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Abstract

New demands for analyzing and working with large data sets establish new challenges for com-

putation models, especially when dealing with Semantic Web information. Signal/Collect pro-

poses an elegant model for applying graph algorithms on various data sets. However, a dis-

tributed feature for horizontally scaling and processing large volumes of data is missing. This

thesis analyzes existing graph computation models and compares distributed message- passing

frameworks for proposing an integrated Distributed Signal/Collect solution that tries to solve the

problem of limited scalability. We successfully show that it is possible to implement distributed

mechanisms using the Actor Model, although with some caveats. We also propose future works

in an attempt to further enhance our solution.





Zusammenfassung

Die Nachfrage, grosse Datensaetze zu analysieren und zu bearbeiten, stellen Berechnungsmod-

elle vor neue Herausforderungen, besonders wenn man mit Informationen aus dem Semantic

Web arbeiten muss. Signal/Collect bietet ein elegantes Modell, um mittels Graphalgorithmen

verschiedene Datensaetze zu bearbeiten. Das Modell ist jedoch nicht komplett, da die horizon-

tale Skalierbarkeit fuer die Bearbeitung grosser Datenmenge nicht offeriert ist. In dieser Arbeit

werden bereits bestehende Graphberechnungsmodelle analysiert und Frameworks fuer verteilte

Systeme mit Nachrichtenuebertragung verglichen, um eine integrierte Loesung fuer Distributed

Signal/Collect zu offerieren. Die Arbeit zeigt auch, dass es trotz einigen Vorbehalten moeglich

ist, verteilte Mechanismen mit dem Actor-Modell erfolgreich zu integrieren. Wir empfehlen,

zukuenftig weitere Forschungsarbeit zu betreiben, damit unsere Loesung weiter verbessert wer-

den kann.
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1
Introduction

Today’s demand for analysis of Semantic Web Data is growing at a fast pace, mostly due to the

increase of data being available on the Web. Every day, millions of pages are published on the

Internet [ILK, 2011] (refer to Figure 1.1) and models for working with large volumes of data are

not abundant.

Figure 1.1: Estimated Google web-graph size

Programming models such as MapReduce [Dean and Ghemawat, 2008] have proven to work

well for some graph algorithms, but most of the problems require a rather cumbersome approach
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to implement the solution finding algorithm. Also worth noticing is Google Pregel which has

shown to scale to use massive graphs, although this framework introduces some limitations in

its computation model [Malewicz et al., 2009] . The Horde framework, even though it has a

somewhat simplistic approach towards a large scalability solution, shows that it is possible to

achieve better results than frameworks like MapReduce [Xu et al., 2009]. GraphLab [Low et al.,

2010] is an intriguing attempt in the field of parallel graph processing that proposes a model for

solving machine learning problems in a new manner by combining machine learning processing

with parallel computations in graph-like algorithms.

In light of the scarcity of available tools, Signal/Collect proposes a solution that is concise and

also offers a sophisticated model for graph processing. Its design has a model that fits well for

a satisfactory number of graph algorithms. Therefore, Signal/Collect provides a set of tools that

allows accomplishment of tasks in a performing way when compared to other paradigms, such as

those presented before [Stutz et al., 2010]. However, Signal/Collect is limited to a shared-memory

execution only. In other words, it does not scale horizontally which means that it cannot work in

a distributed way. For this reason, it lags behind other programming models in terms of features.

Cluster and cloud computing are increasing in availability by observing the offering of ser-

vices from Google 1, Amazon 2 and IBM 3. They are listed amongst the biggest players to offer

commercial services for large scale processing, provided that more and more data needs to be

processed using distributed resources. Therefore, large scale systems are an advantage for the

fact that they can enable the loading of huge amounts of data for analysis. Consequently, having

such systems that deal with a considerable volume of data is becoming a standard.

1.1 Motivation

As stated in the introduction, usage of scalable systems is becoming a consolidated trend. Nev-

ertheless, dealing with huge datasets can become ineffective if one does not have the right tools

for correctly perform processing and analysis. Having said that, one must not forget that the

Signal/Collect implementation, prior to the conclusion of this work, does not scale horizontally,

1http://www.techno-pulse.com/2011/04/google-cloud-computing-services.html
2http://aws.amazon.com/ec2/ - Amazon Elastic Compute Cloud (Amazon EC2)
3http://www.ibm.com/cloud-computing
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somewhat limiting the execution to rather small graphs. On the other hand, since Signal/Col-

lect proved to have good performance and great potential for efficiently performing graph-like

computations, it is more than reassuring that the framework is open for improvements to make it

perform even better.

Making Signal/Collect distributed poses a challenging and, at the same time, an interesting

research area. Not only is this a current trend, but also is it extremely beneficial for both the scala-

bility and performance of the framework. This work is also an opportunity to further improve the

scalability by making use of more machines for computation and therefore enabling processing

of enormous graph data sets. Also, it is unquestionably desirable to maintain the efficiency and

performance that was shown in the shared-memory implementation [Stutz et al., 2010]. Hence,

the importance of this work is to try to push it to the limit of computation in a distributed way.

Therefore, Distributed Signal/Collect tries to add the horizontal scalability that the framework

does not currently have.

The goal of this thesis is the design, implementation and evaluation of the Distributed Signal/-

Collect prototype which has the ability to benefit from the usage of more machines for the pro-

cessing of computation and also the usage of larger data sets. Furthermore, this thesis shows and

compares the performance of Distributed Signal/Collect evaluated against the shared-memory

implementation.

1.2 Outline

This thesis starts with an introduction into the related work in the fields of research for parallel

graph processing and frameworks for distributed systems in Chapter 2. Subsequently, in Chapter

3, the design for the Distributed Signal/Collect is outlined, whose implementation is described in

Chapter 4. Experiments conducted for the evaluation and a discussion of the results are presented

in Chapter 5 and 6 respectively. Finally, Chapter 7 concludes this thesis with a summary of the

work done and an analysis of the latter deriving final conclusions and giving future prospects for

work to be done.





2
Related Work

In this chapter, an introduction to the related work in the fields of parallel graph processing and

distributed systems is given. Different existing frameworks for graph processing are presented

in 2.1. Approaches and concepts for making a system distributed are shown in 2.2. Finally, in 2.3

a comparison is made pointing out the challenges that had to be overcome when evaluating the

risks and trade-offs between distributed frameworks.

2.1 Existing distributed parallel graph processing

Existing paradigms for parallel graph processing are scarce and each of them tries to approach

different specific problems. For example, some of the earlier designs offer a simplistic approach to

solve problems with parallel decomposed tasks [Dean and Ghemawat, 2008], even though not all

types of problems can be solved this way. Other types of problems, outside of the main semantic

web scope, can also be designed to work with graph-like processing with [Low et al., 2010] and

[Haller and Miller, 2011] being examples of specific ways for problem solving.

From the existing framework choices, attention is given to the fact that the known frameworks

are well featured, offering an acceptable number of properties such as the capability of distributed

execution and an asynchronous parallel model for performing various tasks. Thus, the criteria

for selecting these frameworks for comparison with our desired solution are given. These in turn,

attempt to summarize ideas and point out relevant mistakes such that a correct implementation

could turn Distributed Signal/Collect into a viable model for the future.



