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Abstract

This work is a practical approach on evaluating clustering algorithms on different datasets to
examine their behaviour on high-dimensional and sparse datasets. High-Dimensionality and
sparsity poses high demands on the algorithms due to missing values and computational re-
quirements. It has already been proven that algorithms perform significantly worse under high-
dimensional and sparse data. Here approaches to circumvent these difficulties are analysed. Dis-
tance matrices and recommender systems have been examined to either reduce the complexity
or to impute missing data. A special focus is then put on the similarity between clustering solu-
tions with the goal of finding a similar behaviour. The emphasis lies on getting flexible results
instead of highly tweaking certain algorithms as the problem can not be solemnly reduced to
the mathematical performance due to missing values. Generally good and flexible results have
been achieved with a combination of content-based-filtering and hierarchical clustering methods
or the affinity propagation algorithm. Kernel based clustering results differed much from other
methods and were sensitive to changes on the input data.



Zusammenfassung

Diese Arbeit stellt eine praktische Herangehensweise an die Evaluation von Clustering-Algorithmen
und deren Performance auf verschiedenen hoch-dimensionalen und kargen Datensätzen dar.
Solche Datensätze stellen hohe Anforderungen an die Algorithmen in bezug auf den Rechenaufwand
und Annahmen, welche getroffen werden müssen. Es werden Ansätze zur Lösung und Opti-
mierung dieses mehrstufigen Problems diskutiert. Distanzmatrizen und Recommender-Systeme
wurden eingesetzt, um die Komplexität des Problems zu reduzieren und um fehlende Werte zu
berechnen. Der Hauptfokus lag im Vergleich der einzelnen Methoden in Bezug auf die Ähnlichkeit
der Resultate mit dem Ziel, ähnliches Verhalten zu finden. Ein weiterer Schwerpunkt lag auf der
flexibilität der Algorithmen bezüglich den Datensätzen, da auch die Kargheit der Daten sowie
die Dimensionalität einen grossen Einfluss auf das Problem haben. Generell wurden mit einer
Kombination von Recommender-Systemen, hierarchischen Methoden und Affinity Propagation
gute Resultate erzielt. Kernel-basierte Algorithmen waren sensitiv bezüglich Änderungen im
Ausgangsdatensatz.
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Introduction

Within the last few years, a public awareness has developed about the huge amount of data being
collected. This itself is no new insight, but it evoked an even larger attention on data processing.
Often data is collected without any particular use, in expectation that this pile of data might be
useful at some point. Because data is collected as is without a prior purpose, the dimension of
such collected data is often very high and dimensions are usually sparsely populated because a
feature or dimension usually only refers to a small subset of all possible features.

These characteristics add two questions to the general uncertainty concerning data, namely why
data is missing at all and if the sparsely populated feature is relevant for solving the problem of
grouping items into similar sets (clustering).

In supervised learning with known classifications the problem might be less serious due to pos-
sible conclusions that may be drawn from a certain class to its assertive features (principal com-
ponents) and performance can be measured directly upon the data. Yet in unsupervised learning
(clustering) there does not exist a direct validation of results. Of course there is never a perfect
solution, but in unsupervised learning there is no direct measurement for measuring the validity
of a clustering result. Various measures and indexes exist and might give hints on the results but
usually have limitations.

Along with the problems described above, with high dimensionality and sparsity a huge technical
challenge arises. Computations are far more complex, mathematical approaches aren’t always
applicable and existing algorithms behave much differently in large feature spaces than in smaller
feature spaces.

In order to circumvent these shortcomings, various approaches have been proposed. Within the
following chapters, some of them will be analysed on their impact on clustering results and their
applicability on various datasets.

The general idea behind this thesis is to evaluate different algorithms on different datasets and
compare their similarity. If there is an actual structure in the data, different algorithms should
more or less derive a similar structure from it. Further, the variation of results has been analysed
with increasing sparsity. Although these results highly depend on the algorithms and the given
data, there is still evidence that a threshold exists when certain approaches yield strongly different
results.

An large amount of different approaches on the problem of clustering high-dimensional and
sparse data have been proposed. This is by no means a representative overview about all ap-
proaches. Generally each algorithm and approach has their own target group of datasets and
problems. But the sheer amount of different algorithms and approaches makes it a difficult task
to find a suitable way to process the data. Therefore several commonly used approaches are tested
on their findings.
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1.1 Structure of the thesis

In the next chapter, the used datasets will be introduced with their particularities. Then the gen-
eral approaches examined to compete the challenges on the datasets will be described. This in-
cludes singular value decomposition, distance matrices and collaborative filtering approaches.
Then the tested algorithms will be outlined. A special focus has been put on hierarchical ap-
proaches and spectral clusterings. Partially recommender systems have also been examined. The
results are presented in the last two chapters, starting with the evaluation of recommender sys-
tems and continuing with the evaluation of the algorithms.
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Motivation

The high importance of clustering can be derived from its appliances in many different scientific
topics. It has been successfully applied in bioinformatics clustering gene data [Dhaeseleer, 2005],
in commerce building customer groups [Alzate et al., 2009] and in machine learning extracting
concepts from data. Various clustering algorithms have been developed and new concepts as
collaborative filtering have emerged. These algorithms are usually tightly coupled to a given
problem range. Not much evaluation has been done on comparing different approaches on the
applicability of their solutions, especially not for high-dimensional and sparse data. Whether
algorithms can be compared at all is of course questionable due to the differences between the
algorithms. Due to the importance of this huge and emerging market there should be put an
emphasis on the comparability of these approaches. The difficulty arises because of the incom-
pleteness of data. The movieLens rating dataset, which will be introduced in the next chapter, is a
good example for incompleteness of data. There will always be many missing ratings due to the
fact that that nobody will ever be able to watch all movies.

This leads directly to the actual problem of clustering high dimensional sparse data and the eval-
uation of the results. The problem is posed in three stages. With high dimensional sparse data it
is uncertain whether the data reflects the actual distribution or not. There is a chance that the data
is strongly biased, especially for user content. This is due to the fact that users tend to comment
on items either if they disliked the content or highly liked them but not in between.

The next possible cause for errors is the choice of approaches or algorithms. It is difficult to find a
suitable approach with only a small subset of the data. Whether a choice was good or bad is hard
to determine.

Last but not least the results need to be verified. Whether two movies are similar may be judge-
able, but for more complex data as proteins in bioinformatics it is way more difficult. Additionally
high-dimensional data cannot be easily visualized.

These three stages combined make clustering high-dimensional and sparse data a highly difficult
task.

Another important topic in unsupervised learning is the narrowing of individualities and partic-
ularities of data. This itself has no ethical implications. However the usage of results may have,
especially when there is no measure of validity.

So in these terms it is important to find measures for quality and validity of clustering results
and a general way on steps to find valid clusters or like in this thesis, an evaluation on which
approaches might work better than others.
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Datasets

In this chapter, a brief analysis of the examined datasets concerning their structure, their measures
and their particularity is provided. Different approaches are usually aiming at different ideal
datasets, so the first step in clustering usually is the analysis of the dataset.

3.1 MovieLens Movie Ratings

Movie ratings gained quite some attention, not only since the Netflix Prize in 2009 1. In this prize,
a bounty of one million dollars has been placed for delivering movie rating predictions for user
who haven’t seen the movie. The predictions had to outrun the their current algorithm on rating
predictions on at least 10%.

The ratings dataset used in this thesis is not the same as in the Netflix prize but similar. Grou-
plens Research has published their collection of MovieLens ratings 2 in different collection sizes.
The smallest set of 100’000 ratings by 943 users on 1682 movies is used in this thesis. Each user
has rated at least 20 movies. Additional demographic information about the user (age, gender,
occupation and zip) is available. However this demographic information has not been used in
this thesis but may be used to extend the model for predicting ratings of users described in the
next chapter 4.2.4.

In Figure3.1 the structure of the dataset is represented. White space indicates missing ratings from
users. The ratings are more or less well distributed as there are no visible clusters of certain users
only rating a certain subset of movies.

3.2 Fibronectin Protein Expression Set

This dataset and investigations on it can be found in [Comi et al., 2003], the data is publicly
available 3.

The set contains a total of 1131 proteins with 28 measured expression levels. This is not very
high-dimensional, however not low dimensional either. Originally the dataset is not sparse but
values have been randomly removed in steps of 10% to compare how results vary with increasing
sparsity.

1http://www.netflixprize.com
2http://www.movielens.org
3http://pevsnerlab.kennedykrieger.org/microarraydata/
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Figure 3.1: MovieLens Ratings Structure

3.3 Execution workflows

The last datasets investigated is a set containing values on how much a certain workflow suits a
certain dataset. There is one dataset containing the root mean squared error for the predicted clas-
sification of categorical attributes and one for the regression of numerical values. The structure is
different to the other datasets and highly emphasizes certain clusters already which can be seen
in 3.2. It may be questionable whether such data should be clustered as is or if the data should
already be divided as a first step. However there is still a point in examining the behaviour of
approaches for such data.

Figure 3.2: Classification Workflows Structure
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General Approaches

There is a wide range of possible clustering approaches. Some are more widely used, some less.
Some emphasize certain particularities and assume a certain distribution on the data. Some tend
to smooth outliers better. So taking the first steps in clustering given a certain problem is difficult.
The sheer possibilities are frightening. And it is even harder to know whether an approach per-
forms better or worse for high-dimensional and sparse data as much more assumptions have to
be made than in common datasets.

