
Development of Correct Transformation

Schemata for Prolog Programs

Julian Richardson1? and Norbert Fuchs2

1 Department of Artificial Intelligence, Edinburgh University, 80 South Bridge,
Edinburgh EH1 1HN, Scotland

julianr@dai.ed.ac.uk
2 Department of Computer Science, University of Zurich, CH-8057 Zurich,

Switzerland
fuchs@ifi.unizh.ch

Abstract. Schema-based program transformation [8] has been proposed
as an effective technique for the optimisation of logic programs. Schemata
are applied to a logic program, mapping inefficient constructs to more
efficient ones. One challenging aspect of the technique is that of proving
that the schemata are correct.

This paper addresses the issue of correctness. We define operations for
developing correct schemata by construction. The schema development
operations are higher order equivalents of the classic program transfor-
mations of fold/unfold [6]. We consider a transformation schema to be
correct if its application yields a target program which is equivalent to
the source program under the pure Prolog semantics.
The work described in this paper makes three contributions: a method-
ology for the development of provably correct program transformation
schemata, abstraction of program transformation operations to transfor-
mation operations on schemata, and a higher-order unification algorithm
which forms the basis of the schema transformation operations.

1 Schema-Based Transformations

A program transformation technique based on transformation schemata is de-
scribed in [8]. Transformation schemata are defined using patterns — higher-
order terms which can be instantiated to program fragments. A transformation
schema is applied to a program by scanning the program for a piece of code
which matches the source pattern, and replacing it with the instantiated target
pattern.

? The first author is supported by EPSRC Grant GR/L11724. Most of the work de-
scribed was performed while the first author was a visiting research fellow at the
University of Zurich, supported by HCM-Network “Logic Program Synthesis and
Transformation”, contract no. CHRX-CT93-0414, Project BBW 93.0268.

Norbert E. Fuchs (Ed.): LOPSTR’97, LNCS 1463, pp. 263–281, 1998.
c© Springer-Verlag Berlin Heidelberg 1998



264 Julian Richardson and Norbert Fuchs

A program transformation schema is defined in [8] as a 4-tuple, which spec-
ifies that a conjunction of goals G1, ..., Gn with corresponding predicate defini-
tions S1, ..., Sn can be transformed into a conjunction of goals H1, ..., Hn with
corresponding predicate definitions T1, ..., Tn:

〈〈G1, ..., Gn〉, 〈S1, ..., Sn〉, 〈H1, ..., Hn〉, 〈T1, ..., Tn〉〉 (1)
Such schemata can encode a wide range of useful transformations, e.g. loop
fusion, accumulator introduction and goal reordering.

This paper addresses the issue of proving the correctness of transformation
schemata. There are two basic design decisions we must make when considering
the correctness of program transformation schemata:

1. Do we seek to prove the correctness of existing schemata, or do we instead
only provide tools for constructing new schemata which are guaranteed to
be correct? We have decided to take the latter approach.

2. How do we define the correctness of a program transformation? This question
is discussed in the next section.

The paper is organised as follows. First we discuss related work in §2. We
define equivalence of programs in §3 relative to the pure Prolog semantics, then
outline in §4 how correct transformation schemata can be constructed incremen-
tally by the application of abstract transformation operations, which are the
equivalents on program patterns of the classic fold/unfold transformations on
programs. We define a language for expressing program patterns and transfor-
mation schemata in §5, and outline a unification algorithm for program patterns
in §6. The abstract transformation operations are described in §7, concentrating
on the development of a correct unfold operation. We discuss the representation
of transformation correctness conditions (§8) and the progress of our implemen-
tation (§9), before outlining how predicate termination information could be used
(§10). Finally, we discuss further work (§12) and draw our conclusions (§13). Ap-
pendix A presents the unification algorithm, and appendix B goes through an
example schema development using schema folding and unfolding operations.

2 Related Work

Research on schemata is a very active field. Of the many papers that have
been published in the last years we will focus on three that describe recent
developments.

After discussing the advantages and disadvantages of various schema lan-
guages, [4] introduce a new language to represent program schemata based on a
subset of second-order logic, enhanced with specific schema features, and with
global and local constraints. Their language is a variant of the language pro-
posed by [8], though with the essential difference that constraints are not part of
the schemata but are made explicit in a first-order language. The introduction
of explicit constraints not only increases the expressiveness of the language but
also guides the matching of the schema with a program through the successive



Development of Correct Transformation Schemata for Prolog Programs 265

application of rewriting and reduction rules. Starting with a schema S, a set
of initial constraints C, and a program P , the pair 〈S = P, C〉 is successively
rewritten and reduced to 〈∅, C′〉. All occurring constraint sets are consistent.
Then there is a substitution θ ∈ C′ so that Sθ = P and θ satisfies the initial
constraint set C.