6 Chapter 2. Related Work

MapReduce is a recent framework for dealing with large data in clustered and grid tiers. Its

simple programming model, however low-level, can be roughly described by only developing

the map and reduce functions, where map can be seen as data input and the reduce as the input

processing and output of the results. The infamous word count example 1 in MapReduce helps

understanding this concept. This simplistic approach, even though used by many, is a limiting

one-algorithm-model for all types of problems that often times can be cumbersome to tackle.

However, due to its success, it is a notable mention.

Google Pregel is an approach to solve problems involving large graphs. It has a similar pro-

cessing model to Signal/Collect with some nuances. The basic unit of processing is a vertex and

not a worker entity managing many vertexes as in Signal/Collect. Another difference is the usage

of sequentially well-defined steps called ’supersteps’, making it not a real asynchronous message

passing between machines during execution. More details are seen in the next sub chapters. Also,

a master coordinator entity exists for computation management, results aggregation and statistics

collection.

GraphLab is a new approach into the field of parallel computation. The reason for including

it in our related work was the fact that this framework is a different proposition towards paral-

lel computation that takes advantage of graph-like structures for solving problems, specifically

Machine Learning problems, using a consistent abstraction. This abstraction tries to address the

philosophy of the one-size-fits-all problem solving by proposing a specific framework that deals

with graph-based data model. For this reason, it presents a set of characteristics that are worth

mentioning in our study.

We continue our detailed study in the subsequent chapters when we try to analyze existing

features for creating a bridge between existing works and our proposed solution.

2.1.1 MapReduce

As stated in the introductory section of this chapter, MapReduce is a programming model for

processing large data sets. In general, what users need to do is to write a map function and a

reduce function. The MapReduce library will automatically parallelize the programs and execute

1http://hadoop.apache.org/common/docs/current/mapred tutorial.html
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them on the cluster.

The initial parallelization happens at the input step when the framework divides (or splits)

the input into parts, each assigned to a map function. The map function is responsible to assign

each division to a user-defined key/value pair mapping. It will then further generate key/value

pairs outputs that are given to reducers. Reducers can be regarded as the basic unit responsible

for applying the reduce function for each unique key in the values that it contains. The final step

is then to output the results when the computation is done, with an optional merging step in

between.

A MapReduce instance could be abstracted into a graph. However, this solution can be re-

garded as a ’shoe-horn’ approach. This means the abstraction will work in the framework. The

inconvenient step is the modeling of a graph in such map/reduce functions. This works well for

data that needs processing in a pipeline style, where data is transformed at each step and going

further for more processing based on previous processing. In contrast, such a model does not

work well when there are not clearly defined stages for processing data. Therefore, the one-size-

fits-all approach has some disadvantages at this point, requiring better alternatives for parallel

task-oriented models.

Even though MapReduce imposes this limitation to graph models, the fact that it is a perform-

ing distributed system can be regarded as an example with successful use cases as demonstrated

in [Chu et al., 2007], [Cohen, 2009] and [Kang et al., 2009].

2.1.2 Google Pregel

Pregel is usually thought of as a parallel graph transformation framework. The most basic unit

is a node 2 containing the properties, outward arcs 3 plus the node identifier the outward arc is

pointing to. Since the node is the basic unit, it takes the advantage of using a mailbox for receiving

messages from incoming arcs. The algorithm starts with the partitioning of the graph. Whenever

a graph is loaded into the framework all its nodes are grouped into partitions. Each partition is

considered a unit of execution that makes use of a thread for computation.

In contrast, Signal/Collect uses the same model, having the vertexes distributed to worker-

2Node being a synonym for vertex in a graph
3Arc being a synonym for edge in a graph
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threads i.e., the worker uses a thread for computing the vertexes it manages. Therefore, a partition

in Pregel can be thought of as a worker in Signal/Collect.

In Pregel’s context a machine ’worker’ can host many partitions, each having a thread for it-

self. That way, multiple processing units are executing parallel tasks abstracted within a so called

superstep concept. This concept is part of the Bulk Synchronous Processing (BSP) model. For

each superstep, the processing unit (partition) receives its messages delivered from the previous

superstep such that they can do their computational processing. From this, they can also generate

messages that need to be sent to other partitions, all happening in parallel and asynchronously.

Whenever messages are delivered, upon execution of the next superstep the execution units can

process them. Finally, the synchronicity on BSP comes in the form that supersteps can only start

once all processing units have finished delivering their messages. From this point, the cycle re-

peats until a termination condition has been reached.

Google Pregel uses a concept for finding nodes within worker machines with the aid of a sim-

ple hash. This is a similarity to Signal/Collect. In addition, there is a coordinator playing a central

role in the execution of the framework which is also an affinity. This is also a necessity for con-

trolling when supersteps should happen, since all machines need to be finished for issuing a new

superstep. Other features are also available such as fault tolerance via checkpoint coordination

and worker health check heartbeats for reassignment of partitions upon non-response of dead

machines.

In many ways, Pregel does indeed have very useful properties desirable in a distributed sys-

tem. Although it does not offer total asynchronicity in the message passing model, the ability to

scale to many machines and its fault tolerancy features puts it into a position that one has much

to learn from.

2.1.3 GraphLab

GraphLab is a proposal that deals with a specific problem: solving machine learning algorithms

in a parallel fashion. The idea came from the fact that, when existing parallel frameworks are

applied for solving machine learning algorithms they somewhat limit the efficiency of the execu-

tion [Low et al., 2010]. The solution proposed was a high-level abstraction in a data-graph format
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that tried to solve parallel algorithms involving a sparse computational structure, a fundamental

characteristic of some machine learning algorithms.

Sparseness and parallelism are somewhat tied together. Since data partitions can be stored in

the vertexes and the edges of the graph, an association of data can be defined such that the graph

representation achieves a high degree of sparseness. In fact, it depends more on the data and how

one makes this association, such that the benefit of parallelism can be achieved.

In addition, the functions that the framework provides run concurrently with one another. The

sync mechanism, analogous to the reduce operation from MapReduce and the update mechanism,

corresponding to the map operation in MapReduce, with some additions, are the user defined

core functions.

Another feature that is worth mentioning is the scheduling. For executing the algorithms one

needs to define a scheduling plan dictating a desired sequence for execution i.e. the application

of sync and update functions. Depending on how the execution steps are established, there could

be asynchronous gains in parallelism and also prioritized scheduling mechanisms, all provided

by the framework since choosing the right scheduling could be difficult, according to the authors.

Therefore, with such techniques in place, the framework takes advantage of parallel executions.

Last but not the least, algorithm termination can be assessed either by non-availability of tasks

or user-defined convergence functions that analyze the state of the graph. This is a feature found

in almost all graph frameworks discussed so far including Signal/Collect’s corresponding termi-

nation detection.

2.1.4 Summary

Taking the frameworks listed before, we can clearly see some influences upon Signal/Collect’s

inner workings implementation. This can be attributed to the way graph-like parallel computa-

tions are designed in order to be performing and efficient. The properties available include the

parallelism for performing various computational tasks in a graph simultaneously, asynchronic-

ity between units of computation and also a coordinator entity responsible for managing the

execution. These features are all included in Signal/Collect and thus we must direct our focus on

missing features.
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As it is the purpose of this thesis, adding the possibility for distributing the framework and

scale horizontally can make Signal/Collect a complete framework, for at least taking it to the

same level as existing ones.