In this chapter, an analysis of of the problem and and descriptions of possible approaches is given.
This is of course no complete set of all approaches but the ones highly discussed in recent scientific
literature.

4.1 Implications of High-Dimensionality and Sparsity

Bellman’s ”Curse of dimensionality” [Bellman, 1961] describes the general problem of having
much information without the possibility to evaluate all possible combinations since they are
exponentially growing with increasing dimensions. Additionally it is much more difficult to vi-
sualize the data and to verify solutions visually.

Sparsity leads to two implications when clustering. It results in difficulties to decide about the
proportions of the dimensions and their possible bias. Additionally when dimensions lack infor-
mation, the problem emerges that it is impossible to decide about the relevancy of this dimen-
sion. This implies that the resulting distance measure may have a certain range of valid actual
distances.

4.2 Missing Values

The first thing to think about is why data is missing. Missing data can be classified as ”missing
completely at random”, ”missing at random” and ”non-ignorable missing values” [Acock, 2005].
Values that are missing completely at random have no ulterior cause for their absence. Although
it may be challenging to find such reasons, for user based content as ratings it is often the case
that missing values are completely random. Randomly missing values have a ulterior cause lying
within other attributes or features of the dataset, so there is a chance to find the structure of
missing values in the data. Non-ignorable missing values are missing due to a certain constraint
in the possibility of responding. Such values cannot be ignored as this would strongly lead to
biased data. In the datasets used in this thesis the analysis is relatively straightforward.



4.2 Missing Values 7

Some users simply haven’t seen a certain movie. These values are missing completely at random.
But there is a possibility that the user forgot to rate movies he has seen already. It is unknown
whether someone actively refused to watch a movie or if a user simply did not hear about it.
When actively refusing to watch a genre as it might be the case for certain genres, the missing
value then would be missing at random and not completely at random. Hence to predict a rating
for a user then might destroy information about the users preferences. Excluding professionals
who rate more than thousand movies, there is a chance that individuals only rate movies when
they either liked the movie especially well or the opposite. In such cases the missing values might
be regarded as non-ignorable because using statistical approaches as mean or average would lead
to strongly biased data. So in this dataset there is a chance for the occurrence of all types of missing
values.

In the fibronectin dataset sparsity is created artificially. Of course it is arguable that it depends
on the data whether missing values create a larger or smaller loss of information on the problem.
However in this artificial case data is missing completely at random.

The work flow dataset is special in terms of that missing values are caused by work flows which
simply aren’t suited to the problem and can never be executed. Hence the missing data is not ac-
tually missing but containing information that cannot be expressed within the numerical bound-
aries of the values.

The lack of ability to define whether two instances are close in a subspace due to missing values
usually leads to ignoring this dimension when measuring the distance. With high-dimensional
sparse data (implying many missing values!) the problem that arises is that possible subspaces
lack important dimensions due to missing values. Now for pairwise comparisons between in-
stances, each comparison takes place in a completely different subspaces. This leads to different
distances measuring other dimensions. Each distance is then is relatively indifferent to the other.
This makes comparison and clustering difficult as there is no common space to identify clusters.
The same problem occurs in graph-based clustering where different measures may lead to com-
pletely random clusters. Four approaches on filling missing values are described below.

4.2.1 Deletion of Missing Values

The standard procedure found in practically all clustering environments is that missing values
are deleted, either pairwise or listwise.

Pairwise Deletion

With pairwise deletion, attributes with missing values are excluded from the analysis and only
values that can be compared are analysed. This has the advantage that not all dimensions with
missing values are excluded from the distance calculation. This leads to different dimension
sample sizes during the bivariate correlation calculation and hence calculations aren’t always on
the same dimensions. As previously described, this may lead to infeasible graphs where edges
derive from different subspaces and therefore aren’t comparable any longer. Hence the validity
of this approach decreases with increasing sparsity and dimensionality.
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Listwise Deletion

Listwise deletion deletes all cases with missing values. This has two implications. For highly
sparse datasets as the movie ratings set there would be no rows left as each row contains missing
values. But even if some cases remain, the data set will be highly reduced. But distances can be
calculated on same dimensions. But with a smaller subset of cases, the chance of having biased
data increases. Using this approach assures that meaningful comparisons can be made but its
feasibility depends on the data and whether the problem allows removal of cases.

4.2.2 Substitution

Another common approach is to substitute missing values with the mean value assuming a nor-
mal distribution in the data. However this approach is not suitable for highly sparse data. Al-
though even if the data is normally distributed and the mean may not be a bad guess, this leads to
many cases having the exact same value. The consequence is a variance of zero meaning that for
most cases the importance of the feature or attribute is neglectible. For example taking the mean
movie ratings for each user for unrated movies, the importance of this user will decrease during
clustering as there unrated movies to not differ from each other and will probably be clustered
together. This problem becomes more apparent with distance matrices (which will be described
later) as cases with missing values filled with the mean of the attribute will have a high similarity.
This will lead to larger clusters and there is a tendency that no clusters can be found as there will
be high similarities between cases throughout the dataset.

One possibility is to build subgroups and then only take the mean of the subgroup. However
depending on the data it may be unfeasible to determine appropriate subgroups. For the movie
ratings the genre may be taken. For the FibroPlast set proteins with a similar chemical structure
could be taken. However this entails the chance of building completely wrong subgroups and the
actual structure of the data may not be detected.

4.2.3 Imputation

Imputation of missing values is a more sophisticated approach to avoid the shortcomings of using
mean values. There are several different approaches, the most common is using EM (expectation
maximization).

Closely related to imputation is the term ”Collaborative Filtering”. However its mostly related
to predicting user preferences for a certain item. So it’s actually suited to the movie rating set,
however it has also been applied to the protein set in this thesis. The general approach is similar
to other statistical models and various different models have been proposed. Some of them are
mentioned in the next chapter.

Single Imputation

Single imputation takes the coherences between attributes to estimate the maximum likelihood
value. A description of the algorithm using EM can be found in [Dempster et al., 1977]. When
only little data is missing this approach might yield good results. However when much data is
missing the resulting values lack again in variance and filled values are usually treated as normal
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values during the next iteration. This may lead to unexpected behaviour and misleading filling
of values. An advantage is that calculation costs are relatively low, but still this approach isn’t
suited for highly sparse data while having many dimensions may be an advantage since more
attributes can be analysed.

Multiple Imputation

Multiple imputation takes several sets and then calculates then estimates a suitable model. With
confidence intervals the coherence between the imputed datasets can be analysed. This leads to a
more uniform distribution. Further information can be found in [Wayman, 2003]. The drawback
is that the calculation is expensive, especially for high-dimensional data. And depending on the
missing values and the problem, results may still be bad.

4.2.4 Imputation based on Meta Information

During the Netflix prize, Simon Funk has posted an interesting approach on his blog 1. It is often
referred as SVD (which is explained in the next section) but only in terms of taking information
about the user into account. The dimensions like age, zip, Profession, Genre and Actors are re-
duced into a single rating prediction for each user and movie.

General Idea

The general idea is to build a learner which learns from a certain feature set. In this case actor
and genre has been used. However the model could easily be extended with additional infor-
mation as gender and profession. Then the existing ratings are analysed based on the selected
feature set. For each rating its features are compared. So if the user always rates (and likes) ac-
tion movies, the importance of this feature for the user increases. In the end each user contains a
feature set containing the importance of features for him. A linear predictor based on the feature
set is built which multiplies the average movie rating with the features, adapting it to the users
preferences. The quality of the prediction then depends on the accuracy of the users ratings and
the accuracy of the model (e.g. if the problem can be reduced to the selected features and if they
are independent).

The Math

UserRatingMovie = (
∏n

k=1UserFeaturek ×MovieFeaturek)× (V alueMovie −AvgUserOffset)
(4.1)

The general idea behind the linear prediction is found in 4.1 where the UserFeature is the im-
portance of the feature to a user and the MovieFeature is the grade how much the movie re-
flects this feature (and zero if the movie is not related to this feature). There is only information
whether a movie has a certain genre or not in the movie ratings set, same goes for actors. So
the MovieFeature is either zero or one. The V alueMovie is the average of all ratings (even the
predicted ones).

1http://sifter.org/ simon/journal/20061211.html
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When training user features, as a first step the error 4.2 is calculated between the actual rating and
the predicted one. The learning rate 2 is also taken into account as the higher the error the more
quickly the model learns. To note is that the predicted rating already includes all UserFeatures
and MovieFeature.

ErrorPrediction = (LearningRate×ActualRating)− PredictedRatingMovie,User (4.2)

The actual learning process is found in 4.3 and 4.4.

UserFeaturek = ErrorPrediction × UserFeaturek (4.3)

V alueMovie = ErrorPrediction × V alueMovie (4.4)

The importance of the user feature for initial values is always one while the movie value may
be set to the mean of all its ratings at the beginning. However there the problem with sparsity
appears again. If a movie only contains a few bad ratings, there is a chance that this does not
reflect the distribution. So assuming a normal distribution, Simon Funk proposes a blending
approach between the mean of movie ratings and the mean over all ratings of all movies, taking
the variance between ratings into account. 4.5 denotes the blended initial mean rating where k
is the ratio between the variance of all movie ratings and and the variance of the movie specific
ratings. This yields the advantage that a movie’s value tends more in direction of the average
mean of all movies when only few ratings have been made.

