
The Teacher: “Concepts!” The Student: “Tools!” — On the Number and
Importance of Concepts, Methods, and Tools to be Taught in Software

Engineering Education

Martin Glinz
Institut für Informatik

University of Zurich, Switzerland
glinz@ifi.unizh.ch

Abstract

The paper discusses the number and importance of
concepts, methods, and tools that should be taught in
software engineering education. It is shown that em-
phasis is quite different from a teacher’s and from a
student’s viewpoint. As a synthesis of both viewpoints, I
propose an approach that separates concepts and
methods from tools in the curriculum and treats both
with proper emphasis. The software engineering cur-
riculum of the Department of Computer Science of the
University of Zurich which follows these ideas is
sketched.

1. Introduction

When looking at the preferences for concepts, meth-
ods, and tools in software engineering, one finds con-
siderable differences between the viewpoints of teach-
ers and students. Most teachers lay emphasis on con-
cepts and methods due to their generality and scientific
importance. Students typically prefer tools because they
are practical and provide hands-on benefit.

In this paper, I use the terms concept, method, and
tool as follows. A concept is a basic, abstract idea for
representing or solving a problem. A method is a strat-
egy of how to apply a concept in practice using a given
notation. A tool supports the application of a method
and its associated notation (Glinz [5], Ludewig [6]).

As both teachers and students have good arguments
for their viewpoints, a good software engineering cur-
riculum should find a suitable synthesis between them.
In this paper I sketch such a synthesis. It is character-
ized by four principles: “Many concepts – some meth-
ods – few tools”, “Separate concepts from tools”,
“Introduce concepts early”, and “Make tools useful for
students”.

The paper is organized as follows. In the next two
sections I describe the teacher’s and the student’s view-
points, respectively. Then I present my view of a syn-
thesis. In section five I give an overview of the software

engineering curriculum at the University of Zurich,
which follows these ideas.

2. The teacher’s viewpoint

From a teacher’s viewpoint, the selection of topics in
software engineering education and the emphasis of
teaching these topics should be strongly correlated with
the generality and the lifetime of the topics.

When looking at concepts, methods, and tools, we
find a decreasing order both for generality and lifetime.
Concepts form the scientific foundation both for meth-
ods and tools. So, by their very nature, they are general
and long-lived. Methods typically are instances of one
or more concepts and make them practically applicable.
Tools improve productivity when applying a method.
Therefore, methods are less general than concepts but
more general than tools. When looking at the history of
software engineering, one can also see that methods
typically live shorter than concepts, but longer than
tools. For example, the concept of layered, dataflow-
based system models originates in the early seventies.
Various methods have been devised based on this con-
cept, e.g. Structured Analysis (DeMarco [2]), Essential
Structured Analysis (McMenamin and Palmer [7]),
SADT (Ross [9]), and SSADM (Ashworth and
Goodland [1]). A lot of tools have been developed for
these methods. Many of them are already part of history
and are no longer used.

From a purely teaching standpoint, use of tools can
even be considered harmful: Learning how to use a tool
takes a considerable amount of time. Students concen-
trate on mastering the tool (and on playing around with
it) instead of solving the problem at hand. That means,
tool use emphasizes syntactic issues instead of semantic
ones.

3. The student’s viewpoint

For most students, tools are the real stuff. It is the
tool that helps her or him writing, compiling, and de-

bugging programs. It is the tool that makes application
frameworks accessible and usable. It is the tool that
saves time. It is the tool that is fun to play with. So,
learning by tool usage is highly motivating for students.

Methods are frequently considered to be some kind
of abstract guide to how to use a tool. Learning them is
motivated by the experience when using tools.

Concepts, however, tend to be regarded as theoretical
issues by the students. Left to themselves, most stu-
dents find it difficult to understand why they should
learn them. There is nearly no intrinsic motivation to
study concepts in software engineering. Showing the
value of concepts by demonstrating their application
and impact in practice is among the most challenging
tasks in software engineering education.