2.2 Frameworks for distributed systems

Initial choices of distributed frameworks were mainly directed towards a strategy that would fa-

vor a non-central approach when implementing the distributed infrastructure for Signal/Collect.

Nevertheless, availability of truly non-central designs was little in the Java/Scala sphere.

Many employable tools considered reputable examples by the community were left out or, at

least, were seen as a risk for the project. This was mainly as a consequence of the fact that our

approach was more inclined to being a more homogeneous one, such that integration had to be

minimal and uncertainties needed to be avoided.

For instance, ZeroMQ [iMatix, 2011] is an interesting solution for queue management system 4

with the philosophy of being simple but at the same time powerful enough for building complex

distributed systems. Nonetheless, since the whole library is built on top of C++, even though

Java native bindings are available, we tried to avoid risks when implementing a large and com-

plex system over many machines. Also, by keeping Signal/Collect with as few dependencies as

possible and, not forgetting, as little integration as possible, we gain portability and plenty of

flexibility.

Another consideration was the usage of Message Passing Interface (MPI). MPI [MPI, 2009],

[Burns et al., 1994] has been used extensively in parallel computing for many years mostly be-

cause of efficiency. Nevertheless, MPI is not suitable for programming in a heterogeneous envi-

ronment since its underlying structure is optimized for each system and network, making it non-

interoperable with different architectures. An attempt to build such an API in Java was made,

sadly not a complete one, called MPJ (MPI for Java) [Bornemann et al., 2005], as part of the Java

Grande forum providing high performance with the ability for being deployed in multiple plat-

forms.

Having such a scenario, we present a few solutions that were seen as good candidates for the

4http://www.zeromq.org/area:results
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implementation of this thesis. A comparative analysis follows afterwards where at the same time

we formulate arguments for our framework of choice as the base for distributing Signal/Collect.

2.2.1 OpenTerracotta Cluster

OpenTerracotta [Terracotta, 2011] is an open source solution for clustering and replication of Java

objects. It allows distribution of objects using an implementation within the Java Virtual Machine

(JVM) level. For making an application distributed, Terracotta’s server creates a large JVM that

is composed of all of the clients’ JVMs. This helps the application to replicate changes in objects

that reside in another client within the cluster with minimal effort since the job is mostly done by

the server controlling the JVM infrastructure.

The approach used to control the sending of data between machines is bytecode instrumen-

tation (BCI). The developer then dictates which parts of the code should be used as shared state

such that the server instruments the code only in those parts necessary for the proper distribution

of state change. Having said that, the transactions between the JVMs become more similar to

the transactions used in the Java memory model. In addition, these transactions contain only the

data of the fields that have changed and they are routed through the server to the other clustered

JVMs, maintaining consistency. Moreover, the server only sends the transaction to the other JVMs

that have objects instantiated on the heap that are represented in the transaction.

Terracotta’s strategy is to bypass Java serialization, identifying only the components that

change inside the application’s objects. In that sense, it saves time in the transaction operation

since serialization might be expensive for certain types of data, e.g. large contents with small

changes requiring re-serialization of the whole data. Even though this solution makes the repli-

cation of only the fields that changed, the usage of this mechanism requires that all data pass

through a central server rather than sending data directly to the replicated instances in the clus-

ter.

2.2.2 HornetQ

HornetQ [JBoss, 2011a] is an open source framework providing a solution for clustered and asyn-

chronous message system. Built entirely with Java, it’s design is basically based on two messaging
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principles:

• the message queue principle (also known as point-to-point messaging) and

• the producer-consumer concept.

The message queue pattern is described by having a message being sent to a queue. The queue

is tied to a set of clients that can process the messages available in the queue. When using this

method, the message can be processed by only one consumer from this set, removing it from

the queue when processing is done. This concept takes advantage of the loose coupling between

senders (the part who puts the message in the queue) and the receiver (the part who removes the

message from the queue).

On the other hand, the producer-consumer pattern has many producers sending messages to

a topic on the server. Consumers in turn subscribe to a topic and each subscription receives a

copy of each message that was sent to the topic. The difference when compared to the message

queue pattern is that a message can now be processed by more than one consumer.

In HornetQ, both concepts guarantee delivery to the consumers and they can also be durable

assuring persistence in the event of failure or restart. Also, the design of both patterns is similar,

where message queues and topics reside in the server and processing units (clients) for the queues

are separate from the server. This guarantees the decoupling between server and clients and

ensures messages are not processed twice in the message queue pattern and replication in the

producer-consumer pattern.

The default core API and transport layer of HornetQ are the Java Messaging System (JMS)

and JBoss Netty respectively. JMS has been a popular API for messaging that provides a standard

for a distributed communication, defining message interfaces that attempt to minimize the set

of concepts that a developer needs to know. Similarly, Netty defines the wire protocol for the

messaging.

The JBoss Netty [JBoss, 2011b] project has gained attention by the fact that it provides an

alternative to standard Java Network IO, simplifying development of sockets and offering high

performance and high scalability.
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2.2.3 Akka

Akka [Typesafe, 2011] is a framework for providing concurrent and scalable architectures on top

of the Java Virtual Machine. It is built entirely with the Scala Language [Odersky and al., 2004],

benefiting from a variety of features inherent to the language, for example, functional program-

ming, that other languages such as Java cannot provide. These features in turn, help the developer

to build concise concurrent applications without much effort with added flexibility.

The concurrency approach that Akka uses is the actor model [Hewitt et al., 1973]. This model

is nothing new, dating back from 1973, first appearing in languages such as Erlang [Armstrong

and Virding, 1990], later being incorporated into Scala. actors can be seen as the fundamental

part of this concurrent programming paradigm. This paradigm is an attempt to relieve the devel-

oper from working with locking mechanisms and thread management and also the cumbersome

sharing of state. It also helps with the separation of concerns between job processing modules

and job providing modules. In other words, this independence is much more clear. For instance,

an actor is an entity that receives messages and processes them and, most of the time, they will

execute a computational task based on that message. This design is highly useful when thinking

about certain development patterns where one have producers and consumers of tasks. The actor

model also allows the addition of behavior to an actor where it can also be a producer of tasks,

sending messages to other actors.

Although Scala has an actor library, Akka has their own implementation with plenty of fea-

tures already available for the user such as load and timeout management and also failure han-

dling. Another feature worth mentioning is the asynchronicity of Akka actors, enabling a pro-

gramming model that is non-blocking and suitably efficient. This is valid for both the local con-

currency (vertical scalability) and the remote concurrency (horizontal scalability).

For sending messages between remote actors, Akka uses the already mentioned JBoss Netty,

which provides a performing network transport layer over other Java asynchronous network IO

frameworks [JBoss, 2011c]. What is important to emphasize is that Akka provides a transparent

way of dealing with both remote and local actors, where the framework does the network man-

agement behind the curtains but, at the same time, providing all features from message passing

to error treatment.
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2.2.4 Comparison and summary

From the frameworks selected for comparison, we start by analysing the advantages and dis-

advantages of OpenTerracotta. Terracotta devises an asynchronous model mainly for Inter-JVM

communication which is clearly not focused on data streaming, since it needs to perform byte

code instrumentation almost all the time. However simple architecture with promised no code

change, the framework uses a central approach where every message needs to be routed through

a server that requires fine tuning and complex configuration parameters setting. Mainly for these

facts, Terracotta is efficient at keeping object data coherent and available when small and rather

infrequent messages need to be transmitted between JVMs 5. In addition, this shows clearly that

this design is not the ideal one for a point-to-point communication system.