While most researchers — including [4] and ourselves — represent schemata
purely syntactically as first- or second-order expressions, [5] express schemata
as full first-order theories called specification frameworks. A specification frame-
work axiomatises an application domain. It contains an open — i.e. only partially
defined — program that represents the schema itself. The authors state that the
main advantage of their approach is that it simplifies the semantics of schemata
since the specification framework can be given a model-theoretic semantics in the
form of reachable isoinitial models. Based on this semantics the authors define a
notion of correctness for schemata. Correct schemata are expressed as parametric
specification frameworks that contain steadfast open programs, where steadfast
means that the programs are always correct provided their open relations are
computed correctly. Based on the notion of correct program schemata one can
synthesise steadfast open programs which are not only correct but also reusable.

The authors of [3] base their work on the concepts of specification-frameworks
and steadfastness suggested by [5]. To extend these concepts to be used for pro-
gram transformations they introduce the additional concept of the equivalence of
the open — i.e. partially defined — programs computing the same relation. Then
they define a transformation schema as a 5-tuple 〈S1, S2, A, O12, O21〉 where S1

and S2 are program schemata, i.e. specification frameworks, A an applicabil-
ity condition ensuring the equivalence of the open programs within S1 and S2

with respect to the top-level relation computed, and O12 (resp. O21) a set of
optimisability conditions which ensure the optimisability of S2 (resp. S1). The
authors present some concrete transformation schemata that they have imple-
mented: divide-and-conquer, tupling generalisation, descending generalisation,
and duality laws. The authors evaluate these transformation schemata with a
small number of performance tests. The results show that the transformations
cannot be used blindly thus necessitating the above mentioned optimisability
conditions.

3 Choice of Semantics

A transformation is defined to be totally correct if the source and target programs
are equivalent under the chosen semantics. We must choose which semantics to
use.

The correctness of transformations of Prolog programs under a variety of
semantics is discussed in [6]. Much of the existing work on the transformation of
Prolog programs only considers the simplest semantics, the Herbrand semantics.
This permits many powerful and interesting transformations. Unfortunately, if
these transformations were let loose on a real Prolog program, they would wreak
havoc, because the Herbrand semantics does not capture the intended meaning of



266 Julian Richardson and Norbert Fuchs

Prolog programs as they are written in practice. Schema-based transformations
have, from the outset, been intended as a practical tool for program transforma-
tion, so we have decided to use a realistic semantics, the so-called pure Prolog
semantics so that the resulting transformations can be applied to real programs.
The pure Prolog semantics accurately reflects the semantics of Prolog programs
when executed under the standard SLD resolution strategy. Programs must be
cut-free and negation-free, and it is assumed that Prolog unification includes an
occurs check.

4 Correctness by Construction

Many of the program transformations which are correct under the Herbrand
semantics, e.g. unfold, are only correct under the pure Prolog semantics if certain
conditions hold. For example, a literal (other than the first one) can only be
unfolded in a clause if it is “non-left propagating”. Generally, conditions such
as this can only be established when the transformation schema is applied to
a concrete program. We therefore modify the presentation of schemata given
in [8] (as the authors of [8] suggest) by extending schemata with correctness
conditions. The goal conjunctions G1, ...Gn and H1, ..., Hn which provide the
transformation context in (1) can be provided by adding a predicate with body
G1, ..., Gn to the source program, so we omit them in this presentation.

The state of development of a schema transformation is represented by a
tuple (2), where Schema is a list of labeled clauses as described in §5, Op is the
schema transformation operation which was applied to bring us to this state,
Φ is a set of conditions which must be satisfied when the schema is applied
to a Prolog program to ensure correctness of the resulting transformation, and
PreviousHistory is another history structure.

history(Schema, Op, Φ, PreviousHistory). (2)

Correct schemata are developed by successive application of the available trans-
formation operations, which are defined in such a way that when the resulting
schema is applied to a program, there is a correspondence between the abstract
operations which were used to develop that schema, and transformation opera-
tions on the source program yielding the target program.

The top line of figure 1 depicts a complete schema development. The figure
as a whole illustrates how matching a schema pattern to a program fragment
induces a matching process from the transformation operations and correctness
conditions on schema patterns to corresponding transformation operations and
correctness conditions on programs. The correctness conditions, Φi are accu-
mulated during the development process, so that Φk+1 → Φ1 ∧ ... ∧ Φk. Once
development has been completed, the intermediate stages can be stripped away,
leaving just Schema0, Φn and Scheman. In principle, such a development could
perform the transformation of a number of predicates. If the predicates which
are transformed have heads P1, ..., Pk in Schema0, and P ′

1, ..., P
′
k in Scheman,



Development of Correct Transformation Schemata for Prolog Programs 267

Schema0 Schema1 Scheman

Program0 Program1 Programn

Op
1

Op
2

Opn

OpnOp
2

Op
1

Φ1

θ
1

θ
2

θ
n

θ
1

θ
2

θ
n

...

1 Φ2 ΦnΦ θ θ θ

M
at

ch

...

