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Kurzfassung

In Peer-to-Peer (P2P) -Anwendungen wie das LiveShift Video-Streaming System sind
alle Teile des Systems (Peers) voneinander unabhängig. Wenn das System Ressourcen
an ihnen bietet, verhalten sich den Peers egoistisch; im Systementwurf sollte man das
berücksichtigen.

Diese Master-Arbeit schlägt einen Spieltheorie-basierenden Ansatz zum Peer-Verhalten
im LiveShift Peer-to-Peer Video-Streaming System vor. In diese Kurzfassung werden die
Ziele, das entwickelte Systemmodell und die Resultate dessen beschrieben.

Ziele

Zuerst will man ein Peer-Verhaltensmodell entwerfen, der jedes Peer erlaubt, eine be-
stimmte Nutzenfunktion individuell zu maximieren; so ist ein eigennütziges Peer-Verhalten
festgelegt. Dieses Modell soll auch das Verhalten beschreiben, der aus Sicht das ganze Sy-
stem zu einer optimalen Lage führt. Um diese optimale Lage zu definieren wird eine
Leistungsmetrik gebraucht; die muss man auch bestimmen. Basierend auf diese Defini-
tionen wird ein Anreizsystem vorgeschlagen, der unter eigennütziges Peer-Verhalten der
System so nah wie möglich an den optimalen Zustand bringt. In eine zweite Phase muss
die Fähigkeit des Ansatzes, die Leistungen des LiveShift-Systems zu verbessern, bewertet
werden. Der Ansatz sollte unter optimales (oder ungefähr optimales – je nachdem, wie
implementiert) und eigennütziges Peer-Verhalten bessere Leistungen als die bestehende
LiveShift Verhaltensregeln (policies) bieten.

Modell

Das Peer-Verhalten Modell ist in zwei Hauptteile gegliedert, wo Download- bzw. Upload-
Verhalten getrennt behandelt werden. In beide Teile werden Nutzenfunktionen festgelegt
und begründet. Diesen Funktionen hängen an Netzwerküberbelastung zusammen. Eine
Leistungsmetrik und eine Beschreibung des Optimalverhaltens sind auch präsentiert. Die-
se sind nur unter eingeschränkte Bedingungen gültig; insbesonders muss sich die Peer-
Bevölkerung nicht ändern. Um in eine realistische Lage das Modell zu testen, werden
auch Verhaltensregeln definiert, die in in einem dynamischen System anwendbar sind.
Diese Regeln sind vom optimalen Verhalten abgeleitet, aber sind nicht selbst optimal;
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sondern definieren sie ein Peer-Verhalten, der gut fürs gesamte System ist, im Gegenteil
zum eigennützigen Verhalten.

Resultate

Um das Modell zu testen wird eine Simulation entwickelt. Die Experimente, die damit
gelaufen werden, prüfen die Effekte von drei Variablen: Ansatz, Peer-Verhalten (gut oder
eigennützig) und Änderungsgeschwindigkeit des Systems (d.h. (Nicht-) Anwesenheit von
Flash Crowds). Die Resultate sind insgesamt positiv für den vorgeschlagene Ansatz, aber
nur im Gutverhaltetes Fall ist die Leistungssteigerung genügend, um eine effektive Lei-
stungssteigerung im LiveShift zu bestätigen, als die Simulation nur ungenau das tatsäch-
liches Systembetrieb LiveShifts spiegelt.



Abstract

Peer-to-Peer (P2P) systems are characterized by the autonomy of their constituent parts,
the peers. As such, when the system’s goal is to provide a certain resource to peers, those
will participate in the system so as to maximize the benefits they get from it. This is
the case in the LiveShift video streaming system, and thus explicitly taking that type of
behavior into account in the system’s design is desired.

In this thesis, a game-theoretic model of peer behavior for LiveShift is developed, dividing
peers’ behavior between download and upload phases, modeled as separate games. The
behavior of peers under static, deterministic conditions is discussed and its outcomes
presented; payoff functions reflecting peers’ preferences in both the download and upload
games are proposed. From these elements, rules of behavior are developed to improve the
system’s performance, both in settings where peers are selfish and in those where they
are well behaved. Then, a simulation is implemented to test the approach’s effectiveness
in various scenarios, varying the system’s level of dynamicity as well as peer behavior.
Results are positive overall, but only present strong evidence of improved performance in
scenarios where peers are well-behaved. Because of the limitations of the simulation vs.
the actual software, only in that well-behaved case can it be concluded that the approach
provides a performance boost.
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Chapter 1

Introduction

The object of this thesis is to study the Peer-to-Peer (P2P) video streaming system,
LiveShift [9], using the notions of Game Theory (GT) to model this system’s behavior.
In this introduction, the need for such an analysis is first explained; an outline of the
remaining chapters is then given.

1.1 Motivation

P2P systems are in general decentralized in their organization and their resource con-
sumption [19]. This means that each participant in the system (peer) will make decisions
with respect to consuming resources and allocating resources to other participants. These
decisions will be geared towards the peer’s individual goals. In LiveShift, peers want to
acquire video streaming content in a timely manner; as an autonomous part of the system,
an individual peer only tries to acquire content for itself, and has no particular interest in
seeing other peers acquire content. However, actions of the individual will affect others’
ability to reach their goals, e.g. by using certain resources in the system or by allocating
upload bandwidth. This means that it is in a peers’ interest to behave strategically, i.e. to
account for other peers’ reactions to their behavior when deciding on a course of action.

For the designer of a system such as LiveShift, the goal is to ensure that the system in
its entirety performs as well as possible. This first requires a definition of what a well-
performing system is, i.e. a performance metric; then, the designer must try to build or
modify the system so that it encourages peers to behave in a way that maximizes that
metric. To do so, the designer creates and implements an incentive scheme, i.e. a set of
rules that, when applied by certain parts of the system, encourage peers to behave in a
way that steers the system towards a selected global outcome.

There is extensive research on the topics of incentive schemes, cooperation and strategic
behavior in decentralized P2P video streaming systems. The cases of Video-On-Demand
(VoD) and live streaming are usually treated separately; LiveShift [9] is a hybrid system
that allows both, using a mesh-pull P2P approach.
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2 CHAPTER 1. INTRODUCTION

The incentive scheme [3] compatible with this setting extends direct reciprocity to allow
a greater number of transactions to take place while discouraging free-riders, thereby
making sure limiting resources are not withheld by peers. However, the allocation of
these resources is not necessarily optimal from the point of view of the entire system’s
social welfare. Also importantly, it simply assumes that some peers are free-riders, while
others are well-behaved; individual self-maximizing behavior is not assumed.

The present study will therefore analyze the strategic situation that self-maximizing peers
face when allocating bandwidth, and the behavior that results from it. Based on that
analysis, its main goal will be to further optimize bandwidth allocation by selfish peers
through incentives, under the assumption that a mechanism to prevent free-riding (such
as Tit-For-Tat [7] or Private Shared History [3] is in place.

1.2 Description of Work

The study includes a simple theoretical model of peer behavior in a static (without peers
leaving or joining) P2P environment. In that model,
– an optimum in terms of system performance,
– the peer behavior leading to that optimum,
– a performance metric of the system, and
– the incentives that peers face in the system
are formally defined. From this static analysis, rules of behavior are derived, describing
the upload and download behavior of peers in a dynamic system, in both the well-behaved
and self-maximizing (selfish) cases. Based on these two cases, incentives are formulated in
order to bring the typical case as close as possible to the well-behaved case (in terms of the
metric). These incentives are modeled as rules of behavior for the peercaster, which is the
peer that originally produces the stream in LiveShift. The peercaster is assumed to have
a social welfare-maximization goal, and therefore will comply with these rules. Download
and upload behavior are modeled separately, which allows a focus on the allocation of
upload bandwidth, the limiting resource in most cases.

In order to measure expected metric values and other characteristics, a simulation of the
model is implemented, providing a way to run experiments with different parameters. In
each experiment, the overall system welfare is measured using the aforementioned metric.
The expected results are that the behavior determined defined in the model should be
an improvement over current LiveShift operation, and that selfish peer behavior with
the countervailing incentives proposed in the model will present better performance than
without those incentives. Since one of the goals is to have incentives that are well-adapted
to highly dynamic systems, it is also expected that these advantages will be stronger in a
less stable setting (e.g. in the presence of flash crowds).