4. Synthesis of viewpoints for a software
engineering curriculum

4.1 Many concepts – some methods – few tools

Due to the short half-life of knowledge in computer
science, the curriculum must concentrate on the funda-
mental and long-lived topics – concepts and methods in
our context. Building on this foundation, the teacher
must show the students how to embody and apply these
concepts and methods in practice using selective exam-
ples and – where useful – tools.

The focus should lie on a broad teaching of concepts,
because methods are less general and far more numer-
ous than concepts (they typically are instances of con-
cepts). On the other hand, methods are less abstract and
therefore easier to understand and to apply. Therefore,
some methods should be taught to show the concepts in
a form that is practically applicable.

A few tools should be used in laboratory exercises
with two purposes: (a) to show the principal possibili-
ties of tool support and (b) to teach the students how to
quickly acquire a basic knowledge of a previously un-
known tool.

Concepts can neither be explained nor exercised
without using a notation. This notation can either be
generic or it can be associated with a particular method.
For example, Ghezzi, et al. [4] use a generic design
notation in their textbook. Pressman [8], on the other
hand, presents concrete notations with their associated
methods, e.g. Structured Analysis or JSD.

Generic notations have the advantage of primarily
conveying the concepts. However, when using generic
notations only, the students do not learn any notation
being used in practice. Moreover, generic notations
may be perceived as being artificial and theoretical by
the students, thus lowering their motivation to learn and
use them. Therefore, a fair mix between generic and
real notations seems to be optimal in a software engi-
neering curriculum.

4.2 Separate concepts from tools

Concepts should be introduced without making use
of tools. Exercises using paper and pencil help to focus
on semantics instead of being stuck with syntax and
tool handling.

When I taught software requirements engineering
courses in industry some years ago, I encouraged the
participants to do their exercises either with paper and
pencil or with a state-of-the-art CASE-tool. The experi-
ence was that the participants using paper and pencil
came up with better specifications in a shorter time.
Even participants who had already some experience in
using the tool were outperformed.

4.3 Introduce concepts early

Software engineering concepts are part of the basic
knowledge that should be taught early in the curriculum
– like mathematics, computability, or algorithmic com-
plexity. In this way, courses introducing methods or
labs using tools can build upon this knowledge.

4.4 Make tools useful for students

On the other hand, we have to recognize the impor-
tance of tools for students. Therefore, a few carefully
selected tools should be introduced that support the
work of the students and improve their personal
productivity. Typical candidates are programming
environments, project management tools, or tools that
build systems based on frameworks.

5. The Software engineering curriculum at
the Department of Computer Science of the
University of Zurich

In our department we are currently introducing a new
curriculum (Dept. of CS [3]). Like most universities in
German speaking countries, our curriculum consists of
four semesters (two years) of basic studies followed by
at least four semesters of advanced studies. The stu-
dents graduate with a diploma degree (Dipl. Inform.).

Table 1 gives an overview of the software engineer-
ing courses in our curriculum together with their em-
ployment of concepts, methods, and tools.

In the advanced studies, software engineering is one
of eight fields from which the students have to choose
three or four for their studies as options. Additionally,
there is a set of compulsory courses (the core field, as
we call it), which comprises a software engineering
course, too.

The software engineering component of our curricu-
lum follows the ideas sketched in the previous chapter
to a considerable extent.

We do introduce concepts early. In the course on
modeling for example, we introduce the notion of mod-

Table 1. Software engineering courses at the Department of Computer Science of the University of Zurich

Course title Semester Lessons Usage of concepts, methods, and tools
Basic studies
Programming+ 1 and 2 39 Concepts plus a programming environ-

ment as a personal tool
Models in computer science+ 2 18 Concepts only
Introduction to software engineering+ 3 26 Concepts with some methods
Software engineering lab+ 4 52 Practical exercises how to apply basic

techniques of software engineering using
methods and few selected tools.