Φ2 Φn

ξ

ξ ξ ξ

, , ,

, , ,

Fig. 1. A schema development. Each horizontal arrow is labeled with an oper-
ation together with its associated substitution and correctness conditions.

then we could express the resulting transformation schema in the language of
Fuchs and Vasconcelos [8] as a tuple:

〈〈P1, ..., Pk〉, Schema0, 〈P ′
1, ..., P

′
k〉, Scheman, Φn〉

Note that some of the schema development operations Schemak
Op⇒ Schemak+1

may modify Schemak in addition to Schemak+1. If such an operation is applied,
then we can only define a transformation schema from Schemak to Scheman,
and we say that the source pattern has been reset.

5 The Schema Language

The starting point for a schema development is a list of clauses. Each clause is
represented internally as a term label : clause(Head, Tail), which is portrayed
as: label : Head ← Tail. We distinguish the following kinds of term:

1. Object-level variables var(Name), portrayed form “Name”.
2. Vector variables vec(Type, Length, Name). Type is the atom ‘G’ to indicate

that this is a vector of goals, or ‘A’ to indicate that it is a vector of arguments.
Length is either a positive integer or zero or a Prolog variable. Name is
either an atom or an integer. The portrayed form is TypeName:Length, so
for example vec(‘G’, , x) is portrayed as “Gx: ”.

3. Predicates pred(P, Args), where P is an atom or a variable var(Name) and
Args is a list of arguments. The portrayed form is “P(Args)”.

4. Function applications apply(F, Args), where F is an atom or a variable
var(Name) andArgs is a list of arguments. The portrayed form is “F(Args)”.

5. Lists of arguments or goals. The elements of the list can either be predicates
or function applications, as appropriate for the type of the list, or vectors of
the appropriate type.



268 Julian Richardson and Norbert Fuchs

6. Clauses Head ← Tail. Head must be a single goal pred(Name, Args).
Tail is a (possibly empty) list of goals or goal vectors.

7. Sequences of clauses χ.

The language defined above is close to that defined in [8], except that we
do not require the notation x#n (used in [8] to mean that x occurs as the
nth argument of a predicate or function). The facility to specify the lengths of
vectors can be used to perform the same function, e.g. f(L, X#n, R) is replaced
by f(vec(‘A’, n− 1, L), X, vec(‘A’, , R)). In addition, we define a notation (χ)
for representing sequences of clauses, which allows us to refer during schema
development to the context of the predicates to be transformed.

6 Unification of Schemata

Unification is the essential component of the Prolog execution strategy. A higher-
order matching algorithm is also an essential component of the application of
schemata to programs, during which patterns in the schema must be matched
to parts of the Prolog program which are to be transformed. When we are
constructing correct transformation schemata, unification is again essential, to
allow us to apply abstract versions of the familiar program transformation steps
of fold, unfold etc. This unification is an extension of the matching used when
applying schemata to programs.

In the next section, we outline a higher-order unification algorithm for pro-
gram patterns. The generality of this algorithm allows us to define very powerful
equivalents on program patterns of the fold and unfold program transformations,
but this generality also means that we have to be quite careful how we define
them.

6.1 There Is No Single Most General Unifier

The principal problem is of how to unify two terms which consist of a mixture of
goal (or argument) vectors and predicates (or functions). If we consider vectors
of goals to be lists, and single goals to be singleton lists, then the separating
comma can be considered as the list append operation. Unification of goal pat-
terns then involves unification of lists modulo the associative append operation.
Associative unification is discussed in [1, p309]. A decision procedure exists to
determine whether two terms are unifiable, but there may be an infinite number
of most general unifiers (mgus). For example, p(X), q(X, a) and p(Y ), q(a, Y )
unify producing an infinite sequence of substitutions:1

{a/X, a/Y }, {(a, a)/X, (a, a)/Y }, ..., {an/X, an/Y }, ...

Usually, however, we expect only a finite set of most general unifiers, and may
raise an error condition if there are too many unifiers to process. Often, we only
1 Substitutions are oriented such that applying a substitution {X/Y } to Y yields X.



Development of Correct Transformation Schemata for Prolog Programs 269

need the first unifier which is returned by the algorithm, and need not consider
other possible unifiers. When this is not the case, we may be able to rank the
unifiers according to some measure and only use the best one. We will come back
to the problem of multiple unifiers later.

6.2 The Unification Algorithm

Unification proceeds left-to-right. We allow terms in which function and pred-
icate symbols may be variables. We have implemented such a unification algo-
rithm, which is presented in appendix A. As an example, consider the problem
of unifying G2, Q(X), G3 with H2, Q(Y ), H3, given the substitution σ. There are
four possible distinct ways to partition the goals and vectors between the two
terms:

1. H2 = G2. Add the substitution {G2/H2} to σ, and try to unify Q(X), G3

with Q(Y ), H3.
2. H2 = G2, D2 where D2 is nonempty. Add the substitution {(G2, D2)/H2}

to σ, and try to unify Q(X), G3 with D2, Q(Y ), H3.
3. G2 = H2, D2 where D2 is nonempty. {(H2, D2)/G2} to σ, and try to unify

D2, Q(X), G3 with Q(Y ), H3.
4. Otherwise. The two terms do not unify. This branch of unification fails, and

the algorithm backtracks.