1.3 Thesis Outline

The remainder of the thesis is organized as follows: first, background information on game
theory and related work in the area of incentive schemes are presented; then, Chapter 3
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deals with the theoretical model, its properties and interpretation into a dynamic set of
rules; a description and discussion of a simulation of this model is then provided. Next,
the implementation of the simulation is described. Finally, the results of the experiments
are presented and evaluated.
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Chapter 2

Related Work

This chapter provides an introduction to LiveShift, and then to game theory (GT). Finally,
studies with goals similar to the present thesis’ are discussed. These mainly comprise of
the development and application of various incentive schemes for and to P2P streaming
systems.

2.1 LiveShift

LiveShift [9] is a P2P live streaming application that allows time-shifting, e.g. for users
who join a stream some time after it has started. It is based on the structured P2P library
TomP2P[2]. The concept of channel is used to distinguish the different pieces of content
being offered. Channels are then split into segments and blocks according to a certain time
scale. Segments are the content unit whose availability is advertised by peers, whereas
blocks are the smallest unit of content that can be validly transferred, and availability
information for them is only sent when a peer requests a segment.

A mesh-pull approach is used: actual content has to be requested by peers who want
to receive it (only metadata, i.e. possessed blocks, is pushed); and there is no formal
hierarchy among peers, although peercasters (those who originally provide streams) may
behave differently. Also of note is that there are two types of information stored in the
same address space: channel IDs (for users to be able to choose a channel) and available
segments.

The behavior of peers is determined by policies, i.e. choices that peers make with respect
to the way they behave toward one another. Those policies include block selection (how
far ahead should a peer download), candidate and neighbor selection (which peers hold
the desired content and are likely to upload it), subscribers and upload slot selection
(to whom does the peer upload?), playback policy (skip frames or wait for them?), and
storage strategy (how much and what content is kept locally by the peer?).

Incentive schemes have been formulated for this specific setting (see [3] and below), but
they do not include a model where peers self-maximize the benefits they gain by partic-
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6 CHAPTER 2. RELATED WORK

ipating in the system, which is what will be proposed in this thesis, using an approach
based on GT.

2.2 Game Theory

GT is “the study of mathematical models of conflict and cooperation between intelligent
rational decision-makers” [15]. Such a mathematical model is simply called a game in
GT. A game comprises players, each of which selects from its own set of strategies. A
strategy profile (or simply profile) is the result of each player choosing a strategy. Players
have preferences over these profiles, and want to obtain the best possible profile [25].
These preferences are often modeled using a utility function, which maps profiles to values
quantifying players’ satisfaction.

In a given game, different concepts can be applied to obtain the profile(s) players will
end up determining. One of these is the Nash Equilibrium (NE) [24]. The basic idea
is that peers do not want to deviate from a given profile (change their strategy) if they
cannot reach a better outcome by doing so. A profile where no player can obtain a better
situation by individually deviating is a NE.

Quantifying Outcomes As explained in [8], the social desirability or overall efficiency
of a certain profile can be quantified using different criteria, which provide a global social
value for any given profile. One of these is the concept of social welfare. In this case,
the sum of all players’ utilities is the measure of the efficiency of a given outcome. An-
other possibility is the max-min function, which quantifies the outcome using the smallest
individual utility among all players.

A quantifiable concept of efficiency allows for the definition of two important related
measures:

– The Price of Anarchy (PoA), which is the ratio of the global value for the optimal case
over the global value for the worst stable solution (e.g. NE);

– The Price of Stability (PoS), which analogously compares the best stable solution to
the optimum).

Among the various types of games known in GT, this thesis makes particular use of
concepts from repeated games and congestion games. These are explained in more detail
in following subsections.

2.2.1 Repeated Games

Repeated games [23] are dynamic games that take place over a period of time. They may
be repeated versions of static games (where all players play once and simultaneously).
An important question to answer when defining a repeated game is whether and to what
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extent players observe each other’s moves, which determines the methods used to solve
the game.

Such a game is usually represented by a tree where each non-leaf node in the tree represents
a given player’s turn to play the game, and leaf nodes represent final outcomes; this
representation is called the extensive form. Each node in the tree corresponds to a unique
succession of moves by the players leading up to that node.

2.2.2 Congestion Games

Congestion games ([8], [22]) are a type of game where a set of resources is available, and
a player’s strategy is the choice of a subset of those available resources. The use of each
resource has a cost, which depends only on the number of players using the resource.
Player’s utilities include the cost of the resources they use, as well as the benefits they
derive from using these resources.

A typical example of a congestion game is a network congestion game, represented by
a graph (vertices are computers, edges are links). Each player has a distinct pair of
computers between which they want to send data. In this case, choosing which edges
(resources) to use when establishing a path between these two computers is the decision
each player must make. Costs (e.g. delay) will be high if many players use the same edge.

2.3 Incentive Schemes in Streaming and Other P2P

Systems

Research on incentive schemes for P2P streaming can be divided in four areas [20]: Di-
rect & Indirect reciprocity, i.e. tit-for-tat schemes; Trust-based mechanisms; GT-based
mechanisms, which are the focus in this thesis; and Tax-based mechanisms.

2.3.1 Direct & Indirect Reciprocity

The well-known case of BitTorrent (BT) [7] is a good example of a reciprocal mechanism.
In BT, peers choose who to upload to based on how much they’re downloading from
them. One of the challenges is getting the peers to start cooperating (in particular when
a joining peer usually has no content to offer), which is solved by periodically granting
upload slots to a random peer (optimistic unchokes). This is a fairly simple algorithm,
and in general it does not allow peers to maximize a well-defined payoff. Furthermore,
As [11] points out, this approach is difficult to apply to live streaming, as peers who hold
data far along the stream will not be interested in data from the beginning of the stream,
which is what the peers interested in their data have to offer.



8 CHAPTER 2. RELATED WORK

PSH [3] is an incentive mechanism for LiveShift that extends direct reciprocity by letting
peers share records of their transactions with third parties, and redeeming their contribu-
tion in an indirect, as well as direct, way. Like direct reciprocity, this maintains a strong
incentive against free-riding, but does not otherwise steer peers’ decisions toward a social
optimum; it also does not attempt to describe peers’ incentives in detail, but rather simply
assumes that some peers choose to behave well while some others choose to be freeriders.

2.3.2 Trust-based Mechanisms

These mechanisms use an evaluation of peers’ contributions to determine allocation of
upload bandwidth.

Scalable Peer-to-Peer Streaming for Live Entertainment Content [16] presents a protocol
to transmit trust between more than two peers. Directed trusted paths are established by
hops in which some peer has contributed without (yet) receiving anything in return. Trust,
which is modeled as an abstract value based on peers’ contributions, can be ”shifted”along
these paths. In a similar way to PSH, this protects against certain types of behaviors
or attacks, but does not model or deal with self-maximizing peers. Additionally The
proposed protocol includes a QoS-optimized overlay, which would require further changes
in LiveShift.

In EigenTrust [12], a decentralized ranking algorithm based on the concept of transitive
trust, where a peer uses its trusted neighbors’ evaluations to obtain a distant peer’s trust
value. This decentralized algorithm is shown to converge to global and stable trust values.
However, this may take a long time, which is not acceptable in a highly dynamic setting
such as LiveShift. Again, the protocol targets certain behaviors in particular, but a payoff
model for peers is not specified.

2.3.3 GT-based mechanisms

The following schemes are of particular interest in this thesis, as they share part of their
background with the approach proposed here. However, they solve different problems,
sometimes using different areas of GT.

Xiaowen C. and Kaiyong Z. [5] propose an auction-based approach, with the objective
of minimizing the cost of media flow transmission.They use an acyclic mesh, constructed
with respect to the order of stream playback. The media stream is separated in different
flows, and must be reconstructed at its destination. The media flows are routed along
the mesh according to the result of auctions. The main idea is a distributed flow auction
algorithm where peers auction off and bid for flows. Bids happen sequentially; any new
bid must exceed the previous bid, and the value of a bid is limited by how much the
bidder values the flow. Peers check the optimality of their current flow at a given time
interval to cope with system dynamics. The live-streaming specific mesh structuring and
the associated routing in this approach make it inadequate for video on demand with
multiple peercasters as it is currently supported by LiveShift.
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[14] and [4] use evolutionary GT to find equilibria in a link sharing context, respectively to
model the inter-domain relationships in a P2P streaming context. In both articles, peers
choose strategies ”randomly”, then their choice changes depending on how successful their
strategy is compared to other peers’. This is measured by a probabilistic utility, e.g. the
expected value of the bandwidth available to the peer. In both of these studies, a single
resource is considered and peers must choose how much they use, respectively contribute
to it. It would be more difficult to apply evolutionary GT to LiveShift: in evolutionary
GT, each different set of preferences has to correspond to a large population. No such
thing exists in video streaming, as peers possess many different subsets of the available
content, and therefore have many different sets of preferences as to what content they want
to receive next. In addition, evolutionary GT requires time to converge to an equilibrium,
which limits its applicability to a highly dynamic system.

