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Starting from Hoare correctness formulae {P} S {Q} which define first-order predicates S by their pre- and
postconditions P and Q, I formulate logic specifications S !  P " Q for the predicates. Subsequently, I
discuss two methods to construct logic programs from logic specifications. First, I simply derive programs
as the if-halves of their logic specifications. These programs are concise, readable, but often inefficient
and should rather be considered executable specifications. In the second method, I derive more efficient
programs by structural induction. These programs are recursive, and – though correct – not obviously logical
consequences of the pre- and postconditions of the predicate.

1 Introduction

Recently there has been much interest in constructive methods to derive logic
programs from their specifications (e.g. [Bundy et al. 90], [Flener 91], [Fribourg 90],
[Deville 90], [Lau, Prestwich 91]).

Bundy and collaborators [Bundy et al. 90] in their Oyster system synthesize programs
in first-order logic from non-executable specifications in typed constructive logic. The
synthesis uses the proofs-as-programs technique which constructively proves a
specification theorem: each proof step is associated with a program construction step,
e.g. proof by induction with recursion. The synthesized logic program consists of a set
of equivalences called tracts. In a second step, the synthesized logic program is
compiled into a Prolog program.

Deville [Deville 90] formulates specifications of logic programs in natural language. In
addition to a description of the relation to be specified, a specification contains
information on the types and the directionality of the arguments, on possible
restrictions, and on side-effects. Different parts of the specification are considered pre-
and postconditions of the program. By structural induction and generalization,
Deville derives from the specification a logic description of a predicate expressed as
equivalences in untyped first-order predicate logic. In a further step, the logic
description is transformed into a Prolog program.

In this paper, I present a new method that is based on non-executable logic
specifications derived from Hoare correctness formulae for logic programs. Logic
specifications specify the same programs, they are equivalent to correctness formulae.
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Logic specifications can be used as the starting point for the construction of programs.
In fact, I present two construction methods, one leading to executable specifications,
the other one to efficient recursive programs.

Both Deville's logic descriptions [Deville 90] and Bundy's tracts [Bundy et al. 90]
superficially resemble my logic specifications though their roles are completely
different: logic specifications are the starting point for program synthesis, while logic
descriptions and tracts are the result of program synthesis.

Hoare correctness formulae for logic programs were also proposed by other authors.
Recently, Colussi and Marchiori [Colussi, Marchiori 91] defined an axiomatic
semantics for Prolog programs with the specific intention to express Prolog's
operational aspects. Colussi's and Marchiori's paper contains references to related
earlier work.

In section 2 of this paper, I briefly recall Hoare logic, and in section 3 the relation
between specifications and programs in logic. In section 4, I introduce logic
specifications, first by means of an example, then formally. I also prove that the
programs specified by logic specifications are correct and complete with respect to the
least Herbrand model. In section 5, I derive executable specifications from logic
specifications, and advocate coroutining as a complete and efficient execution method
for executable specifications. In section 6, I briefly define structural induction, and
demonstrate that by structural induction efficient programs can be derived from logic
specifications. Finally in section 7, I summarize my results.

2 Hoare Logic

In his seminal paper Hoare [Hoare 69] shows how programs can be given an axiomatic
basis. Programs in procedural languages acquire a semantics by pre- and postconditions
expressed in first-order predicate logic. These pre- and postconditions can be
considered as specifications of the programs. Hoare defines correctness formulae

{P} S {Q}

where S is a program in a procedural language, and the precondition P and post–
condition Q are logical formulae describing properties of data manipulated by the
program S. The correctness formula means that if execution of S is started in a state
satisfying P  and if the execution terminates then Q  will be true. Often the
postcondition Q involves both initial and final states.

Defining the semantics of individual statements of a procedural programming
language by correctness formulae, and providing correct rules for the composition of
statements to programs enables us to construct a verified program from its
specifications. Though not actually applicable to realistic programs, this idea has
turned out to be extremely fruitful for research on program verification and design,
and has led to a large number of publications. Cousot [Cousot 90] gives a recent
overview of the field and provides a comprehensive bibliography.
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3 Specifications and Programs in Logic

In Hoare correctness formulae, specifications are expressed in logic while programs are
expressed in a procedural language. This leads to the unfortunate complication that
we have to establish relations between elements of two different languages, concretely
that we have to prove that a program meets its specification.