MeanRatingMovie =
AverageRatingAllMovies × k + (

∑n
k=1Ratingsk)

k + n
(4.5)

Depending on the number of ratings a user has made, there is a possibility that a certain feature
for a user has a huge impact on the predicted rating. With a large training set this problem
may be diminished, however the smaller the training set the more likely it may occur. So a way
of penalizing the magnitude of feature vectors is necessary [Tikhonov, 1943]. The approach is
analogue to the mean rating, the 4.3 and 4.4 can be adapted so that k (the variance ratio denoted
above) is also taken into account.

Possible Improvements

As proposed in [Piotte and Chabbert, 2009] additionally to the above model time variables may be
regarded. The assumption there is that ratings made directly after seeing the movie and which are
more recent are more guiding than others. So to distinguish them the timestamp can be built into
the model. While above model is linear, it is sometimes useful to peform a nonlinear transforma-
tion (a sigmoid function is proposed) on the output to get a more natural result. However these
possibilities are concerning the estimation of predictions, hence they have not been investigated
more. The model built and used in thesis does not use timestamps.

2Simon Funk proposed a learning rate value of 0.001
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Similarities

The approach above is similar to the backpropagation algorithm [Rumelhart et al., 1986] with a
linear output neuron where the prediction error defines the adaption of neurons. Each feature
vector would be a neuron in an artificial neural network.

4.3 Singular Value Decomposition

This approach is closely related to missing values, however not entirely and therefore placed
in its own section. For clustering, singular value decomposition brings two advantages. The
first advantage is the resulting dimensionality reduction, minimizing the impact of the ”curse of
dimensionality”. A second advantage is that missing values do not need to be filled explicitly as
the dimension reduced matrix derived by svd approximates may fill the original matrix without
missing values (approximating the whole matrix through the dimensionality reduced matrix). So
either singular value decomposition can be used as a standalone approach or in combination with
filling missing values in finding a dense representation for the sparse matrix.

4.3.1 Mathematical Meaning

Singular value decomposition is a factorization of the original matrix into two matrices containing
each the left singular vectors and the right singular vectors. While eigenvectors and eigenvalues
only exist for quadratic matrices, singular values exist for non quadratic matrices too. Similar to
eigenvalues, singular values describe the characteristics of a matrix but usually in a space with
fewer dimensions.

In data mining often the term ”Principal component analysis” (PCA) is used. PCA is usually done
with the help of singular value decomposition to find the most important dimensions by finding
an orthogonal subspace.

4.3.2 Challenges with High-Dimensional Data

Traditional approaches on singular value decomposition do not work with missing values. Ad-
ditionally the calculation gets expensive with increasing dimensions, necessitating extensive re-
sources. However various approaches have been developed that perform a partial svd of a sparse
matrix. For further information on SVD [Halko et al., 2011] is recommended. A good summary
on the topic concerning the netflix data is provided in [Kurucz et al., 2007] where the Lanczos
method is recommended.

4.3.3 Implications of SVD

While in Simon Funk’s approach a model is built, SVD approximates a given matrix through
one with lower dimensions. This approaches may may result in an information loss. But the
partial SVD result depends on the representativity of the values in the original matrix. Further
implications on svd and high-dimensional data can be found in [Becavin et al., 2011] where it
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is stated that, depending on the method, the magnitudes of the singular values with increasing
dimensionality do not change, hence SVD may return results with a certain randomness. Usually
experiments have to be done on how many dimensions should be used.

4.4 Distance matrices

Clustering usually involves two steps. Evaluating the similarity of two instances and then decide
whether they belong in the same cluster or not. Many clustering algorithms take a distance matrix
as input. This has the advantage of leaving the option to the user what kind of distance measure
is used but has the disadvantage that the algorithm has to adapt on the scaling of the input. A
distance matrix can be seen as a graph, each cell contains the distance (or dissimilarity) between
two instances. Distances may be measured in an euclidean space. Depending on the problem,
other spaces should be considered too. For some data the space might be unknown. The problem
with high-dimensional data is that it is very likely that some dimensions differ from others in
terms of subspaces or scaling.

As previously stated, calculating distances is problematic with missing values due to the fact
that distances are calculated in different subspaces and are therefore no longer representative.
Usually as with imputation of data calculating a distance can be done either with pairwise or
listwise deletion. But again only pairwise deletion is applicable for sparse datasets, but with the
chance of getting infeasible results.

There are various distance measures as the manhattan distance, gower distance, euclidean dis-
tance and jaccard distance. The Jaccard distance (using the jaccard index described below) mea-
sure is often mentioned with sparse matrices.

4.4.1 Jaccard Index

The Jaccard index is a form of distance introduced by Paul Jaccard [Jaccard, 1901]. The reason for
its relation to sparse data comes from the fact that it only measures the occurrences of observations
and not the absence. Assuming a questionnaire containing questions with binary answers, two
responses are only similar when both answers were yes but not when both answers were no.
There is an advantage in terms of applicability on sparse datasets and filling missing values with
zero as they would not affect the final result while other distance measures would take the 0 into
account. This may be useful for actors and genres where both movies contain the same actor a
similarity can be deduced. But the opposite case is no sign for similarity. This has the advantage
that more data can be used but the problem with different distance subspaces remains. In case of
the ratings, this would omit the information about individual user preferences assuming that all
users preferences are the same yielding a global measure on movies with higher ratings. However
this still is prone to returning irrelevant results.

4.4.2 Pearson Similarity Coefficient

A common distance metric is the Pearson Similarity Coefficient (PCC) [Eisen et al., 1998]. It is
often used in bioinformatics. It is based upon the covariance of two features taking the standard
deviation into account. This is especially useful to denote dependencies between variables as it
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denotes the correlation between them. Another view on the PCC is that it behaves similar to
an euclidean distance, however as it takes the standard deviation into account it is not as prone
to slightly different scaling between features. So this might be useful for movie ratings where a
similar rating does not imply a similar satisfaction among users.

4.4.3 Visualizing Distance Matrices

Distance matrices are a way to simplify high dimensional data as relationships between instances
are reduced to a single measure. In figure 4.1 and figure 4.2 the voronoi decompositions of the
distance matrices are presented. A voronoi decomposition of a distance matrix is a visual repre-
sentation of a distance matrix. In the figures each movie corresponds to a node. It is interesting to
see that figure 4.1 seems to have a better distribution than the distance matrix based on imputed
data in figure 4.2. Yet for clustering using the imputed datasets seemed to give better results as
explained in the results chapter. These figures should serve as an example to the question whether
a distance matrix can represent high dimensional data adequately.

voronoi.mosaic(fit$points[, 1], fit$points[, 2], duplicate = "remove")

Figure 4.1: Voronoi Decomposition of Jaccard Distance Matrix using the Original Dataset

Voronoi mosaic

voronoi.mosaic(fit$points[, 1], fit$points[, 2], duplicate = "remove")

Figure 4.2: Voronoi Decomposition of Jaccard Distance Matrix using the Imputed Ratings with
Simon Funk’s Model
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Methods

There is a wide range of different algorithms for clustering and indexes for evaluation. Most of
them are tied to specific problems. The goal of of this thesis was not to examine which algorithms
perform marginally better than others under certain circumstances but whether some are more
flexible and robust than others (under different environments). The following selection is by no
means a representative one of existing algorithms, however the goal was to select algorithms of
different kinds.

5.1 Partitioning Methods

Partitioning methods are either centroid or medoid based, depending whether they cluster in-
stances around the gravity centre or build the cluster upon an average dissimilarity in the cluster.
Generally these types of clustering algorithms are relatively intuitive compared to others. The
drawback is that with increasing dimensions and number of instances they become computation-
ally expensive. This is because the distance for each point to its cluster center must be calculated
and compared to the other distances. These algorithms usually are also prone to noise.

5.1.1 K-Means

K-Means is an often used algorithm for various types of problems. However opinions on its
scalability vary, yet it is commonly agreed that it performs well on large datasets but not when
feature dimensions are large too [Whitworth, 2010].

Canopy Clustering

Although not a very recent approach, canopy based clustering is related to clustering high-dimensional
datasets [McCallum et al., 2000]. It is mainly an approach on reducing calculation costs but also
decreasing the error of wrong instances in wrong clusters. Their approach is to find a cheap dis-
tance measure and build subgroups (canopies). Clustering is then done on these canopies, hence
computational costs are reduced since they are only performed on the canopies. To note is that
canopies can overlap.

Although this approach has not been examined further in this thesis, there are still possibilities
for further investigations in this direction in terms of splitting the dataset and perform clustering
on these subsets reducing the impact of the ”Curse of Dimensionality”. Especially in terms of the
movie ratings set there is the possibility to divide the set into good (with a high average rating),
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mediocre and bad movies and then cluster them or group into genres. But since an item cannot
change its canopy after it is categorized, this method may yield a strong bias and information
may get lost. But depending on the canopy, there is a possibility that certain unrelated features
may be omitted.

5.2 Hierarchical Clustering

Unlike K-Means where the number of clusters has to be defined before running the algorithm,
hierarchical clustering seeks a hierarchic representation of clusters. Generally the complexity of
hierarchical approaches are high depending on the type. Hierarchical clustering methods usually
take a distance matrix as input. This has the advantage that the observations themselves are not
needed as in k-means but limiting the possible amount of information per instance.

5.2.1 Agglomerative Hierarchical Clustering

This type of hierarchical clustering is a bottom up approach where each instance starts in its
own cluster. Then clusters are iteratively merged together until the number of desired clusters is
reached.

