
Making Signal/Collect
Scale

Daniel Strebel
of Zurich ZH, Switzerland

Student-ID: 07-908-072

daniel.strebel2@uzh.ch

Bachelor Thesis August 16, 2011

Advisor: Philip Stutz

Prof. Abraham Bernstein, PhD

Department of Informatics

University of Zurich

http://www.ifi.uzh.ch/ddis

Acknowledgements

I would like to use this chance to thank all the people who helped me realizing this thesis

and supported my throughout the whole project. First of all I thank Professor Abraham

Bernstein, Ph.D., for giving me the opportunity to develop this thesis at the Distributed

Information Systems (DDIS) group and letting me participate in a highly interesting re-

search project.

I am sincerely grateful to my supervisor Philip Stutz, Ph.D. student at the DDIS group

and author of the Signal/Collect framework, for introducing me to this exciting topic

and involving me in some of the strategic architectural changes of the framework. He

supported me with helpful advice when I ran into problems and shared my excitement

when they were solved. His dedication helped making the whole project an equally ed-

ucational and fun experience.

Last but not least, I want to thank my family and friends, especially Jasna, for supporting

me during all the ups and downs I had, while coding and writing these pages.

Daniel Strebel

Zurich, Switzerland

Abstract

The size of the indexable web, and other data collections structured as a graph, is grow-

ing at an exorbitant pace and undoubtedly exceeds the available memory resources of a

single machine. This thesis presents a way that allows the Signal/Collect to process data

sets that would not fit into main memory, by storing the elements of the graph on disk. It

describes different back end solutions to hold the vertices and describes other measures

that have to be taken in order to load large graphs on disk and execute algorithms on

them. In the evaluation we show the effect of these optimizations and that on-disk stor-

age allows processing a graph with one million vertices with only 500 MB of RAM. It is

also shown that the on-disk version of a SSSP computation is considerably slower than a

comparable distributed implementation and why computation times of an on-disk SSSP

computation will not scale linearly with the graph size or with the number of worker

threads.

Zusammenfassung

Die Grösse des indizeribaren Webs und anderen Datensätzen mit Graph-Struktur wächst

mit schwindelerregender Geschwindigkeit und übersteigt zweifelsfrei die verfügbaren

Arbeitsspeicher-Ressourcen einer einzelnen Maschine. Diese Arbeit präsentiert Wege,

die dem Signal/Collect Framework erlauben Datensätze zu verarbeiten, welche auf-

grund ihrer Grösse nicht im Arbeitsspeicher Platz finden würden, indem es die einzelnen

Elemente des Graphs auf einer Festplatte ablegt. Es werden verschiedene Speicheroptio-

nen und andere Optimierungen beschrieben, die notwendig sind um grosse Graphen zu

laden und Berechnungen drauf durchzuführen. In der Evaluation kann gezeigt werden,

dass mithilfe von Disk-basierter Speicherung ein SSSP Algorithmus auf einem Graph

mit einer Million Knoten in nur 500 MB Arbeitsspeicher durchgeführt werden kann. Zu-

dem wird gezeigt, dass die Disk-basierte Berechnung eines SSSP ein vielfaches mehr Zeit

in Anspruch nimmt als eine vergleichbare Berechnung in einem verteilen System und

warum SSSP-Berechnungen mit On-Disk Speicher weder linear mit der Anzahl Knoten

im Graph noch mit der Anzahl paralleler Threads skaliert.

Table of Contents

Table of Contents ix

1 Introduction 1

1.1 Structure of the Thesis . 2

2 Motivation 3

3 Design and Implementation 5

3.1 Interface Design . 5

3.1.1 Original In-Memory Storage Implementation 6

3.1.2 Generic Vertex Storage Interface Design 7

3.2 To Handle collections . 9

3.3 Storage Implementations . 11

3.3.1 In-Memory . 12

3.3.2 Berkeley DB JE . 12

3.3.3 MongoDB . 14

3.3.4 OrientDB . 16

3.3.5 Serialized In-Memory . 18

3.4 Caching . 19

3.5 Serialization . 20

3.6 Other Adaptations . 22

3.6.1 Coordinator Throttling . 22

3.6.2 Graph Loading . 24

4 Evaluation 25

4.1 Serialization . 27

4.2 Memory Consumption . 28

4.3 Page Rank Loading Times . 31

4.4 Run Times SSSP . 33

4.5 Scalability of SSSP using Berkeley DB JE . 35

5 Related Work 39

x TABLE OF CONTENTS

6 Conclusions and Future Work 41

List of Figures 43

List of Tables 45

List of Listings 47

Bibliography 49

1
Introduction

The amount of data available in the web but also for may other highly active research

areas is growing at an exorbitant pace. The Signal/Collect framework [Stutz et al., 2010]

enables parallelizing computations on data entities that can be expressed as a set of ver-

tices in a graph and have edges connecting them to control the flow of the sub-steps of an

algorithm. The problem currently faced by the framework is that the size of a graph that

can be processed is limited by the amount of memory available. The framework stores

all vertices and edges in memory of a single machine and can therefore only process

graphs whose size fit into the available memory resources. To enable processing graphs

of a larger size the framework needs a way to scale beyond the limitation imposed by

the constrained resources. To provide the needed scalability two approaches would be

possible. One solution to overcome the limitations would be to distribute the computa-

tion on many machines, while the other approach would include storing the data needed

for computation on a secondary storage device and only retrieve it, if it was needed for

computation. This thesis covers the latter concept and lays out an extension of the Sig-

nal/Collect to handle on-disk storage, while a distributed version of Signal/Collect is

developed in parallel.

The thesis presents ways to handle graphs with a large number of vertices by serializing

them and storing them on secondary storage devices. It discusses three different storage

implementations and compares them among each other as well as with the standard in-

memory approach. Other optimization factors, such as caching, serialization, in-memory

compression or changes in the way signals are propagated to the vertices, are also ex-

ploited and evaluated. The goal of this analysis is to describe if and where it is a useful

solution to extend Signal/Collect with on-disk storage capability and to present sugges-

tions for what cases the different on-disk implementations promise a better performance.

2 Chapter 1. Introduction

1.1 Structure of the Thesis

The next chapter shows the problem faced by the in-memory implementation of Sig-

nal/Collect and explains the need for a storage implementation that consumes less main

memory in order to enable storing more vertices in the graph. In addition, the require-

ments for the on-disk implementations are stated. Chapter 3 begins by describing the

default in-memory storage structure and then introduces an interface that allows encap-

sulating different storage implementations. This is followed by a declaration of the differ-

ent storage implementations themselves. Further optimizations, such as how to reduce

the footprint of the vertices in memory as well as on disk or the measures taken to opti-

mize the load phase of a graph, are also considered in this chapter. Chapter 4 shows how

these different implementations perform compared to each other as well as in compari-

son with the in-memory data structures. The effectiveness of additional measures such

as optimized serialization variants are demonstrated as well. In chapter 5 the on-disk

approach is compared to the solutions proposed by other graph processing frameworks

to overcome the limitations of scarce main memory. The last chapter gives an outlook

on how these results can be integrated with Signal/Collect and whether on-disk vertex

storage can allow handling very large data sets or could serve as a utility feature that

provides a reliable fallback state, which could be necessary in a unreliable - maybe even

distributed - environment.

2
Motivation

Calculations on graphs have been performed for a long time and their importance for

practical problems has increased along the ongoing development of the World Wide Web

and other prominent graph-networks. The fast growing amount of data for example in

the World Wide Web, but also in many other areas, such as semantic web engineering

or in biotech, require scalable solutions to be able to process their data sets. For per-

forming computations on large real world data sets, a user is currently faced with the

decision to either implement a custom processing engine that fits the specific needs of

the intended application scenario or use a generic programming model that already im-

plements a lot of the necessary lower-level functionality. As computational models for

data that can be represented in a graph-like structure two concepts of computation have

evolved. MapReduce [Dean and Ghemawat, 2008] and similar frameworks to distribute

computational tasks have been proven to be successful in a number of cases, however

mapping graphs, such as the representation of the web, to a key/value model so that

they fit in the general programming model of MapReduce is unintuitive and adds un-

necessary complexity. As a solution for this, a second category of computational frame-

works has evolved that can exploits the relations of entities by performing computations

on the data in a graph structure. One implementation of this model is the Signal/Collect

framework [Stutz et al., 2010], which is a scalable computing model that can perform

graph algorithms in synchronous or asynchronous fashion. Currently the framework

scales almost linear to the number of available processor cores, but is limited to process-

ing graphs that fit into the main memory of a single machine. This constraint makes

it currently impossible to perform computations on large datasets such as the set of all

static indexable webpages. Taken this set to assess the needed scalability, would yield

a size of several billions vertices, because the size of this set was estimated to contain

4 Chapter 2. Motivation

around 11.5 billion pages in 2005 [Gulli and Signorini, 2005] and has grown even larger

since then. For pure in-memory storage the framework is currently limited to process

artificial web graphs of about two million pages. To overcome this limitation two ap-

proaches would be possible. The first way to handle data sets, which do not fit into main

memory of a single machine, would be to store the graph, or parts of it, on a persistent

storage device that has more and cheaper storage capacity available. Another solution

would be, to distribute the computation on several machines and just increase the num-

ber of collaborating machines to match the requirements of the calculation to perform.

This thesis covers the first approach and serializes the graph structure to disk in order to

allow processing larger graphs. This avoids network latency and the costly management

of an infrastructure with a number of computers.

The goal of the on-disk implementation is to provide a storage back end that is capable

of storing a large number of vertices and allows retrieving them by some identifier. The

storage should be optimized for frequent reads and updates and implement a generic

storage interface that allows to easily replace different storage implementations. In addi-

tion to that serializing the vertices should work without requiring any additional work

by the user, with the possibility to provide a more efficient serialization schema if desired.

For tuning the performance of the on-disk storage, the access on the vertices needs to be

optimized and some additional measures need to be introduced that do not only bene-

fit on-disk storage but also improve the capabilities of the in-memory implementation.