In the example above, there are 5 unifiers: (H2, Q(Y ), H3), (H2, Q(Y ), Q(X), G3),
(H2, Q(Y ), D3, Q(X), G3), (G2, Q(X), Q(Y ), H3) and (G2, Q(X), D3, Q(Y ), H3).

7 Transformation Operations on Program Patterns

Theorem 14 of [6] describes how the transformation rules of leftmost unfolding,
deterministic non-left propagating unfolding, Tamaki-Sato folding, Tamaki-Sato
definition and definition elimination can be used correctly to transform a definite-
clause program under the pure Prolog semantics. In this section we show how to
define versions of these operations on program schemata. We concentrate on the
fold and unfold, only outlining the case for the other transformations. The exam-
ple of appendix B uses these operations to develop an example transformation
schema.

7.1 Schema Initialisation, Clause Addition, Specialisation

Schema development starts with a completely blank program pattern. Three op-
erations are provided whose main purpose is to introduce sufficient structure into
the program pattern to give the operations of folding and unfolding something
to work with. These operations are: initialisation, clause addition, and special-
isation. Initialisation throws away any current schema development and starts
again from the blank pattern. Clause addition appends a new clause pattern
H ← T to the program pattern. There are two types of clause specialisation:



270 Julian Richardson and Norbert Fuchs

pattern instantiation unifies a chosen subterm of a clause pattern with a user-
specified pattern term, and division splits a chosen argument or goal vector in a
clause into two.

Although each of these operations can be applied at any time during devel-
opment, applying one of them to a program pattern P to give a new program
pattern P ′ resets the source program pattern to P ′. It is therefore preferable to
apply them only at the beginning of a schema development.

7.2 Abstract Unfold

Care Is Needed with Unification

We would like the abstract unfold operation on program patterns to mirror
the concrete unfold operation on programs, as described in [6, p.284]. At first
sight, we can say that to apply an abstract unfold operation to an atom A in
an abstract clause, c : H ← L, A, R using abstract clauses u1 : H1 ← T 1, ..., un :
Hn ← Tn, we replace c by n clauses c1, ..., cn defined by ci : Hθi ← (L, T i, R)θi

where for each ci, θi is a most general unifier such that Aθi = Hiθi, plus abstract
versions of the concrete unfold correctness conditions, in particular that the
unfold be non-left propagating.2 This means that the atoms to the left of the
T i in the new clauses ci must be variants of (i.e. identical up to renaming) the
atoms to the left of A in c.

Unfortunately, the definition above has several problems. As noted in §6.1,
there may be more than one mgu for each unification problem. Each such mgu
makes certain commitments in the transformed program. We cannot use all
the mgus, since they are not in general disjoint, and so doing would introduce
repeated solutions. Therefore we must pick one mgu for each unification.

Picking one unifier (and hence one set of commitments) from several possibil-
ities means that the resulting transformation schema may be a program special-
isation, not an equivalence. In order to prevent specialisation of the transformed
program, we must apply the unifier to both the source and the target pattern.
How can we do this when there are multiple clauses with which to unfold? The
choice of unifier we make when unfolding with each of the clauses will generally
be incompatible. For example, when unfolding an atom p(A, K, B) using a clause
with head p(W, cons(H, T ), Z) we are faced with a choice of unifiers like those
in §6.2.

The solution we adopt here to ensure that we do not pick incompatible uni-
fiers for the unfolding clauses is to generalise the heads of the unfolding clauses
ui so that they are identical, and insert appropriate equality atoms explicitly
into the bodies of the clauses. This allows us to pick a single unifier for all the
ui.

2 As the example of [6][Example 14] shows, left-propagating unfolds can change the
order of the returned answer substitutions, so we must disallow them.



Development of Correct Transformation Schemata for Prolog Programs 271

The Abstract Unfold Operation

For an example of the application of the unfold operation defined in this
section, see appendix B. To resolve the problems outlined above, we unfold a
clause c : P ← L, A, R using clauses u1 : H1 ← T 1, ..., un : Hn ← Tn, in the
following steps:

1. Generalise the Hi toH such that the arguments ofH are variables or vectors.
Let θi be an assignment of values to these arguments so that Hθi = Hi. In
order to ensure that each θi is unique, the unification is made deterministic
by disabling rules (4) and (5) of Appendix A, which disallows substitutions
of the form {()/vector} or {(vector, vector)/vector}. Each substitution θi is
expressed as a list of equations3 X i

j = Ei
j .

2. Find an mgu Θ such that AΘ = HΘ. This is the only point in the unfold
step at which we must make a choice of unifier, and making this choice
necessitates the next step.

3. In the source, replace clause c with c′ : PΘ ← LΘ, AΘ,RΘ. In certain special
cases, this may not be necessary. See the explanatory note in the paragraph
at the end of this section.