Coming now to HornetQ, one of the reasons for including it in our tools comparison and eval-

uation was the number of features that it includes in its implementation. Asynchronicity on the

messaging protocol, the usage of Netty in the underlying transport layer and many other prop-

erties made it a serious candidate for serving Signal/Collect with a distributed infrastructure.

Unfortunately, HornetQ employs a central server architecture for message passing among clients

and, on top of that, client message queues are kept on the server side. This helps with reference

uncoupling but, on the other hand, this is a bottleneck that could pose a poor horizontal scalabil-

ity. Referring back to the producer/consumer model, HornetQ scalability properties can only be

seen on the consumer side, where many consumers can be included without much effort. How-

ever, our desired design requires that consumers should also be producers. This in turn makes it

cumbersome to manage and also puts an overload on the server with plenty of queues to manage

at a given point in time.

Last but not the least, we outline the details about Akka. When comparing Akka with other

platforms, the first thing that can be noticed is the facility of the framework being simply included

as library for accessing its functionalities. Moreover, this lightweightness imposes no effort for in-

tegrating it into the Signal/Collect code added to the fact that its Scala nature provides a standard

API with all features of the language readily available. Another advantage that needs considera-

tion is that Akka requires no central infrastructure, functioning as a point-to-point protocol when

actors need communication between themselves. In spite of that, Akka opposes to the simpler

5http://www.terracotta.org/confluence/display/docs/How+DSO+Clustering+Works
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management philosophy by not using a single point of management as the infrastructure base.

That means that the framework is dependent on a distributed management making the overall

infrastructure tightly coupled. Nevertheless, no bottleneck over simplified management is not an

unsafe choice for one to make when considering performance.

Table 2.1 summarizes the tools evaluated with some of their characteristics. It gives an overview

of the points cited in this sub chapter and it also expresses our needs for what was considered

most important when choosing a framework to work with. As can be inferred from this table,

all chosen tools deliver asynchronous messaging. However, we are safe to assume that Akka’s

latency in message exchange is low since it does not devise an architecture with central message

routing. Programming effort is considered a subjective matter and thus needs to be taken with

a grain of salt. Lock-based concurrent programming and multi-threaded synchronization be-

comes rather difficult to manage and excessively complex to administer in larger systems. Thus,

when the actor model proposes a concurrency philosophy with lock-free mechanisms and also

immutable data structures, then it becomes much more inviting and pleasant to develop systems

without much strain.

Terracotta HornetQ Akka

Asynchronous Yes Yes Yes
Basis for Communication Improved Java Sockets Netty Sockets Netty Sockets

Central Server Yes Yes No
message routing

Reference Coupling No No Yes
Latency High High Low

Message Throughput Bottleneck Bottleneck Point-to-point
Management Central Central Distributed

Programming effort High Medium Low
(Java concurrency) (Producer/Consumer) (actor Model)

Table 2.1: Framework comparison summary

Our investigation concludes that the previously mentioned findings, along with a preference

for maintaining overall efficiency of Signal/Collect leans towards choosing Akka over the other

candidates. In our understanding, it is inconceivable to take an approach with a central server

bottleneck, even though loose coupling is the desirable way to work with, in order to avoid the so

called ripple effect [Black, 2001]. Management is also a disadvantage that comes with this choice.

However, it is the author’s opinion that this is a small price to pay for gaining performance and
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efficiency when deploying a distributed system. Additionally, Akka has numerous properties

that help ease development and implementation of modules for achieving an effective distributed

system.



3
Design

The framework choice for this work was the usage of the Akka framework, mainly as a result of

the previously mentioned advantages listed. This chapter addresses an overall view of the design

choices that were intrinsically related to the framework of choice, and also other considerations

related to the distribution of Signal/Collect such as the addition of new features.

A note to the careful reader. From now on, a reference to an actor will be directly analogous

to the Akka actor to avoid repetition. Unless explicitly stated, an actor is always an Akka actor

throughout the remainder of this work.

3.1 Signal/Collect without distribution

Signal/Collect’s initial proposition and evaluation showed remarkable capabilities in terms of ef-

ficiency and scalability [Stutz et al., 2010]. This and other characteristics were the main reasons

for delving into such an exciting project. Nevertheless, Signal/Collect only proposed a local exe-

cution approach, being limited by the number of cores and memory available at a given machine,

which becomes impracticable at some point in time demanding expensive solutions for solving a

problem.

Consequently, the need for a more capable and powerful model was a priority. No horizontal

scalability poses a limitation at how much data can be loaded and also the length of the computa-

tional time required. Even though Signal/Collect offers an exceptional, close-to-linear scalability

with the addition of more workers for solving a computational task, not being able to load enor-
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mous web graphs is a fact that must be addressed properly and is, as stated before, one of the

goals of this thesis.

In this sense, what Distributed Signal/Collect tries to accomplish is solving the problem of

large scale computational demand. By taking advantage of using resources among different ma-

chines we try to outperform local scalability. The remainder of this chapter shows how that could

be achieved.

3.2 The actor model and the Akka framework

Not surprisingly, Signal/Collect’s design fits admirably well with the actor model where the

workers are the basic entity for computational processing. In this sense, adaptations in the frame-

work were minimal with respect to replacing the existing implementation for an actor entity.

In contrast with the original implementation, most of the messaging part, such as inbox pro-

cessing and queue management were abstracted away since an actor already provides an under-

lying infrastructure for them. Also, blocking operations such as having to wait for a message to

arrive at a worker have disappeared. This is a characteristic pertaining to the actor model, where

messages are asynchronously sent using a ’fire-and-forget’ philosophy. Naturally there are other

message sending mechanisms, for example, the usage of Futures, only they are abstracted within

the framework and are indeed used as part of the implementation.

One of the biggest advantages of the actor implementation for the distributed case is the pos-

sibility to work transparently with remote actors as if they were local. The mechanism that Akka

implements for this is called Actor Referencing(ActorRef). The ActorRef entity is the base hook for

sending messages and interacting with an actor, so one can work in an unambiguous way with

them, whether they are local or remote. The only detail that changes is the way to get this hook

(a local or a remote one). This is illustrated by the example codes following next.

For getting the reference of a local actor, the following code is used:

val actorReference: ActorRef = Actor.actorOf[MyActor]

MyActor is a class that extends the Actor entity and, as one can see, instantiation happens

in a special way. What exactly happens behind this code statement is the actor preparation for
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receiving messages, followed by the start call on the actor reference:

actorReference.start()

Whenever those statements are executed, message sending is executed via the ’bang’ (!) oper-

ator, depicted in the code below. The ’bang’ operator [Armstrong and Virding, 1990], in Akka has

the ’fire-and-forget’ semantics which means that no reply is expected:

actorReference ! "Hello"

One design for creating messages to be used between actors exists as a common programming

practice. Messages can be easily coded as case classes in Scala. Case classes export their construc-

tor parameters providing a recursive decomposition mechanism via pattern matching. This in

turn helps for message matching at the actor side with the use of the receive function. 1.