Advanced studies
Software quality management+ 6 26 Concepts with some methods
Individual software project+ ≥6 3 months

full time in
industry

Students shall apply concepts and meth-
ods. Tools are used when available in the
company where work is carried out

Advanced topics in software engineering * ≥5 26 Advanced concepts and methods
Requirements engineering*† ≥5 26 Concepts with some methods
Software architecture and design*† ≥5 26 Concepts with some methods
Advanced topics in programming*† ≥5 39 Concepts with some methods
Special courses in software engineering, for
example:
Prototyping, Software re-engineering, Object-
oriented systems development, Logic pro-
gramming, Functional programming, etc.

≥5 26 each Concepts with some methods in most
courses

Software project management lab** ≥5 26 Methods and a project management tool
IS Development lab** ≥5 26 Methods and a CASE-tool
Logic programming lab** ≥5 26 Methods and a programming environment
+ Compulsory for all CS students
* For students choosing software engineering as one of their options
** Optional course
† Students may replace two of these courses by two from the set of special courses in software engineering

els and abstractions as well as the fundamental concepts
of modeling data/objects, structure, behavior, and func-
tionality.

We make tools useful for students by using a pro-
gramming environment and by experimenting with a
few tools in the software engineering lab.

We separate concepts from tools by restricting tool
use to programming and to some exercises in the lab
courses.

Finally, Table 1 shows that we follow the principle of
“Many concepts – some methods – few tools”.

6. Conclusions

I have presented some thoughts on the role of con-
cepts, methods, and tools in software engineering edu-
cation. The principal idea is that “Many concepts –
some methods – few tools” represents an optimal mix
for a software engineering curriculum. Concentration
on concepts emphasizes the topics which are really
important for the students. Methods and associated
notations help to understand and apply the concepts.
Using a few tools demonstrates the capabilities and the

limitations of computer-aided software engineering.
Furthermore, “real-life” methods and tools increase the
motivation of the students.

The curriculum of our department that I have pre-
sented as an example is currently in the phase of intro-
duction. Therefore, I cannot report any experience yet.
However, from my earlier experience in software engi-
neering education in industry, I am confident that we
are on the right path.

References

[1] Ashworth, C. and M. Goodland (1990). SSADM: A
Practical Approach. McGraw-Hill, London.

[2] DeMarco, T. (1978). Structured Analysis and System
Specification. Yourdon Press, New York.

[3] Dept. of CS (1995). Wegleitung für das Studium der
Wirtschaftsinformatik an der Universität Zürich
[Guide for studying business-oriented computer sci-
ence at the University of Zurich (in German)]. Ver-
sion 1.3. Department of Computer Science, University
of Zurich.

[4] Ghezzi, C., M. Jazayeri and D. Mandrioli (1991).
Fundamentals of Software Engineering. Prentice-Hall,
Englewood Cliffs, N.J.

[5] Glinz, M. (1990). Warte nicht auf bessere Zeiten:
Methoden und Werkzeuge in der Softwareentwick-
lung. [Do Not Wait for Better Times: Methods and
Tools for Software Development (in German)]. Tech-
nische Rundschau 35/90. 70-75.

[6] Ludewig, J. (1985). A Note on Abstraction in Soft-
ware Descriptions. In D. Teichroew and G. David

(eds.): System Description Methodologies. Elsevier
Science (North-Holland), Amsterdam. 535-540.

[7] McMenamin, S.M. and J.F. Palmer (1984). Essential
Systems Analysis. Yourdon Press, New York.

[8] Pressman, R.S. (1992). Software Engineering - A
Practitioner’s Approach, 3rd edition. McGraw-Hill,
New York.

[9] Ross, D. (1977). Structured Analysis (SA): A Lan-
guage for Communicating Ideas. IEEE Transactions
on Software Engineering SE-3(1). 16-34.