4. In the target, replace clause c with n clauses:

ci : PΘ ← (X i
1 = Ei

1, ..., X
i
ki

= Ei
ki

)Θ, LΘ, T iΘ, RΘ

5. For each ci, eliminate any intermediate variables and vectors which were in-
troduced by the unification algorithm, i.e. were not present in c or u1, ..., un.

In accordance with [6, p.284], we require the following conditions to hold:

1. u1, ..., un constitute one entire predicate definition — the program to be
transformed contains no clauses apart from u1, ..., un which define the same
predicate, and these are all the clauses which define the predicate.

2. In addition, either:
(a) L = () — the unfold is a leftmost unfold, or
(b) the unfold is non-left propagating. This condition can only be checked

when the pattern has been instantiated by matching with a program
fragment, so for each ci, a term non left propagating(c,A,ci) is added to
the set Φ of transformation conditions.

By applying the unifier Θ to the source pattern as well as to the target, we
ensure that the resulting schema does not specialise the program to which it is
applied. This disturbs the development history, and means that we must essen-
tially start a new development with the new source pattern as the initial pattern.
3 Note that each of the unifying substitutions θi must be converted to a list of equa-

tions. The equations are unoriented, and this allows us to compose the θi with the
mgu θ, since applying θ to an equation X = Y yields a new equation (which is
later solved by unification in step (5) above) Xθ = Y θ, whereas applying θ to a
substitution {X/Y } may not yield a valid substitution, e.g. when θ = {f(a)/Y }.



272 Julian Richardson and Norbert Fuchs

However, in the special case where Θ is only a renaming of c, no modification of
the source pattern is necessary, allowing the development history to be retained.
In the case that there is more than one possible unifier Θ, it is preferable to
choose one which is a renaming where this is possible — this can be achieved
by modifying the pattern unification algorithm to return renamings before other
unifiers. In order to encourage the existence of renaming unifiers, it is important
to try to develop enough structure in the pattern using the clause addition and
specialisation operations before applying unfolding.

7.3 Abstract Fold

With folding, as with unfolding, we must take care not to specialise the trans-
formed program. An example of the development of a transformation schema for
loop fusion using folding and unfolding is contained in appendix B.

The abstract fold definition mirrors that of Tamaki-Sato folding (definition
R3 of [6]). There are a number of conditions which need to be checked to ensure
that the fold is a correctness-preserving transformation:

1. The folding atoms must be fold-allowing as described in Theorem 14 and
Definition 7 of [6]. In order to keep track of which atoms are fold-allowing and
which are not we must allow vectors to be marked with their fold-allowing
status (true or false), and ensure that any unification which splits a vector
into a number of vectors or atoms marks them with the same fold-allowing
status as their parent.

2. As stated in [6], there is also a restriction on the substitution which unifies
the body of the folding predicate with the folded atoms; suppose we are
folding a number of atoms E in the body of a clause H ← L, E, R using the
body of a clause H ′ ← G. If θ is the unifying substitution, i.e. Eθ = Gθ,
then θ restricted to the set vars(G)−vars(H ′) is a variable renaming whose
image has an empty intersection with the set vars(H, L, H ′θ, R). In general,
it is not possible to decide this until the schema is matched with a program,
but there is a significant special case when vars(G)− vars(H ′) = {} which
arises when all the vectors and object-level variables of the folding predicate’s
body, G, also occur in the folding predicate’s head, H ′. In this special case,
the condition is trivially satisfied (clause c6 of Appendix B falls into this
special case, for example).

3. Folding generally requires that some states in the schema development will
simultaneously contain both old and new predicates, and the two types of
clause must be carefully distinguished to ensure correctness is guaranteed.

7.4 Definition Introduction

In order to develop powerful transformations such as loop fusion, it is necessary
to be able to apply the definition introduction rule. We use the Tamaki-Sato
definition rule described in [6, R15], which allows a new clause to be introduced
as long as its head is a predicate which does not already occur in the program,



Development of Correct Transformation Schemata for Prolog Programs 273

and the literals in its body are made from predicates which are already in the
program.

8 Transformation Correctness Conditions

Application of a schema development operation entails checking certain correct-
ness conditions. These conditions can be partially checked while the schema
development is taking place, but there is always a residual condition which can
only be checked when the schema is applied to a program. For example, suppose
we need to ensure that a certain clause is not recursive. This means checking
that there is no goal in the body of the predicate with the same predicate (and
arity) as the head of the predicate. For the following clause, it is easy to verify
that this condition does not hold:

P (X)← G, P (Y ), H

If, however, we replace P (Y ) in the body by Q(Y ), we cannot be certain. We
cannot say immediately that the condition does not hold, but there is a residual
which must be checked whenever the resulting transformation schema is applied
to a program, namely that P is not equal to Q, and that P does not appear in
G or H.

The way in which the correctness conditions are expressed will be an im-
portant factor in ensuring the correctness of a schema development system. For
example, for each schema development operation there could be a correspond-
ing Prolog predicate. This simplifies the implementation of the correctness con-
ditions (they are just pieces of Prolog code), but is unsatisfactory for several
reasons:

1. ensuring the correctness of the schema development system is then made
difficult, because it depends on the correctness of these checking predicates,
and

2. it is difficult to perform reasoning about Prolog predicates.