In the context of logic programming, Kowalski [Kowalski 79] points out that logic
should not only be considered as a specification language but also as a means to solve
the specified problem. Kowalski further emphasizes that expressing specifications and
programs in the same language eases the task of verification.

Hoare's axiomatic semantics abstracts from programs in procedural languages to
specifications in first-order logic. Combining Hoare's and Kowalski's ideas, I complete
the process of abstraction by letting the S in Hoare's correctness formula stand for a
logic program, i.e. by expressing both the specification and the program in logic.

Kowalski [Kowalski 85] discusses this situation. He states that there is no syntactic
difference between a program and its specification. Both specifications and programs
can be executed by an interpreter based on automatic deduction – though programs are
expected to be more efficient than specifications. Programs can be derived from their
specifications by logical deduction, and can thus be considered computationally useful
consequences of their specifications.

In the following, I will deduce logic programs from correctness formulae via
intermediate expressions which I call logic specifications. Logic specifications capture
the essence of correctness formulae and admit at least two different methods for
program construction.

4 Logic Specifications

4.1 An Introductory Example

The program sort(L,SL) that sorts a list L can be specified as

{list(L)} sort(L,SL) {permutation(L,SL) " ordered(SL)}

One possible implementation of the predicate sort is the quicksort algorithm defined
by the Prolog program

sort([],[]).
sort([L|Ls],SL) :-
partition(L,Ls,Smaller,Larger),
sort(Smaller,SortedSmaller),
sort(Larger,SortedLarger),
append(SortedSmaller,[L|SortedLarger],SL).

To show that sort meets its specification we have to prove that sort is a logical
consequence of its specification. This proof is by no means trivial.
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Interestingly, logic programming admits quite another way to derive a program from
the given specification. The idea is to define the program as implication of the
conjunction of its pre- and postconditions. In the case of sort the derivation leads to
the Horn clause

sort(L,SL) # list(L) " permutation(L,SL) " ordered(SL)

This program sort trivially meets its specification.

I now assume that the elementary predicates list, permutation and ordered are
available in executable form, and rewrite the second sort as the Prolog program

sort(L,SL) :-
list(L),
permutation(L,SL),
ordered(SL).

Comparing the derived programs, we find that the first sort  is an efficient
implementation of its specification, but does not obviously meet it, while the second
sort  trivially meets its specification, but – being based on the generate-and-test
technique – is very inefficient.

4.2 Formal Definition of Logic Specifications

Let me make the ideas of the preceding sections more precise. I express the relation
between a logic program S and its pre- and postconditions P and Q by the correctness
formula

{P} S {Q}

where P and Q are logical formulae, and S is an atomic logical formula. Restricting S
to an atom means that the program implements a single predicate.

From the correctness formula I derive the logic specification

S ! P " Q

for S. All variables of the logic specification are implicitly universally quantified in
front of it.

Logic specifications are consistent if the pre- and postconditions are. Inconsistencies
due to multiple assignments are impossible, because logical variables can be bound at
most once.

It is interesting to note, that the logic specification of S – enhanced by an equality
theory – is equivalent to Clark's completion of S ([Clark 78], [Lloyd 87]) which forms
the basis for the declarative semantics of normal logic programs.
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4.3 Correctness and Completeness of Logic Specifications

Let the definite logic program S implement the predicate s. The declarative semantics
of S is its least Herbrand model

{H | H$BS " S|=H} where BS is the set of all ground instances of s

Following Clark ([Clark 79], [Deville 90]), I relate this declarative semantics to the one
expressed by the correctness formula

{P} S {Q}

with the help of correctness and completeness criteria. If A is an axiom system which
formalizes s, S is correct with respect to the least Herbrand model iff

A |= (P " S % Q)

and complete iff

A |= (P " Q % S)

Identifying A with the logic specification for S

A = (S ! P " Q)

it is trivial to prove that the program S as defined by the logic specification fulfills both
of Clark's criteria.