For the remote actor, the machine containing the actor instance, i.e. the one providing the

actor service can be seen as the server, and the machine using the remote instance can be seen as

the client, not being limited to have server and client in separate machines - i.e. remote actors can

also be accessed in a local way.

To instantiate an actor on the server side, we also make use of the special actorOf statement.

In addition, the usage is closely related to a socket where the IP address or a hostname plus the

port where the actors will listen are the only parameters required (for the most simplistic case).

When registering remote actors, they are automatically started (the usage of the start function is

no longer needed):

On the server machine:

remote.start("hostname", port)

remote.register("service-name", "hostname", actorOf[MyActor])

Since there can be more than one actor being available remotely and, most importantly, to

disencumber the client from knowing which class is being used by a remote actor, the usage of

a service name as a parameter greatly simplifies the configuration for getting the correct remote

ActorRef. It can also be used as an intuitive way of getting the behavior of the actor. To instantiate

1http://www.scala-lang.org/node/107
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more actors, all one needs to do is call the register function (the start function only starts the

server). Access to the remote actor happens via the code below.

On the client machine:

val ref: ActorRef = remote.actorFor("service-name", "hostname", port)

In addition to all the foregoing, sending messages could be done via the same ’bang’ operator.

But now, since we are dealing with networked actors, mechanisms should be put in place to

ensure correctness in the event of network failure. The ’bangbang’ operator (!!) semantics is used

to send a message asynchronously to the remote actor but it will wait until a reply is received or

a timeout is reached.

3.3 Distributed Signal/Collect architecture overview

Having explained how actors can be instantiated and how the actor model works with message

sending, we present the Distributed Signal/Collect architecture. Mainly, the core architecture,

when related to algorithm execution and core functionalities, have had no drastic changes. One

can consider an almost identical architecture in the distributed case, taking into consideration

only those parts necessary for the correct network deployment and distribution.

To start the infrastructure for the compute graph execution in a distributed way, all machines

start simultaneously executing a bootstrap sequence that comprises of machine discovery and a

simple leader election algorithm. Once the leader is selected, the other machines become ’zom-

bies’, waiting for the leader’s ’orders’. For sending ’orders’ to the zombies and receiving zombie

’acceptance’ of the ’orders’ or ’requests’, we use actors as machine managers, which are respon-

sible for managing the correct initial startup and instantiation of remote workers. Once workers

are initiated, the leader will know how to get their references via the bootstrap mechanism that

has been currently undergoing.

After proper initialization, the managers are kept running but only in order to be a way of

coordinating correct shutdown of the infrastructure whether it is due to a failure or due to proper

termination. The leader will also contain all the coordinator logic since Signal/Collect depends

on a coordinator for algorithm correctness and consistency. For instance, the zombie machines
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communicate with the coordinator residing at the leader via a remote actor which will simply

forward all messages to the real coordinator implementation. These forwards are, namely, worker

status and algorithm control messages (e.g. start, pause and stop).

Figure 3.1 presents a general overview of the infrastructure that is available at the beginning

of the execution. These distributed management entities, particularly the managers, are mostly

used at the beginning of the execution which is in fact happening at the bootstrapping phase.

Figure 3.1: Architecture overview - Distributed Signal/Collect

In the next chapter, a more detailed explanation of the mentioned bootstrap mechanism is

given, as well as other message exchange phases important for the correct infrastructure activa-

tion.





4
Implementation

This chapter shows how the proposed design of Signal/Collect with distributed mechanisms and

the actor model was implemented, taking the improvements described in the previous chapter as

reference. An overview is given of the most important Distributed Signal/Collect components,

based on which it is shown what was added to achieve a running version of the distributed system

that realizes the design described in the previous chapter.

4.1 Modifications in Signal/Collect for distributed support

The class diagram in Figure 4.1 depicts a general overview of the classes that are core extensions

related to the distributed execution of Signal/Collect. It also presents a rough overview of the

newly implemented classes that provide feature additions related to the distributed mechanisms.

Although the class diagram is incomplete, it gives a good overview of the most relevant features

and properties, which were added as part of the distributed architecture. Specific implementation

of the related classes is shown in the following sections.

4.1.1 Akka Worker

The worker class has been extended to meet the requirements imposed by Akka’s actor model. To

a degree, the actor has a receive method that processes a message from its mailbox. This method

gets executed whenever a message is available for processing. From an asynchronous point of
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Figure 4.1: Simplified Class Diagram
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view, this is the perfect solution for sending messages to an entity since they get executed at the

actor in a FIFO manner, as long as they are in the actor’s mailbox.

On the other hand, this changes the semantics of the original worker implementation. In the

original worker, algorithm execution has to be coordinated with mailbox check, message pro-

cessing and the computation step (signal and collect steps). A separation between mailbox man-

agement and message processing is not clearly identifiable at first hand. However, the gain in

performance was proven to be high since messages are processed as long as they arrive in the

mailbox, giving the worker a good throughput rate at processing [Stutz et al., 2010].

Returning our focus to the receive method, a mechanism had to be implemented to escape

the computation step or, in other words, the core computation functions of Signal/Collect. For

instance, a mailbox check is made 1. Upon emptiness, Signal/Collect execution continues nor-

mally. Whenever the mailbox contains a message, execution is halted to give space for the receive

method to be called again (so that a message gets taken from the mailbox and processed). Above

all, it is important to emphasize that by implementing such procedures we are guaranteeing con-

sistency and similarity with the original implementation.

Going further with changes and features added to the worker, we come to idling detection.

The actor library has a feature called ReceiveTimeout. Its behavior is a simple message being sent to

the actor whenever a predefined timeout is reached. The timeout countdown is triggered when-

ever no more messages are available at the mailbox. Therefore, if no messages are available to be

processed and no more computations need (signals and collects) to be performed, the worker is

considered idle.

Last but not least, what is important to remember about this worker implementation is that

it can be devised either locally or remotely. No further special functions or parameters are re-

quired to be implemented at the worker side in order to be compatible with different architec-

tures. Hence, the addition of the Akka worker gives the possibility for having another worker

design for working locally.

1A contribution by the author was made to the Akka open source for inclusion of such a feature
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4.1.2 Worker Proxy

Changes in the worker proxy were specifically for treating a special case of remotely located

workers. Upon coordinator message sending, a reply is sent from the workers to the worker

proxy in order to acknowledge receive of the message, thus releasing the proxy from the blocking

mechanism that waits for this reply. On dealing with remote workers, messages can be lost or a

machine might have crashed. So, a simple message reply await timeout was implemented for the

framework to notice the failure and, later on, when fault tolerant mechanisms are in place, deal

with such failures.

4.1.3 Akka Message Bus

The message bus had to be replaced by an Akka implementation since message sending is not

done via the MessageRecipient entity. That is obvious since now we use the ’bang’ operator for

sending messages to the workers. In addition, for correct communication between remote ac-

tors and the coordinator, the reference to the coordinator forwarder is used instead as a message

passing to the real coordinator staying at the leader.

Message serialization is also implemented to use standard Java as part of the Akka library.

Some changes in the way the framework sends messages, mainly due to closures offered by the

Scala language, had to be made in order to avoid serializing unnecessary data and also to increase

performance.