EquiCast [13] is a multi-cast (i.e. tree-based) protocol for P2P streaming. It ensures co-
operation between selfish peers through monitoring (where peers stop uploading to their
non-contributing neighbors) and penalty mechanisms (where a ”fine packet” is requested
from peers who fail to contribute enough); the authors formally demonstrate that coopera-
tion is a NE. Although EquiCast presents interesting ideas for encouraging peers to share,
its reliance on a tree-based overlay makes it ill-suited for an application to LiveShift.

Multistage Congestion Games for Live Streaming ([17],[18]) proposes a static model of
the P2P live streaming setting as a repeated congestion game: peers make downloading
requests based on how much existing requests each source of content already has at a
given step. Outcomes at each time step are described in terms of who holds what content.
An optimal situation is described in that framework, and NE outcomes are compared to
it. A distributed algorithm allows peers to coordinate in behaving optimally, but does
not support a dynamic system.

2.3.4 Tax-based Mechanisms

Tax-based mechanisms define a tax rate, wherein a contribution from a peer only entitles
this peer to a fraction of the bandwidth it contributed. The excess bandwidth thus
obtained is used to reduce heterogeneity-based inequity in the system.

Chu et. al. [6] propose a taxation mechanism based on a multiple tree protocol. The flows
peers send, respectively receive are determined by which trees they join as an internal,
respectively a leaf node. A distributed bandwidth allocation protocol gives peers a fraction
of the bandwidth they contribute. Then, the remaining bandwidth is spread uniformly
between all peers (by incrementally increasing the number of trees each peer can join).
An optimized tax rate leads to a marked increase in social welfare over a purely reciprocal
scheme, but only in the case of heterogeneous peers. The main issue in this mechanism is
an implicit assumption (or an unspecified mechanism that ensures) that peers will respect
the results of the (presumably complex, not detailed in the article) distributed allocation
algorithm.

Closely related work by Hu et al. [10] uses a linear tax to optimize a SVC (scalable
video coding)-based P2P streaming system that provides video as layers of distinct levels
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of quality. The uploaders distinguish between entitled and excess layers (this relies on
knowing reliably the upload capacity of their requesters) and prioritize them accordingly.
A downloader decides on the number of layers he tries to request by trying to request
the next superior layer, and looking at the result of the query. Again, the incentive
compatibility of the protocol is not discussed in detail.

2.3.5 Contribution

Table 2.1 sums up the characteristics of each approach reviewed here, with respect to the
present thesis’ goals. Those characteristics are as follows:

– type of overlay (must match or include LiveShift’s mesh-pull),
– adaptability to a dynamic system (with an evolving number of peers),
– convergence speed: time needed for a mechanism to deliver full performance after a

change (leave or join) in the overlay (only applicable if dynamic),
– a behavior model with peers who maximize their payoff under incentives.

As the table shows, no existing approaches completely fulfill the requirement of a dynamic
system with various preferences over content such as LiveShift.

Note that the tax-based schemes, not mentioned in this table, are susceptible to manipu-
lation from peers.

In this thesis, an approach is defined that takes the specific aspects of LiveShift into ac-
count: multiple sources of content, heterogeneous preferences over this content, a random,
mesh-based overlay, and highly dynamic environment; finally, its peer behavior model al-
lows for the maximization of individual payoff by peers.

approach overlay type dynamic Convergence
Self-maximizing
peers

Tit-For-Tat [7] Any Yes Fast No
PSH [3] Any Yes Fast No
Scalable P2P Streaming
... [16]

QoS-based
overlay

Yes Fast No

EigenTrust [12] Any Yes Slow No

Auction-based [5]
Playback-
order acyclic
mesh

Yes Fast Yes

Evolutionary GT [14],[4] Any Yes Slow Yes
EquiCast [13] Tree Yes Fast Yes
Multistage Congestion
Games... [17]

Any No N/A Yes

Proposed approach Any Yes Fast Yes

Table 2.1: Summary table of related work



Chapter 3

Model

In the present chapter, some conventions are first introduced. Subsequently, a two-part
model is presented, comprising simple assumptions about download behavior based on
congestion games as in [17], as well as a more detailed description of the incentives peers
face when allocating upload bandwidth. Then, a simple development shows the time
optimally required to spread content of a certain length, and a metric to compare this
optimum to other configurations is introduced.

3.1 Conventions and Notation

This Section discusses the structure of the model and defines elements that are used in
both parts of the model. Notation is defined based on the approach in [17]. In general,
the goal is to stay close to the usual conventions of game theory.

3.1.1 Model Structure

The two parts in the model represent two phases; when played subsequently (download
then upload), these form a stage game. This game is repeated for a given number of steps
(i.e. runs for a certain time) or until a certain condition is fulfilled (e.g. all content is
completely distributed). Although it would be possible to perform both phases simulta-
neously, this would make each peer’s decisions more complex to model, and would be less
representative of the actual setting, where peers cannot know if their requests will be an-
swered positively. Furthermore, the separation of phases allows a focus on the allocation
of upload bandwidth.

Another important aspect that deviates from [17] is that the repeated game itself is not
solved, only each stage is. This simplifies computation greatly by avoiding the enumeration
of all possible runs of the game, with large numbers of peers and content blocks, and is
justified by the lack of indirect influence any given peer’s actions can have in the periods
following that action: with a large number of peers and distinct blocks, it is not possible
for a peer to strongly impact content distribution over the whole system.

11
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δ1 δ2 δ3 δ41

t+ 1 t+ 2 t+ 3 t+ 4t . . .

Figure 3.1: Relative time axis with valuation of blocks. t is the playback timestamp.

3.1.2 Definitions

Players (or selfish peers) are the peers that receive and consume stream data. They
are motivated by their self interest, under certain assumptions defined later. Peercasters
are not players since their actions are assumed to align with the goal of social welfare
maximization. Let N be the set of players, P be the set of peercasters, and the union
thereof be M := N ∪ P . The players are selfish peers because they behave so as to
maximize their self-interest, as opposed to peercasters. The set of all blocks is C.

Each selfish peer i has

– an ordered tuple of blocks Ci =< ci1, ..., c
i
t, c

i
t+1, ... > that it wants to (but not necessarily

will) obtain at the times corresponding to the order;
– at a given time, a set of blocks it possesses: Ct

i = {c ∈ C|i received c before time t};
– possible strategies defined differently in download and upload parts.

Peercasters only have a set of possessed blocks.

Note that the model developed here is primarily static: it is assumed in following calcu-
lations that no peers leave or join the system during its operation. For both download
and upload behavior, the same utility function is used to reflect the relative desirability
of pieces for a selfish peer i. This function uses a discounting factor δ for blocks that are
not immediately needed. δ is positive and smaller than 1; it stands for the selfish peers’
valuation of future blocks that cannot be locally played yet (which is high if δ is high). All
earlier blocks are valued zero. A visualization of that utility function is shown in Figure
3.1; e.g. if peer i is waiting to play the block with timestamp t, i would give block cit a
value of 1, and block cit+2 a value of δ2.

Formally:

Definition 1 (Utility of single blocks). Given time v and civ /∈ Ct
i ,

uti(c
i
v) :=

{
1 if v = t

δv−t if v > t

Additionally, uti(c) = 0 ∀c /∈ (Ci \ Ct
i ), and uti(c

i
v) = 0 ∀v < t

Observe that the utility value depends on when and whether the selfish peer can use the
block, assuming it gets the block at the present time. In term of priority given to blocks,
this is very similar to existing LiveShift policy. However, it adds a quantification of the
utility each block potentially gives to a peer, allowing the evaluation of a block’s, and
therefore a peer’s, potential popularity among other peers (see Subsection 3.3.2).
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3.2 Download Behavior

In this part of the model, the upload decisions of players are not analyzed explicitly; the
focus is on the choice that players make when sending requests to download a specific
block. Following [17], a congestion game model of the P2P streaming setting is used.
Congestion games provide an adequate and well-known framework for download behavior.
One simplification made here is that players select desired blocks independently of the
resources that hold these; the choice of a resource is subsequent and subordinated to block
selection. This implies the assumption that selfish peers will not proactively skip blocks
to avoid congestion; following current LiveShift policies [9], they will skip them when a
sufficient amount of more timely blocks become available.