As an example, the special implementation of a vertex for a PageRank algorithm that is

constructed to facilitate its serialization and deserialization has also a much simpler ob-

ject structure that basically consists only of basic types. This vertex can also be used for

in-memory execution to reduce the memory needed. This illustrates the last but most im-

portant requirement of the proposed storage implementations, which is that they have to

extend the existing in-memory implementation without compromising its performance,

so that in-memory storage is still performant without restrictions.

3
Design and Implementation

This section describes different storage implementations as well as the interface that is

used to encapsulate them and hide the specifics of the storage implementations, while

making the different steps of the storage process more transparent for the user. It speci-

fies the overall architecture of the vertex storage backend and explains its main compo-

nents. Five solutions for different storage back ends are proposed to store the vertices and

edges of a Signal/Collect graph. The presented solutions contain in-memory, on-disk and

cached approaches and are compared against each other in the next chapter. The chapter

closes by presenting other changes and optimizations that were required to speed up the

computation. Some of these adaptions are designed to improve on-disk storage, while

others can be used to improve computation irrespective of the storage backend.

3.1 Interface Design

In order to facilitate different storage implementations that can arbitrarily be replaced a

consistent storage interface needs to be introduced. The goal of this interface is to define

all methods needed to store the required information for a Signal/Collect computation.

The computing model of the framework requires it to provide a way for storing vertices

and handling updates on them. In addition to that the storage interface has to declare

methods that enable accessing the collections, which hold all the vertices that need to

signal or collect at the current point of time. The proposed interface allows the user of

the framework to replace the default storage backend with another storage implementa-

tion. The optional storage implementation can be one of the storage back ends provided

by the framework or write an own implementation. This abstraction allows the user to

6 Chapter 3. Design and Implementation

choose the storage backend that best fits the needs and resources of a specific application

scenario.

3.1.1 Original In-Memory Storage Implementation

In the original implementation of the Signal/Collect framework the elements of a graph

are distributed among a set of worker-objects. Each worker stores the vertices that are

associated with it. Which worker is responsible for a specific vertex is currently deter-

mined as a function of the vertex id, but one could use other heuristics to better balance

the load among the workers in the future. Together with each vertex all the edges are

stored that have that vertex as their source. The edges are unidirectional connectors of

the vertices and therefore they need to contain the id of another vertex to which the

source vertex is connected. Along these edges the vertex can later send signals according

to Signal/Collect’s computational model. This computational model requires that each

worker essentially has to maintain three collections of vertices. One collection contain-

ing the vertices themselves, with all the state information associated with them, and two

utility collections that hold all the vertices that need to signal respectively to collect in a

later phase.

Figure 3.1 illustrates the storage environment of at worker in its original design, i.e. when

the framework was designed to only handle in-memory vertex storage. Before introduc-

ing the interface to encapsulate vertex access, the vertices were only accessed from within

the worker class through a standard Java HashMap. A vertex stored its state as well as

a collection of edges that linked it to other vertices. Optionally other static or dynamic

information could be stored if required to perform the algorithm. In addition to that,

each vertex referenced a message-bus that belonged to its worker and was used to send

messages to other vertices or the coordinator. The edges stored on the vertices had a ref-

erenced their source vertex directly to gain access to its properties. This reference allowed

the edges to directly access the state of its source in order to calculate the signal that is

then propagated to the target vertex. Apart from storing the vertices the worker also held

the toSignal and toCollect sets, which were stored as Java HashSets. These sets contained

direct references to the vertices that needed to be handled. Since all vertices were sim-

ply held in-memory, storing the vertices that needed to signal or to collect by reference

was very convenient for the computation process. The set of vertices that have to signal

for example was able to invoke the signal function on each vertex directly without first

having to request the most recent instance of that vertex from the store. As explained

later this does not hold true anymore for on-disk storage and additional adaptions are

3.1 Interface Design 7

Figure 3.1: Original vertex storage structure

required. Another big advantage of storing all the vertices in a in-memory data struc-

ture and accessing them via direct reference, is that changes of the state of a vertex do

not need to be retained explicitly. Since the updating function holds a direct reference

to the vertex object, the updated state is automatically reflected the next time that vertex

is being used, for on-disk storage where the vertex object involved in the computation

is basically a copy of the value stored on the disk the changed state has to be explicitly

written back to disk to persistently store the updated state.

3.1.2 Generic Vertex Storage Interface Design

To provide access to the vertex store independent of the specific implementation of the

storage back end, a new interface had to be specified. That interface needs to take into

account all aspects for storing and retrieving vertices from a generic vertex storage. As

already mentioned above the worker needs to hold three separate collections to manage

vertices. The intention for the new storage interface is to explicitly expose these three

collections and the methods available on them. This allows the worker to not only pro-

vide a custom implementation for the collection that holds the vertices but optionally

also change the implementations of the collections that store which vertices have to sig-

nal or to collect. For the collection that holds the actual vertices some new methods had

to be added in order to allow on-disk storage. These methods were not needed for the

original in-memory vertex storage because the vertices were always directly referenced

for computation. One of the methods is the updateStateOfVertex method, which causes the

8 Chapter 3. Design and Implementation

storage of the vertices to serialize the vertex so that its changed state can be persistently

written to disk or to a data base. This method needs to be called after every change that

is performed on a serialized vertex otherwise this change will not be reflected the next

time that vertex is recalled from the storage.

In the collections that hold the information about which vertices need to be processed in

the next signal or collect step respectively, the original approach to store references to the

vertices in memory is no longer practical. In an on-disk scenario, once the vertex is seri-

alized and written to disk it should be garbage collected to free memory and therefore no

more references to that vertex may exist. Later when it is again needed to perform some

computational steps, the current state of the vertex should be retrieved from the vertex

store. For this reason the new collections for keeping track of which vertices should signal

or collect only hold the ids of the vertices that need to be processed. Instead of directly

calling the signaling function on the reference the stored id needs to be used to query

a vertex from the vertex storage. As shown in listing 3.1 the interface to serve different

storage implementations has two different collections for the vertices which need to sig-

nal and the ones that have to process a collect step. The main difference is that in the

collection for signaling, only the mere ids of the vertices are stored, while the collection

for the collect step stores signals that have to be collected. Because the signals have the

id of the vertex where they should be delivered included, the collection also knows on

which vertices it has to execute the collect function.

Listing 3.1: Storage Interface

/**
* High-level interface to abstract all vertex storage related implementations

*/
abstract class Storage {
def vertices: VertexStore
def toSignal: VertexIdSet //collection of all vertices that need to signal
def toCollect: VertexSignalBuffer // collection of all vertices that need to collect
def cleanUp
def serializer: Serializer

}

/**
* Stores vertices and makes them retrievable through their associated id.

*/
trait VertexStore {
def get(id: Any): Vertex[_, _]
def put(vertex: Vertex[_, _]): Boolean
def remove(id: Any)
def updateStateOfVertex(vertex: Vertex[_, _])
def size: Long
def foreach[U](f: (Vertex[_, _]) => U)
def cleanUp

}

3.2 To Handle collections 9

/**
* Allows storing a set of id and iterating through them

*/
trait VertexIdSet {
def add(vertexId: Any)
def remove(vertexId: Any)
def size: Int
def isEmpty: Boolean
def foreach[U](f: Any => U, removeAfterProcessing: Boolean)
def cleanUp

}

/**
* Allows storing a collection of signals and iterating through them

*/
trait VertexSignalBuffer {
def addSignal(signal: Signal[_, _, _])
def addVertex(vertexId: Any)
def remove(vertexId: Any)
def size: Int
def isEmpty: Boolean
def foreach[U](f: (Any, Iterable[Signal[_, _, _]]) => U, removeAfterProcessing: Boolean, breakCondition
def cleanUp

}

3.2 To Handle collections

As mentioned above, the storage interface exposes three different collections for each

worker. One collection holds all the vertices a worker is responsible for and the other

two keep track of the vertices that need to be marked for collecting or signaling in a fur-

ther step.

The collection that keeps track of which vertices have to send a signal to their connected

vertices is basically a set of vertex ids with the usual set condition that each id can be

only be contained once. In the interface shown in listing 3.1 this collection is therefore

named VertexIdSet to emphasize this property. The collection supports adding and re-

moving vertices via their ids, which can be thought of as adding the id of a vertex to a

symbolic to-do-list. To work off that list a dedicated function exists, that takes a function

parameter itself. This function allows applying the provided function to each vertex that

is references by an id in the to-do-list. A second parameter is available for the foreach

function to provide the flexibility of letting the user determine whether the ids in the col-

lection should be removed after iterating over them. With this parameter set to false the

framework would support iterating over all the vertex identifiers in the collection, e.g.

to print them to a log file, without removing them. When the parameter is set to true it

saves the user the burden of removing the ids manually inside the function parameter, if

the removing behavior is intended. Because the toSignal collections usually do not grow

10 Chapter 3. Design and Implementation

very large and are updated relatively frequently they are by default kept in an in-memory

data structure, such as a Java HashSet. However since the collection only holds the ver-

tex ids, storing this collection on disk would also be possible, but obviously results in a

significant performance drawback.