4.1.4 Bootstrapping

A bootstrapping mechanism has been made available for correct startup of the infrastructure

necessary for the computation. That is an abstraction for the user to only worry about choosing

the desired architecture, either local or distributed, such that the mechanism takes care of the

correct steps for initialization.

For clarification, the required steps for correct bootstrap are presented. Upon declaration of

configuration parameters for execution (described in the Appendix A.1), the first and most im-

portant one is an initial setup for worker communication when there are no means for getting
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their references by usage of Remote Procedure Call (RPC) and Worker Proxies. 2. Since this pro-

cess needs an exact sequence of steps, this is hidden from the user so that errors are avoided at

the most elementary steps. Subsequently, the coordinator is created and all the workers can get

the references to the other workers for message passing, which is also a meaningful step. It is

important to remember at this point that the coordinator is only instantiated at the leader ma-

chine, which in turn is similar to the shared memory execution (only one instance should exist).

Finally, the compute graph is created and returned for direct manipulation. The compute graph is

available as an API where the user decides to add vertexes and edges for the graph computation

according to an algorithm of choice. More details can be seen at the original Signal/Collect paper

[Stutz et al., 2010]. Examples of usage can also be found in the source code under the examples

package.

4.2 Implementation of distributed mechanisms

4.2.1 Machine discovery

At the bootstrap phase there is an implementation that addresses the problem of computation

machines finding each other. This is the case since we are using a job scheduling mechanism at

our test bed and the jobs sent to it can be executed at different intervals and assigned to different

machines. Hazelcast 3 is a library for easily setting up clustered data distribution among a series

of machines. Initial tests demonstrated that Hazelcast does not offer a very high performance for

fully implementing a distributed system, although it offers discovery using multicast or TCP/IP.

The fact that it is not performing for the whole solution does not impose a limitation for the boot-

strapping since such step does not require high performance. According to our measurements, it

takes a maximum of 30 seconds for 12 machines to find each other. For this reason and also for

the fact that it supports commercial tools for cloud computing such as Amazon EC2, we decided

to include it in our solution.

The initial step is the creation of a Hazelcast cluster that finds running instances in other ma-

2This design has been recently implemented in Signal/Collect
3www.hazelcast.com
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chines. Consequently, each machine has the knowledge of all the cluster members to send them a

randomly generated identifier. A bootstrap manager is responsible for the send and also reception

of the pair [IP Address → Identifier] respectively to and from all machines.

Upon receiving all pairs, each machine compares its own identifier with those received and the

IP address with the smallest identifier is selected as the leader. The bootstrap sequence continues

upon deciding if the machine should work as a zombie or as a leader, discarding the bootstrap

manager since its task has been fulfilled.

4.2.2 Machine management

The machine management module is used only at the worker creation step, distributed graph

loading and termination of running instances. All the modules were implemented using actors:

the leader manager and the zombie manager.

The leader manager, existing at the leader selected machine, takes care of sending all the zom-

bies the configuration parameters for the creation of workers. It also functions as a checkpoint

entity for coordination of zombies, namely to check if the zombie managers have come online

and if the remote worker creation was successful.

What the zombie manager does then, is to receive the proper configuration from the leader,

instantiate all designated workers and rendezvous with the leader saying it is ready for the com-

putation to begin.

These manager entities are kept alive until the end of the computation execution such that

termination occurs without problems. Also, they can be later extended for graceful shutdown of

remote workers and also serve as a communication point for relocation of resources.

4.2.3 Machine provisioning

Opening space for further extending the cluster distribution of the framework, a machine pro-

visioning method has been introduced. In turn, the initial approach proposes a simple way of

distributing workers and vertices among the machines such that a ’fair’ provisioning of resources

is used. For instance, each machine receives an equal number of workers with the exception of the

leader elected machine in case an odd number of workers is used. This was a simplistic design
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choice and is open to extending by straightforwardly implementing a new provisioning factory

that should provide the right details of how to instantiate workers at the machines.

Also inserted in the context of machine provisioning, not only workers can be load balanced,

the logic for distributing graph parts could also be added. What matters most is to have an

intelligent way of assigning vertexes to workers so that neighboring vertexes could reside at the

same machine. This saves time between workers when no messages need to traverse the network

[Malewicz et al., 2009] [Xu et al., 2009].





5
Evaluation

This section describes in which environment the experiments were carried out and what was

undertaken to achieve the results presented in the following sections. We first describe our test

bed, followed by the scenario description and finally with the presentation of the results.

5.1 Test bed

Experiments were conducted in the laboratory of the Dynamic and Distributed Information Sys-

tems Group at the University of Zurich. The test bed named Kraken is comprised of 12 clustered

machines each having twenty four AMD Opteron(tm) Processor 6174 operating at 2.2GHz plus

64GB of RAM memory. The machines are backed by a Gigabit Ethernet dedicated LAN and could

be accessed via ssh or, more preferable, via TORQUE, a cluster resource management system.

The operational system used was a Debian 64Bit with kernel version 2.6.32-5-amd64. For

running our Scala programs, a Java HotSpot(TM) 64-Bit Server VM (build 20.1-b02, mixed mode)

was available. Heap size was adjusted according to the size of the graph loaded into a given

Signal/Collect instance. Also, the option for running in 64Bit mode d64 was given as a JVM

argument.
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5.2 Test algorithms and used data

Two algorithms were used for validating our findings, such that a comparison could be made to

those tests performed at the time of publication of Signal/Collect. The algorithms selected were

PageRank [Page et al., 1999] and Single-source Shortest Path (SSSP) [Cherkassky et al., 1994], both

well-known graph related problems. The data used for our tests were two randomly generated

web graphs with log-normal distributed out-degrees drawn from:

e(µ+σN) (5.1)

having PageRank with µ = 3.0 and σ = 1.0 and SSSP with µ = 4.0 and σ = 1.3, and N drawn from

a standard normal distribution for both. The number of vertices contained in both graphs was

100’000 and the number of edges included was 3’287’988 for PageRank and 12’798’293 for SSSP.

Signal/Collect score-guided computation was used with a signal threshold of 0.01 and collect

threshold of 0.0.

5.2.1 Early evaluations

In order to determine whether Akka was a feasible solution, replacing the original worker’s be-

havior when using it distributed, or not, an initial Akka Worker versus Original Worker evalu-

ation was made. Early results showed that Akka had great potential to even completely replace

Signal/Collect’s original worker implementation since it hides a lot of development details and

reduces code complexity, helping code maintenance in the long term.

Graph 5.1 shows a comparison of Akka shared memory implementation against the original

shared memory implementation in terms of performance, and graph 5.2 shows comparison in

terms of scalability.

As it can be inferred from the graphs, almost the same scalability is achieved by the Akka

worker. Since Akka offers high scalability as a feature, we were not surprised to see such results.