Let G be a repeated congestion game, with the set of resources M and players N .

Definition 2 (Download strategy). Assuming selfish peers are limited to one request per
turn or stage, a strategy sti (for turn t) is defined as

– the choice of a resource j ∈M ,
– a block c to request from j,

for each stage that the game runs. If more than one request is possible, a strategy is a set
of (j, c) pairs.

Each resource j has a cost function γj(n
t
j), where ntj is the number of requests directed

at resource j at time t, quantifying the load of that resource at that time. γj must be
strictly monotone in ntj:

n′j > ntj ⇒ γj(n
′
j) > γj(n

t
j)∀j

This means that, given a desired block, a selfish peer will always request from the least
busy resource that is able to provide that block. Therefore, as long as there are more
requests for a given block than there are copies available, a resource which has a copy of
that block will always get at least one request. For this thesis’ purpose, γj(n

t
j) := ntj.

Before it can select a resource to request from, a player must decide which block(s) it is
going to request. Given a certain number l of requests per turn, it establishes a ranking
of the most desired pieces according to uti (Definition 1) and selects the top l pieces. It
then sends requests for each of these so as to minimize

πti :=
∑

(j,c)∈sti

γj(n
t
j)

, its cost function.

Note that the congestion information is the number of requests received; this is a concern
for implementation, as transmitting that information reliably and without manipulation
is not trivial in a selfish setting. However, peers wanting to use all their bandwidth have
an incentive to properly report their (lack of) congestion: if they pretend to have higher-
than-actual congestion, they will not receive as many requests and may therefore not
upload as much, thereby hurting them in a tit-for-tat environment. As for purposefully
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giving a lower value of congestion, this will mostly be of interest if there are not enough
requests for peers to use all of their upload bandwidth, meaning that upload bandwidth
is plentiful; as such, inefficiencies due to manipulation will not matter at all. This last
argument can also be made regarding the upload rate.

3.3 Upload Behavior

Upload bandwidth is a scarce resource. As such, it is important to know how it should be
allocated, as well as how it actually is allocated. In this thesis, it is assumed that there is
no free-riding by selfish peers, i.e. all of their upload bandwidth is made available. This
is derived from the hypothesis that a scheme to counter free-riding is already present in
the system (such as PSH [3] in LiveShift).

3.3.1 Optimal Behavior

Following [18], the optimal distribution of content requires copies to be uploaded in a
specific way. In this ideal situation, players are not behaving selfishly, but rather behave
so as to maximize social welfare. Concretely, this means that until a block has been fully
distributed, a player that holds that block must

1. upload it with its full upload capacity,

2. and only to players who do not already have a block that they can upload in the
next stage.

The peercaster must also abide by the second rule, but it always uploads the latest piece
in the stream. If these rules are not respected, some players will end up holding more
than one block that is needed by others, thereby dividing their upload between those
blocks and missing opportunities to upload copies. Note that these rules of behavior im-
ply that peers must upload first to those who do not have any blocks, or only undesired
ones. An example of optimal behavior is given in Figure 3.2, which is a representation
similar to what is shown in [18]. In the depicted situation, analogous to [18], all peers
have an upload capacity of 1. Observe that at any point in the process, a selfish peer
never has to choose which block it should upload, as it only ever possesses one desired
block. Such a configuration requires peers to be highly coordinated; as such, it can only
be implemented in a deterministic fashion, where all peers and their desired content are
known in advance. In the following, an approach is proposed that attempts to be as close
as possible to this optimum situation, while remaining compatible with a dynamic, un-
predictable, distributed system (Subsection 3.3.2, “Peercaster Behavior and Well-Behaved
Peers”).
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Figure 3.2: Graphs of upload operations for successive steps.
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3.3.2 Incentives and Strategies

The upload strategy of a selfish peer is a selection from the set of requests addressed to it
in the download phase. The number of selected requests must be equal to its upload rate
(in streams) µi.

Definition 3 (Upload Strategies). Recall sti as in Definition 2. The set of possible upload
strategies for player i is

Ati = {S = {(j, c) ∈ |N | × |C| s.t. (i, c) ∈ stj and c ∈ Ct
i} s.t. |S| ≤ µi}

When uploading, selfish peers try to maximize the return they may get from others as a
consequence of their actions. Assuming that incentives against free-riding (such as TFT or
PSH) are in place, i.e. a player has to upload, it will prefer uploading to those candidates
who hold content it is interested in. Observe that this may lead to behavior that deviates
from the optimum.

Let Xj
i (t) := (Ci \Ct

i ) ∩Ct
j . Then, recalling uti as in Definition 1, the expected payoff for

uploading to a given selfish peer, without taking actual reciprocation into account, is

Φt
i(j) :=

∑
cu∈Xj

i (t)

uti(c
u)

Popularity

Additionally, in order to adapt the idea of a ”peer that holds only unwanted blocks” out-
lined in Subsection 3.3.1, the overall popularity of the player’s content must be taken into
account; it is a sign of future congestion and reduces the probability of future reciproca-
tion. Here, the popularity of a single block is characterized as the sum of all peers’ utility
values for that block. This is then divided by the number of copies that are potentially
available, e.g. the sum of upload capacities of all peers who possess that block.

In turn, the popularity of a player k’s content is a sum of all the popularity values of the

blocks k possesses, and normalized by k’s upload rate. It is characterized by the coefficient

ωk :=
1

µk

∑
cu∈Ct

k

∑
j∈N u

t
j(c

u)∑
i∈M |cu∈Ci

µi

This coefficient is computed in such a way that the information needed is who possesses
which block and what their upload rate is. This assumes that the block utility function
(Definition 1) has the same δ values for all peers. Otherwise, these values need to be known
as well. The advantage of using block information is that the LiveShift system already
maintains segment information in a decentralized way, which limits how far peers can ma-
nipulate information about blocks they own. Direct information about how many requests
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a given player received may be more easily manipulated and will change more quickly. As
for manipulating that information, lying to the peercaster about one’s possessed content
in order to gain an advantage would mean pretending having fewer blocks than actually
possessed. To the extent that this impacted the distributed segment information, this
would mean a loss of attractivity towards some selfish peers, i.e. a disincentive to lie in
such a manner. Therefore, even in an environment where peers misrepresent their upload
rate, the index may still incorporate some valid information.

The computation of the popularity index presents a tradeoff in terms of computing effi-
ciency vs. reliability of information and network efficiency. It is quicker for each peer to
compute its own popularity value and then send the result, rather than for all the peers
to compute all values locally, but the former alternative may cause congestion and would
let the peers manipulate their popularity values.

Payoff Function

As such, the popularity-normalized partial payoff is defined as:

Φt
i(j) :=

Φt
i(j)

ωj

, where i, j ∈ N . Finally, priority is given when there is reciprocation within the same
stage (i.e. two players have made requests to each other, and granted each other’s request).
The actual payoff function takes this into account:

Definition 4 (Payoff Function). Given a strategy σti ∈ Ati, the payoff function is

Πt
i(σ

t
i) :=

∑
(j,c)∈σt

i

(Φt
i(j) +

∑
k|(i,k)∈σt

j

uti(k))

Selfish peers who sent a request to i are ranked according to their contribution to that sum.
This defines a best response for each player given the other player’s strategies. Iteration
will usually be necessary to arrive at an equilibrium. The payoff function can be seen as a
heuristic that selfish peers use to select which requests to grant. This heuristic is needed
because the task of solving the stage game, having too large memory and computing
requirements, is not attempted. Since future behavior is hard to predict, the payoff
function puts more weight on the actual contributions performed at the present time.
Past behavior is not taken into account because it is assumed that a scheme to prevent
free-riding is active, and the system is highly dynamic (e.g. peers change channels and
“diverge” in preferences, a lost connection causes a previously good resource to stop being
up-to-date, etc.).

Peercaster Behavior and Well-Behaved Peers

In a realistic setting where selfish peers act autonomously, their behavior can be influenced
by the peercaster. The existing peercaster behavior is to select players to upload to based
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on their advertised upload bandwidth as well as the amount of data they successfully
downloaded from the peercaster in the past [9].