Ward’s Method

Given a distance matrix (or a graph) there still needs a criterion to be defined when a cluster is
formed. Ward’s method [Ward, 1963] defines this as the minimal intra-cluster variance. Starting
with clusters containing one instance (agglomerative), in each step the two points giving a mini-
mal intra-cluster variance are merged. Ward’s method has been used in this thesis, hence when a
hierarchical method is mentioned it refers to Ward’s method.

5.2.2 Divisive Hierarchical Clustering

In divisive clustering one initial big cluster is divided into sub-clusters until the desired number
of clusters is reached. Conceptually this approach is more complex but has the advantage that
not a complete tree needs to be calculated. The tree is only built until the desired number of
clusters is reached. There is a chance that this approach might yield more accurate results than
agglomerative methods as the problem as a whole is considered while a bottom-up approach can
only find local optimizations when points are considered separately. Divisive approaches have
not been examined further as initial tests yielded similar results to Ward’s method.

5.2.3 Related Work

Related work on hierarchical clustering can be found in [Abbas, 2008]. It has been found that
while K-Means tends to work generally better especially on huge (but not high-dimensional)
datasets, hierarchical approaches work better on random datasets. Assuming that high sparsity,
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many dimensions and imputation of values may lead to a certain amount of randomness in the
data, hierarchical approaches may have advantages for the problem analysed here. It is also stated
that hierarchical approaches are less prone to noise. With many dimensions it is more difficult to
talk about noise and outliers since complex cluster shapes may occur anyway. This is a second
argument that supports the applicability of hierarchical approaches for high-dimensional sparse
data.

5.3 Density Based Clustering

In density based clustering algorithms, clusters are defined as regions in a space with high density.
Hence clusters can take arbitrary shapes while a minimum variance criteria may lead to a certain
cluster shape. Another advantage is that such algorithms are less prone to noise they lie in areas
with a low density. Further information on density based clustering can be found in [Kriegel et al.,
2011b].

5.3.1 DBSCAN

DBSCAN takes two parameters, ϵ and the minimum number of points that may form a cluster.
ϵ denotes the distance measure whether a point is considered a neighbour. For each point its
neighbourhood is examined. Two points are density reachable when their distance (including
other points) does not exceed ϵ. If enough density reachable points defined as the minimum
number of points are found, a cluster is formed.

Due to the density based approach, DBSCAN tends to find clusters that are of arbitrary shapes
while for example K-Means may have difficulties when data is not linearly separable (because a
linear distance measure is taken from the possible center). Additionally the number of clusters
does not need to be defined in advance and DBSCAN is not as prone to noise. Disadvantages
are that the quality of DBSCAN results also depend on the distance matrix given as input. Due
to the given maximal density reachability there is also a chance that if the data contains many
different regions with different densities it cannot be clustered adequately with DBSCAN. This
may especially be the case for large datasets (and when missing data is imputed).

5.3.2 Related Work

DBSCAN is an often used and cited algorithm. However as described it has its shortcomings with
high-dimensional data. Therefore various approaches have been proposed to avoid the problems
with many dimension. With many dimensions, different clusters may exist in different subspaces.
PreDeCon [Boehm et al., 2004] extends DBSCAN with the concept that cluster points must have
a similar subspace preference (having a strong magnitude in certain features) and may therefore
perform better on high-dimensional data. More recent work to also handle dynamic data can be
found in [Kriegel et al., 2011a]. However probably the problem of different densities still persists.
These approaches have not been examined further in this thesis.
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5.4 Spectral Clustering

Spectral clustering is not entirely distinguishable from other clustering approaches and related
to SVD and kernel principal component analysis (KPCA). While SVD calculates singular values,
spectral clustering algorithms use Eigenvectors and Eigenvalues hence requiring a square matrix
(usually a distance matrix). The similarity to KPCA refers to the used kernel which transforms the
data with a given kernel method (linear or non-linear), allowing further analysis and hopefully
easier distinction between clusters. The work on this topic is immense covering many different
research fields. A good introduction can be found in [Luxburg, 2007]. In this thesis, kernel based
clustering algorithm proposed by [Ng et al., 2001] is used.

5.4.1 Related Work

It has been found that in terms of graph partitioning, kernel based k-means (meaning transform-
ing the data in advance) performs just as effective as spectral methods [Dhillon et al., 2004]. It
has been examined that K-Means with transformed input data behaves similarly [Welling, 2009]
to normal k-means.

5.5 Other Clustering Methods

The following algorithms are not directly related to the above families of algorithms but are also
examined in this thesis. They have been selected as they are often cited or mentioned and using
different approaches than above listed algorithms.

5.5.1 MCL - Markov Cluster Algorithm

MCL is graph clustering algorithm based on markov matrices [van Dongen, 2000] and is often
used in bioinformatics. The algorithm performs random walks through a graph. The paradigm is
that within the graph, strong flow (meaning high connectedness) is promoted and weak flow is
demoted. The flow through the graph is modelled by a markov matrix. The basic operations are
expansion where unconnected nodes are being connected, and inflation, where the flow is either
weakened or strengthened. To note is the fact that mcl does not use complex procedures as joins
or splits, making the algorithm computational highly feasible.

Yet there are limitations. As stated by the inventor of the algorithm, it may have problems with
tree based graphs. There is a chance that especially a sparse high-dimensional matrix may lead to
tree like structures when there is an ulterior cause for missing values (especially random missing
values). Also the difficulty with distances measures referring to different subspaces may lead to
tree like structures. As a practical example ratings can be regarded. Assuming a user likes and
rates a certain movie and then watches and rates similar movies with a lower rating, this may
lead to a problematic hierarchical structure.

This is also a main difference between MCL and other graph based clustering algorithms as DB-
SCAN or hierarchical approaches that there is no horizontal but rather an as is representation of
the graph.
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5.5.2 Affinity Propagation

Affinity propagation (AP) is a recent algorithm that has been developed at the university of
Toronto [Frey and Dueck, 2007]. AP also takes a distance matrix as input. Unlike K-Means and
similar to hierarchical agglomerative approaches, AP considers all points as possible cluster cen-
ters (cluster reference point called exemplar). Then messages are exchanged between all points
on the existing edges. Each point has an availability and a responsibility for all other points. The
responsibility reflects how suited another point is to serve as an exemplar and the availability
denotes the appropriateness for a certain point to be exemplar. This considers the appropriate-
ness for other related points also. Iteratively these values are optimized, reducing the availability
when a point is assigned to an exemplar and updating the responsibility as the maximum simi-
larity minus the maximal responsibility and similarity of one related point.

AP has been proposed for various kinds of datasets including gene microarray data, clustering
face images and clustering of sentences in a document. The argue that the good performance of
affinity propagation lies in the fact that it does not take a random samples for cluster centers but
considering all points as possible exemplars 1. This is a clear advantage for large datasets with
few or an unknown number of clusters. Additionally the message passing between points has
a certain similarity to spectral clustering methods, however in spectral clustering no exemplars
for clusters are chosen. Hierarchical agglomerative methods are similar that each point initially
has its own cluster, however during the merge poor decisions cannot be undone in later steps
while with Affinity Propagation, no such decisions are made during clustering and exemplars
may change during the clustering process.

5.5.3 Biclustering

Biclustering (also called two-mode clustering) is a different approach on clustering where rows
and columns are clustered altogether. The goal is to find sub matrices that are similar in terms of
their pattern. Biclustering therefore differs from many other approaches in not taking a distance
or similarity matrix but the raw data. The important tuning parameters are not the number of
close neighbours and a certain similarity threshold but the minimum number of columns and
row a cluster must contain and optionally the desired number of clusters among other parameters
depending on the algorithm.

There are many different algorithms that use a biclustering approach. An extensive survey on
different algorithms is found in [Prelić et al., 2006] and Bimax has been proposed. In this thesis,
biclustering will refer to the Bimax algorithm.

5.5.4 Related Work

A comparison on MCL and Affinity Propagation can be found in [Vlasblom and Wodak, 2009]
where it has been stated that MCL performed much better in concerns of tolerance and robustness,
especially with noisy data. For above difficulties with tree based structures Akama et al. proposed
a branching of the graph [Akama et al., 2007]. It has also been found that MCL performs poorly
on sparse graphs [Mishra et al., 2011].

1http://www.psi.toronto.edu/affinitypropagation/faq.html
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5.6 Recommender Systems

Recommender systems are a very recent development in comparison to clustering algorithms.
Recommender systems aim at creating user profiles to recommend similar items given an item. A
thorough introduction to recommender systems can be found in [Ricci et al., 2011]. Such systems
have emerged due to the data which is usually very high-dimensional. The topic is indirectly re-
lated to clustering as usually only a certain amount of items are recommended. But the challenges
are similar, namely finding a cluster of similar items of given size for a certain user.

5.6.1 Methods

There are various algorithms available (e.g. k-nearest neighbourhood and Pearson Correlation
as described in 4.4.2 which are widely used). Yet two main approaches are distinguishable from
each other.

Collaborative Filtering

Collaborative filtering approaches aim at finding similarities between users through information
on what they like (e.g. user x rated the same movie as user y). A often mentioned family of
algorithms is Slope One [Lemire and Maclachlan, 2005] which is examined in this thesis and
is described in 7.2.3. Their approach is computationally very feasible using a linear regression
between ratings. Using this regression for each movie and user an estimate can be given how
much the movie is recommended for the user.

Content Based Filtering

Content based filtering uses meta-information on rated items to estimate their similarity. Similar
to Simon Funk’s 4.2.4 approach on predicting ratings which can be regarded as content based
filtering, meta information is used to build a user profile finding the users preferences.
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Evaluation

There are many different measures for evaluating and validating clustering solutions. A good
summary on this topic can be found in [Manning et al., 2008]. In the following pages selected
measures and indexes are presented. They are by no means representative but have been used
and examined in this thesis.