The collection that determines the vertices that should collect their received signals is

slightly different from the one for signaling. Before the framework supported on-disk

storage of vertices, the workers directly forwarded incoming signals to their receivers

who then stored them in some collection for processing them later. The old toCollect list

at the time just stored the references of the vertices and called the collecting function on

these vertices. For an on-disk storage of vertices these references have to be replaced by

the ids of the vertices as described above. Working the to-do lists would be possible anal-

ogous to the way signaling is handled. The collect operation would simply be invoked on

all the vertices referenced by the entries in the collection and the retrieved vertices could

execute the collect operation on the uncollected signals. The problem with this approach

is, that in a scenario where vertices are serialized to disk the previously described pro-

cess of directly delivering the signals to the vertices is very expensive because the storage

back end has to read the vertices from disk just to add one single signal and then write

the updated state back to disk again. To reduce the number of these costly reads and

updates on the vertices, we decided to buffer the incoming signals for all vertices already

at the worker and deliver them all at once when the vertex is executing its collect func-

tion. Because this buffer already holds the information about which vertices have signals

waiting for them and therefore should be collected, it would have been redundant to also

store the ids of all the vertices that need to be collected in an additional collection. In

order to avoid this redundancy and to simplify the process of managing the toCollect list,

we decided to merge the toCollect list with the buffer of unprocessed signals. The central

component of this new collection is a map that contains an entry for each vertex that has

to collect. Each entry holds the id of the vertex as its key and a set of signals that are not

yet delivered to this vertex as its value. When working though that collection each vertex

referenced by an entry in the map is handed its signals to process the collect function on

them. This design also allows requesting a collect operation for a vertex that does not

have any signals buffered for it. In the default implementation this would just result in

a new entry in the map with an empty list as its value. This way the collect function

is still called on the vertex and it lies in the responsibility of the vertex implementation

how it should react on a collect operation without new signals. Since the collection will

receive new signals from other workers concurrently or while working off its entries, a

Java ConcurrentHashMap needs to be used here to enable thread safety. Working of the list

3.3 Storage Implementations 11

is quite similar to the foreach function described above with the additional property that a

function parameter can be provided that allows to escape the iteration loop through the

collection. This could be necessary when a task of higher priority, e.g. checking the inbox,

needs to be executed that cannot wait for the collect step to finish. The buffer of the sig-

nals is not intended to be stored on disk, because this would ruin the performance gain

compared to the original instant delivery of signals in the on-disk case. To prevent the

buffer maps to grow too large and consume a significant amount of memory, two differ-

ent approaches would be feasible. One way to reduce the size of the buffer is to shorten

the interval of collecting so that the signals in the buffer are processed faster. This would

however only work in the asynchronous execution because in the synchronous case the

iteration between signaling and collecting is fixed by definition. For some algorithms,

such as a the single source shortest path (SSSP) computation performed in chapter 4, it

is also possible to extract the information of the signals in the buffer and only store the

relevant data. When a new signal is added to the buffer, a reducing function checks the

contained value of that signal and eventually replaces the buffered signal. This optimiza-

tion is not limited to the SSSP algorithm, but can be performed on any algorithm that

allows aggregating the signals.

3.3 Storage Implementations

This section describes three on-disk storage implementations that differ in their storage

back end and the way the vertices are stored on disk. For the back ends three different

database systems are used. Berkeley DB JE and OrientDB are pure Java database systems

that require no additional installation and can be run directly from the included jars.

Mongo DB is a open source, document oriented database that allows clustering multi-

ple machines to increase both performance and reliability. Before specifying the on-disk

implementations, the in-memory approach is described to serve as a starting point for

further reference. The in-memory implementation is also used as the default storage for

vertices. Additionally a fifth storage back end is described that stores the vertices in-

memory in a serialized form to save memory. With the help of special traits to implement

a factory pattern [Gamma et al., 1995], all the components of the default storage imple-

mentation can be changed to a different implementation. The default configuration of

the storage is shown in listing 3.2.

Listing 3.2: Default configuration of the storage

12 Chapter 3. Design and Implementation

/**
* Default configuration for storing vertices and the toSignal and toCollect collections

* Uses in-memory implementations for all collections.

*/
class DefaultStorage extends Storage {

var vertices = vertexStoreFactory
protected def vertexStoreFactory: VertexStore = new InMemoryStorage(this)

var toCollect = vertexSignalFactory //holds all signals that are not collected yet
protected def vertexSignalFactory: VertexSignalBuffer = new InMemoryVertexSignalBuffer
var toSignal = vertexSetFactory //holds all vertex ids that need to signal
protected def vertexSetFactory: VertexIdSet = new InMemoryVertexIdSet(this)

def serializer: Serializer = DefaultSerializer

def cleanUp {
vertexStoreFactory.cleanUp
toCollect.cleanUp
toSignal.cleanUp

}
}

3.3.1 In-Memory

The in-memory storage implementation is the current default implementation of the ver-

tex storage. It is mostly consistent with the implementation that existed before the new

storage interface was introduced. The core element of this storage is a map data structure

that matches vertex ids with their corresponding vertex objects. For performance reasons
1 the HashMap from the Java library is here chosen over the corresponding Scala class. Be-

cause the vertex id is allowed to be of type Any, which is the corresponding class of Java’s

Object class, its hash value is used as key value for the map to provide consistency even

if vertices of different types are used. The add and remove methods of the interfaces are

directly mapped to the respective functions provided by the underlying map. Since all

the vertices returned by the get method are passed by directly referencing the vertex ob-

jects in the map, the updateStateOfVertex function is not needed here and therefore has no

functionality implemented.

3.3.2 Berkeley DB JE

Oracles Berkeley DB Java Edition (JE) [Oracle, 2006] is a pure Java, transactional database

that is based on a key/value model and designed for high performance application sce-

narios. It originated at the University of California Berkeley as part of their open source

1http://jameslao.com/2010/10/18/scala-hashmap-performance/

3.3 Storage Implementations 13

operating system BSD. The software was distributed by Sleepycat Software, which was

acquired by Oracle Corporation in 2006. Berkeley DB JE is designed to embed seamlessly

into a Java application without requiring any additional installation. Because of its small

overhead and the straightforward storage structure it is used for data storages of various

sizes, from simple storages in smart phone apps to large scale data processing. For its ap-

plication in Signal/Collect Berkeley DB JE is very interesting from a usability perspective,

because the user does not have to care about starting a database daemon and setting up

data folders for it because the database can be directly integrated in the system. Berkeley

DB JE is a non-relational database system that provides atomicity, consistency, isolation

and durability (ACID) guarantees. In he context of Signal/Collect atomicity assures that

a change on a vertex is either fully performed on a vertex or not at all. Consistency re-

quires the database to be in a consistent state before as well as after a storage transaction.

This assures that all the stored vertices comply with the properties defined for an algo-

rithm at any point in time. Isolation is especially important to assure that a change on

a vertex is not influenced by any other process that is executed concurrently. Durability

would be important for providing reliable states in case of a failure. Since error recovery

is not yet covered by the Signal/Collect framework, this property is less important right

now, but would be a crucial factor when building a fault recovery mode in the future.

Berkeley DB Implementation

Our implementation uses the Berkeley DB JE Direct Persistency Layer (DPL), which al-

lows us to handle the whole storage process at a higher level of abstraction. This avoids

the need to store keys and values explicitly as a pair of byte arrays by using the more ef-

ficient library functionality. Instead of having two byte arrays, we use a wrapper class to

construct an Entity-object for each vertex with its id as the entity’s primary key. To store

the serialized vertex a separate field is added. Our wrapper class is shown in listing 3.3.

The enwrapped vertex can then be added to the EntityStore object that is part of Berkeley

DB’s DPL package. The EntityStore provides the PrimaryIndex that is used to efficiently

handle the storage, retrieval and update of the vertices. Each worker has its own Entity-

Store object, while they all share the same environment. The environment configuration

also sets the caching factor that determines the fraction of the available memory that can

be used by the Berkeley DB to build its own in-memory cache. To speed up the loading

phase of the graph, Berkeley DB supports a deferred write mode that allows the database

to postpone the writing of the vertices on disk. The deferred writes are held in memory

and not persistently written to disk until the store is closed or synced manually.

14 Chapter 3. Design and Implementation

Listing 3.3: Berkeley DB JE Entity Wrapper

@Entity
class Vertex2EntityAdapter(idParam: String, vertexParam: Array[Byte]) {

@PrimaryKey
var id: String = idParam
var vertex = vertexParam

def this() = this(null, null) // default constructor

}

3.3.3 MongoDB

MongoDB2 is a schema free, document oriented database system. The software is dis-

tributed under the GNU Affero General Public License3 (GNU AGPL v3.0) by the com-

pany 10gen4. Despite its relatively young age, MongoDB has earned a lot of attention by

the open source community and is in production at various places in the industry where

scalability is a crucial factor of success. Among the most prominent users of MongoDB

are foursquare which uses it for its check-in storage5 or it is used to enable data aggre-

gation from different relational and non-relational sources of up to several petabytes in

CERN’s CMS data aggregation system [Kuznetsov, 2010].

Two of the main reasons for the impressive success of MongoDB are its support for repli-

cation and its simple but effective sharding functionality. Replication in MongoDB is

done by building a replica set consisting of two or more MongoDB instances. Replication

is performed asynchronously, where only one instance is allowed to act as the primary

member of the replica set which gives it the exclusive right to accept write commands.

Depending on the consistency model chosen, reads from other members of the replica set

are also allowed. The replication assures that if the primary node of the replica set will

stop working, another member of the set will take over its position and act as the new

primary member. This provides the redundancy needed especially for distributed scenar-

ios, where the probability that one machine will fail is rather high. Sharding on the other

hand provides horizontal scalability for the database. It splits up the data into chunks

and distributes them evenly among all available shards and through that increases the

capacity to store items and the throughput of the system because it allows for more reads

in parallel. Sharding and replication are illustrated in figure 3.2. As it turned out later

on MongoDB has performance issues on computers with a non-uniform memory access

2http://www.mongodb.org/
3http://www.gnu.org/licenses/agpl.html
4http://www.10gen.com/
5http://www.10gen.com/presentation/misc/foursquare

3.3 Storage Implementations 15

Figure 3.2: MongoDB setup with 4 shards and a replica set with three instances each

(NUMA) design. The effect of this limitation is hard to estimate but the MongoDB com-

munity advises to avoid running MongoDB on a NUMA architecture machine because

the throughput will be reduced.