However, here we assume that the peercaster’s goal is to bring the selfish peers’ behavior
as close to the optimal behavior as possible. This approach is valid in cases where the
peercaster is interested in its own content and the distribution of it. It does not apply
if the content is being offered by the peercaster in exchange for access to other content
(analogous to certain file-sharing scenarios). The basic way the peercaster can maximize
social welfare is to stick to its behavior as described in Subsection 3.3.1: always upload
the latest block in the stream to the least popular peer, taking upload speed into account.
Thus, all selfish peers will quickly acquire interesting fragments, creating mutual incentives
for sharing among themselves. To rank the peers, the popularity coefficient ωk is used,
ranking peers in increasing order. Note that to be maximally effective, this type of
behavior requires that peercasters be able to upload to players that did not necessarily
send them a request, as those with the least amount of popular blocks may be ”late” in
the stream, and therefore not immediately interested in the latest block. Because of its
focus on low-popularity peers, the approach is expected to be particularly helpful to peers
who tend to be ”left behind” in the overlay because of a lack of interesting blocks to share,
ending up with very few acquired blocks in comparison with most other peers.

Well-behaved peers have the same behavior as the peercaster, except they always grant
the least popular peer its request, instead of trying to grant the latest block received. They
do so because in a time-shifted system, the latest block may not always be the limiting
factor (at least once it has been released by the peercaster). In a dynamic system, all
peers being well-behaved should produce results closest to the optimum.

3.4 Optimal Configuration

In this Section, a minimal duration for distributing a stream of a certain length is com-
puted. In order to compare other configurations of the system with this optimal one, a
metric is proposed. It uses a direct measurement of the system’s performance, avoiding
dependency on hypotheses made earlier concerning the selfish peers’ preferences.

Let µ̄ be the average upload rate and ρ the initial number of copies (i.e. the peercaster’s
upload rate). Assuming upload behavior is optimal as defined above, a block, once released
by the peercaster, will on average see its number of copies multiplied by µ̄+ 1 each turn
(incl. already existing copies). Therefore, the expected total number of copies of a block
at time t is given by

ρ(µ̄+ 1)t−1

(It is t-1 since in the first period, the upload rate is ρ). Knowing this, the time needed for
a piece to be distributed among all players can be computed (assuming the peercaster does
not contribute to the upload after releasing the block) by solving the following equation:

ρ(µ̄+ 1)t−1 = n⇔

t− 1 = logµ̄+1(n)− logµ̄+1(ρ)⇔
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t = logµ̄+1(n)− logµ̄+1(ρ) + 1

Since t only makes sense as an integer, use the ceiling value:

dte = dlogµ̄+1(n)− logµ̄+1(ρ)e+ 1

Finally, let there be T blocks of content to distribute. Then, the expected time when the
distribution of the last block is completed is

T + dte = T + dlogµ̄+1(n)− logµ̄+1(ρ)e+ 1

Note that different blocks will take varying amounts of time to spread. This depends on
which peers receive a block last (and therefore cannot contribute upload bandwidth to
the distribution of that particular block). On average, however, the result above is the
duration resulting from optimal behavior.

When multiple peercasters are involved, no general formula can be computed, as the
necessary time will depend on peers’ preferences between the different streams. If all peers
are only interested in a unique stream (worst case), the values are the same as above; if
peers are spread evenly among the different peercasters (best case), then the number of
peers n must be divided by the number of peercasters. The cases in between those two
extremes would need to be computed on the basis of the distribution of peer’s preferences,
taking into account if relevant any dependencies between preference and upload capacity;
this is outside the scope of this thesis. The possibility of time shifting also changes the
time required to distribute components: for peers that are (even slightly) behind the real
time stream in terms of what they want to play, then it is possible (in a multi-peercaster
environment) for these peers to receive T desired pieces before time T is reached. This
can result in the total time necessary being less than T itself.

3.4.1 Performance Metric

In order to measure the overall performance of the system, a metric is needed. This
performance metric needs to take the overall level of satisfaction of peers into account.
Although assumptions are made elsewhere in this thesis about the factors that determine
that satisfaction, the chosen metric should be largely independent from these assumptions.
Thus, a criteria that is based solely on the traffic going through the system over a certain
period of time is desired.

The metric is defined as a number of copies distributed over a certain time, with the
optimal value defined by the example above. In general, the metric is

K :=

∑
i∈N |Cθ

i |
θ

Where θ is the time limit or the time when distribution is complete. The theoretical
optimal value would therefore be:

K∗ =
T · n

T + dlogµ̄+1(n)− logµ̄+1(ρ)e+ 1
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Although the metric is simple and assumption independent, it has the disadvantage of
not directly taking certain measurements of quality into account, such as lag or number
of frames skipped (see e.g. [9]). It only shows how much content was transmitted in how
long, which is indirectly related to skipped or stalled blocks.

Despite this shortcoming, the metric is appropriate for the present approach, which is
social welfare-based (i.e. the optimum is calculated based on a sum of individual values).
Measurements of lag or skipped frames make little sense when combined in a sum or
average; a min-max approach would be more appropriate for these.

Having presented a model and discussed its various advantages and disadvantages, in
general as well as with regards to an implementation in the LiveShift system, a simulation
can now be presented and experiments be run to test that model.



Chapter 4

Results and Evaluation

In this chapter, the simulation is first presented, as well as the various experiments it is
used to run. Then, the results of these experiments are shown and discussed.

4.1 Simulation

A simulation is created based on the model, in order to show some of its properties
and compare it to the upload and download policies originally used in LiveShift. It
allows for running more experiments and tweaking the model more quickly than an actual
implementation would. Also, its result may be more of more general scope as it does not
need to strictly implement all the particularities of the LiveShift system. This section
details its implementation and the settings with which it is run.

4.1.1 Implementation

The simulation is implemented using a general-purpose platform (here Java 1.6). It com-
prises a basic model of the setting, including blocks, selfish peers, peercasters, and the
requests they receive and grant each other; the congestion and upload allocation games
and their rules; and a module that outputs the result. The present section will focus on
the implementation of the game logic.

Both game implementations define a process, called a dynamic, through which a selfish
peer changes its strategy in response to the current state of the game if there is a possibility
for it to increase its utility. To reach an equilibrium, this process is repeated until no selfish
peer changes its strategy anymore. Utility functions evaluating both blocks and other
peers also have to be implemented for the games implementing the proposed approach.
For performance purposes, utility values are cached until they become invalid.

21
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Player preferences

Player’s preferences in terms of content are defined randomly at the beginning of the
game. For each player, an ordered set of desired blocks is computed as follows:

1. A peercaster (channel) is chosen at random; the first desired block is this peercaster’s
first released content block.

2. In most cases, the next block from the same channel is then selected. However,
there is a one percent chance to switch to a different channel and playback time.
The new playback time is uniformly distributed between one and the current time.

Congestion Game

In the congestion game, the dynamic a selfish peer follows has the following steps:

– The peer determines its order of preference for blocks.
– Then, for each block:

– sort the possessing peers according to the valuation function for peers (see Section
3.3.2);

– send requests for the block to each peer in this order, until there are no more peers
to request the block from, or the maximal number of requests is reached and all the
peers from whom the block already has been requested have a lower value of γj(n

t
j)

than the current peer, i.e. are better candidates;
– if the maximal number of requests has been reached, a request must be withdrawn

from the least attractive peer every time a new request is sent.

This dynamic will often have to repeated, as one peer sending a request will influence the
preferences of other peers, sometimes prompting changes in strategy.

Upload Allocation

In the upload allocation game, both the peercaster and the selfish peers must make a
decision; in well-behaved cases, with the proposed approach, the selfish peer is replaced
by a well-behaved peer, which has a distinct decision-making process.

A peercaster starts by sorting all the selfish peers in increasing values of ωi. Then, going
through that sorted list, the peercaster sends the latest block to each peer if they are
interested in it, even at a much later time. The peercaster keeps going through the list
until it exhausts its upload or no more selfish peers are interested in the latest block.
Then, if it has not exhausted its upload rate, the peercaster goes through the sorted list
of selfish peers once again, this time granting all requests to each selfish peer until its
upload is completely used or the end of the list is reached.

A selfish peer sorts its requesting selfish peers i in decreasing according to the value of
Φt
i(j) +

∑
k|(i,k)∈σt

j
uti(k), which is the contribution of a peer to the selfish peer’s payoff

function (see Subsection 3.3.2). Until its upload rate is reached or it has granted all
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block requests, the selfish peer grants all requests for each peer in this order. If any of
the selected peers and blocks are different than in the previous iteration, then another
iteration of the upload allocation game must be executed.

