./,$),8$9/(6$"*'.:.'.6&$(67(6&6,'68$.,$9(/38;),0

!<#$=6*/2%.,68$>)''6(,&$.,$'16$5.??6(6,'$@)(.)'./,&

- . . /

"012#
3

4!

5!"#$%&"'()*" "0))'6+7+(),- /

5-, !"#$%&"'.&/)01 ..

"012#
3

4!

8"-97"0:+';+7(*+<7=*>7=*?1@7-)A:*:?

8BB97B+')@+*C'7B12)0C'1':+

8!-97B+')@+*C'7B12)0C'1':+ 8DDE97$F@2+'F7D*:FGD*>GE')*HI

.%

> "012#
JK

"012#
JL

.

>

B!

>. %,

Figure 11. Find-Fix-Verify (FFV)

The resulting 9 alternative refinements are presented in Table
1.

Rewrite Improve L. Quality Check Syntax
CP x CP CP CP FFV
CP x II CP II FFV
CP x DP CP DP FFV
II x CP II CP FFV
II x II II II FFV
II x DP II DP FFV
DP x CP DP CP FFV
DP x II DP II FFV
DP x DP DP DP FFV

Table 1. Resulting pattern recombinations

4.2 Evaluation
We evaluated the different translation algorithms imple-
mented with CrowdLang along a number of dimensions. We
compare the results of the 9 runs as well as a pure machine

translation with a gold standard human translation using au-
tomatic text analysis measure. The best two program combi-
nation additionally get compared to the gold standard by the
crowd as well as professional translators.

4.2.1 Experimental Setup
The evaluation was conducted on a standard German to En-
glish translation task. Specifically, we generated translations
for 15 different articles from Project Syndicate7— a Web
source of original op-ed commentaries —totaling in 153 para-
graphs with 558 sentences and 10’814 words translated from
German to English. As a baseline we considered Google
Translate8.

Evaluation Aspects We analyzed the resulting translations
in terms of performance and quality. First, we considered
different performance metrics such as average work time,
throughput time (including also the waiting time), and the
costs per sentence. Second, based on literature research [27],
we judged the translation quality by comparing each evalua-
tion segment (e.g, a paragraph) with a high quality reference
translation along three different dimensions:

1. Adequacy: The meaning by the reference translation is also
conveyed by the output of a translation algorithm

2. Fluency: The translation being evaluated is judged accord-
ing to how fluent it is without comparing it against a refer-
ence translation.

3. Grammar: A translation segment is being evaluated ac-
cording to its grammatical correctness without comparing
it against a reference translation.

Evaluation Methodology The crowd-based translation pro-
cesses were evaluated using automatic machine, non-
professional, and professional human evaluation.

Automatic Evaluation First, we approximated the translation
quality with the METEOR [2] score, which automatically es-
timates human judgment of quality using unigram matching
between a candidate and reference translation. In accordance
with its standard usage we report the METEORs cores with-
out using WordNet9 synonyms to match candidate and refer-
ence translations. We considered one reference translation for
each evaluation segment. Hence, a translation attains a score
of 1 if it is identical to the reference translation.
7http://www.project-syndicate.org/
8http://translate.google.com/
9http://wordnet.princeton.edu/

Human Evaluation Second, the translated text went through
three stages of human evaluation. (1) A monolingual group,
consisting of 89 native and 194 non-native speakers of En-
glish recruited on MTurk judged a set of 3 randomly extracted
sentences with respect to adequacy on an ordinal scale from
1 (None) to 5 (All Meaning) [27]. (2) A monolingual group,
consisting of 283 participants (140 native and 143 non-native
speakers), was asked to judge a randomly extracted sentence
with respect to fluency on an ordinal scale form 1 (Incompre-
hensible) to 5 (Flawless English) [27]. (3) Finally, a bilingual
group of 8 professional translators from the Swiss company
24translate10 evaluated the translations by comparing each
version of a translation to the German source text and rating
them with respect to adequacy, fluency and grammar.

4.2.2 Results
Automatic Evaluation First, we compared the resulting
quality of all 8 recombinations against the baseline. In
direct comparison, two algorithms—CPxCP and CPxII—
outperformed the baseline (0.29) by reaching a METEOR
score of 0.38 and 0.36 respectively as shown in Table 2.