I conclude, that the program specified by the logic specification is the same as the one
specified by the correctness formula, i.e. that the logic specification and the correctness
formula are equivalent ways of specification. Furthermore I conclude, that the
specified program is correct and complete with respect to its least Herbrand model.

5 Executable Specifications Derived From Logic Specifications

5.1 Programs as If-Halves of Logic Specifications

The if-half

S # P " Q

of the logic specification is a Horn clause which constitutes a program for S.
In the general case, this Horn clause is in the extended form

A # W
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introduced by [Lloyd, Topor 84]. The head A is an atomic formula, while the body W is a
first-order formula including the usual connectors and quantifiers.

In spite of their increased expressiveness, extended Horn clauses remain within the
Horn clause subset of predicate logic. In fact, [Lloyd, Topor 84] demonstrated that
extended Horn clauses can be transformed into equivalent normal Horn clauses
provided that negation is safe. For example, the formula &X:(P% Q) is transformed
into the Prolog literal not(P,not Q).

As we see, the if-half of a logic specification is equivalent to a normal logic program.
How about the correctness and completeness of this program with respect to the least
Herbrand model? The declarative semantics of normal programs is based on Clark's
completion which – as pointed out – is equivalent to the logic specification plus an
equality theory. Disregarding the equality theory for the moment we see that the logic
specification forms the basis of the semantics of the derived normal programs and that
the correctness and completeness results of section 4.3 apply.

For two reasons, programs derived as the if-halves of their logic specifications should
rather be considered executable specifications. First, the programs are concise, readable,
and obviously fulfill their pre- and postconditions. Second, if the pre- and
postconditions are available in executable form, the programs are executable, though
not necessarily efficiently. As ([Fuchs 91], [Levi 86]) pointed out, pre- and
postconditions defining predicates by their properties often lead to programs based on
generate-and-test, i.e. on search.

5.2 The First Few Smallest Elements of a List

As an example, I will derive the program smallest  which finds the S  smallest
elements in an unsorted list of N ' S elements. I specify smallest by

{list(List) " length(List)=N " 0<S(N}

smallest(List,S,Smallest)

{Smallest) List " length(Smallest)=S "
&X,&Y: (X$(Smallest) " Y$(List-Smallest) % X(Y)}

The predicate smallest  is defined as the if-half of the logic specification, i.e. as
implication of the conjunction of the pre- and postconditions.

smallest(List,S,Smallest) #
list(List) " length(List)=N " 0<S(N "
Smallest) List " length(Smallest)=S "
&X,&Y: (X$(Smallest) " Y$(List-Smallest) % X(Y)

This logic program for smallest is in the form of an extended Horn clause. Lloyd-
Topor transformations will transform the extended Horn clause into a normal Horn
clause. Expressions in functional notation are replaced by equivalent expressions in
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relational notation, e.g. length(List)=N by length(List,N), or List-Smallest by
difference(List,Smallest,List_Smallest). The transformation yields the
Prolog program

smallest(List,S,Smallest) :-
list(List),
length(List,N),
0 < S, S ( N,
subset(Smallest,List),
length(Smallest,S),
difference(List,Smallest,List_Smallest),
not((member(X,Smallest),member(Y,List_Smallest),X>Y)).

Given the elementary predicates in executable form, the program is executable. Being
derived from a definition of properties, smallest resembles more an executable
specification than a program: it obviously fulfills its specification, and is based on
generate-and-test.

5.3 Complete Proof Procedures

Hoare's correctness formula

{P} S {Q}

does not mean that S will necessarily terminate if started in any state in which the
precondition P holds. Termination is guaranteed only for the subset of states fulfilling
the weakest precondition [Dijkstra 76]. The weakest precondition wp(S,Q) defines the
set of all states for which the program S  terminates in a state fulfilling the
postcondition Q. This means that the logic program

S # wp(S,Q) " Q

also terminates.

Unfortunately, this is not necessarily true for the Prolog program derived from it. For
efficiency reasons, the Prolog interpreter processes conjunctions sequentially from left
to right. Consequently, Prolog's SLD proof procedure is incomplete. To ensure
termination, Prolog's proof procedure must be replaced by a complete one.