A well-behaved peer will proceed as in the second part of the peercaster’s behavior: first
sorting all requesting peers by value of ωi, then granting each requesting peer all of its
requests, until the upload rate is exhausted.

Existing LiveShift policies

LiveShift policies are implemented in a simplified way. Some steps in the protocol are
omitted. In the well-behaved case (see Section 4.1.2), all peers behave as described in this
Subsection. In the selfish setting (also in Section 4.1.2), only the peercaster behaves as in
the existing LiveShift policy; the other peers use selfish behavior as defined in Subsections
4.1.1 and 4.1.1.

Download Peers have a group of candidates constituted randomly at the beginning,
where, in accordance with the LiveShift protocol, members that match the following
criteria are removed:

– peers that send more than five requests without uploading in return;
– peers that only have blocks older than the playback time minus eight.

When deciding who to download from, requests for any of the desired blocks (any not
yet acquired after the last played block) are made in chronological order of blocks, to any
candidate who has them. There is no limit to the number of requests made.

PeerSuggestion messages are simulated in the following way: if, for a given peer, a desired
block is not possessed by any of the existing candidates and the peer possesses the previous
block, a new peer possessing the missing block is added. Peers who have sent the most
blocks recently will be added first. If, after this operation, the size of the candidate
group exceeds 40, the candidate who sent the least blocks recently is removed. Senders of
block requests that the peer receives are also added if they have interesting blocks. This
happens if the peer is not receiving blocks fast enough (i.e. if its lag increased in the
previous step) and as long as there are less than 40 candidates. In this case, requesters
are added according to the block they possess (in chronological order from the playback
time) and secondarily according to how many block they recently sent to the peer.

Upload Both normal peers and peercasters sort requesters by upload rate, secondarily
by blocks sent to the requester in the past. For each requesting peer, the peercaster grants
the latest piece if it is desired by the peer, otherwise it grants the first request it got from
that peer on this turn; it does so until its bandwidth is exhausted. Normal peers simply
grant the first request received from each requester, also until exhausting their bandwidth.
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4.1.2 Experiments

The base setting for all the experiments has the same parameters as scenario three in
the LiveShift TR [9], except all the peers are present at the beginning (instead of being
added progressively). This means that in the standard setting, there are 6 peercasters, 15
high upload (HU) peers, and 120 low upload (LU) peers. Both peercasters and HU peers
have upload capacity of five times the bandwidth necessary to stream the content to one
target. LU peers have only half the stream bandwidth in terms of upload. The amount of
content to distribute is 500 (one-second) blocks. This setting is run with changes in player
behavior (well-behaved vs. selfish) and with different levels of overlay stability (changed
by the addition of flash crowds).

Player behavior

In the experiments, players (in terms of their upload) can be selfish, use the well-behaved
behavior defined in Subsection 3.3.2 with some modification, or use the existing LiveShift
policy. As far as download behavior is concerned, congestion game and existing LiveShift
policy are the only two choices.

The ideal case compares LiveShift policies (for all aspects of player and peercaster behav-
ior) with well-behaved players and peercasters, using the congestion game for download
behavior; the realistic case compares the LiveShift policies and well-behaved upload (3.3.2)
for the peercaster, who faces selfish players (behaving according to congestion games and
the selfish upload behavior defined in Subsection 3.3.2).

Overlay stability

In the standard scenario, all peers are in the system from the beginning. To test for the
different approaches’ resilience to perturbation, all experiments are then also ran with
flash crowds. The flash crowds have the same proportions of upload bandwidths as the
base system (including the peercasters). This ensures that the system’s amount of upload
bandwidth per player remains the same. It is also better than simply having a flash crowd
that is homogeneous with respect to bandwidth, as it preserves variability as defined by
the standard deviation over the population of peers.

Flash crowds consist of two events:

– at t = 100, 50 peers are added. All of these peers are interested in current content of
a single peercaster. These peers stay in the overlay (without changing channels) until
t = 200, and then disconnect.

– at t = 150, 75 peers are added. All of these peers are interested in current content of a
single peercaster, distinct from the one in the previous event. These peers stay in the
overlay (without changing channels) until t = 250, and then disconnect.
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To summarize, eight experiments are run in total, varying in policies used (LiveShift vs.
the proposed approach), player behavior (selfish vs. well-behaved), and overlay stability
(stable vs flash crowds). In the next chapter, the results from these experiments are
presented and evaluated.

4.2 Results

Selected results from the experiments ran in the simulation are presented and discussed
here. The cases with well-behaved, respectively selfish peers are distinguished. In each of
these, results with a stable peer population and with a changing one (flash crowds) are
presented.

The metric results are shown, but they do not provide a complete picture of the quality
of experience (see [9]): as the metric K is simply the number of distributed copies (of any
block) divided by time, it does not reflect the order in which blocks are received. Therefore,
and also because the number of distributed blocks is not used in other evaluations of
LiveShift, results on playback lag over the peer population are provided in the following
form:

– the metric results at t = 500, the time at which no more new blocks are produced by
the peercaster,

– a graph of the median and 95th percentile over time,
– and a graph of the cumulative distribution of lag at the time (t = 500) when the

streamed content ends.

Values at t = 500 is of particular interest, as they gives a good idea of the performance
over time without being influenced by the lack of new blocks to distribute (which means
lower performance will be less apparent, as the bottleneck becomes the number of distinct
blocks in the system as opposed to the number of copies). All graphs compare the current
LiveShift policies with the proposed approach, for each graph under different conditions.
The data represented are median values taken over 50 runs of each experiment. Higher
values of lag are observed overall, as the simulation does not implement a reaction to
failed playback as defined in [9].

4.2.1 Well-behaved case

Results from the experiments where peers are well-behaved are presented here.

Stable Scenario

The metric results are the following: at t = 500, the well-behaved approach has a value
of K = 135; the LiveShift policies have K = 130.7. Although this shows a slightly better
ability of the proposed approach to distribute blocks more quickly (which is expected),
the difference is relatively weak.
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Figure 4.1: 95th percentile and median lag in the well-behaved, stable setting.
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Figure 4.2: Cumulative distribution of lag at the end of the experiment with well-behaved,
stable peers
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Figure 4.3: 95th percentile and median lag over time in the well-behaved setting, with
flash crowds.

In terms of lag, the differences observed between LiveShift policies and this thesis’s pro-
posal are in favor of the latter. As Figures 4.1 and 4.2 show, LiveShift policies perform
worse both in terms of extreme values and in general for the majority of peers. In that
last case, however, the difference is very limited. For the 40% peers with the lowest lag,
this difference is even reversed in favor of the current LiveShift policies. These varia-
tions exist because the proposed approach will distribute blocks in a more even way than
LiveShift, limiting extreme values of lag. On the other hand, peers will upload to more
distinct requesters, and will switch who they upload to more often. This will result in
more interruption of the stream for peers who are usually closer to the peercaster in the
overlay and who would otherwise enjoy smoother playback. This effect is more visible in
the beginning of the streaming session (see Figure 4.1), as the indirect advantage – more
overall bandwidth utilization – created by spreading blocks more evenly is felt later on in
the session and balances that effect somewhat.

Flash Crowd Scenario

As far as lag is concerned, a clear difference in results is observed in Figures 4.3 and 4.4:
peers with median values of lag and peers with very high values of lag are better off.
The size of the difference is much greater than in the stable scenario; this is explained
by LiveShift’s emphasis on the maintenance of stability in the overlay, which implies
it is slow to take advantage of additional peers (in terms of utilizing their bandwidth),
resulting in higher lag after a certain time. On the other hand, the approach proposed
in this thesis always gives priority to peers who do not have any content yet, resulting in
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Figure 4.4: Cumulative Distribution of lag at t = 500 in the well-behaved setting, with
flash crowds

more bandwidth usage in this case. However, peers below the 40th percentile are again
slightly worse in terms of lag; this is expected as the existing LiveShift approach will
consistently favor peers that have successfully received more blocks in the past, whereas
the proposed approach does not.