6.1 External Criterions

A natural approach is to decide whether a clustering solution makes sense in an intuitive way.
This assumes that a possible model already exists on the given problem. This is applicable for the
movie dataset but may be not be applicable in more conceptional problems. Another problem that
arises is that such verification involving people’s opinion includes expensive inquiries. Especially
with large datasets chances are small that an individual evaluation covers a significant amount
of the solution. This is directly related to the problem of sparse data. Clustering is made on a
lot of assumptions when data is missing. During the evaluation data is missing again as ques-
tionnaires can hardly contain all clusters. Of course randomized questionnaires may still give
statistically significant results [Acock, 2005]. So there is need for mathematical ways to evaluate
cluster solutions.

6.2 Internal Criterions

An often used measurement is the intra-cluster variance and the inter-cluster variance. This func-
tion is used in practically all clustering algorithms. The goal is to minimize the variance of all
points in a cluster. In other terms, goal is to find maximal similarities within a cluster. This makes
intuitively sense as points which are close in the space should be placed in the same cluster. The
inter-cluster variance is not as significant as the intra-cluster variance but still often analysed. The
goal is to maximize the inter-cluster variance, assuming that clusters are better with decreasing
similarity.

Although it is a measure how mathematically accurate results are, it is not a measure how well the
actual clustering is. Especially with high-dimensions as previously discussed distances may not
have enough information. Additionally there is evidence that points that are close in the feature
space may not belong in the same cluster as they are placed in. This is due the fact that they
may be close in the entire feature space but are related in totally different subspaces. Additionally
when much data is imputed, there is a tendency that along one feature vector variance is small.
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This ultimately leads to a cluster along this feature vector as points are close and hence a good
intra-cluster variance is reached, but based on made-up data.

6.2.1 Dunn Index

The dunn index [Dunn, 1973] is a direct measure for the quality of a cluster algorithm. The
index takes both the intra-cluster distance and the inter-cluster distance into account, seeking to
maximize the ratio of the smallest distance between clusters and the maximal distance of points
within a cluster.

Yet the index has a special characteristic. Due to the mathematical formulation of the index there
is a chance that unequally balanced clusters (in terms of intra-cluster and inter-cluster distances)
cause the index to be very low. This has two implications, namely that the index is prone to noise
and that in a high-dimensional feature space distances tend to vary much more than in a low
feature space. Large cluster diameters including outliers maximize the intra-cluster distance and
therefore cause a low index. A high-dimensional feature space does not imply a low index but
sparsity may lead to points located in various subspaces which can lead both to either maximal
distances between clusters but also maximal distance between cluster points. Hence there is a
chance that with high-dimensional data the index is low.

6.2.2 Entropy

The entropy referred to in this thesis is the entropy of the distribution of points among clusters
[Meilă, 2007] hence the uncertainty associated with a cluster assignment to a point considering
other possible clusters. The entropy measures the number of possible clusters a certain point
could be in. With three clusters, the entropy would be 1

3 or 3 in terms of Bits. The entropy is
usually denoted in bits.

6.3 Natural Clusters

Clustering helps in finding concept groups. Instances are grouped together, each cluster then may
act as a concept space. Especially in terms of recommendation systems meaningful clusters are
searched as the underlying model is human judgeable. The concept should be comprehensible
and capture the natural structure of the data [Steinbach et al., 2003]. But judging the quality of
clusters concerning their meaningfulness implies a clear goal on how the clustering results should
be handled. Different clustering results may have different meaningfulnesses for various prob-
lems. So in terms of movie recommendation it is straightforward to judge whether a movie was a
good recommendation or not but this is not easily doable for other datasets. An initial reason why
a recommendation was good might differ from the real reason the clustering algorithm found to
recommend a certain movie, hence an algorithm may fail for other steps.

Often clustering algorithms are used to assign labels to instances which are then later used for
machine learners to predict a classification. Yet the problem arises that when the clustering al-
gorithm performs bad, the learner may not be able to deduce a concept from it. The chance that
completely different underlying concepts may be deduced cannot be neglected. So whether a
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cluster is meaningful and natural depends on the actual problem and the judgement of the user
and cannot be calculated.

6.3.1 Blending Results

If several tests with a different training and testing set on an algorithm yield comparable results
it could be assumed that a general concept has been found. This works well especially for smaller
datasets with few cluster centers. With high dimensional data the amount of possible concepts
increases drastically simply through the fact that there are far more attributes. The chances are
therefore that with different training and test sets the amount of possible concepts is large so that
a general concept cannot be deduced. However often it is recommended to blend results. This
means a combination of different approaches that contribute to the final solution. The BellKor
Team that won the Netflix Prize did blend various models to improve their prediction of the rating
and used different matrix factorizations (4.3) for dimensionality reduction to reduce the impact of
non-suitable factorizations [Koren, 2009]. In other terms they did look for natural concepts that
are backed by several different approaches.

The assumption in this thesis is that a similar blending may be done on cluster solutions and
additionally, a possible judgement on the quality of clustering may be received when different
algorithms yield more similar results than others. This also has a certain relevance for the impu-
tation of data. If results are entirely different for one algorithm depending on the input data (e.g.
the original data matrix and the decomposed matrix containing the singular values), then results
should be judged with caution as a certain randomness is implied.

Although blending of results has not been examined further, the similarity of cluster results has.
Assuming that two clustering algorithms return similar solutions these solutions must have a
certain significance. For this approach two indexes have been used.

6.3.2 Rand Index

The rand index [Rand, 1971] is a measure of similarity for two set partitions and hence directly
applicable on clustering results. The range goes from 0 (no similarity) to 1 (identical partitions).
An intuitive definition of the rand index is given in 6.1 where I and J are the partitions of a
set.

RI,J =
AgreementsI,J

AgreementsI,J +DisagreementsI,J
(6.1)

Further information on the rand index, the mathematical background and an estimation of the va-
lidity, especially on multi-class problems, can be found in [Santos and Embrechts, 2009]. They also
proposed the rand index for feature selection and have found that using twice as many features
(attributes) as classes the quality of results increases. This also leaves options for other feature
selection approaches. One could randomly choose features and then run various clustering algo-
rithms on these features until clustering algorithms yield more similar results. The implication
of this would then be that these features are significant for the problem or at least not mislead-
ing as all algorithms deduced similar solutions from them. However this approach has not been
examined further in this thesis.
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6.3.3 Variation of Information

Another measure of similarities between cluster solutions is the variation of information [Meilă,
2007]. It is defined in 6.2 where Hx is the entropy of a cluster solution and Ix,y is the shared
information between cluster X and cluster Y.

V Ix,y = Hx +Hy − 2× Ix,y (6.2)

6.4 Random Clusters

Another possibility to evaluate a cluster solution is to compare it to clusters that were assigned
completely random and their corresponding indexes. This gives hints on indexes whether the
given value has some significance or if it is random. This is especially useful in high-dimensional
data where it may occur that distances are large. But it is also a measure about the impact of
outliers. Assuming that in large datasets there is a significant amount of outliers which are still
clustered, these outliers will have a large impact on the indexes. When clusters are randomly
assigned, the distance to outliers may not be much larger than with a normal clustering.

6.5 RMSE

The root mean squared error (RMSE) is an often used measure for recommender systems when
predictions are made how a user would rate a given item. It takes the squared deviation between
the actual rating and the predicted one. So it is a measure for the performance of the predictor
and hence for the quality of the recommendation. In 7 the RMSE of different recommender system
algorithms has been evaluated.

6.6 Mantel Test

The mantel test determines the correlation between two matrices [Mantel, 1967]. Especially with
distance matrices, changing one point in the feature space can lead to drastic changes in the dis-
tance matrix. Mantel proposed a randomization approach to avoid this problem by assessing the
correlation many times by randomly permuting rows and columns. This has the consequence
that the measure is adequate for distance matrices where different distances are measured. In this
thesis this measure has been mainly used to determine the similarity between the input distance
matrices.

6.7 Visualizing Results

Usually when clustering results are evaluated, a graphic representation on a 2D grid is given. As
described before, it is difficult to find an adequate representation of high-dimensional data in a
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low dimensional space with far lesser dimensions. For the following figures, the distance matrix
resulting from the original set has been non-metrically scaled [Venables and Ripley, 2002] as has
been made for the voronoi decompositions (4.4.3). As nice as the solution may look in figure 6.1
and 6.2, they may not be representative for the actual problem. This especially stands out when
the distance matrix is not based on the non-metrically scaled data but the original distance matrix.
Results based on the original dataset differ much as shown in figure 6.3. So it is not distinguish-
able whether clustering results are bad or data received by scaling is not representative.
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Figure 6.1: Affinity propagation results on the the non-metrically scaled distance matrix
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Figure 6.2: Hierarchical clustering results on the non metrically scaled distance matrix
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Figure 6.3: Affinity propagation results on the original dataset visualized in the non-metrically
scaled space
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RMSE and Recommender Systems

In this chapter commonly used algorithms of recommender systems have been examined. As
described previously, recommender systems usually predict missing values and then recommend
similar items.

7.1 Relation to Clustering

The approach was to find a way on how data can be transformed for later processing and to
circumvent the missing value problem. As by now, partial singular value decomposition has been
described to avoid problems with missing values (4.3). Additionally a content based predictor
(4.2.4) may be used to fill missing values. Completely ignoring missing values is usually not a
good option.