We get a complete proof procedure if we delay the execution of literals which cannot
yet safely be executed. Specifically, we delay negated literals until they are ground.
Mechanism for delayed execution were discussed by [Naish 86], and are available in a
number of Prolog implementations, and in Gödel [Hill, Lloyd 91].

Additionally, many of these languages allow to explicitly delay the execution of literals
until user-defined conditions are fulfilled, i. e. the languages support coroutining.
Coroutining can turn inefficient programs – specifically executable specifications –
into efficient ones. For a generate-and-test solution, coroutining can interleave the
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execution of the generator and tester. Consequently, failure branches of the proof tree
are pruned much earlier, and the proof can become significantly more efficient than
without coroutining.

Furthermore, a complete proof procedure allows us to take advantage of the relational
nature of an executable specification [Kowalski 85], i.e. we can query a specification for
various instantiations of its arguments.

6 Derivation of Logic Programs By Structural Induction

6.1 Structural Induction

The if-halves of logic specifications result in programs which are usually rather
inefficient. To derive efficient programs from logic specifications we have to employ
other methods. In the following, I will investigate structural induction which leads to
recursive programs.

The induction principle [Deville 90] allows us to conclude that all members of a set S
have a certain property P if S is well-founded, i.e. has a well-founded relation < , if P is
true for the minimal element E  of the set, and if we can prove that P  holds for an
element X if P holds for all elements Y < X.

Structural induction is based on the recursive form of standard data structures which
suggests many well-founded relations. For lists we can use the relation suffix, i.e. we
say that L1 < L2 iff L1 is a suffix of L2. The minimal element is the empty list.

Two examples will demonstrate the power of structural induction to generate efficient
recursive programs. For a comparison, I will also derive executable specifications.

6.2 Removing Elements From a List

A well-known problem in the logic programming community is the removal of the
first occurrence of a given element from a list.

I describe the problem by the correctness formula

{list(L) " X$L}
remove(X,L,L_X)
{* As,Bs: (list(As) " list(Bs) " append(As,[X|Bs],L) "
append(As,Bs,L_X) " ¬ X$As)}

This yields the logic specification

remove(X,L,L_X) !
list(L) " X$L " * As,Bs: (list(As) " list(Bs) " 
append(As,[X|Bs],L) " append(As,Bs,L_X) " ¬ X$As)
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from which I can derive an executable specification in Prolog notation

remove(X,L,L_X) :-
append(As,[X|Bs],L),
not member(X,As),
append(As,Bs,L_X).

This executable specification reflects the correctness formula, but is rather inefficient
since it is based on generate-and-test. Structural induction allows us to derive a more
efficient recursive program from the logic specification. For the two problems that I
will discuss, I use induction on the structure of the list L.

The precondition X$L means that L cannot be the empty list []. Therefore, I only
have to reason about a non-empty list, i.e. L=[H|T]. There are two possibilities: X is
the first element of the list L, or it is not.

The element X is the first element of L, i.e. X=H. We get

remove(X,L,L_X) !
L=[H|T] " X=H " * As,Bs: (list(As) " list(Bs) " 
append(As,[X|Bs],L) " append(As,Bs,L_X) " ¬ X$As)

This is only possible if As=[], Bs=T, and L_X=T. Thus

remove(X,L,L_X) !
L=[H|T] " X=H " L_X=T

If the element X is not the first element of L, X can only be in T, and L_X must have the
form [H|T_X], where T_X is T without the first occurrence of X.

remove(X,L,L_X) !
L=[H|T] " X+H " X$T " L_X=[H|T_X] "
* As,Bs: (list(As) " list(Bs) " append(As,[X|Bs],L_X) " 
append(As,Bs,T_X) " ¬ X$As)

With the help of the logic specification this can be simplified to

remove(X,L,L_X) !
L=[H|T] " X+H " L_X=[H|T_X] "
remove(X,T,T_X)

Using only the if-halves of the results and performing all substitutions I derive the
Prolog program

remove(X,[X|T],T).
remove(X,[H|T],[H|T_X]) :-
X\=H,
remove(X,T,T_X).
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This recursive program is substantially more efficient than its executable specification.
But it no longer bears any resemblance to the correctness formula.