METEOR Precision Recall f1 fMean
CP x CP 0.389 0.76 0.71 0.74 0.71
CP x II 0.369 0.74 0.68 0.71 0.69
CP x DP 0.335 0.72 0.65 0.71 0.69
II x CP 0.290 0.68 0.64 0.68 0.66
II x II 0.290 0.68 0.64 0.66 0.65
II x DP 0.290 0.68 0.64 0.66 0.65
DP x CP 0.309 0.70 0.64 0.68 0.66
DP x II 0.290 0.68 0.63 0.66 0.64
DP x DP 0.298 0.69 0.65 0.66 0.64
Baseline 0.285 0.67 0.63 0.66 0.64

Table 2. Summary of METEOR evaluation

Furthermore, the resulting distribution of the automatic evalu-
ation for each segment—a paragraph—shows that our transla-
tion algorithms approximated the reference literally (see Fig-
ure 12). Note that we regard the awful performance of most
other recombinations not as a failure of our approach but as a
desired result of a systematic exploration of the design space.
Just like in biologic gene recombination many possible solu-
tions are not viable. Nonetheless, an approach that explores
all combination (or if computationally infeasible most com-
binations using some optimization approach) is more likely
to uncover good solutions such as the CPxCP algorithm than
one that tries to apply some kind of heuristic to immediately
hone in on good ones.

Human Non-Professional Evaluation The second evalua-
tion evaluated adequacy and fluency in a quantitative manner.
The results are summarized in Table 3 and showed in Figure
13.
The 283 human non-professional evaluators rated the crowd-
based translations in respect to adequacy and fluency on av-
erage as 3.16 and 3.37 on the ordinal scale from 1 (Incompre-
hensible) to 5 (Flawless English). In comparison, the profes-
sional reference translation reached on average 4.24 and 3.58
(see Figure 13). As such, the crowd-based algorithms outper-
form the baseline machine translation and are outperformed

10https://www.24translate.ch/

0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 0.5 - 0.6 0.6 - 0.7 0.7 - 0.8 0.8 - 0.9 0.9 - 1.0

CP x CP 51 19 32 20 5 3 3 5 20 0.00 158

CP x II 56 16 36 22 5 1 2 0.00 20 0.00 158

Google Translate 78 25 30 25 0.00 0.00 0.00 0.00 0.00 0.00 158

0

20

40

60

80

0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.4 - 0.5 0.5 - 0.6 0.6 - 0.7 0.7 - 0.8 0.8 - 0.9 0.9 - 1.0

Meteor Score Distribution

N
um

be
r

of
 S

eg
m

en
ts

Meteor Score

CP x CP CP x II Google Translate

Figure 12. METEOR score distribution for each evaluated paragraph

by the reference translation. All differences are significant at
the 95% level using the non-parametric Friedman test [13].

adc adp flc flp grp

CP x CP 3.16 (�=0.25) 3.5 3.37 (�=0.22) 3 3
CP x II 3.14 (�=0.22) 3 3.12 (�=0.23) 3 3
Baseline 2.30 (�=0.25) 1.5 2.18 (�=0.22) 2 1
Reference 4.24 (�=0.18) 5 3.58 (�=0.24) 5 5

Table 3. Mean evaluation scores and standard deviation (�) for the eval-
uation of adequacy (ad), fluency (fl), and grammar (gr) by professional
translators (p) and crowd worker (c)

Human Professional Evaluation As shown in Table 3 and
Figure 13, the 8 professional translators evaluated CPxCP as
the best of all non-professional translation algorithms. As
one can see CPxCP outperforms CPxII and the baseline in all
three evaluation dimensions. While these results show that
the resulting translations are far from perfect they still make
useful translations available in a fraction of the time and cost
of traditional solutions.

In particular, the analysis of the follow-up interviews with
the professional translators and an in-depth analysis of the
adequacy, fluency and grammar score distribution (see Figure
14)11 that the differences in quality are mostly caused by a
few challenges in the language structure which causes higher
variance in the resulting translation.