MongoDB Implementation

For its use within the Signal/Collect framework casbah6 which is the official MongoDB

driver for Scala is being used. The casbah driver itself uses the MongoDB Java driver as

its base to handle the MongoDB wire protocol. In addition to that casbah provides the

upper layers of Scala programs with useful features of the functional programming lan-

guage Scala such as a foreach loop that iterates through all stores elements in a MongoDB

collection. Casbah would also support conversion from native Scala types such as List

or Seq to their corresponding Java types, which the Java driver for MongoDB then could

map to a MongoDB storage entity. Because we wanted to be able to store vertices of ar-

bitrary type and therefore cannot rely on such convenient features to work, we decided

to not add the vertices directly to the MongoDB store, but rather use our own serializer

to generate a byte array first. For a description of the serializer see section 3.5 below. The

generated byte array is then stored in a simple MongoDB document that only consists of

two fields. One field stores the id of the vertex and is unique for each vertex in the col-

lection. Because the Signal/Collect framework allows the id to be of any arbitrary type,

the string representation of that id is being used to store it. Obviously this requires the

6http://api.mongodb.org/scala/casbah/

16 Chapter 3. Design and Implementation

string representation to be unique as well. The other field in a vertex document holds

the serialized representation of a vertex object. Since this is simple byte array it needs no

further adaptation and can directly be handled by the casbah adapter. To retrieve a vertex

the document containing the id of the requested vertex must be found then the value of

the vertex field can be accessed and deserialized to access the vertex-object. For a simple

demonstration of the storage and retrieval process see listing 3.4. The update function

that is needed to write an updated state of a vertex to disk, works in a similar way by

providing a query document and a new document to replace the result of the query in

the collection. Since the framework allows for multiple workers which each handle a

subset of all the vertices there are also many workers that have to read and write ver-

tices from a MongoDB. For performance reasons we decided to use one single database

instance for the whole graph but having a private collection for each worker thread.

Listing 3.4: Example storage and retrieval in MongoDB using casbah

// Things needed

val mongoStorage = MongoConnection()(databaseName)(collectionid) // MongoDB collection
val myVertex: Vertex[_, _] = ... // Some vertex
val id = myVertex.id

// Storing a vertex object in the collection

val newDocument = MongoDBObject("id" -> myVertex.id.toString,
"obj" -> serializer.write(myVertex)) // create a new document

mongoStorage += newDocument // add the document to the collection

// Retrieve the vertex

mongoStorage.findOne(MongoDBObject("id" -> id.toString)) match {
case Some(x) => { // read the vertex from the document we have found

val serialized = x.getAs[Array[Byte]]("obj")
read(serialized.get).asInstanceOf[Vertex[_, _]]

}
case _ => null // in case no document with that id field exists

}

3.3.4 OrientDB

OrientDB7 is a no-sql database that is optimized for large datasets. It is written in Java

and publicly available under the Open Source License Apache 2.08. The maximum num-

ber of records in this database is advertised as 9.223 × 1018 when the database is dis-

tributed on multiple disks on multiple nodes. OrientDB can run as a singe machine

7http://www.orientechnologies.com/
8http://www.apache.org/licenses/LICENSE-2.0

3.3 Storage Implementations 17

server or distributed over multiple instances using a distributed hash table algorithm.

Even if OrientDB is part of the so called no-sql databases, it supports SQL as an alter-

native query language which facilitates the retrieval process. Like MongoDB, it is built

as a document-oriented database instead of using a relational structure. This also means

that no schemas have to be created in order to store documents. OrientDB uses a special

tree algorithm called multi value red black tree (MVRB-Tree), which is essentially a red-

black tree with the additional property that each leaf node can contain several values.

This adaption to the design of the red black tree allows the MVRB-Tree to use less mem-

ory than the standard implementation while allowing for fast retrieving and storing of

nodes. Like Berkeley DB JE that was explained above, OrientDB can be run directly from

a packaged jar file and needs no additional installation or setup, which would make it

convenient to use without having the user to care about which data store is used. Com-

pared to Berkeley and MongoDB, OrientDB is much less known and seldom used in the

industry. Because OrientDB is not backed by a large company or community such as the

other two mentioned, documentation is also rather rare and except for Java Doc APIs

and a promotional webpage almost inexistent. Despite the missing information or refer-

ences, the published benchmarks on the advertising site promise, that OrientDB could be

a serious candidate for the Signal/Collect storage backend.

OrientDB Implementation

In our storage backend based on OrientDB we use a special wrapper class to create a doc-

ument that contains the vertex in serialized form as well as its id as a separate identifier

field to facilitate querying the documents. Listing 3.5 shows this wrapper class. These

documents are stored in document databases that are private to the workers. For retriev-

ing the vertices we query the ids of the vertices in a SQL like way. To update the vertices a

document that contains the vertex with a given id is retrieved and the field that contains

the serialized vertex is replaced by the most recent version. Since the generated id field

is not changed, this document replaces the older version when it is reinserted into the

database.

Listing 3.5: Vertex wrapper for OrientDB

case class OrientWrapper(vertexID: String, var serializedVertex: Array[Byte]) {
@Id
var id: String = _ // Internal identifier of the document
def this() = this(null, null) // default ctor for unmarshalling

}

18 Chapter 3. Design and Implementation

3.3.5 Serialized In-Memory

When comparing the three on-disk storage versions above with the default in-memory

implementation two main disadvantages are self-evident. First of all, the objects have to

be deserialized every single time a vertex is accessed and since almost accesses also mod-

ify the state of the vertex, the changed vertex has to be serialized again to be retained in

the store. The second drawback arises from the higher transfer delays that occur when

storing data on disk instead of holding it in main memory. Independent of the type

of hard drive, the access times are several magnitudes slower than for accessing main

memory. To optimize the performance of vertex storage data structures these two bottle

necks could be optimized. The specifics of serialization and ways of optimization are

covered in section 3.5. However with respect to the overall storage performance, serial-

ization speed is less critical than disk latency, since serialization is only a computational

task and does not require disk I/O it scales with the number of available processors.

The huge advantage of serialization is that generally a vertex in serialized form uses less

memory than the same vertex object in unserialized form. These serialized objects are

traditionally stored on a secondary storage device such as a traditional hard drive, which

unfortunately comes with the additional cost of higher access times especially when data

is distributed among several blocks on a disk. Optimizing block accesses for computa-

tions in a graph-like data structure is far from trivial and does not provide a solution to

the problem. The rotational latency factor of traditional hard drives could be avoided by

using flash based storage devices as shown by Pearce et al [Pearce et al., 2010] but access

times are still much slower than access times for main memory because of the limited

bandwidth. Because solid state disks are still rather expensive to buy and we wanted

the Signal/Collect framework to run on machines with a standard configuration too, we

decided to design a additional storage version that handles our problem from a different

angle. Rather than trying to optimize disk access patterns and database infrastructures

this approach uses in-memory storage capabilities but uses serialization as a method of

compression so that a machine can hold more vertices in its main memory than in the

default in-memory implementation, while maintaining faster access time and scalability.

The resulting implementation uses the same Java ?? as the in-memory implementation

described earlier, but the values of that map consist of simple byte arrays rather than the

vertices in object representation. For further expanding the maximum amount of vertices

that fit into memory the byte array that represents the vertex could also be compressed.

Claude and Navarro [Claude and Navarro, 2010] showed that even a compression that

makes processing a graph several times slower can be a good choice when it can avoid

3.4 Caching 19

the need to store the graph on the much slower disk. The drawback of storing serialized

vertices instead of the actual objects is that every time a vertex has to be recalled from

the store the byte array has to be deserialized just as in the on-disk case. Compared to

the default in-memory case the updateStateOfVertex function is now needed because the

vertex objects get garbage collected after they are serialized and each request from the

store returns a copy of the stored object instead of the reference to it. For vertex sets that

are to big to fit into main memory in standard object representation keeping the vertex in

a in-memory data structure in a serialized representation can help avoid the performance

drawbacks of secondary storage devices. Another advantage of this storage implementa-

tion is that it facilitates buffering because vertices on disk and in memory are represented

in the same way and can therefore easily be swapped. Serialized in-memory storages

could be used where it allows to fit all vertices in memory where this would not have

been possible with the standard approach.

3.4 Caching

The on-disk storage implementations described in the previous chapter have two big dis-

advantages compared to the in-memory solution. First it is indisputable that disk access

is several times slower than accessing data that resides in memory. The second disadvan-

tage arises from the fact that all the vertices need to be deserialized and serialized back

to the storage every time they are accessed. For many real world algorithms the work-

load within a graph is not uniformly distributed among the vertices, which means for

an execution in Signal/Collect that there are some vertices that have to signal and collect

relatively frequently, while others remain idle most of the time. This property could be

exploited by keeping these highly active vertices in memory instead of having to seri-

alize them on every access and store them with the overhead of disk latency. Caching

functionality is a common feature of an advanced database systems and is also contained

in the on-disk storage implementations presented earlier. The drawback of letting the

database decide, which elements should be cached and which ones will be needed less

frequently and are therefore best stored on disk is, that the vertex needs to be brought

already to a serialized form before it is inserted to the database system. However if the

vertex will stay in memory the serialization would not have been needed. For this rea-

son, with built in caching, only one of the two overhead factors can be avoided. On

the other hand the database caching algorithms allow for more complex caching strate-

gies, possibly also depending on the actual access patterns, which could make up for the

20 Chapter 3. Design and Implementation

serialization overhead if it leads to a smaller cache miss quota. For algorithms where

the active vertices can be determined with relatively straightforward heuristics, using

a custom caching strategy would promise better results than the built-in approaches of

the databases, because it avoids the need to serialize the entries by holding the vertices

in a separate in-memory storage. Finding an appropriate caching strategy for a general-

purpose framework like Signal/Collect is a challenging task, because the cache algorithm

should be flexible enough to perform efficiently on various algorithms. Apart from per-

formance consideration the cache should also be flexible enough to support different

storage backend. To allow the user to cache any storage backend, the provided cache

implementations add an additional layer on top of a pluggable generic storage backend.