In the performance graph, Akka has also performed well, being slow by an average of 10% in

our tests. Comparison in the performance graph should be made with tests that had the same

execution mode. Hence the two pairs of lines (for the synchronous and asynchronous).
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Figure 5.1: Performance comparison - Original vs Akka

Figure 5.2: Scalability comparison - Original vs Akka

The comparison was made similar to those tests performed at the time of publication of Sig-

nal/Collect with an asynchronous and a synchronous execution mode. Since this was a proof of

concept, we limited our test scenario to running PageRank only.
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5.3 Distributed Experiment Procedure

Experiments were conducted in a sequential manner so that the performance and the scalability

of the solution could be evaluated. Since each worker was assigned to a single thread and each

thread to one available physical core, we increased each run with a step of 24 workers up to 8

machines, totaling 24 workers for the first experiment and 192 workers for the last experiment.

Hazelcast discovery mode was set using TCP/IP by setting in the configuration file all known

hostnames, in our case, the 12 machines available at the cluster. The version of Akka used was

1.2-RC3 and configuration parameters can be found in the Appendix A.3.

The asynchronous mode of Signal/Collect was given priority for our test scenarios since it was

desirable to test asynchronicity behaviour of the framework over messages going through the net-

work and also taking for granted that asynchronous executions are supposedly more performing

than synchronous ones [Koller and Friedman, 2009].

The scenarios, their results and respective interpretation are presented in the following section.

5.3.1 Results

Based on the procedures and the previously mentioned parameters, this section describes the

experiments’ results and tries to reason them. The results are presented from two different views:

performance gain and scalability gain upon addition of machines with more workers. The values

shown depict the average value per test over all runs.

As we can see from the graph 5.3, simply adding one machine to the system decreases perfor-

mance by a factor of almost 100 fold in both PageRank and SSSP. However, further adding more

machines to the computation, we can perceive improvement in the time taken for the computa-

tion in the same graph size. In PageRank, the loss in performance is more visible than in SSSP,

where SSSP almost achieves the same level of performance of one machine with the addition of

eight machines.

The speedup or scalability calculation was done by having the baseline as the result of the

computation with one machine. Since from graph 5.3 we see a loss in performance, we decided to

show the scalability gain without the inclusion of the first computation, that is, without compar-

ing with the shared-memory implementation, to demonstrate that even though we lose perfor-
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Figure 5.3: Shared-memory against distributed

mance by adding more machines to the system, we can still achieve a certain scalability degree.

These results are shown in graph 5.4.

Figure 5.4: Scalability results - Distributed runs only
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Discussion

6.1 Results

The discoveries from the evaluations show that the underlying framework backing Signal/Collect

for implementing distribution of messages have unsatisfactory results in terms of overall perfor-

mance whenever we added more machines to the computation. This can be attributed to a series

of reasons that we will try to describe now.

Network communication is an expensive computational operation, however not up to the

point of slowing down computational time to a factor of 100 fold. Akka has shown remarkable

initial results at the time of selecting the framework of choice. Such tests demonstrated that Akka

is satisfactory enough to sustain a constant network throughput and also to achieve a very low

RTT within a dedicated network using multiple machines. Results and code examples can be

found at: [de Freitas, 2011].

Another reason could be the use case which was used on top of the framework, namely the Sig-

nal/Collect message sending pattern. More in depth knowledge of the Akka framework would

be required to analyze such pattern and how it properly behaves when having to cross the net-

work. Another point is to specifically analyze the feasibility of such a framework when dealing

with graph computations; although that was not on the scope of this work, some preliminary

evaluations were made to determine usage potential as it has been previously stated in 5.2.1.

To be on the fair side, even though we had lower performance, we could achieve a certain

degree of scalability when adding more machines. This could be explained by adding more local



38 Chapter 6. Discussion

interactions between neighboring vertexes being allocated to the same machine. Since in-memory

message passing is faster than network message passing, we clearly see the performance increase.

Looking from a cost/benefit point of view, such behavior is not desirable, specifically, having

to add more machines to be as performing as one. However, this demonstrates potential that the

tool has to contribute even more, as long as issues are remediated, enabling it to become the ideal

solution for our use case.

What could also be an addition of value is to test viability of loading a huge graph size and

distribute it into a high number of machines. The outcome could show interesting results and

would be desirable for efficiently checking the distributed solution. Due to time constraints and

also lack of proper resources, this test was disregarded.

Distributed Signal/Collect, even though not acceptably performing, adds advantages in terms

of features putting it on par with existing frameworks. Comparing with Google Pregel, we de-

termined acceptability of the asynchronous message sending, a feature also present in the frame-

work, although Pregel use a synchronized checkpoint[Malewicz et al., 2009]. In a parallel with

MapReduce for example, Distributed Signal/Collect can now distribute the computation to many

machines, a feature that has been facilitated by making Signal/Collect distributed.

6.2 Limitations

Some limitations were identified in Distributed Signal/Collect. They either are features still to be

implemented in the future or limitations imposed by the architecture design that was created.

Worker message passing is done transparently the same way whether a worker is remotely

located or locally instantiated. For this reason, no tight control of worker availability during

computation has been imposed i.e., a complete cluster management mechanism was not imple-

mented. Such a feature could in turn ease dealing with failures in the network, machine crashing

and rearrangement of cluster resources.

On dealing with failures, we proposed a simple crash handling for our distributed system but

no fault tolerance is in place. For this reason, a crash of any machine during the computation fails

the execution, inclusive the leader coordinator.

Graph loading is also another issue which is a problem of its own. In order to gain perfor-
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mance, trying to avoid sending messages to the network between machines is desirable. Hence,

to minimize time spent on message passing during the computation, having neighboring vertexes

staying at the same machine is highly beneficial. To achieve that, a correct graph partitioning

mechanism would have to be implemented to allow such an advantage in terms of locality in

message passing.

A simple mechanism for distributed graph loading could also be implemented as part of the

provisioning. Since a Network File System (NFS) is in place on our test bed, plus the fact that

it allows parallel readings from many machines in the network 1, this was considered to be a

reasonable solution. The leader delegates which parts of the file each machine has to read and

this read happens in parallel at a certain portion or file segment already available from the NFS.

When the read is completed, all machines notify the leader that they are ready for starting the

computation. Such a feature, the way it is depicted would, in fact, only speed up the graph load

time. However, such an implementation combined with graph partitioning would add value to

the solution as whole.

Personally, the work that was implemented was already challenging but also pleasant. Eval-

uating different frameworks, outweighing pros and cons and analyzing risks was indeed satis-

factory, to say the least. Even though results were not as expected, I believe that such failures

in achieving the desirable effects are just problems that have yet to be solved with future works.

Choosing Akka as a framework is also not regrettable since it offers many helpful features and it

is under highly active development by a fast growing community. It is under the author’s opinion

that the community will do a lot within their grasp to come up with a much more sophisticated

and performing solution.

1http://tools.ietf.org/html/rfc5661
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Conclusion

This last chapter shortly summarizes the work done and draws final conclusions based on the

results achieved in the Evaluation chapter. It also gives a forecast about future work that could be

done to improve Distributed Signal/Collect.

7.1 Summary

In order to achieve the goal of this thesis, it was given thought about the necessity of having a

transparent system for the user, on regards to whether the user is running Signal/Collect locally

or distributed. Existing graph processing systems such as the ones described throughout this

work, offered solutions that have as a main goal to process large quantities of data. From that

came the motivation to transform and provide the same features for Signal/Collect, while still

not having to add complexity, leaving the framework without drastic changes.