For example, Translator-1 judges one of the translations as a
“Good solid translation that reflects exactly what the origi-
nal says.”, whereas the pure machine translation failed which
was expressed by Translator-2 “Nonsensical. Tenses are the
big issue here - mixed up in sentences and therefore makes
the sense very difficult to understand.”. However, in some
cases the CPxCP algorithm failed totally. As Translator-2 ex-
pressed by “Slightly more meaning came across than in vari-
ant 1 [the baseline translation] but the grammar still poor.”

Using the professional translators reviews, we were able to
identify several types of problems occurred in our experi-
ments:

11The question whether the Likert scale should be considered equi-
distant or ordinal is under debate in the social sciences. Here, we
interconnected the data points, for illustration purposes only without
trying to take a stance on this question.

Non-Professional CrowdProfessional TranslatorProfessional Translator Non-Professional CrowdProfessional TranslatorProfessional Translator
CP x CP 3.16 3.5 CP x CP 3.37 3
CP x II 3.14 3 CP x II 3.12 3
Reference 4.24 5 Reference 3.58 5
Google Translate 2.3 1.5 Google Translate 2.1 2

0

1

2

3

4

5

CP x CP CP x II Reference Google Translate

Adequacy

Non-Professional Crowd Professional Translator

0

1

2

3

4

5

CP x CP CP x II Reference Google Translate

Fluency and Grammar

Non-Professional Crowd Professional Translator

Figure 13. Mean evaluation scores for the evaluation of adequacy, fluency and grammar by 283 human non-professional evaluators and 8 professional
translators

1 2 3 4 5

CP x CP

CP x II

Reference

Google
Translate

CP x CP

CP x II

Reference

Google
Translate

CP x CP

CP x II

Reference

Google
Translate

Fluency

CP x CP

CP x II

Reference

Google
Translate

CP x CP

CP x II

Reference

Google
Translate

25 50 105 55 45 280 885 3.1607142857

25 60 89 61 45 280 881 3.1464285714

10 20 30 52 168 280 1188 4.2428571429

40 180 60 0 0 280 580 2.0714285714

1 2 3 4 5 15 55 3.6666666667

0.0892857143 0.1785714286 0.375 0.1964285714 0.1607142857 1 3.1607142857 3.1607142857

0.0892857143 0.2142857143 0.3178571429 0.2178571429 0.1607142857 1 3.1464285714 3.1464285714

0.0357142857 0.0714285714 0.1071428571 0.1857142857 0.6 1 4.2428571429 4.2428571429

0.1428571429 0.6428571429 0.2142857143 0 0 1 2.0714285714 2.0714285714

1 2 3 4 5 15 55 3.6666666667

1 0.9107142857 4.8928571429 4.5178571429 0.1607142857 11.482142857 36.375 3.167962675

1 0.9107142857 4.8428571429 4.525 0.1607142857 11.439285714 36.253571429 3.1692163597

1 0.9642857143 6.1357142857 6.0285714286 0.6 14.728571429 48.45 3.2895247333

1 0.8571428571 3.2857142857 3.0714285714 0 8.2142857143 24.857142857 3.0260869565

0 0

0 0

0 0

1 2 3 4 5 15 55 3.6666666667

25 25 80 110 40 280 955 3.4107142857

30 45 90 90 25 280 875 3.125

20 20 80 80 75 275 995 3.6181818182

30 190 60 0 0 280 590 2.1071428571

0.0892857143 0.0892857143 0.2857142857 0.3928571429 0.1428571429

0.1071428571 0.1607142857 0.3214285714 0.3214285714 0.0892857143

0.0714285714 0.0714285714 0.2857142857 0.2857142857 0.2678571429

0.1071428571 0.6785714286 0.2142857143 0 0

0

0.25

0.5

0.75

1

1 2 3 4 5

Chart 7

CP x CP CP x II Reference Google Translate

0

0.25

0.5

0.75

1

1 2 3 4 5

Chart 8

CP x CP CP x II Reference Google Translate

0

50

100

150

200

1 2 3 4 5

Chart 9

CP x CP CP x II Reference Google Translate

0%

25%

50%

75%

100%

1 2 3 4 5

Adequacy Score Distribution

Pe
rc

en
ta

ge
 o

f
S

en
te

nc
es

 R
at

ed

Score

CP x CP CP x II Reference Google Translate

0%

25%

50%

75%

100%

1 2 3 4 5

Fluency Score Distribution

Score

Fluency Score Distribution

0

1

2

3

4

5

CP x CP CP x II Reference Google Translate

Adequacy

Non-Professional Crowd Professional Translator

0

1

2

3

4

5

CP x CP CP x II Reference Google Translate

Fluency and Grammar

Non-Professional Crowd Professional Translator

Figure 14. Proportional score distribution per paragraph for the different translation programs in regard to adequacy and fluency.