The last approach is that recommender systems may be used to output how much each item
would be recommended for a certain user. Usually this is just used for recommending a handful
of items. This is just another representation of predicted ratings with same underlying assump-
tion.

It would be expectable that again results in the end should hopefully have a certain similarity to
other methods as SVD or Simon Funk’s predictor in terms of natural clusters or graphs. These rec-
ommendations will later be used for clustering, but as a preliminary step the root mean squared
error (6.5) has been evaluated on common predictors to decide on their suitability to the prob-
lem.

There is room for argumentation that recommender systems are not suited for other datasets as
movie ratings like the fibronectin set as the underlying distribution may be different. In terms
of the RMSE it does not actually matter as only existing values are evaluated and hence only
the quality of the model is measured. However it still might be of interest how recommenders
perform on other datasets and how predictions and their corresponding cluster solutions compare
to other approaches. The imputations for missing values on the fibronectin set have been analysed
in 8.6. This underlies the assumption that for natural clusters (6.3) algorithms should more or
less preserve characteristics of the given data and even though different approaches are used the
output should not differ strongly between solutions.
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7.2 Recommender Algorithms

With recommender systems there are usually two main approaches, item based and user based
ones. Item based algorithms take similarities between items as input and then look for similar
items to recommend. User based algorithms look for similarities between users and then recom-
mend items based on similar users. In the following tests, three approaches have been exam-
ined.

7.2.1 N-Nearest Neighbour

The user based algorithm used in this thesis is the n-nearest neighbour algorithm using the Pear-
son Correlation Coefficient 4.4.2 for similarity. This algorithm is commonly used although it has
been found that it does not perform well in high dimensional spaces [Weber et al., 1998]. Espe-
cially when dimensions increase the computation time drastically grows.

7.2.2 Generic Item Based

The item based algorithm uses a very simple approach just looking for the most similar items
without searching for similar users. Here the loglikelihood similarity [Dunning, 1993] has been
used as item similarity. Item based approaches are often used in commercial applications as
they are quite fast and similarities between items are usually static while user based similarities
are more dynamic and pre-computation to save computation time is more difficult. Ratings are
usually predicted through linear regression.

7.2.3 Slope One

Slope One is an item-based approach, but it is yet even more simplified than the generic item
based algorithm 7.2.2. To reduce overfitting of the linear regression, slope one just takes the
average difference between two movie ratings as a linear factor [Lemire and Maclachlan, 2005].
Although the algorithm is relatively simple, it has been proven that slope one can compare with
more sophisticated algorithms [Cacheda et al., 2011].

7.3 Results

Results on each dataset reflect the average value of ten executions per algorithm. The sparsity is
artificially generated by limiting the training set to the given sparsity and then evaluate the results
on the remaining data. The movie ratings set is already highly sparse (about 6%) but even more
sparse when not all ratings are used for training. The Fibronectin set intially is a dense matrix but
with a smaller training set, the impact of missing values can be observed.
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7.3.1 Movie Ratings

In 7.1 the results of the predictors on the movie rating set can be found. Interestingly all collab-
orative filtering approaches behave similarly while the generic item based one seemed the most
stable. Yet some randomness has been observed in lower sparsity levels as it depends whether
a good training set is received or not. A sparsity level of 0.1 already responds to training set of
10’000 ratings and only 0.6% of values of the whole matrix. For lower sparsity levels not enough
ratings were available for successful predicting. While slope one worked well with fewer ratings,
n-nearest neighbour did not yield results anymore. This probably is due to the fact that best rmse
results were received with 100 neighbours taken into account. For reference, with Simon’s con-
tent based filtering approach (4.2.4) the received rmse on a 60%/40% training/testing set split
was 1.06. It must be stated various sources had much better RMSEs reaching almost 0.9. So there
is space left on tweaking Simon Funk’s model.

Figure 7.1: Movie Ratings RMSE

7.3.2 Fibronectin

In 7.2 the results on the Fibronectin set can be found. Interestingly results where much more flaky
than for movie ratings. This may be caused by a more complex underlying model or simply the
existence of certain outliers which affect the prediction. While the n-nearest neighbour approach



7.3 Results 29

with the pearson similarity coefficient still did not give comparable results, the item-based ap-
proach returned similar results to slope one. This is a sign that n-nearest neighbour with pcc
seems to overfit the data. It should be kept in mind that this a user based method. In other terms,
it may be argued that sophisticated definition of user preferences lead to bad results.

Figure 7.2: Fibronectin RMSE

7.3.3 A Note on Overfitting

Overfitting is a often used term in machine learning denoting the problem that outliers or cer-
tain instances may get overrated leading to bad performance of predictors. It is also related to
clustering when too many clusters are found.

The simpler a model is and the more linearly it fits the given data, the smaller the distances be-
tween data points will be as there is a tendency that items become very similar to each other. This
may yield good estimates on the RMSE, but it makes clustering afterwards much more difficult
as similar instances are much more difficult to distinguish from each other.

In these terms the RMSE might not be such a good indicator on the actual validity of results. This
problem gains also importance as especially for movie ratings where users have to rate in whole
numbers. Predictions are calculated in decimals and there will always be a natural bias caused by
rating constraints.
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Clustering Results

In this last chapter, results are presented. In the previous chapters, various method and ap-
proaches have been discussed. For each dataset, data has been preprocessed by building graphs,
using svd and collaborative filtering. This data always derives from the same initial data. It has
been processed using the described algorithms. As previously stated the goal was to find natu-
ral clusters (6.3), similar behaviour among clustering algorithms and the impact of preprocessing
methods on the data.

Unfortunately not all algorithms could be evaluated against each other as the used implemen-
tations did not always allow this and there is a general question about the representativeness of
cluster solution comparisons due to many unknown ascendancies and assumptions.

Some might wonder why unlabeled data has been used when evaluating on labeled data would
have given a more direct measure on the performance of each algorithm. One reason is the diffi-
culty to find a high-dimensional sparse dataset. Artificially created sparsity is unfortunately not a
real world problem. Clustering on a synthetic dataset would have been a possible option but also
one that might not reflect the actual difficulty of the problem. Also finding a high-dimensional
synthetic dataset with an exact solution is not an easy task. So instead random assigned clusters
have been used to compare the performance of the algorithms.

Another problem with high-dimensional data sets is the difficulty to visualize the data or results.
With many points there simply is no way data can be presented in a manageable manner.

8.1 Movie Ratings

8.1.1 Input Data

In 8.1 the similarities between the distance matrices computed from different input data sets can
be found. As previously stated with sparse data sets, the general problem is to find a graph rep-
resentation of the problem as many algorithms take a distance matrix as input. Again depending
on the preprocessing of the data, the assumption is that similarities between distance matrices
can be taken as evidence that the distance matrix is representative for the actual problem.

Noticeable points are:

• Although different approaches, distance matrices based on imputed Data with Simon Funk’s
approach and slope one recommendations yielded the most similar distance matrices with
a correlation over 50% while their correlation to the distance matrix based on the original
sparse data is much lower
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Input Data Sets Jaccard Negative Square
Original Data Set & Simon SVD 0.25 0.32
Original Data Set & Mahout Recommendations 0.36 0.40
Simon SVD & Mahout Recommendations 0.54 0.57
Original Data Set & SVD 0.015 0.21
Simon SVD & SVD 0.01 0.12
Mahout Recommendations & SVD 0.01 0.08
Original Data Set & Full SVD 0.48 0.25
Full SVD & Simon SVD 0.16 0.12
Full SVD & Mahout Recommendations 0.33 0.06

Table 8.1: Mantel test of movie rating distance matrices

• The distance matrix based on slope one recommendations is more similar to the one based
on the original data set than the one using Simon Funk’s model

• When imputing data with svd, the resulting matrix is almost 50% similar to the one based
on the original set, yet it is further away from the collaborative and content-based filtered
ones

• Using the dimensionality reduced data set yields completely different results with almost
zero correlation to all other distance matrices. It is assumable that results seem to differ, but
the patterns in the distance matrix seem to go in another direction than the collaborative
and content filtering approaches.

For the above svd calculations, 120 singular vectors have been used. It may be possible that using
more singular vectors may improve results. It is to note the impact of dimensionality reduction
was huge on the resulting distance matrix.
For reference it should be noted that the mantel test found only an average similarity of 0.18 be-
tween the negative squared distance matrix and the jaccard distance matrix on the same data.

8.1.2 Number of Clusters

The main evaluation is found in 8.1.3. There were significant differences between the algorithms
in terms of runtime and number of clusters found. The runtime has not been examined in detail,
but the number of clusters found is worth for a short analysis.

Depending on the input data and the algorithm, the number of clusters found did vary. In 8.2 only
algorithms are listed that do not need the desired number of clusters as an input. Interestingly
only Affinity Propagation (5.5.2) did find an interesting number of clusters. Of course this is no
good quality measure, but for such a large dataset lower numbers of found clusters aren’t very
feasible as well.

Hence in further evaluation, algorithms that did not give many clusters have been excluded.
Also for sake of comparability, cluster sizes have been equalled. So it is possible that in some
cases indexes and clustering may be optimized by selecting a different number of clusters.
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Algorithm Min # Max # Notes
Affinity Propagation 2 141 Using the slope one recommendations yielded most

clusters, using the negative squared distance matrix
gave slightly better intra-cluster similarities than us-
ing jaccard.

DBSCAN 3 15 Using the jaccard distance matrix yielded best re-
sults, yet far away from enough clusters. To note is
also that the clusters were unequally distributed in
terms of their size.