When the cached storage is being filled with vertices, it first fills the in-memory storage of

the cache layer and as soon as the caching threshold is reached, it handles evicting parts

of the cache according to a predefined strategy. To provide appropriate caching for algo-

rithms with different access patterns, two different cache layers have are provided. The

first caching implementation uses a least recently used (LRU) algorithm to evict cached

entries. This cache strategy is effective if vertices that were active in the near past are

likely to be active in the following step, while inactive vertices will stay inactive with

a high probability. However for an algorithm with evenly distributed vertex accesses

this cache will not provide any performance gain but add considerable overhead because

vertices have to be frequently evicted from the cache and the underlying linked list that

holds the access sequence needs to be updated on each access. To avoid these frequent

updates, the second cache implementation follows a different strategy for evicting un-

used vertices from the cache. For this cache each vertex has a cache score that indicates

how cache-worthy it is. If the cache is filled up to its limit it iterates through all the cached

vertices and evicts the vertices who’s score is below the average of all scores. This way in-

sertions to the cache are much faster because the can happen at any free cache slot and no

structure needs to be maintained. As an additional benefit the costly evictions from the

cache happen less frequently than with the on disk case. For large vertex sets, storing a

map of all cache scores would require a lot of memory and therefore this implementation

can have a large memory footprint.

3.5 Serialization

Serialization is a fundamental aspect of on-disk storage since each access to a vertex es-

sentially means one deserialization step, i.e. to read the vertex from disk, and one seri-

3.5 Serialization 21

alization step, i.e. to persistently write it back to the storage. As Opyrchal and Prakash

[Opyrchal et al., 1998] and experiments9 on the web show, the Java default serialization

is several factors slower than an optimized serialization process but very simple in us-

age. The Signal/Collect framework is designed to provide maximal flexibility to allow

the user to perform any computation that is mappable into signaling and collecting steps.

The computation model works without making any assumptions about the structure of

the vertices other than that they must have a unique id and some state, which are each of

some arbitrary type. This flexibility is the reason why using a serialization library such

as protobuf10 or kryo11 was impractical for our case. The user would have had to specify

all the types used in a serialization protocol or register them with the serializer. Because

of that we decided to use the default Java ObjectOutputStream to write our objects. The

elegant property of this implementation is, that the user is free to implement the Exter-

nalizable interface and provide custom serialization and deserialization methods to speed

up serialization and reduce the size of the serialized object. An exemplary custom serial-

ization for a vertex that represents a page in a page rank algorithm is displayed in listing

3.6. This serialization has proven to be even faster than prominent the serialization li-

braries by the experiments mentioned above, because no types need to be checked and

serialization can follow a fixed process.

Listing 3.6: Exemplary custom serialization of a vertex

class MemoryEfficientPage(var id: Int) extends Vertex[Int, Float] with Externalizable {

var state = 0.15f
var lastSignalState: Option[Float] = None
type UpperSignalTypeBound = Float
protected var targetIdArray = Array[Int]()
protected var mostRecentSignalMap: Map[Int, Float] = Map[Int, Float]() // key: signal source id, value

/* Functions omitted here */

def this() = this(-1) //default constructor for serialization

def writeExternal(out: ObjectOutput) {
out.writeInt(id)
out.writeFloat(state)
lastSignalState match {

case Some(oldState) => out.writeFloat(oldState)
case None => out.writeFloat(-1) //Safe because a page rank score should not be negative anyway

}
// Write links
out.writeInt(targetIdArray.length)

9http://code.google.com/p/thrift-protobuf-compare/
10http://code.google.com/p/protobuf/
11http://code.google.com/p/kryo/

22 Chapter 3. Design and Implementation

for (i <- 0 until targetIdArray.length) {
out.writeInt(targetIdArray(i))

}
//write most recent signals
out.writeInt(mostRecentSignalMap.values.size)
mostRecentSignalMap.foreach(signal => {

out.writeInt(signal._1)
out.writeFloat(signal._2)

})
}

def readExternal(in: ObjectInput) {
id = in.readInt
state = in.readFloat
val oldSignal = in.readFloat

if (oldSignal < 0) {
lastSignalState = None

} else {
lastSignalState = Some(oldSignal)

}
// Read links
val numberOfLinks = in.readInt
targetIdArray = new Array[Int](numberOfLinks)
for (i <- 0 until numberOfLinks) {

targetIdArray(i) = in.readInt
}
// Read most recent signals
mostRecentSignalMap = Map[Int, Float]()
val numberOfMostRecentSignals = in.readInt
for (i <- 0 until numberOfMostRecentSignals) {

mostRecentSignalMap += ((in.readInt, in.readFloat))
}

}
}

3.6 Other Adaptations

In order to be able to process graphs that are several orders of magnitude larger than the

ones that fit in memory of a single machine, some additional changes in the framework

had to be made. Some of these changes can be used with arbitrary algorithms, while oth-

ers are designed to improve the performance of the algorithms we use for the evaluation

in chapter 4.

3.6.1 Coordinator Throttling

One major problem we run into when scaling up the number of vertices in a graph is,

that the receiver’s message inbox size is not considered when sending a message. One

place where this is problematic is at the loading phase of the graph. A central coordinator

constructs a vertex or an edge and sends the request to add this component encapsulated

3.6 Other Adaptations 23

as a message to the corresponding worker. After placing the message in the worker’s

inbox the coordinator already constructs the next message to deliver it to the appropriate

worker. The worker thread on the other hand loops through its inbox and processed the

requests to add new vertices or edges. In a scenario where the workers store their ver-

tices in-memory, the coordinator and the workers are working at a comparable pace so

the inbox size of each worker remains relatively small. This changes when the worker has

to do the entire overhead involved with storing vertices on disk. When the worker has

to serialize each vertex and store it on disk, processing the inbox takes much more time

for the worker than it takes for the coordinator to put new vertices in it. As a result the

worker’s inbox can grow considerably large and cause the system to run out of memory

in the worst case. In a more generic way this is similar to a classical producer-consumer

problem but with the additional property that the buffer i.e., the message inbox, is not

limited a priori but by the amount of available memory. To avoid this problem we have

to slow down vertex creation at the coordinator, when the inbox of a worker is full. Pre-

venting the inbox from growing too big could be achieved in two ways: One approach

would require the worker to constantly check its inbox size and compare it to some kind

of threshold. If the number of messages in the inbox of that worker was to large, the

worker had to send a special message to the coordinator in order to inform it that it

should wait for the worker’s inbox to shrink. The advantage of this approach is, that the

coordinator knows on which workers the load is often too high and could use this infor-

mation for better balancing the load among all the workers. On the other side checking

the size of the inbox is a rather expensive operation because, for the current implemen-

tation, it requires iterating through the elements every time the function is called. The

other problem of this implementation occurred when the message that indicates that the

worker has recovered a reasonable inbox size was lost on its way to the coordinator. The

coordinator and the workers ended up in a deadlock situation, because the coordinator

was waiting for the workers message that indicates that the it can continue sending new

messages, while the recovered worker has emptied its inbox and waits for new messages

from the worker. Instead of letting each worker determine on its own when the maxi-

mal inbox size is reached, we decided to handle this decision centrally at the coordinator.

Each worker periodically sends the number of messages it has sent and the number of

messages it has received in a special status message to the coordinator. The coordinator

on the other side manages a map that holds the most recent status message from each

worker. These status messages allow the coordinator to constantly calculate the global

message inbox size, which is equal to the total number of messages sent minus the total

number of messages received. Based on this value, the worker then can decide if it can

24 Chapter 3. Design and Implementation

send another message to a worker or should wait for the inboxes to diminish. Since the

worker doesn’t have to call the size method on the inbox anymore but rather uses the two

message counters that are also used for checking if a worker has complete all its jobs, this

is much more efficient and also suited for larger inbox sizes. The drawback of this imple-

mentation is that it increases the message flow between the workers and the coordinator

even if the inboxes are small and that it only covers global inbox statistics. For a single

machine execution this is currently enough information since the available heap space

is shared between the workers anyway, but if the Signal/Collect framework should also

support load balancing or work distributed over many computers with possibly different

memory resources, collecting only global statistics will not provide enough information.

3.6.2 Graph Loading

Apart from throttling the coordinator as described above, the loading process has to be

optimized further to handle a large amount of inserted vertices. As opposed to throttling

the optimization presented here only applies to our evaluation algorithm and cannot

directly be used for arbitrary algorithms. However the general concept can be applied

in many other situations as well to reduce loading times of a graph. When loading a

graph in memory updates to a vertex that is already loaded are relatively cheap because

the objects are accessible directly through a map data structure. For this reason, vertices

can be created first and their outgoing edges can be added in a later process. However,

once the vertices are stored on disk adding a new edge for a vertex involves seeking the

entry in the database, deserializing, adding the new edge, serializing and storing it back

on disk. This overhead can be avoided by preassembling the complete vertex including

the edges before inserting it in the graph. When our MemoryEfficientPage is used this

process not only saves the time of serializing and storing the vertices more than once,

but also removes the need to generate edge objects. This is possible because this page

implementation covers collecting as well as signaling by itself without the need of an

additional edge object. Even though for the in-memory case the delay of retrieving a

previously added vertex from the store for adding a new edge will not be as high as

for the on-disk case, preassembling the vertices is a good way to reduce the number of

messages sent to the workers and risking to overflow the inboxes with messages and

should therefore be applied when ever possible.

4
Evaluation

This chapter will compare the different storage back ends that were presented in the pre-

vious chapter. For comparison we selected the single source shortest path (SSSP) compu-

tation and the widely used PageRank [Page et al., 1999] algorithm. The SSSP computation

is performed by electing a vertex from the graph as its source and setting the value of its

state to be zero. The states of all other vertices in the graph are initialized with a large

number that is a lot bigger than the maximal shortest path from the source to any other

vertex. The computation starts by letting the designated source signal its state to all the

vertices it is connected. For any graph size this means, that in the first round of a syn-

chronous execution mode only one signal operation will be performed. The signal that is

sent to a neighboring vertex is computed by adding the weight of the intermediate edge

to the state of the source vertex. For simplicity and to conform with other SSSP evalua-

tions in the literature, our edges all have the same weight and therefore we can just add a

constant factor to the state of a vertex. The receiving vertex on the other hand, selects the

minimal value of all received signals and sets it as its updated state if it is also smaller

that the currently stored state. To be able to keep the signal buffers in memory even for

larger graphs, the buffer checks the incoming signals if the value contained in the signal

is smaller than the one already buffered and keeps only the smallest value in the buffer.