1. Word order and punctuation often leads to problems, when
the word order provided by the machine translation reflects
the morphology of the German language. Translator-5 elu-
cidates this in detail: “[...] reflects the German original:
‘we clearly were in favor, Doha to continue’. Adverbs come
after the verb ‘to be’ in English. So it doesn’t sound very
natural.”

2. Some translations struggle in using appropriate tenses as
expressed by Translator-1 “This would be fine except for
two places that incorrectly use a relative clause with
‘which’ that render the sentences fragments rather than
complete ideas and incorrect tense ‘decline’ should be ‘de-
clined’. A reader could still understand it, though, which is
why I rated fluency higher than grammar in this case.” and
Translator-2 “Tenses an issue here. The German perfect
tense is a past simple tense in English”.

3. Finally, in very few instances problems where observed
that should only occur when non-native speakers or ma-
chines are editing a translation. Translator-2 expressed this
case as “[...] and this [the problem] stands out as having
been done by a non-native speaker or a machine.”.

We subsequently found that installing text-improvement
“subroutines” in the program to address these specific chal-
lenges can significantly improve the results by still holding
the throughput time and costs low. An empirical evaluation
of these subroutines is forthcoming.

Performance Metrics On average, an article-translation was
completed within 24 minutes for CPxCP or 35 minutes for
CPxII. Considering work time only, a crowd worker spent on
average (median) 113 seconds (1st Quartile (Q1) = 80 sec-
onds, 3rd Quartile (Q3) = 250 seconds) on a task for CPxCP.
In CPxII a crowd worker spent in average (median) of 115
seconds (Q1 = 78 seconds, Q3 = 188 seconds) on tasks. In
terms of cost the translation of a sentence cost 0.09$ with
CPxCP and 0.12$ with CPxII.

5. DISCUSSION, FINDINGS, AND LIMITATIONS
Our evaluation entails a number of interesting findings.

First, as the translation programs illustrate CrowdLang lends
itself to the simple exploration of a large design space of
possible program alternatives. Whilst we cannot provide
empirical proof that this feature generalizes to a large
number of other approaches it does, however, indicate that

a systematic exploration of the design space of possible
human computation programs based on known and novel
patterns may help to find good solutions. As a consequence,
this technique promises to help the transition from an era
of “Wizard of Oz techniques,” where good functioning
programs are the results of lengthy trial-and-error processes,
to a more engineering-oriented era – a drawback of current
human computation approaches. A goal first postulated by
Bernstein et al. [6].

Second, the empirical evaluation shows that it is indeed pos-
sible to significantly improve the quality of generated trans-
lations employing monolingual crowd workers at astonishing
speeds. Whilst the translations are far from perfect they make
useful translations available in a fraction of the time and cost
of traditional solutions. We are confident that the incorpo-
ration of further text improvement “subroutines” in the pro-
gram, such as the use of bilingual crowd workers for the most
complex German sentence structures only, will significantly
improve the result.

Third and most astonishing, our adaptation of the six-sigma
rule to human computation allows us to run the processes
without any sophisticated pruning techniques. Specifically,
we could forgo any use of “control questions” or qualifica-
tion tests – a considerable saving in terms of effort. On the
downside, however, our evaluation is limited in that a usage of
such quality control measures may have lead to better results.
We will have to investigate this question in the future.

Fourth, our pairing of the systematic exploration of the design
space with the empirical evaluation helped us to find a novel
human computation pattern CPxCP that we call Staged Con-
test with Pruning. This best performing pattern combined
contests over several stages by pruning the intermediate re-
sults using the six-sigma rule and automatic comparison with
the input to uncover cut-and-pastes. We will support the be-
lief that this pattern will be highly useful in other applications
with empirical evidence in a future study.