Biclustering 1 3 In all testing cases, Biclustering did not result in
many clusters. Most clusters were again found with
the slope one recommendations

MCL 1 8 MCL found most clusters when using imputed data
with Simon Funk’s model and did find less when
transforming the data in a distance matrix first. To
note is that the found clusters were unequally dis-
tributed in terms of their size.

Table 8.2: Movie rating cluster numbers

Index Random Spectral HClust KMeans
Pearson Gamma 0.0006 0.045 0.135 0.066
Entropy 4.905 4.766 4.633 4.766
Intra-cluster distance 0.51 0.346 0.110 0.268
Inter-cluster distance 0.512 0.514 0.518 0.515
Intra-cluster sum of squares 302.21 110.48 51.40 86.67

Table 8.3: Clustering results on original dataset

8.1.3 Evaluation

The possibilities of comparing clustering solutions is never ending. There are two main ap-
proaches that have been used in this thesis. First comparisons of the algorithms comparing them
to randomly assigned clusters has been made. The random cluster statistics serve as a base mea-
sure and can be found in 8.3, as input data the jaccard distance matrix on the original data set
has been used. It can be seen that while the entropy and the inter-cluster distance do not signif-
icantly change, hierarchical clustering clearly is the most distinguished from random clusters on
the given data.

Yet it is not clear whether the input data is meaningful at all. It is possible that slight changes on
the input data have severe consequences on the data. So similar to finding similarities between
the input matrices, the goal was to find similarities between clustering results with different input
data and different algorithms. Ideally the algorithms should provide again similar results as
strongly differing results may imply a certain kind of randomness as the input data is not entirely
different.

• Of all clustering algorithms, spectral clustering (using a radial basis function kernel) seemed
to be most affected by varying the input distance matrices. The average cluster similarity
(rand index 6.1) with the different distance matrices was only 0.053. Of course this also
depends on the chosen kernel. Compared to hierarchical clustering these results are signif-
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Index Random Spectral HClust KMeans
Pearson Gamma 0.003 0.099 0.147 0.12
Entropy 4.905 4.88526 4.555 4.82
Intra-cluster distance 0.264 0.092 0.067 0.063
Inter-cluster distance 0.264 0.265 0.260 0.266
Intra-cluster sum of squares 71.305 9.011 5.613 6.202

Table 8.4: Clustering results on imputed dataset using Simon Funk’s model

icantly worse. Additionally the clustering results between different input data as imputed
data by collaborative and content based filtering did have little similarities to the original
data with a rand index of 0.057.

• The average similarity between clusters with hierarchical clustering was 0.28 using the same
input data. So in these terms it is a little bit more stable and reflects the differences between
the distance matrices found in 8.1 more.

• Imputed data using SVD and dimensionality reduced input data with 120 dimensions as
examined above led to completely different results in all cases with similarities ranging
from 0.03 to 0.13.

• An interesting point was found when comparing the kernel based results with the hierarchi-
cal clustering based results. A similarity between the results of 0.31 was found when using
Simon Funk’s predicted values and a jaccard distance matrix. In all other cases results were
less similar. A possible interpretation might be that as with Simon Funk’s approach a clear
model is imputed leaving less things uncertain while other approaches leave more space for
interpretation leading to more differences between results.

The improvements on clustering with content based filtering filled data are described in 8.4.

So it is to say that the hierarchical clustering using Ward’s method did give the best results. Ad-
ditionally, just by using the original dataset without imputing missing values, clustering results
weren’t completely random but there was a certain randomness in it (e.g. when looking at the
entropy).

The problem is that all these indexes and values depend on the input data set. They do show how
well an algorithm solved the mathematical problem. They cannot show whether the input data
was representative for the problem or not. The rand index between the hierarchical clustering
result based on the original set and the one based on imputed data varies around 0.025. Interest-
ingly clustering results based on the collaborative and content-based filtering data led to a rand
index of 0.113. So in these terms there is a slight evidence data imputation leads to better results
in terms of the similarity.

8.2 Fibronectin

8.2.1 Sparsity

As for Fibronectin, the sparsity level has also been taken into account. The reference number
of clusters were again taken from the results found by affinity propagation as again MCL, Bi-
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Density Level Number of Clusters found Net Similarity
1 66 558
0.9 66 559
0.8 64 531
0.7 61 473
0.6 56 420
0.5 50 404
0.4 50 403
0.3 30 168
0.2 36 133
0.1 62 250

Table 8.5: Impact of sparsity on affinity propagation results

cluster and DBSCAN did not find many clusters. In 8.5 the behaviour of affinity propagation
with increasing sparsity of the input can be found. The net similarity is the function that affinity
propagation tries to maximize. The net similarity decreases constantly with increasing sparsity.
Increasing the sparsity can be imagined as reducing the number of edges between points. So with
increasing sparsity (randomly removed values), the length of certain edges tends to infinity and
as a consequence the net similarity decreases. Interesting is that between a density of 0.4 and
0.3 the net similarity drops significantly. A similar effect has been observed using other distance
matrices. There is a tendency that from density levels from around 0.4 and below matrices start
to differ much from each other, possibly due the increasing effect of assumptions made by the
specific distance measure. This effect was drastic when comparing euclidean distances with jac-
card distances. While nearly being on par until a density of 0.4 with a similarity of above 0.9, it
dropped immediately to 0.7 and 0.5 with missing values above 0.5.

Filling Missing Values

With increasing sparsity, the need for imputing missing values also increases. Building a model
for imputing data would be a difficult if not impossible task. The problem with collaborative
filtering is that it usually needs many users (or dimensions) to be able to make predictions. So
this is a shortcoming for this dataset as it only contains 28 attributes. There is however the option
to invert the matrix so that similar proteins are searched to predict the expected expression for
each attribute. For clustering, the resulting set may be inverted again. In 8.6 the similarities
between the distance matrices using imputed values with slope one can be found. To ensure
comparability all values have been scaled and the original values are kept with only imputing the
missing values. Again with an increasing number of missing values the performance of slope one
usually decreases. But it seems that slope one is a possible approach on imputing missing values
even for protein data or when content based filtering is not a feasible. Interestingly just using 30%
and imputing the rest yielded results that were closer to the original data set than using 60% of
the data.

Evaluation

In 8.7 the impact of sparsity on hierarchical clustering can be seen. Again hierarchical cluster-
ing was flexible in terms of numbers of clusters found. The jaccard distance measure has been
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Density Imputed, 0.9 Original dataset
0.9 1 0.964
0.6 0.991 0.957
0.3 0.974 0.970
0.3 0.950 0.908

Table 8.6: Mantel test on jaccard distance using imputed values with slope one

Density
Level

Inter-cluster
distance

Intra-cluster Intra-cluster
sum of
squares

Entropy Rand index
to result on
dense data

1 0.429 0.139 6.193 4.0185 1
0.9 0.429 0.139 6.193 4.018 0.479
0.8 0.43 0.141 6.531 3.9752 0.411
0.7 0.429 0.146 6.957 4.036 0.358
0.6 0.429 0.151 7.471 4.013 0.286
0.5 0.429 0.159 8.365 4.073 0.23
0.4 0.429 0.174 10.951 4.044 0.161
0.3 0.427 0.204 15.152 4.125 0.087
0.2 0.427 0.253 21.346 4.133 0.0407
0.1 0.426 0.287 29.06 4.095 0.023

Table 8.7: Impact of sparsity on hierarchical clustering

used and DBSCAN, MCL and Biclustering did not give good results (e.g. only one cluster found).
Among all others, hierarchical clustering did provide the most stable results while spectral clus-
tering gave relatively random results where even a small density decrease led to entirely different
clustering results. Unfortunately affinity propagation and hierarchical could not be evaluated
directly. However when examining the exemplars selected by affinity propagation, hierarchical
clustering had them also always placed in different clusters which is a good sign.

Especially interesting is that again the entropy and the inter-cluster distance do not change much.
To note is that all measurements are taken from the full matrix (the distance matrix from the
complete set). From a density level of 0.4, clustering results do not have much in common
with the probably better results based on more information. Above the similarity is more sig-
nificant.

8.3 Execution Workflows

The execution workflows were especially interesting from the point of view that the assumption
was that there should be around 7 clusters as the data is highly structured which can be seen in 3.2.
A negative squared distance matrix has been used and impossible distances between workflows
have been set to negative infinity. Additionally a sparse graph also has been used.

Interestingly MCL found exactly 7 clusters for both the sparse and the dense graph, and this
extremely fast. BiClustering only found 1 cluster. Affinity propagation did find 11 clusters, when
reducing dimensions it found 10 clusters but with a higher net similarity.
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Limitations

The list of limitations concerning the results presented in this thesis is endless. First of all the usual
limitations apply. Calculations are often heuristic, many assumptions and decisions concerning
input parameters on the algorithms have been made. Evaluation is difficult on unlabeled data
and indexes may tell statistics on how well an algorithm solved the mathematical problem but
not whether the result is meaningful at all.

It is to say that the approach in this thesis may be naive. With clustering it one usually has to
carefully examine the initial problem and depending on the problem should choose the suitable
methods. From this point of view the approach was very naive as many different methods have
been mixed together and compared against each other. Hence in a certain way it could have been
obvious that results vary greatly.

There is also a chance that this thesis underestimates the power of the algorithms as they were
designed for other problems, different kind of input data or that they have not been tweaked to the
maximum. So there is a certain amount of randomness in the results caused by imputation of data,
transformation of data, clustering the data and evaluating the data on different aspects.