6.3 Hamming Numbers

Hamming numbers are the ordered sequence of natural numbers which have as
prime factors only 2, 3, and 5. Since there are infinitely many Hamming numbers, the
sequence is not computable, but finite prefixes are.

I define the predicate hamming(Limit,Hs) which is true if Hs is the finite sequence of
Hamming numbers smaller than or equal to Limit. I represent sequences as lists. N
stands for the set of natural numbers. The predicate hamming  is defined by the
correctness formula

{Limit$N " list(Hs)}
hamming(Limit,Hs)
{Hs={H | H$N " has_primefactors_2_3_5(H) " H ( Limit}}

which leads to the logic specification

hamming(Limit,Hs) !
Limit$N " list(Hs) "
Hs={H | H$N " has_primefactors_2_3_5(H) " H ( Limit}

 from which I can derive the executable specification [Fuchs 91]

hamming(Limit,Hs) :-
set(H,(natural_number(H,Limit), has_primefactors_2_3_5(H)),Hs).

The predicate natural_number(H,Limit) generates natural numbers H up to Limit,
while has_primefactors_2_3_5 tests for 'Hamming'-ness. Again, this executable
specification is based on generate-and-test.

For a more efficient recursive program I use induction with the list Hs as induction
parameter. If Hs is the empty list [], we can only have Limit=1.

hamming(Limit,Hs) ! Limit=1, Hs=[].

If Hs  is the non-empty list [X|Xs]  of Hamming numbers, there are two cases,
depending on whether Limit is a Hamming number or not.

If Limit is a Hamming number, I let Hs=[Limit|Xs] where Xs is the list of Hamming
numbers smaller than or equal to Limit-1.

hamming(Limit,Hs) !
Limit$N " has_primefactors_2_3_5(Limit) "
Hs=[Limit|Xs] " list(Xs) " hamming(Limit-1,Xs)
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If Limit is not a Hamming number all elements of Hs must be smaller than or equal
to Limit-1.

hamming(Limit,Hs) !
Limit$N " not has_primefactors_2_3_5(Limit) "
hamming(Limit-1,Hs)

Using only the if-halves of the equivalences I translate them into Prolog clauses. I
introduce an executable predicate natural_number which generates natural numbers,
and perform all substitutions.

hamming(1,[]).
hamming(Limit,[Limit|Xs]) :-
natural_number(Limit),
has_primefactors_2_3_5(Limit),
hamming(Limit-1,Xs).

hamming(Limit,Hs) :-
natural_number(Limit),
not has_primefactors_2_3_5(Limit),
hamming(Limit-1,Hs).

Finally, I take into account that Hamming numbers are ordered by introducing the
interface predicate hamming_numbers which calls hamming and sorts the result.

hamming_numbers(Limit,HammingNumbers) :-
hamming(Limit,Hs),
sort(Hs,HammingNumbers).

It is interesting to note that the derived logic program is an order of magnitude more
efficient than its executable specification.

7 Conclusions

Starting with Hoare's correctness formulae for predicates, I define logic specifications
for the predicates as if-and-only-if implications of the conjunction of the pre- and
postconditions. Logic specifications and correctness formulae are equivalent, and the
specified programs are correct and complete with respect to the least Herbrand model.

Logic specifications form the basis for two constructive methods to derive programs.
On the one hand, the if-halves of logic specifications are – possibly extended – Horn
clauses which are executable if the predicates of the pre- and postconditions are
executable. On the other hand, recursive program for the predicate can be derived
from logic specifications by structural induction.

Both methods have their advantages and disadvantages. The first method leads
directly to concise programs which are obviously correct and reflect their correctness
formulae. On the other side, conjunctions of pre- and postconditions often result in
inefficient programs based on generate-and-test. Thus I call programs derived by the
first method executable specifications. The second method generates programs that can
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be orders of magnitude more efficient than their executable specification counterparts,
but – being recursive – the programs are no longer obvious logical consequences of
their correctness formulae.
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