As a major limitation our programs were so far only evaluated
in German to English translation tasks. To address these lim-
itations we will need to evaluate the programs using a variety
of existing machine translation tasks such as the EU parlia-
ment datasets, prose texts, as well as less common language
pairs. In addition, we need to explore the sensitivity of our
programs to different machine translation tools. In particular,
we need to explore how the programs react to better or worse
initial machine translations.

Last but not least, there might be limitations to the paralleliza-
tion we employed. When translating longer texts such as a
whole book some expressions may have to be translated con-
sistently to the same word. Our approach would not guaran-
tee the consistent usage. Hence, we may have to extend the
approach with additional measures to ensure consistent trans-
lations.

6. CONCLUSION AND FUTURE WORK
In this paper we introduced CrowdLang – a general-purpose
framework and programming language for interweaving hu-

man and machine computation. Using the practical task
of text translation we illustrated that CrowdLang allows the
“programming” of complex human computation tasks that
entail non-trivial dependencies and the systematic exploration
of the design space of possible solutions via the recombina-
tion of known human computation patterns.

Our empirical evaluation showed that some of the result-
ing programs generate “good” translations indicating that the
combination of human and machine translation could provide
a fruitful area of human computation. Finally, it unearthed a
novel human computation pattern: “the Staged Contest with
pruning”.

We hope that CrowdLang will be used by others to implement
their human computation programs, as it will allow them to
easily try out and compare different solutions. Whilst Crowd-
Lang is not the first human computation language it is defi-
nitely another step in the development of human computation
programing language.

ACKNOWLEDGMENTS
We are grateful for the support by Sven Lendi and
Luca Vidi from the language service provider 24translate
(www.24translate.ch) which sponsored the evaluation. In ad-
dition, we are thankful for the research assistance by Patrick
Leibundgut and David Oertle. We would also like to thank
Tom Malone for his support to the ideas underlying this paper.
Special thank to Nicolas Hoby, Minh Khoa Nguyen, Elaine
Huang, Philipp Stutz, Cosmin Basca and Lorenz Fischer for
valuable feedbacks

REFERENCES
1. Ahmad, S., Battle, A., Malkani, Z., and Kamvar, S. The

jabberwocky programming environment for structured
social computing. In Proceedings of the 24th annual
ACM symposium on User interface software and
technology, ACM (2011), 53–64.

2. Banerjee, S., and Lavie, A. Meteor: An automatic metric
for mt evaluation with improved correlation with human
judgments. Intrinsic and Extrinsic Evaluation Measures
for Machine Translation and/or Summarization (2005),
65.

3. Bernstein, A. How can cooperative work tools support
dynamic group process? bridging the specificity frontier.
In Proceedings of the 2000 ACM conference on
Computer supported cooperative work, ACM (2000),
279–288.

4. Bernstein, A., Klein, M., and Malone, T. The process
recombinator: a tool for generating new business
process ideas. In Proceedings of the 20th international
conference on Information Systems, Association for
Information Systems (1999), 178–192.

5. Bernstein, A., Klein, M., and Malone, T. Programming
the global brain. Communications of the ACM 55, 5
(2012), 1–4.

6. Bernstein, M., Little, G., Miller, R., Hartmann, B.,
Ackerman, M., Karger, D., Crowell, D., and Panovich,

K. Soylent: a word processor with a crowd inside. In
Proceedings of the 23nd annual ACM symposium on
User interface software and technology, ACM (2010),
313–322.

7. Brabham, D. Crowdsourcing as a model for problem
solving. Convergence: The International Journal of
Research into New Media Technologies 14, 1 (2008), 75.

8. Chase, R., Aquilano, N., and Jacobs, F. Operations
management for competitive advantage.
McGraw-Hill/Irwin New York, 2006.

9. Chen, Y., Liem, B., and Zhang, H. An iterative dual
pathway structure for speech-to-text transcription. In
Human Computation: Papers from the AAAI Workshop
(WS-11-11). San Francisco, CA, August (2011).

10. Dean, J., and Ghemawat, S. Mapreduce: Simplified data
processing on large clusters. Communications of the
ACM 51, 1 (2008), 107–113.