Hence the results found in this thesis should be regarded with caution.
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Future Work

This work only contains a small subset of possible approaches and algorithms on the problem.
There are several different ways to further explore the problem. Clustering high-dimensional data
is actually a tripartite problem.

The first problem is to examine why data is missing at all. While it is obvious for user based
content as movie ratings, it may not be as clear in other cases. It is often recommended to remove
instances with many missing values and to remove outliers. Yet with sparse data it is difficult to
say whether an instance is an outlier or not. Removing outliers may make the task of clustering
easier, but also greatly reduces information on the data which may lead to a too strong general-
ization. The same applies to SVD. So there is much space on examining different approaches on
how input data should be handled.

Several more algorithms could be analysed to compare their results against each other. The algo-
rithms tested here were not specifically suited to high-dimensional data as for example OptiGrid
[Hinneburg and Keim, 1999] or PreDeCon [Boehm et al., 2004]. It would be interesting to compare
their findings to more traditional clustering approaches. Alternatively as often proposed is to di-
vide the data in advance in small subsets and then cluster these subsets and to evaluate whether
such results differ much from others.

Last but not least, especially in terms of movies it is difficult whether found clusters are meaning-
ful or not. Data where cluster associations of instances are known in advance may be analysed
to get a more direct validation measure on cluster results as visualizing high-dimensional data is
difficult.
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Conclusions

Clustering High-Dimensional sparse data is a difficult task. Given the data it is impossible
to envisage the structure or visualize it. Often clustering algorithms are evaluated in a two-
dimensional space where the solution can be evaluated graphically. Yet this is not feasible for
high-dimensional data as it would not reflect the actual problem adequate. The next problem oc-
curs when handling the sparsity. There are algorithms that might handle sparse data but results
then depend on how much the sparse data reflects the actual problem behind the data. Last but
not least an algorithm has to be selected to suit the data. Algorithms usually have a preference
concerning input data and might work better on one or another distance metric. Especially with
spectral clustering the used kernel has to be selected carefully.

Preprocessing the Input Data

As sparse matrices may lead to sparse graphs that do not represent the actual problem, filling or
imputing the missing values is an important task. Especially due to the fact that from density
levels of the matrix of 40% and below clustering results became entirely different as with dense
input data. Of course removing rows with missing values is an option if this is a possible option.
Then for imputing data building a predictor probably gives the most distinguished predictions
as a model is implied. With movie ratings predicted by Simon Funk’s model all algorithms (even
the ones that did not perform well) did find significantly more clusters than on the original data.
Using a recommender system to predict the values gave similar results yet not as distinguished
as with Simon Funk’s model. Using SVD to reduce dimensionality or to impute missing values
led to results that were entirely different than the other approaches. So this approach might be
better suited with low sparsity levels or when the data is highly representative for the whole
matrix.

As probably assumed filling missing values with row or column averages or zeroes does not give
useful data. However when using the jaccard distance measure zeroes do at least not distort the
resulting graph.

Cluster Algorithms

Often algorithms are evaluated on synthetic data and may perform slightly better on the given
data than the other algorithm. This advantage does not have a big impact on sparse data as for
movie ratings the data has a natural bias as a user can only choose between whole numbers and a
bias from imputing the values, namely how much the the predicted values differ from the rating
the user might have given. So each instance is not actually an exact point but rather has a range
in each dimension where the actual value might be. When trying different algorithms it seemed
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that some either made hard constraints and therefore had to find clusters as the number of cluster
is given as an input parameter or they had to try finding clusters without any further input or
a minimal distance or minimal cluster size. As high-dimensional data tends to be diffuse and
usually high distances may occur quickly, algorithms that did not take the cluster number as an
input usually did not find many cluster. This is probably given due to the fact that clusters have
different densities and are therefore more difficult to locate in high-dimensional data.

An exception was affinity propagation which performed well and did find similar results than
other algorithms. It would be interesting to see how it performs on labeled data compared to
hierarchical clustering. Hierarchical clustering seemed also proved very versatile on all datasets
and performed better than k-means and spectral clustering.

Although each algorithm probably has its advantages depending on the data and tweaking the
parameters, affinity propagation and hierarchical clustering seemed to be versatile.

Evaluation

Evaluation is a difficult task, especially given the non visualizable high-dimensionality. Usually
indices as the intra-cluster distance can only reflect how well the algorithm has solved the math-
ematical problem, but even then the entropy seemed not to be a good measure as it did not vary
much compared to random clusters. Hence the approach was to find similarities between differ-
ent cluster solutions using the rand index. A similar approach has been used in the netflix prize,
namely blending the results using various different approaches. This may be used for clustering
algorithms too as long as results are not entirely different.
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Appendix

A.1 R and its Packages

Most work has been done using R [Team, 2011] and its many packages aimed at clustering. For
further reference, the following packages have been used:

• Affinity Propagation of the ”apcluster” package [Bodenhofer et al., 2011]

• Hierarchical clustering and k-means are part of R [Team, 2011]

• A variety of spectral clustering algorithms and kernels including the one used in this thesis
can be found in the ”kernlab” package [Karatzoglou et al., 2004]

• Distance matrices have been calculated using the ”vegan” package [Oksanen et al., 2011]

• DBScan, cluster statistics and comparisons have been done using the ”fpc” package [Hen-
nig, 2010]

• The mantel test can be found in the ”ade4” package [Dray and Dufour, 2007]

• Partial singular value decomposition with lanczos bidiagonalization has been calculated
using the ”irlba” package [Baglama and Reichel, 2011]

• The Biclustering package can be found in the ”biclust” package [Kaiser et al., 2011]

• Non-metric multidimensional scaling has been done using the ”MASS” package [Venables
and Ripley, 2002]

A.2 Mahout - Recommender Systems

Apache Mahout 1 is is machine learning library. It consists of various algorithms. In this thesis the
slope one, the k-nearest-neighbour and the pearson similarity implementations have been used.
An extensive introduction for Mahout can be found in [Owen and Anil, 2010].

1http://mahout.apache.org/
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A.3 Other Implementations

An implementation of MCL can be found on the inventor’s [van Dongen, 2000] website 2.
The content-based filtering model is an own implementation based on Simon Funk’s approach.

A.4 Sample R Code

For reference, below a list of calls for algorithms and approaches used in this thesis based on the
movie ratings set.

# l o a d d a t a s e t
Ratings <−

read . csv ( ” / pathToCSVFile / movie r a t i n g s . csv ” ,
header=TRUE, sep=”\ t ” , dec=” . ” , na . s t r i n g s =”Na” , f i l l = TRUE)

# l o a d s p a r s e m at r ix
l i b r a r y ( Matrix )
sparseMatrix <− scan ( ” / pathToSparseMatr ixFi le / sparseMatr ixRat ings . t x t ” ,
what= l i s t ( in teger ( ) , in teger ( ) , in teger ( ) ) )
sparseMatrix <− sparseMatrix ( i =c lassHelper [ [ 1 ] ] , j =c lassHelper [ [ 2 ] ] ,
x=c lassHelper [ [ 3 ] ] )

# SVD and f u l l r e p r e s e n t a t i o n
l i b r a r y ( i r l b a )
svd <− i r l b a ( sparseMatrix , nu=120 , nv=120)
plot ( svded$d , main = ” Largest S ingular values of Execution plans ” )
svdFul lMatr ixRepresentat ion <− u%∗%d%∗%t ( v )

# c r e a t e d i s t a n c e m at r ix
l i b r a r y ( vegan )
l i b r a r y ( a p c l u s t e r )
JaccardDis tance <− vegdis t ( Ratings , method=” j a c c a r d ” ,
binary=FALSE , diag=FALSE , upper=FALSE , na . rm = TRUE)

NegativeSquaredDistance <− negDistMat ( Ratings , r = 2)

# mante l t e s t f o r d i s t a n c e m a t r i c e s
l i b r a r y ( ade4 )
s c a l e d J a c c a r d D i s t a n c e <− s c a l e ( JaccardDis tance )
scaledNegativeSquaredDistance <− s c a l e ( NegativeSquaredDistance )
mt <− mantel . r a n d t e s t ( sca ledJaccardDis tance ,
d i s t ( scaledNegativeSquaredDistance ) , nrepet =1000)

# c l u s t e r i n g
l i b r a r y ( a p c l u s t e r )
l i b r a r y ( kernlab )

2http://micans.org/mcl/
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l i b r a r y ( s t a t s )
l i b r a r y ( fpc )
l i b r a r y ( b i c l u s t )

s p e c t r a l <− specc ( NegativeSquaredDistance , c e n t e r s =141 , kernel = ”
rbfdot ” )

h i e r a r c h i c a l <− h c l u s t ( JaccardDistance , method=”ward” )
h i e r a r c h i c a l <− cut ree ( JaccardDistance , k= 141)
DBSCAN <− dbscan ( JaccardDistance , 10 , showplot = 0)
kmeans <− kmeans ( JaccardDistance , 141)
a f f i n i t y P r o p a g a t i o n <− a p c l u s t e r ( NegativeSquaredDistance )
b i c l u s t <− b i c l u s t ( as . matrix ( Dataset ) , method=BCBimax ( ) , alpha =0 .05 ,

number=50)

# e v a l u a t i o n
l i b r a r y ( fpc )
s t a t i s t i c s <− c l u s t e r . s t a t s ( JaccardDistance , spec t ra l@ . Data ,

kmeans@clusters , compareonly = FALSE)
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