The computation is completed when no vertex receives a signal anymore that is smaller

than its current state. For non-negative weights of the edges this guarantees that the al-

gorithm will converge. As a result each vertex stores the distance of the shortest path

from the source vertex to itself or the initial value if it is not reachable from the source

vertex.

The PageRank, as the other algorithm used in this chapter, computes a value of a vertex

in a graph as a function of the states of all the vertices that link to it and the number of

26 Chapter 4. Evaluation

its own outgoing links. As opposed to the algorithm in the original Signal/Collect paper

[Stutz et al., 2010] the calculation for the signals has changed slightly. As a consequence

of merging vertices and edges to one single entity the page is now responsible on its own

for calculating and distributing the signals. In the implementation used here the signal is

calculated as follows:

signal =
state

outgoing links

The semantics of the computed values are not affected by this internal change. In

order to be able to evaluate the system on graphs of different size, we decided to use

synthetic graphs rather than a fixed size real world dataset. Taking random samples from

such a dataset would not guarantee that the samples also reflect the properties observed

on the whole graph. To best resemble a scale free real world graph such as the web graph

or collaboration networks we use a lognormal distribution of out degrees to construct

our synthetic graphs. The probability distribution used is

p(d) =
1

√
2πσ2d

e
−

(ln d−µ)2

2σ2 (4.1)

with the parameters µ = 1.3 and σ = 4, which were also used in the evaluation of the

Pregel system [Malewicz et al., 2010]. To obtain the out degree of a random vertex we use

d = eµ+σR (4.2)

where R is a (pseudo) randomly drawn integer. With a set of vertex using this out de-

gree distribution we build an artificial scale free graph with a mean out degree of 127.1

where the vast majority of all the vertices has a low degree of outgoing edges but a few

vertices are highly connected. Clustering properties, which are characteristic for may

real world networks including the web graph and social networks, can not be imitated

by this synthetic graph generation would have to be considered for deployment in a real

world scenario since they affect the flow of computation in almost every case. If not noted

differently the evaluations are executed on a computer with two AMD OpteronTM6174

processors and 12 cores each, 64GB of RAM and two hard drives that use RAID 0 bit level

stripping.

4.1 Serialization 27

4.1 Serialization

As described earlier, we provide a specialized serialization process for vertices of a PageR-

ank computation. For this algorithm we designed a specialized Externalizable version of

the standard PageRank vertex called MemoryEfficientPage. The MemoryEfficientPage with-

out its method declarations was shown in listing 3.6 of the previous chapter. This new

page implements the vertex interface directly and can so reduce a lot of the overhead that

is needed in the default vertex implementation to provide maximal flexibility. Because

the page does not have to hold entire edge objects in a HashMap anymore, but uses an

array to store just the ids of the pages it links to its size can be considerably reduced.

Together with other optimizations on some of the instance variables of the page the se-

rialized size, using generic Java serialization techniques, is 4 times smaller than the one

of the default page implementation. When the serialized version is written explicitly by

the provided read- and writeExternal functions of the Externalizable interface the size of the

serialized vertex can even be reduced by a factor of 12 compared to the default page im-

plementation serialized with the standard Java serializer. Table 4.1 shows the serialized

size of these two vertex implementations using different serialization implementations.

The upper part of this table shows the sizes of the default page as well as the optimized

page implementation. For completeness and to differentiate the effect of the optimized

serialization technique from the optimizations in the structure of the vertex, the Memo-

ryEfficientPage is also measured with de default serialization procedure i.e., without the

methods of the Externalizable interface. On top of the default Java serialization we built

another way for serialization, called compressing serializer, which uses the ZLIB com-

pression library to compress the resulting byte array of any serializer to further reduce

its size. Since the compression works on byte level and does not need to know about the

actual object the byte array represents the compression extension can be used to trans-

form any byte array, including the one resulting from custom serialization on a efficient

vertex structure. The lower part of table 4.1 shows, that the effect of compression strongly

depends on the structure of the input array. The default page implementation can be re-

duced to almost half of its original size by applying the compression schema after the

vertex has been serialized. On the other hand compression appears to be a bad choice for

the MemoryEfficientPage. While the page that used the default Java ObjectWriter was at

least reduced by about 20%, the size of the same vertex even increased after compression

when the custom serialization plan was used first. The cost of this size reductions can be

seen in table 4.2. For both serializers and both types of vertices tested, the serialization

with additional compression took more than three times longer than the simple serial-

28 Chapter 4. Evaluation

ization. The overhead of the additional decompression while deserializing the vertex is

lower relative to the standard deserialization time. Considering the additional time that

compression consumes, compression is only useful in a setting where compression can be

parallelized among several machines and the vertices are in a generic form that benefits

from the compression schema. For vertices that are implement the Externalizable interface

to provide a custom serialization, compression appears to be a poor choice.

Table 4.1: Serialization size comparison of a PageRank vertex

Vertex Type Serializer Serialized Size in bytes

Page Default Serializer 1438
MemoryEfficientPage Default Serializer 363
MemoryEfficientPage Custom Serializer 117

Page Compressing Serializer 780
MemoryEfficientPage Compressing Serializer 306
MemoryEfficientPage Compressing Custom Serializer 122

Table 4.2: Serialization speed comparison of a PageRank vertex

Vertex Type Serializer
Serialization
Time in ns

Deserialization
Time in ns

Page Default Serializer 75,635 176,802
MemoryEfficientPage Default Serializer 57,399 121,488
MemoryEfficientPage Custom Serializer 47,582 60,959

Page Compressing Serializer 262,623 212,965
MemoryEfficientPage Compressing Serializer 233,264 153,257
MemoryEfficientPage Compressing Custom Serializer 156,057 62,954

4.2 Memory Consumption

The serialization sizes described in the previous section provide important information

to estimate the costs of disk I/O and the footprint of the graph on disk. However, to

evaluate how many vertices a graph can possibly hold, these measurements are not the

only factor to consider. The pure byte arrays of our reduced version of a PageRank page

4.2 Memory Consumption 29

in serialized form would fit about nine billion times on a singe hard disk with 1TB ca-

pacity. Moreover adding more capacity is equally simple and cheap. Another limiting

factor that to be considered, even when the possibility of storing vertices on disk exists,

is memory consumption. This section shows how the memory consumption at load time

for PageRank algorithms. The information about the size of a vertex in memory is an

important starting point for selecting the appropriate storage back end for a given prob-

lem and environment or to estimate the size of the buffer for an on-disk implementation.

The measured vertices are built with the lognormal distribution of out degrees shown in

(4.2). For these runs, the collections that hold the information about which vertices have

to signal or to collect are left empty because they can be built in the first run of execution.

For a PageRank computation these collections are redundant at initialization, since every

vertex has to signal and collect in the first round anyway. This saves memory load time

at the cost of execution time in the first round. The vertex sizes in table 4.3 are collected

while loading graphs of various sizes. Because the memory consumed scaled linearly

with the number of vertices in all cases only the relation size per vertex is shown.

Table 4.3: Memory consumption of a PageRank page

Storage back end Size in KB

InMemory 0.618
Serialized InMemory 0.687
Berkeley DB Cached 0.752
Berkeley DB on disk 0.002

Even though these numbers suggest that it theoretically possible to load over 90 mil-

lion vertices in 64 GB memory of a single machine, the actual number of vertices that

fit into memory is just a fraction of that amount. As described in section 3.6.1 the in-

boxes require a considerable amount of memory to store the adding requests from the

coordinator and the signals during the execution of the algorithm. In a scenario where

the vertices already use up a lot of space, the throttling parameters have to be set more

restrictive in order to prevent the inboxes to consume too much memory. Also, because

the system slowly runs out of memory the garbage collection phases get more frequent

and the throughput, i.e. the number of vertices loaded per time units, declines until no

additional vertices can be loaded anymore because the workload of the garbage collector

is too high. Figure 4.1 shows the throughput as a function of the amount of memory

consumed by the vertices in percent of the total available memory. This execution used

30 Chapter 4. Evaluation

Figure 4.1: Throughput with exhausted memory

the in-memory storage engine, 24 workers and worker throttling to limit the total inbox

size of all the workers to 12 million messages. This example shows clearly how the total

amount of vertices is limited by the available memory and that the system must leave

enough space in the memory for temporary data such as signals or other messages.

To reduce the amount of redundant, temporary data that has to be stored, special re-

ducers were presented. One algorithm whose memory consumption can be decreased by

applying such a reducer is the SSSP. Figure 4.2 shows the memory consumption of a syn-

chronous execution of a SSSP computation on a graph with 1 million vertices and about

127 million edges that were stored in a Berkeley DB. The run was executed on a Mac-

Book Pro with a 2.4 GHz Intel Core 2 Duo with 8GB RAM and a 120GB SSD hard drive.

The synchronous SSSP execution consisted of five signal- and five collect-steps and con-

sumed 500 MB of RAM in the maximum case. In our simple implementation the signals

are propagated through the graph in a wave-like form, where the number of neighbor-

ing vertices increases on each signal step. This increase can be observed in the memory

footprint during the execution because the size of the signals sent clearly manifests itself

in the total memory usage. Therefore each step of the synchronous execution is shown

as an actual step in the graph of the overall memory consumption. The zigzag pattern

within each step arises from the reducer that continuously discards incoming signals for

a location if the included distance is higher or equal to the one already buffered. Without

the reducing extension the buffered signals would have easily outgrown the available

amount of memory.

4.3 Page Rank Loading Times 31

Figure 4.2: Memory consumption for a SSSP algorithm in Berkeley DB

4.3 Page Rank Loading Times

To evaluate how fast the storage back end can be filled with vertices, we tried to measure

the pure loading time of each implementation. Normally when working with generated

graphs the creation of new vertices and their storage would happen in parallel. Because

we chose a lognormal distribution, where some of the vertices have a huge out degree

the creation of the vertices was a limiting bottleneck for fast storage back ends such as the

in-memory implementation but also for cached versions of on-disk storages like Berkeley

DB. To measure only the loading time without the generation of the vertices, the vertices

were created in advance and then held in memory for later inserting them into the differ-

ent storage back ends. This storage process is repeated five times for a set of one million

vertices and the average loading time is shown in table 4.4. For this evaluation we did

not use throttling, since the 1 million adding requests easily fit into memory. The toCollect

and toSignal collections are filled with the ids of the vertices while loading them into the

storage, but because they are held in the same in-memory data structures for all storage

back ends, they take the same amount of time for each implementation and can therefore

be neglected in the comparison.