Analysis and evaluations were performed prior to the execution of the main implementation

to better understand the problem and try to avoid risks inherent to distributing a system. For

instance, some frameworks proposed a central model of message routing and also a central server

architecture that was mainly avoided due to performance concerns. Also, having the distributed

solution as light as possible was a priority such that, as previously stated, a transparent usage

could be achieved.

Akka has proven to provide features that helped in development and also gave some basic

building grounds for the whole distributed architecture. The Actor-model facilitated develop-

ment of concurrent and parallel behaviors mainly due to the fact that Akka has all the details of
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implementation hidden away from the user. Such a piece of middleware is being acclaimed by

the community as one of the largest Scala projects to date.

The framework of choice has shown potential to provide a good basis for achieving a good

performing system. Nevertheless, our tests concluded that the underlying mechanism still has

some weaknesses when applying specific use cases on top of it. Our algorithms for evaluating

the solution, for instance, PageRank and SSSP, popular problems in the graph processing area,

have demonstrated message passing patterns previously not know to the Akka community. More

details and an in-depth analysis of the problem would have to be performed in order to consoli-

date the framework to solve our specific problem. Newer versions of the framework can also be

awaited with wide arms open since they will certainly bring new features and hopefully, more

performance. We will discuss them in the future work section.

Last but not the least, some limitations were listed; properties and features that our prototype

does not fulfill at this present moment and serve as basis for future works.

7.2 Conclusions

The thesis shows that it was possible to successfully integrate a distributed system on top of an

existing shared memory only local solution that can be leveraged to scale up, even though overall

performance was not as expected.

Unfortunately, the evaluation procedures could not reproduce real environment data due to

the limitation in time since a 100 fold computation time, even in small graphs could take days

with the test bed available. For instance, it would be desirable to run the PageRank algorithm

on the Yahoo! AltaVista Web Page Hyperlink Connectivity Graph 1 that is available for research

purposes. That would have truly allowed us to test feasibility of a large scale system and com-

pleteness of the solution with respect to scalability.

Nevertheless, the design and implementation of the distributed extension for Signal/Collect

to support message sending through the network and also addition of cluster management mod-

ules and bootstrapping mechanisms have also brought up a flexible frame and starting point for

the integration of new or other modules that have more tight control over a distributed com-

1http://infolab.stanford.edu/ ullman/mining/2009/YahooData.pdf
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putation of a graph. Additionally, the usage of an underlying framework to control distributed

mechanisms has shown that Signal/Collects architecture has been carefully designed and is open

to pluggable modules and also further extensions. Moreover, other distributed frameworks or

even a distributed solution that could be done from scratch could also be viable for comparing

different solutions with this prototype to determine other potential features not currently avail-

able for making Distributed Signal/Collect as much complete as possible. However, it would

take time in order to develop a mature and fully featured solution.

Also worth mentioning was the lack of solid frameworks and tools for a qualitative develop-

ment in the Scala language. Even though the language has developed in the last few years, it was

only towards the end of this work that a more powerful compiler and a more stable release of the

developer environment were made available to the developers community.

7.3 Future Work

Akka is a work in progress. At the time of this writing, Akka plans to provide Cluster manage-

ment and better asynchronous message semantics with futures and a new concept called Dataflow

concurrency 2. These features were all part of a previously available commercial only solution of-

fered by the inventors of Akka. With such additions, it is very likely that more and more details

will be abstracted away for an even better code maintenance and addition of new features from

the middleware to be included in Signal/Collect.

Also, due to the new features made available for the distributed execution, new extensions

for the fault tolerance part could be implemented. For instance, the coordinator could detect

dead workers via specified intervals and attempt to recover them or declare them unusable. With

that, relocation of workers could take place and the computation could continue without too

much effort. Similarly, the addition of checkpoint mechanisms would be a valuable feature that

would allow rolling back to a certain point into the computation, preserving consistency of the

computation in the event of failures. For that, persistency modules would have to be adjusted in

order to determine what and how frequent such checkpoints should be done since disk access is

expensive, not to undermine overall performance.

2http://www.gpars.org/guide/guide/7.%20Dataflow%20Concurrency.html
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In case the coordinator machine is the one failing, a leader re-election could take place to

decide which node could be the new coordinator/leader. With all these fault tolerant mechanisms

we would achieve seamless computation flow to avoid restarts and also to keep the computation

running as long as possible.

In addition to the fault tolerance properties, another desirable feature would be to extend pro-

visioning methods. Essentially, new methodologies could be added to better distribute workers

to member machines such that physical and logical resources are taken into account. For exam-

ple, one methodology could take into consideration the number of CPU’s available so that more

workers can be instantiated. If a machine has a decent amount of main memory, it could be also

a way to better load graphs in it and distribute vertexes from this machine.

Besides the already mentioned suggestion for the simple loading the graph using an underly-

ing filesystem, such as NFS, better distributing algorithms can also be implemented. That would

also have an impact in the coordination for better partitioning the graph such that the graph load

time is not hindered. One possible solution is to keep the data loaded into main memory inside

a grid infrastructure that would provide the data on a timely basis or even distribute the load to

those machines part of the computation. Clearly, the grid link distribution would have to meet

some requirements such that network traffic does not cause delay into distributing the data to the

computation cluster.

Last but not least, integrating security measures into the framework would be another valu-

able improvement. Akka already has some features in place such as the use of secure cookies for

message accepting only between trusted actors. However, in the case malicious peers would have

access to the network where the computation is being performed, other counter measurements

would have to exist in order to secure the infrastructure. Such a scenario is unlikely to happen

since execution will be in most cases constrained to a trusted network. However, if it is desirable

to achieve large scale and use a public network infrastructure, then it is logical to consider such

scenarios.
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Configuration

A.1 Distributed Signal/Collect configurable parameters

These are the available parameters for Distributed Signal/Collect. They have been modified ac-

cordingly to reflect our evaluation procedures.

• numberOfMachines - specify the number of machines to be used for a computation

from 1 to 8

• workerFactory - specifies what type of worker should be used

AkkaRemoteReference - for instantiating remote workers at the zombies

• nodeProvisioning - specify how to allocate resources in the cluster

EqualNodeProvisioning - for instantiating remote workers at the zombies

A.2 Hazelcast configuration

Hazelcast configuration setting for locating nodes on a network (only those who are intended for

use).

hazelcast.xml

...
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<tcp-ip enabled="true">

<hostname>claudio01</hostname>

<hostname>claudio02</hostname>

<hostname>claudio03</hostname>

<hostname>claudio04</hostname>

<hostname>claudio05</hostname>

<hostname>claudio06</hostname>

<hostname>claudio07</hostname>

<hostname>claudio08</hostname>

<hostname>claudio09</hostname>

<hostname>claudio10</hostname>

<hostname>claudio11</hostname>

<hostname>claudio12</hostname>

</tcp-ip>

...

A.3 Akka configuration

Parameters used for running an Akka instance. The configuration file is offered with the distribu-

tion file and can be passed as a reference to the program execution via -Dakka.config=path/to/akka.conf

akka {

version = "1.2-RC3"

enabled-modules = ["remote"]

time-unit = "seconds"

remote {

compression-scheme = ""

server {

port = 2552

connection-timeout = 100
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}

client {

buffering {

retry-message-send-on-failure = off

}

reconnect-delay = 2

connection-timeout = 100

read-timeout = 100

}

}

}
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