The spikes in Figure 4.3 are caused by peers massively joining and leaving the overlay
in flash crowd events. At t = 100 and 150, a flash crowd joins the overlay: this causes
an immediate drop, as peers join the overlay with a lag of zero, pushing all percentiles
down (this is more visible with the second event, as more high values have had time
to accumulate); and then a progressive spike (sometimes slightly lagged) in all curves.
At the start of an event, the reaction in both approaches is similar: the spikes are of
the same height in both 95th percentile curves, and the median levels off much more
quickly for the proposed approach, which is expected given the focus on spreading blocks
evenly. When the flash crowds depart, at t = 200, respectively 250, a very sharp drop is
again observed in both approaches, as many members of the flash crowds have developed
high values of lag. The proposed approach distinguishes itself in this case, benefiting
more from the flash crowds’ departure in the case of extreme values, especially in the
last event. This shows that the underlying block distribution was better during the flash
crowd, even though it could not be seen before the flash crowd left, as the system was
starved of usable bandwidth during that time. Combined with the behavior of the median
when flash crowds move in, this provides strong evidence that avoiding congestion and
aggressively enabling the use of bandwidth can strongly improve performance.

In terms of the metric, at t = 500, the well-behaved approach has a value of K = 135;
the LiveShift policies have K = 130.9. The difference is almost the same as in the stable
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Figure 4.5: 95th percentile and median lag over time in the selfish, stable setting.

scenario; this would seem to indicate an absence of impact flash crowds. However, the lag
results show that despite a similar number of copies distributed, the exact timing of the
distribution was quite different in the two approaches.

4.2.2 Selfish case

Stable Scenario

At t = 500, both approaches have a value of K = 135. No useful distinction can be drawn
between the approaches, although this indicates that the LiveShift policies, once applied
only by the peercaster, performed better.

The lag differences are not uniformly in favor of one approach. As Figure 4.5 shows, the
incentives reduce lag for median peers, but increase extreme values of lag. In this case,
the peercasters’ behavior does not help the peers that are very late in the stream, as it
mostly shares the latest block. Very late peers may not have any interest in this block,
and even those interested in that block may not hold content a late peer has immediate
interest in.

The upside to this situation is seen in the median: late peers have no other popular content,
so they distribute the few blocks they get from the peercaster very efficiently. This is also
seen in Figure 4.6, where over 70% of the peers have values of lag that are lower or nearly
identical; although it must be noted that the average values are clearly higher overall
for the proposed approach : 46.6 seconds, compared to 38.5 seconds for LiveShift. This
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Figure 4.6: Cumulative distribution of lag at the end of the experiment with selfish, stable
peers

is partly an effect of extreme values, but clearly hints that the two approaches perform
similarly in this case. However, aggregates such as sums or averages make relatively little
sense when applied to values whose effect on perceived performance is neither linear nor
applies identically to anyone.

Dynamic Scenario

At t = 500, both approaches again have a value of K = 135.

As in the well-behaved case, the proposed approach performs better in the flash crowd
scenario than in the stable one; although as Figure 4.7 shows, that does not allow it to
overtake LiveShift in terms of extreme values of lag, the difference is significantly reduced.
This is also observed in the cumulative distribution (Figure 4.8), where around 50% of
the peers are better off (between the 40th and 90th percentile), and an additional 40%
see next to no performance difference. These results are explained by the combination of
positive impacts on the proposed approach in the flash crowd scenario, i.e. the approach’s
ability to quickly leverage bandwidth from newly arrived peers, on the one hand; and
the negative impacts from the selfish scenario, namely the inadequacy of the peercaster
behavior in truly helping peers with extreme values of lag, on the other hand. Like in
the flash-crowd scenario in the well-behaved case, spikes and drops are noticeable at /
after join and leave events. As far as extreme values of lag are concerned, the spikes and
drops are not as noticeable, because selfish behavior creates more extreme values of lag
by isolating certain peers, and because neither approach can take substantial advantage
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Figure 4.7: 95th percentile and median lag over time in the selfish setting with flash
crowds
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of the flash crowds’ bandwidth to limit extreme values when limited to determining the
peercaster’s behavior. The median is however still as sensitive to the flash crowds, but
the difference is much smaller between the two approaches than in the well-behaved case,
for reasons mentioned above.

4.2.3 Discussion

As seen above, results from the metric do not reveal much about the considered exper-
iments. As discussed in Subsection 3.4.1, the presence of several peercasters as well as
time shifting prevents having a precise idea of how close the values are to a theoretical
optimum. Additionally, the relative abundance of bandwidth means that towards the end
of the experiment, when fewer blocks still have to be distributed, efficiency in distributing
blocks matters less and less. As a result, the metric values at the end of the experiment
do not display significant differences between the two approaches.

The differences observed in the flash crowd scenario, both in the selfish and well-behaved
cases, are evidence that the proposed approach can provide additional performance in a
highly dynamic scenario, where peers join and leave the system quickly. This is explained
by its emphasis on avoiding congestion when uploading and downloading, which allows it
to more quickly leverage new peers’ bandwidth.

Contrary to what was expected, it does not fare unambiguously better than the existing
policy in cases where peers are selfish. This is evidence that the peercaster policy is not
able to reduce extreme values of lag in this setting. It is also evidence that the current
LiveShift policy, which gives a more reliable stream to peers with a high upload rate,
performs relatively well with this type of selfish behavior: as it first fulfills their desires in
terms of content, it leaves them free to upload to less attractive peers. On the opposite, by
sometimes interrupting the stream of high upload peers, the proposed approach may force
them to compensate by trading blocks among themselves, thereby negatively impacting
downstream peers more than it helps them.

4.2.4 Applicability to LiveShift

When thinking about the applicability of these results to LiveShift, a number of issues
must be kept in mind. Firstly, an implementation would require changes to both the
LiveShift application and to the approach itself. Secondly, other incentive-related issues
may mitigate the approach’s effectiveness.

Potential Implementation Issues

In terms of the information peers exchange, a number of changes to the LiveShift appli-
cation [9] would be required or beneficial in a hypothetical implementation. For maximal
effectiveness, both upload and download bandwidth allocation processes need to have
the exact block information for many peers; this would, however, prove too demanding,
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especially in terms of the network load it would create, due to the necessity to update
that information very frequently. A realistic compromise would be to reduce the segment
length and replace the block with the segment as a content unit. This would somewhat
reduce the approach’s effectiveness compared with using blocks, but more information
would be retained than with larger segments; the required frequency of upgrade would
also be lower, as segments are not acquired as quickly as blocks. The number of requests
received, which measures peers’ congestion, would constitute a completely new value to
be transmitted. Since there are no discrete steps in LiveShift, a time-limited value would
have to be adopted, ideally the number of requests received in the last few seconds.

When choosing who to request from, a downloading peer (requesting peer in [9]) should
ideally have request information on all the peers who possess blocks it is interested in.
That would represent too many messages, so a hybrid approach could be used instead:
the candidates would be ordered according to their level of congestion, and the peer would
check block availability and number of requests regularly for those. In addition, it would
more or less frequently check these same values on any other peers who possess interesting
segments, and replace a candidate if it found a peer with lower congestion than the most
congested candidate (depending on how interesting the content of the found peer is). As
for the upload behavior, it could be fairly easily implemented by changing the priority
rating of peers as already exists in LiveShift, replacing it with the contribution to the
payoff function. However, in order to compute that contribution, the uploader (providing
peer in [9]) would also need to request the segment information on each of its requesters
from the distributed tracker (which handles published segment information in LiveShift).
This increase in messages would also have to be taken into account when deciding on
the segment length. Finally, peers would have to be implemented so as to change their
behavior when they are peercasters: first, they would use a different priority order (the
popularity coefficient ωk), and they would also ideally know of any peer interested in any
segment of the stream they originated, then requesting segment information for all of
these peers, allowing them to find the least popular peer to which they can grant a slot
or request.

All messages currently part of the LiveShift protocol would be sent asynchronously from
that updating process, although replies to these messages could contain update informa-
tion; the peer would simply use its current computed ranking of peers to sort its requesters,
candidates, etc., and these messages (e.g. Subscribe, Interested(segment), Granted,
etc.) would always be sent first to the best ranked peer.

Limitations

As seen above, in a LiveShift implementation, the information the proposed approach
requires may need to be summarized and/or updated less frequently than the simulation
assumes, in order to limit the networking overhead it would cause in terms of additional
messaging. It may also be manipulated by peers, e.g. in the number of requests they
received, or the exact blocks that they own (as dicussed in Chapter 3). Additionally,
in a real scenario, a stable overlay may be of more benefit than in the considered set-
tings, as no scenario with churn was studied. Think in particular of a scenario where
the probability of a peer disconnecting is inversely proportional to its longevity in the
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overlay; this is expected to be advantageous to a more stability-focused approach such as
LiveShift. Lastly, actual scenarios will of course combine more sources of instability than
flash crowds, and flash crowds themselves will probably have a slightly smoother profile
[1] than those simulated here, with many peers joining and leaving relatively shortly one
after the other, but not instantly.