The preferable alternative is to express these conditions using logical formulae
containing a small number of primitives such as subterm(X, T ) — X is a subterm
of T , vars(T, V ) — V is the set of variables in term T etc., connected by logical
connectives (universal and existential quantifiers, conjunction and negation).
This not only permits a high degree of confidence in the correctness conditions,
but the finer grain and logical nature of such a language also makes it possible
to perform some reasoning with the conditions.

9 Implementation

The unification algorithm, and simplified versions of the fold and unfold oper-
ations have been implemented in Sicstus Prolog. Some correctness conditions



274 Julian Richardson and Norbert Fuchs

are enforced, but many more need to be added. A text-based user interface al-
lows the user to apply the abstract schema development operations discussed
in this paper, and allows schema developments to be loaded and saved. Output
of pattern terms is easily achieved with suitable definitions of the portray/1
predicate. Input is more tricky, since we would like to be able to input higher-
order terms in a natural way. For example, the term P (L, A, R) is represented
internally as pred(var(p),[vec(’A’, ,l),var(a),vec(’A’, ,r)]), and both
portrayed and input as P(Al: ,A,Ar: ). This is achieved by reading input into a
string, which is then parsed by a DCG. Vector lengths are represented by Prolog
variables, and Prolog handles their unification.

10 Exploiting Predicate Termination Information

One of the problems we encounter when constructing transformations which are
correct under the pure Prolog semantics is that we must take care to preserve the
termination behaviour of predicates. This means that we cannot simply prune
a clause such as (3), because if G1 or G2 does not terminate, then nor will c,
whereas the pruned version (in which the entire body is replaced by “fail”) fails
finitely.

c : Head← G1, G2, 1 = 2, G3. (3)

This can be overcome either by allowing the transformation of infinite to
finite failure, or by exploiting the termination properties of predicates when the
transformation schema is applied. It is expected that many useful transformation
schemata will require information on the termination properties of the predicates
to which they are applied.

The termination properties of some predicates are already known, for exam-
ple arithmetic goals, unification and test predicates. More generally, determining
termination properties of predicates is a problem which has already been ad-
dressed by several researchers. For example termination properties are heavily
used in the Mercury system [7]. The simplest approach is to allow the user to
annotate predicate definitions to indicate termination properties. Termination
may be established only for certain modes of a predicate. Modal inference and
annotation would therefore be another useful extension.

11 Laws

The application of laws is essential to many transformation techniques. For ex-
ample, the associativity of append is necessary for the transformation of näıve
reverse into the tail-recursive version. Laws can be represented using program
patterns. For example, associativity can be represented as below, and declaring
a predicate to be associative corresponds to a particular instantiation of P :

P (A, B, T ), P (T, C, E) ≡ P (B, C, V ), P (A, V, E).



Development of Correct Transformation Schemata for Prolog Programs 275

12 Further Work

There are many directions for further work. First and foremost, it is necessary to
prove the correctness of the abstracted unfold operation, fully define and prove
correctness conditions for the abstracted fold operation, define a flexible mech-
anism for applying laws, and extend the implementation accordingly. Following
this, further schema transformation operations can be developed, for example a
pruning operation, as described in §10.

Vector lengths can be used very effectively to reduce the number of solutions
returned when two patterns are unified. Currently only equality relationships
between vector lengths can be expressed. In particular, if a vector V :L1 is unified
with a pattern X1:M1, X2:M2, we cannot express the fact that L1 = M1+M2. In
[4], vector lengths can be constrained using =, =< inequalities, but in the light
of the above example, we could go further and extend the system to represent
and solve such constraints, which are problems in Presburger arithmetic and
therefore decidable.

It may be useful to introduce some automatic guidance into a schema devel-
opment system, which may suggest strategies such as generalisation or tupling
when appropriate. Proof plans [2] may be suitable for this. Indeed, we can view
the schema development operations as tactics, in which case it is natural that
proof plans should provide the meta-level.

It is also important to study the expressiveness of the resulting transforma-
tion schemata. The lack of induction in schema development operations is likely
to be one source of these restrictions.

13 Conclusions

In this document we have proposed a technique for developing correct trans-
formation schemata for Prolog programs. Correct transformation schemata are
constructed by applying a sequence of development operations. A transforma-
tion is correct if when it is applied to a program, it yields a new program which
is equivalent to the original one under the pure Prolog semantics. This means
the program must be negation and cut-free.

The system is based on a higher-order unification algorithm for schema terms.
The schema development operations, which are abstract equivalents of the clas-
sical fold/unfold etc. transformation operations, are defined in terms of this
unification, and conditions are defined to ensure their correctness. These condi-
tions can be partially checked during schema development, but generally leave
a residual which can only be checked when the schema is applied to a program.