11. Franklin, M., Kossmann, D., Kraska, T., Ramesh, S.,
and Xin, R. Crowddb: answering queries with
crowdsourcing. Proceedings of SIGMOD 2011 (2011),
61–72.

12. Howe, J. The rise of crowdsourcing. Wired magazine 14,
14 (2006), 1–5.

13. Iman, R., and Davenport, J. Approximations of the
critical region of the friedman statistic. Tech. rep.,
Sandia Labs., Albuquerque, NM (USA); Texas Tech
Univ., Lubbock (USA), 1979.

14. Kittur, A., Smus, B., Khamkar, S., and Kraut, R.
Crowdforge: Crowdsourcing complex work. In
Proceedings of the 24th annual ACM symposium on
User interface software and technology, ACM (2011),
43–52.

15. Kulkarni, A., Can, M., and Hartmann, B. Turkomatic:
automatic recursive task and workflow design for
mechanical turk. In Proceedings of the 2011 annual
conference extended abstracts on Human factors in
computing systems, ACM (2011), 2053–2058.

16. Kulkarni, A., Can, M., Hartmann, B., et al.
Collaboratively crowdsourcing workflows with
turkomatic. In Proc. CSCW (2012).

17. Law, E., and Ahn, L. Human computation. Synthesis
Lectures on Artificial Intelligence and Machine
Learning 5, 3 (2011), 1–121.

18. Law, E., and Zhang, H. Towards large-scale
collaborative planning: Answering high-level search
queries using human computation. In Twenty-Fifth AAAI
Conference on Artificial Intelligence (2011).

19. Little, G. Programming with Human Computation. PhD
thesis, Massachusetts Institute of Technology, 2011.

20. Little, G., Chilton, L., Goldman, M., and Miller, R.
Exploring iterative and parallel human computation
processes. In Proceedings of the ACM SIGKDD
workshop on human computation, ACM (2010), 68–76.

21. Little, G., Chilton, L., Goldman, M., and Miller, R.
Turkit: human computation algorithms on mechanical
turk. In Proceedings of the 23nd annual ACM
symposium on User interface software and technology,
ACM (2010), 57–66.

22. Malone, T., and Crowston, K. The interdisciplinary
study of coordination. ACM Computing Surveys (CSUR)
26, 1 (1994), 87–119.

23. Malone, T., Laubacher, R., and Dellarocas, C. The
collective intelligence genome. MIT Sloan Management
Review 51, 3 (2010), 21–31.

24. Malone, T., Laubacher, R., and Johns, T. General
management: The age of hyperspecialization. Harvard
Business Review 89, 7-8 (2011), 56–65.

25. Minder, P., and Bernstein, A. In Workshops at the
Twenty-Fifth AAAI Conference on Artificial Intelligence
(2011).

26. Noronha, J., Hysen, E., Zhang, H., and Gajos, K.
Platemate: crowdsourcing nutritional analysis from food
photographs. In Proc. of the 24th annual ACM
symposium on User interface software and technology,
ACM (2011), 1–12.

27. Papineni, K., Roukos, S., Ward, T., and Zhu, W. Bleu: a
method for automatic evaluation of machine translation,
2002.

28. Quinn, A., and Bederson, B. Human computation: a
survey and taxonomy of a growing field. In Proceedings
of the 2011 annual conference on Human factors in
computing systems, ACM (2011), 1403–1412.

29. Von Ahn, L. Human computation. In Design Automation
Conference, 2009. DAC’09. 46th ACM/IEEE, IEEE
(2009), 418–419.

30. Wang, F., Carley, K., Zeng, D., and Mao, W. Social
computing: From social informatics to social
intelligence. Intelligent Systems, IEEE 22, 2 (2007),
79–83.

31. Young, H. An axiomatization of borda’s rule. Journal of
Economic Theory 9, 1 (1974), 43–52.

32. Zhang, H., Horvitz, E., Miller, R., and Parkes, D.
Crowdsourcing general computation. In ACM CHI 2011
Workshop on Crowdsourcing and Human Computation
(2011).

33. Zhang, H., Law, E., Miller, R., Gajos, K., Parkes, D.,
and Horvitz, E. Human computation tasks with global
constraints. CHI (2012).