Chapter 5

Summary and Conclusions

5.1 Summary

In this thesis, a motivation for the need for an incentive scheme with self-maximizing
peers for the LiveShift system was first presented. Then, a review of the related work was
undertaken, and a lack of adequate solutions for those goals was noted.

The first contribution made is an incentive model of a time-shifted video-streaming system,
which is represented by a repeated game, and based on [17]. One step of that repeated
game is separated in a download and an upload phase. Those two phases are modeled as
distinct games taking place sequentially. In the download phase, a congestion game is used,
with the costs of requesting from a given peer rising as that peer receives more requests.
In the upload game, the value of choosing a given peer to upload to is proportional to its
reciprocating upload in the current stage, the value of the content it owns (and potentially
can contribute), and to a popularity index which reflects the expected congestion it may
face in the future. In this model, an optimal situation is also described, in terms of peer
behavior and outcome, albeit in a static and deterministic setting. From the optimal peer
behavior, an incentive scheme is defined in terms of rules of behavior for the peercaster,
who originates content and therefore is assumed to have as a goal the best performance of
the system. Finally, the model encompasses a simple metric of system performance, that
depends only on the speed of content distribution.

Secondly, a simulation of that model is implemented, incorporating as well the current
LiveShift approach. It allows running experiments varying standard peer behavior (well-
behaved or selfish), peercaster policies (LiveShift or the proposed approach), and the
amount of change in the overlay (stable or with flash crowds). The results of that simula-
tion show that the metric proposed as a part of the theoretical model does not adequately
distinguish between the chosen scenarios. Instead, lag results are presented (as in [9])
which show a clear advantage for the proposed approach in well-behaved scenarios, espe-
cially if flash crowds join and leave the system.

35
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5.2 Conclusions

After presenting a model and evaluating it through simulation, conclusions can be pre-
sented with regards to the model itself, its effectiveness in the simulated settings, and
these results’ applicability to LiveShift.

5.2.1 Model

The solving process described in the proposed model does not use what would be the
standard game-theoretic approach in a repeated interaction, i.e. a solution of the repeated
game. Such a solution would be computationally costly, and impossible in a dynamic
system. Therefore, an approach where each step of the system is solved separately is
preferred; however, the peers’ interest in the outcome of subsequent steps is reflected in
their payoff in the present step. This allows the model to still take into account the
repeated nature of the interaction taking place in the system.

In terms of peer preferences, the model uses congestion games for its download behavior
part. These are well understood and used to study various P2P systems ([21],[17]); their
simple cost function that is based purely on the level at which a resource is used is a good
fit for a setting where a choice of resources must be made. The upload behavior part,
however, does not use a standard game model. As such, its mathematical properties are
not known. Its payoff function (Definition 4) takes direct reciprocity and the popularity
coefficient ωk as an index of future congestion into account. Although an evaluation of
contributions from the target peer is an expected component, popularity as measured
here is not. It does contain information that is relevant to future congestion, including
the upload rate; however, it is certainly not the best of such measures. As such, the model
presented in this thesis cannot be considered the most effective application of game theory
to LiveShift.

Additionally, the model does not deal definitively with issues of information manipulation.
For its purposes, it was assumed that peers would truthfully reveal the values required for
the computation of the different payoff functions. Although it may be in peers’ interests to
do so in certain cases, there are still instances where manipulation would be advantageous.
This is not dealt with completely in the model.

5.2.2 Simulation results

Under the tested conditions, the proposed approach does in general grant an advantage
over current LiveShift policies in terms of system performance. This advantage is however
not as strong in all of the tested scenarios, as it is sometimes reversed for a large minority
of peers. The performance difference is strongest when the peers are well-behaved, and/or
when flash crowds exist in the system, which is common in actual streaming traffic [1].
This would apply e.g. to LiveShift in its default configuration state, where peers are
expected to be obedient to the protocol.
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With selfish behavior, the difference, when there is one, is mostly positive; for many peers,
the approach simply causes no change in performance compared to current LiveShift
policies. In the selfish, flash crowd scenario, half of the peers experience a performance
increase and most of the other half are not impacted at all. However, the performance
difference in the selfish case is not as strong as in the well-behaved case, and does reverse
where very high values of lag are concerned. This reduced impact is consistent with
the reduced difference between the proposed approach and LiveShift policies in the selfish
case, where only peercaster policies differ. It can therefore be concluded that the proposed
approach provides an overall performance increase in the selfish case as well, albeit not
with the same level of certainty as in the well-behaved case.

5.2.3 Applicability to LiveShift

As discussed in Sections 4.1.1 and 4.2.3, the simulation does not fully reproduce the
LiveShift protocol, and does not simulate all aspects of a realistic case. Additionally, an
implementation of the approach in LiveShift may have limitations in terms of the speed
with which certain information is updated, because of network congestion concerns. As
far as settings similar to the ones described:

– there is evidence that the proposed approach would provide a performance boost in a
well-behaved setting, both in the stable and the flash crowd scenario;

– in the selfish setting, the evidence allows the presumption that any effect on performance
is more likely to be positive. However, because of the limitations outlined above, the
existence of that effect is not as certain.

5.3 Open Questions

Several aspects of the matter dealt with in this thesis bear open question or offer avenues
for future work. First off, an implementation and evaluation of the proposed model or
a similar one in LiveShift would help validate or invalidate the conclusions reached here.
This implementation should also be evaluated under additional scenarios not covered in
this thesis. The proposed model should be further investigated as well, in particular the
upload payoff function and what alternatives to it could be. The question of how to ensure
truthful information is revealed by peers (e.g. when it comes to upload rate) in LiveShift
also remains open.
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P2P Peer-to-Peer
GT Game Theory
PoA Price of Anarchy
PoS Price of Stability
NE Nash Equilibrium
BT BitTorrent
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Glossary

Cost function (peer, download) In the congestion game modeling the download be-
havior, the cost incurred by requesting from a peer is proportional to the number
of queries that peer already received. It reflects the lower probability of a successful
request to a highly congested peer.

Payoff function (peer, upload) In the upload behavior game, the payoff gained by
uploading to a peer is proportional to how much that peer uploads in return in the
same step of the game, the interesting content that peer has, and its popularity.

Player (also Selfish Peer) A non-peercasting peer in LiveShift, who receives and consumes
stream data. Will be selfish or well-behaved depending on scenarios.

Popularity Coefficient, computed on the basis of a peer’s upload rate and owned video
blocks (depending on other peers’ interest for these blocks) that reflects a peer’s
relative expected congestion, i.e. its ability to satisfy the requests it is likely to
receive.

Utility (single block) Value attributed by a peer to a block, as a function of that peer’s
interest for that block. Helps quantify global interest for that block (see Popularity).
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Appendix A

Installation / Usage Guidelines

A.1 Simulation

1. Copy the simulation folder on the CD to a new folder;

2. Open that new folder as a workspace in eclipse – version used: 3.6.2 (Helios SR2),
JRE 1.6;

3. The simulation project contains the main class SimulationMain in package controller.runs;

4. Run that class to run the experiments. In the code, the following can be set:
– the repeats variable at the beginning of the main method determines the number

of times each experiment must be run;
– the static field maxTh to limit the number of threads used for running the experi-

ments.

A.2 Graph generation

Once the simulation has been run, graphs can be generated from the data. This is done
using the file examples+macros.xlsm (see Appendix B):

1. Make sure both examples+macros.xlsm and one of the final.csv files are open in
Excel;

2. in final.csv, run the Graphs macro (View tab -> macros in Excel 2007 / 2010);

3. some formatting (font size, color and style of data series) must be applied manually
on the graphs.
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Appendix B

Contents of the CD

– Thesis LATEX source code: Thesis folder.
– Simulation Java source code (as eclipse project): simulation folder.
– Raw result data: results.zip file.
– Graphs from the data: graphs folder. Contains the examples+macros.xlsm file.
– Intermediate presentation in the eponymous folder.
– Articles used in the related work and otherwise cited. Names correspond to the key-

words defined in the bibliography.bib file in the Thesis folder.
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