We have implemented the higher-order unification algorithm, and a simplified
version of some of the transformations.

14 Acknowledgements

We would like to thank the respective funding bodies for their support, and the
members of the IFI for their generous hospitality to the first author, in particular



276 Julian Richardson and Norbert Fuchs

Norbert Fuchs, Rolf Schwitter, Raja Dravid and Alex Riegler. We are grateful
to the referees for their comments.

References

1. Alan Bundy. The Computer Modelling of Mathematical Reasoning. Academic Press,
1983. Second Edition.

2. Alan Bundy. The use of explicit plans to guide inductive proofs. In R. Lusk
and R. Overbeek, editors, 9th Conference on Automated Deduction, pages 111–120.
Springer-Verlag, 1988. Longer version available from Edinburgh as DAI Research
Paper No. 349.

3. H. Büyükyıldız and P. Flener. Generalized logic program transformation schemas.
In N. E. Fuchs, editor, LOPSTR ’97: Proceedings of the Seventh International Work-
shop on Logic Program Synthesis and Transformation, Leuven, Belgium, July 10-12
1997 (this volume). Lecture Notes in Computer Science, Springer Verlag, forthcom-
ing, 1998.

4. E. Chasseur and Y. Deville. Logic program schemas, constraints and semi-
unification. In N. E. Fuchs, editor, LOPSTR ’97: Proceedings of the Seventh Interna-
tional Workshop on Logic Program Synthesis and Transformation, Leuven, Belgium,
July 10-12 1997 (this volume). Lecture Notes in Computer Science, Springer Verlag,
forthcoming, 1998.

5. P. Flener, K.-K. Lau, and M. Ornaghi. On correct program schemas. In N. E.
Fuchs, editor, LOPSTR ’97: Proceedings of the Seventh International Workshop on
Logic Program Synthesis and Transformation, Leuven, Belgium, July 10-12 1997
(this volume). Lecture Notes in Computer Science, Springer Verlag, forthcoming,
1998.

6. A. Pettorossi and M. Proietti. Transformation of logic programs: Foundations and
techniques. Journal of Logic Programming, 19/20:261–320, 1994.

7. Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution algorithm
of Mercury: an efficient purely declarative logic programming language. Journal of
Logic Programming, 29(1):17–64, October 1996.

8. W. W. Vasconcelos and N.E. Fuchs. An opportunistic approach for logic program
analysis and optimisation using enhanced schema-based transformations. In Pro-
ceedings of LoPSTr’95, Fifth International Workshop on Logic Program Synthesis
and Transformation, Utrecht, Netherlands, volume 1048 of Lecture Notes in Com-
puter Science, pages 175–188. Springer Verlag, 1996.



Development of Correct Transformation Schemata for Prolog Programs 277

A The Schema Unification Algorithm

In the following presentation, V ar denotes an object-level variable, V :l repre-
sents a vector with length l, Atom denotes an atom, P (A) represents a function
or predicate with head P and arguments A. For brevity, it is assumed in this
presentation that atoms, predicates, functions or object-level variables can be
freely converted to vectors of length 1.

B =σ A
A =σ B

P =σ1 Q, A1σ1 =σ A2σ2

P (A1) =σ1◦σ Q(A2)
V ar 6∈ P (A1)

P (A1) ={P (A1)/V ar} V ar

Atom ={} Atom Atom ={Atom/V ar} V ar

V :l ={Atom/V , l=1} Atom V :l ={V ar/V , l=1} V ar

V :l 6∈ P (A)
P (A) ={P (A)/V , l=1} V :l V ar1 ={V ar1/V ar2} V ar2

V 1:l1 ={V1/V2, l1=l2} V 2:l2

lj = 1, li (i6=j) = 0, V j :1 =σ P (A)
(V 1:l1, ..., V k:lk) =σ P (A)

lj = 1, li (i6=j) = 0, V j :1 =σ V ar

(V 1:l1, ..., V k:lk) =σ V ar

∑k
i=1 li = n

(V 1:l1, ..., V k:lk) ={(V 1:l1,...,V k:lk)/V :n} V :n

∃X, n . (X:n, V 2:l2, ..., V k:lk) =σ (W 2:m2, ..., W j :mj), m1 + n = l1
(V 1:l1, ..., V k:lk) ={(W ,X)/V 1}◦σ

(W 1:m1, ..., W j :mj)
(4)

(V 2:l2, ..., V k:lk) =σ (W 1:m1, ..., W j :mj) l1 = 0
(V 1:l1, ..., V k:lk) ={()/V 1}◦σ

(W 1:m1, ..., W j :mj)
(5)



278 Julian Richardson and Norbert Fuchs

B Fold/Unfold Example

We now present a modified version of the tupling example from §2 of [6]. Vectors
and atoms which are not fold-allowing are underlined.