Comparing the serialized version of the in-memory storage with the baseline of the

classical in-memory version, the overhead from serializing the vertices before storing

them in the same data structure is apparent. These figures also help to split up the load

times of the on disk versions in a serialization part, which is independent of the storage

backend, and a part responsible for writing them persistently on disk. For Berkeley DB

32 Chapter 4. Evaluation

Table 4.4: Average loading times of different storage back ends for 1 million vertices

Storage back end Load time in s

InMemory 15.695
Serialized InMemory 19.148
Berkeley DB (cached) 22.264

Berkeley DB (no cache) 27.435
Mongo DB 34.087
Orient DB 25.173

the loading time is also dependant of the size of the cache. The cached version, that uses

a cache size limitation well above the size that one million vertices would consume and

has the deferred write mode set enabled, is considerably faster than the default no cache

version that uses the normal write mode. This speedup arises from caching the write

requests in-memory and only restoring persistency when this is explicitly requested by

the user. This is still slower than the serialized in-memory approach but avoids the disk

I/O involved with storing the file on disk at load time. Our MongoDB driver for Scala as

well as the OrientDB implementation does not provide any function to implement a non-

overwriting insertion, that checks first if an entry with the same identifier already exists

in the graph. To provide this functionality the database has to be queried first to see if

a entry already exist and the call a second function to insert the object. For not slowing

down the insertion we omitted this assertion and directly inserted the vertices to the store

regardless of whether an entry already existed or not. Using the same configuration with

10 million in table 4.5 shows that the load time for the two in-memory implementations

scaled about linearly with the number of vertices, while Berkeley DB even used less time

per vertex as in the smaller test run because the storage optimization mechanisms do

not scale linearly with the with the size of the content of the database. Mongo DB and

OrientDB were excluded from this bigger test run since together with the pre-initialized

vertices they used too much virtual memory and therefore could not complete. MongoDB

does not allow to specify the amount of memory it uses, like for instance Berkeley DB

does, because it uses the replacement strategies of the operating system and therefore

it couldn’t be tuned to fit into memory. Likewise Orient DB did not allow setting the

memory portion but used a operating system functionality based on virtual memory that

failed for the bigger test run.

4.4 Run Times SSSP 33

Table 4.5: Average loading times of different storage back ends for 10 million vertices

Storage back end Load time in s

InMemory 157.713
Serialized InMemory 205.796
Berkeley DB (cached) 211.194

Berkeley DB (no cache) 286.333

4.4 Run Times SSSP

To show how the on-disk version of Signal/Collect performs compared to a distributed

implementation, we repeated the SSSP experiment that is was performed on Pregel [Malewicz

et al., 2010]. We performed the SSSP algorithm on the same highly interconnected syn-

thetic graph with a lognormal distribution of out degrees and an average out degree of

127.6 that was also used in the Pregel experiments. As algorithm for the SSSP compu-

tation, the same simple state propagation as in the reference experiment was used too.

The computation was performed on a computer with 8 cores, 72 GB RAM and an array of

eight hard disk joined in a RAID 10, which means that it uses bit level stripping as well as

mirroring and can write on four disks concurrently. Instead of using a distributed system

as in the Pregel experiment we used a single machine that stored all the vertices on disk

in a Berkeley DB, while keeping the lists of vertices that have to signal and to collect in

memory. As in Pregel’s implementation our system used a synchronous mode of execu-

tion to reduce the number of signal and collect operations and the signal buffer used a

reduction function so that it only stored the lowest incoming signals to save memory.

While the Pregel system scaled about linearly for graphs of 100 million to 1 billion

vertices, the runtime of our implementation skyrocked already at a vertex count of 10

millions. Compared to the 100 seconds the Pregel system took to compute the same algo-

rithm on a graph with 100 million vertices the on-disk computation times are rather disil-

lusioning and show the clear disadvantage of the on-disk approach. Figure 4.3 shows the

runtimes of SSSP runs on graphs of increasing size and their almost exponential growth.

As a reason for these huge performance drawbacks two explanations would be possible.

First a large number of threads that try to access a small number of disks concurrently

slow down the reading speed because the data blocks are randomly distributed over the

disk. Also for a single reader thread scenario the different vertices are distributed over

the whole disk but reading a single vertex is not interrupted because another thread re-

34 Chapter 4. Evaluation

Figure 4.3: Runtimes of SSSP using Berkeley DB JE

quests different blocks from a totally different location on the disk. The other explanation

can be observed in figure 4.4 that shows the runtime of each step during the synchronous

execution of our SSSP algorithm. Because the vertices are stored on disk and the main

portion of the time is spent on accessing vertices, we correlate the used time directly with

the number of vertices retrieved form disk. That this assumption generally holds true can

be observed in figure 4.5, where the SSSP algorithm was performed on a graph, where

all the vertices are chained in one line with an edge that connects each vertex with its

successor. By selecting the first vertex of that chain as the origin of the SSSP computation

we guarantee that each vertex will only collect once and the number of accessed vertices

scales linearly with the graph size. This graph shows that the runtime of this artificial

SSSP computation will scale perfectly linear with the number of vertices accessed during

the computation. The vertex-access pattern during the SSSP computation can therefore

be observed by the time recorded in figure 4.4. The peak in the runtime of the fourth

signal step shows that for the one and two million vertices graphs the majority of the

vertices receive their distance in the third collect step. The following fourth signal step’s

runtime peaks, because all the vertices that received a signal that was lower than their

old state propagate their new states to their neighbors. The next collect step takes less

time than the signal step before, because the sent signals contain a lot of redundant in-

formation that was already filtered out by the reducers in the signal step. Because most

of the vertices already received their final state in the third iteration, a lot less vertices

have to propagate an updated step. For this reason, signaling in step five and the fol-

lowing collect are fairly quick. For the five million vertices run, the third collect step did

4.5 Scalability of SSSP using Berkeley DB JE 35

not yet spread wide enough. Because of that, the signal step of the fourth iteration has

to spread the new signals to a larger number of vertices than it was the case for the two

smaller graphs. This can be observed because the time of the following fourth collect

step is higher since the signals contained less redundancy and therefore there were more

vertices to retrieve than in the preceding signal step. Because a large proportion of the

vertices collected a new state in step four and need to propagate their state, the signal

operation in the fifth step takes longer than the one of the previous step. Since these

signals contained a lot of redundancy the runtime of the following collect step is again

much shorter and because all of the vertices have already received their final state the

computation is terminated.

This graphic illustrates that a slower signal propagation compared to the graph size will

result in a runtime that can not scale linearly on-disk because the number of collect and

signal operations increase disproportionally high. For in-memory executions this effect

seams less dramatic because before collecting, the worker can decide if the reduced sig-

nal is worth to be collected compared to the current state of the vertex. In the on-disk

case, the vertex has to be retrieved and deserialized in order to access its state, which

means that the main work is already performed before the vertex can decide if collecting

the new signals is necessary at all. After the collecting phase the vertex can then decide

if it has to signal its state or remain quiet. Essentially this means that in our on-disk case

the vertices are read and deserialized for the collection operations even if the state will

not change after the collecting of the signal. As a solution to that the buffer of the signals

could also store the current state of a vertex. This would allow to determine if the collect

operation will effect the vertex’s state or if reading the vertex from the data base would

be purposeless anyway. The disadvantage of this implementation is that it would require

a lot more memory for the buffer and would harm the whole concept of storing entities

with their states encapsulated from the signals through the collect functionality.

4.5 Scalability of SSSP using Berkeley DB JE

One of the crucial benefits of a parallel graph processing is that the run time is negatively

correlated with the number of available worker threads, if enough processor cores are

available to natively run them [Stutz et al., 2010] [Malewicz et al., 2010] [Haller and Miller,

2011]. For the Signal/Collect framework, Stutz et al. reported an almost linear scalability

of a SSSP algorithm for 1 to 8 cores. To investigate the impact of on disk storage on the

runtime of a SSSP algorithm we performed the same algorithm on a graph with the same

36 Chapter 4. Evaluation

Figure 4.4: Runtimes of SSSP using Berkeley DB JE - Per synchronous iteration step

Figure 4.5: Scalability of SSSP using Berkeley DB JE on a chain

4.5 Scalability of SSSP using Berkeley DB JE 37

Figure 4.6: Scalability of SSSP using Berkeley DB JE

amount of vertices but a higher out degree. Regardless of the out degree, figure 4.6 shows

clearly that the speedup manifested in the in-memory execution can not be reached, when

storing the vertices on disk. It is obvious that reading the files from disk is the new

bottleneck, while the computation of the states have less impact on the overall runtime

of the algorithm. Some minimal performance gains can be observed, because parts of the

computation, such as the computation of the states or the serialization process, can still be

parallelized. However the limiting factor for this scenario is obviously disk access. Disk

access is not parallelized and therefore it does not benefit from the increasing number of

worker threads. The worker threads are slowed down during a SSSP algorithm that has

to read and write all vertices from and to disk to about nine percent CPU activity each.

How the parallelization would perform, when each worker thread had its own disk to

write to, is beyond the scope of this evaluation but most likely some of the speedup could

be regained because the workers would not have to share the bandwidth of a single disk

or a small number of them as in our RAID 0 environment.

5
Related Work

The proposed storage back ends provide the Signal/Collect framework with the ability

to reduce its in-memory footprint by storing parts of the graph on-disk and thereby al-

lowing it to hold more vertices and edges than just the ones that would have fitted into

memory. The storage back ends are interchangeable and, depending on the graph size

and the available resources, an appropriate solution can be assembled. Possible configu-

rations reach from a setting where all elements of the algorithm are held in memory, over

mixed versions where the a portion or all of the vertices are persistently written to disk,

while the toSignal and toCollect lists are kept in memory, to a very low memory consum-

ing configuration, where all the graph elements as well as the tracking lists are stored on

disk. Presented approach to store parts of the graph on disk stands in contrast to similar

graph processing frameworks that follow different strategies to overcome the limitation

of the maximal graph size by the availability of memory on a single machine.

Google’s Pregel system [Malewicz et al., 2010] scales by distributing the workload among

a set of commodity computers. All the vertices are distributed over many worker ma-

chines, whereby the algorithm that determines the responsible machine for a vertex can

be explicitly specified to exploit locality effects. The system incorporates a persistent stor-

age feature to enable fault recovery. Because of its synchronous execution mode Pregel

can store checkpoints that hold safe fallback states for the system. As storage system it

relies on Google’s own GFS [Ghemawat et al., 2003] and BigTable [Chang et al., 2006]

technology. Haller and Miller presented a framework [Haller and Miller, 2011] that is

conceptually similar to the Signal/Collect approach and where the vertices exchange

messages upon which the receiving vertex can update its state. Unlike Pregel it does

not require the algorithm to run synchronously and can handle parts of the computation

in parallel without central coordination. In their description of the programming model

40 Chapter 5. Related Work

they did not present a way to extend the framework to handle datasets that are too large

to fit into memory of a single machine. However they mentioned their intentions to dis-

tribute the framework and implement fault handling in the near future, which would

most likely require storing some information about safe fallback states. The GraphLab

Project[Low et al., 2010] by Carnegie Mellon University is a third parallel framework that

was originally designed for machine learning algorithms. It executes MapReduce tasks

by mapping them in a graph structure for processing the calculations. In the implemen-

tation that they used in the paper to present the general computing model, all the graph

elements are stored in shared memory and no fallback states are implemented. However,

they also stated their goal to make GraphLab distributed to handle larger data sets. To

the best of our knowledge there exists no similar framework that relies only on disk, or

has intentions to do so, to enable processing graphs that would not fit into memory. Most

likely the latency of frequent disk access is too high for such computational models and

therefore disk storage is only used to store periodical snapshots of the graph for eventual

fault recovery.

6
Conclusions and Future Work

This thesis presented several ways to extend the constraints of limited main memory

availability for algorithms running based on the Signal/Collect framework. Since mem-

ory is one of the first limitation factors faced when increasing the size of a stored graph,

reducing the in-memory footprint of an execution directly allows for more vertices to be

stored. By serializing and storing parts or all of the vertices on disk, instead of hold-

ing them in an in-memory data structure, the objects that represent these vertices can

be garbage collected to free memory. This allows to have enough memory left to hold

the vertices that are needed for the current computation even if the graph size is very

large. Apart from storing the vertices the system also has to hold other information

about the current state of execution of the algorithm to control the execution of opera-

tions on the stored vertices. Storing the vertices on disk and only retrieving them when

they are needed allows this utility information to use more memory than it could have

used when it had to share the memory with all the vertices. By storing not only vertices

and edges, but also all the elements that determine the control sequence of a Signal/-

Collect algorithm, the maximum possible graph size would in theory only be limited by

the available storage capacity of the secondary storage device. The used main memory

would be constantly low because only the information that is currently needed would

be retrieved from disk to perform some operations on it and would then be saved back

to disk. The memory footprint would therefore only depend on the number of concur-

rent operations performed and be independent of the actual graph size. However, in a

practical application, the supporting elements, such as the collections that store the in-

formation about the vertices that have to collect or to signal, need to be kept in memory.

The slowdown of several magnitudes, when storing this information on disk as well is

unacceptably high. This finding limits the effect of storing the vertices on disk, since it

42 Chapter 6. Conclusions and Future Work

only extends the limitations of the scarce main memory but does not provide a solution

to overcome it. This means that the on-disk storage back ends presented will not allow to

extend the maximum number of vertices that can be processed on a single computer to a

billion vertices. It will however enable storing an additional amount of entries compared

to a setting where all vertices are held in memory only. Additionally a number of adap-

tions of the Signal/Collect framework have been proposed that also benefit in-memory

as well as a possible distributed application of Signal/Collect. They can both profit from

the measures taken to reduce the memory consumption at loading time as well as during

execution. Even with all these optimizations in place, the computation of SSSP was sev-

eral magnitudes slower than a comparable distributed setting which shows that pure on

disk storage is not qualified to provide scalability for graphs of very large size.

The evaluations have shown that in order to process data sets that exceed the limitation

faced by the constraint of memory, a distributed version of Signal/Collect could pro-

vide the needed scalability. Indisputably a distributed case also increases the latency of

a computation, because the messages need to be over the network, but overcomes the

restriction of main memory limitations by adding more memory. Because in such a dis-

tributed scenario a the probability of a node failure increases with the number of nodes

being uses, it would be valuable to have some persistent fallback state that is written on

disk and probably replicated on other nodes. The vertex storages presented could easily

be used to save the state of the vertices in such an application scenario. Another optimiza-

tion that would improve the performance of a distributed as well as a single-machine im-

plementation is the possibility to better balance the vertices among the different worker

threads. Load balancing would also benefit from the introduction of the presented stor-

age interface because it looses the tight coupling between workers and their vertices.

Even tough the on-disk storage did not provide the scalability I wished for, I am still

impressed with the amount of vertices that now can be handled by one single machine.

I believe that together with the distributed version and all the other optimizations per-

formed around these two approaches, the on-disk storage will make Signal/Collect an

even more attractive graph processing framework that suits not only different algorithms

but can also be configured to exploit the resources of different hardware environments.

List of Figures

3.1 Original vertex storage structure . 7
3.2 MongoDB setup with 4 shards and a replica set with three instances each . 15

4.1 Throughput with exhausted memory . 30
4.2 Memory consumption for a SSSP algorithm in Berkeley DB 31
4.3 Runtimes of SSSP using Berkeley DB JE . 34
4.4 Runtimes of SSSP using Berkeley DB JE - Per synchronous iteration step . 36
4.5 Scalability of SSSP using Berkeley DB JE on a chain 36
4.6 Scalability of SSSP using Berkeley DB JE . 37

List of Tables

4.1 Serialization size comparison of a PageRank vertex 28
4.2 Serialization speed comparison of a PageRank vertex 28
4.3 Memory consumption of a PageRank page 29
4.4 Average loading times of different storage back ends for 1 million vertices 32
4.5 Average loading times of different storage back ends for 10 million vertices 33

List of Listings

3.1 Storage Interface . 8
3.2 Default configuration of the storage . 11
3.3 Berkeley DB JE Entity Wrapper . 14
3.4 Example storage and retrieval in MongoDB using casbah 16
3.5 Vertex wrapper for OrientDB . 17
3.6 Exemplary custom serialization of a vertex 21

Bibliography

[Chang et al., 2006] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Bur-
rows, M., Chandra, T., Fikes, A., and Gruber, R. E. (2006). Bigtable: a distributed
storage system for structured data. In Proceedings of the 7th USENIX Symposium on Op-
erating Systems Design and Implementation - Volume 7, OSDI ’06, pages 15–15, Berkeley,
CA, USA. USENIX Association.

[Claude and Navarro, 2010] Claude, F. and Navarro, G. (2010). Fast and Compact Web
Graph Representations. ACM Trans. Web, 4.

[Dean and Ghemawat, 2008] Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified
data processing on large clusters. Commun. ACM, 51:107–113.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design
patterns: elements of reusable object-oriented software. Addison-Wesley Professional.

[Ghemawat et al., 2003] Ghemawat, S., Gobioff, H., and Leung, S.-T. (2003). The google
file system. In Proceedings of the nineteenth ACM symposium on Operating systems princi-
ples, SOSP ’03, pages 29–43, New York, NY, USA. ACM.

[Gulli and Signorini, 2005] Gulli, A. and Signorini, A. (2005). The indexable web is more
than 11.5 billion pages. In Special interest tracks and posters of the 14th international con-
ference on World Wide Web, WWW ’05, pages 902–903, New York, NY, USA. ACM.

[Haller and Miller, 2011] Haller, P. and Miller, H. (2011). Parallelizing Machine Learning-
Functionally: A Framework and Abstractions for Parallel Graph Processing. In 2nd
Annual Scala Workshop.

[Kuznetsov, 2010] Kuznetsov, V. (2010). The CMS data aggregation system. Procedia Com-
puter Science, 1(1).

[Low et al., 2010] Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., and Heller-
stein, J. M. (2010). Graphlab: A new parallel framework for machine learning. In
Conference on Uncertainty in Artificial Intelligence (UAI).

50 BIBLIOGRAPHY

[Malewicz et al., 2010] Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I.,
Leiser, N., and Czajkowski, G. (2010). Pregel: a system for large-scale graph process-
ing. In Proceedings of the 2010 international conference on Management of data, SIGMOD
’10, pages 135–146, New York, NY, USA. ACM.

[Opyrchal et al., 1998] Opyrchal, L., , Opyrchal, L., and Prakash, A. (1998). Efficient Ob-
ject Serialization in Java. In Proceedings of 19th IEEE International Conference on Dis-
tributed Computing Systems Workshops (31 May-4.

[Oracle, 2006] Oracle (2006). Berkeley DB Java Edition Architecture. Retrieved July 30,
2011, from http://www.oracle.com/technetwork/database/berkeleydb/
learnmore/bdb-je-architecture-whitepaper-366830.pdf.

[Page et al., 1999] Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The pager-
ank citation ranking: Bringing order to the web. Technical Report 1999-66, Stanford
InfoLab.

[Pearce et al., 2010] Pearce, R., Gokhale, M., and Amato, N. M. (2010). Multithreaded
Asynchronous Graph Traversal for In-Memory and Semi-External Memory. In Pro-
ceedings of the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, pages 1–11, Washington, DC, USA. IEEE Com-
puter Society.

[Stutz et al., 2010] Stutz, P., Bernstein, A., and Cohen, W. (2010). Signal/collect: graph
algorithms for the (semantic) web. In Proceedings of the 9th international semantic web
conference on The semantic web - Volume Part I, ISWC’10, pages 764–780, Berlin, Heidel-
berg. Springer-Verlag.