B.1 Initial Program Schema

We start with a program Program with clauses as follows:

χ
1

c1 : P (X1)← P1(Y 1, L, Y 2), P2(Z1, L, Z2), R.

c2 : P1(A1, nil, A2)← .

c3 : P1(A3, cons(H1, T1), A4)← P1(A5, T1, A6).
c4 : P2(A7, nil, A8)← .

c5 : P2(A9, cons(H2, T2), A10)← P2(A11, T2, A12), F (A13).
χ

2

Note that when a schema pattern is finally matched to a fragment of Prolog
program, different instances of the same schema variable name must match with
Prolog-unifiable pieces of the program, so we must be careful to ensure that
schema variable names are different where we do not wish this to be the case.

B.2 Schema Development

Define a new predicate with the first two atoms from the body of c1. The
new predicate should have the same arguments as the atoms in its body, al-
though we are free to reorder them and remove repeated occurrences as we see
fit. The new predicate name must not already be in use, so Φ0 = {New 6∈
{χ

1
, c1, c2, c3, c4, c5, χ

2
}}. The new predicate name is instantiated when the

schema is applied to a program.

c6 : New(L, Y 1, Y 2, Z1, Z2)← P1(Y 1, L, Y 2), P2(Z1, L, Z2).

Fold the first two atoms of the body of c1 using c6. Since c6 is a new predicate,
and c1 is old, the fold is allowed. The unifier is trivial so there is no specialisation.

c7 : P (X1)← New(L, Y 1, Y 2, Z1, Z2), R.

Unfold the first literal of c6 using c2 and c3. Since this is a leftmost unfold, it is
correct as long as we follow the five unfolding steps defined in §2:

1. Generalise the heads of the unfolding clauses (c2, c3):

H = P1(B1, M, B2) θ1 = {nil/M,A1/B1, A2/B2}
A = P1(Y 1, L, Y 2) θ2 = {L/M, Y 1/B1, Y 2/B2}



Development of Correct Transformation Schemata for Prolog Programs 279

2. Find Θ such that AΘ = HΘ. Here, we can choose Θ = {B1 = Y 1, M =
L, B2 = Y 2}. Other possible unifiers correspond to cases where the list L
appears more than once in the head of P1 or in the first literal of c6.

3. Apply Θ to the source predicate c6. Since Θ is a renaming, this step is trivial
and the development history is undisturbed.

4. Produce the new clauses, (c8, c9):

c8 : New(L, Y 1, Y 2, Z1, Z2)← (M = nil, A1 = B1, A2 = B2),
P2(Z1, L, Z2).{M = L, B1 = Y 1, B2 = Y 2}

c9 : New(L, Y 1, Y 2, Z1, Z2)← (M = cons(H1, T1), A3 = B1, A4 = B2),
P1(A3, T, A4), P2(Z1, M, Z2).{M = L, B1 = Y 1, B2 = Y 2}

5. Solve the introduced equations. This gives:

c8′ : New(nil, Y 1, Y 2, Z1, Z2)← A1 = Y 1, A2 = Y 2, P2(Z1, nil, Z2).

c9′ : New(cons(H1, T1), Y 1, Y 2, Z1, Z2)← A3 = Y 1, A4 = Y 2,

P1(A5, T, A6), P2(Z1, cons(H1, T1), Z2).

Now we unfold the newly introduced clauses (c8′, c9′) using (c4, c5).
First unfold c8′ using (c4, c5):

H = P2(C1, N, C2) θ1 = {A7/C1, nil/N, A8/C2}
A = P2(Z1, nil, Z2) θ2 = {A9/C1, cons(H2, T2)/N, A10/C2}

Find Θ such that AΘ = HΘ. One possible unifier is {Z1/C1, nil/N, Z2/C2}.
This is a renaming of the unfolding atom, so no program modification is neces-
sary.

Apply Θ to c8′ and produce the two new clauses:

c10 : New(nil, Y 1, Y 2, Z1, Z2)← (A7 = C1, A8 = C2, N = nil), A1 = Y 1,

A2 = Y 2, {Z1 = C1, nil = N, Z2 = C2}.
c11 : New(nil, Y 1, Y 2, Z1, Z2)← (A9 = C1, cons(H2, T2) = N, A10 = C2),

A1 = Y 1, A2 = Y 2, {Z1 = C1, nil = N, Z2 = C2, }
Clearly the body of c11 contains an inconsistent substitution and so is finitely
failing and can be omitted from the final program.

Since C1, C2 and N do not appear in the original program schema — they
were only introduced during the pattern unification process — we can eliminate
them from c10 above to give:

c10′ : New(nil, Y 1, Y 2, Z1, Z2)← Z1 = A7, Z2 = A8, A1 = Y 1, A2 = Y 2.

Next, unfold c9′:

H = P2(C1, N, C2) θ1 = {A7/C1, nil/N, A8/C2}
A = P2(Z1, cons(H1, T1), Z2) θ2 = {A9/C1, cons(H2, T2)/N, A10/C2}



280 Julian Richardson and Norbert Fuchs

Find Θ such that AΘ = HΘ. One unifier is {Z1/C1, cons(H1, T1)/N, Z2/C2}.
This is a renaming of the unfolding atom, so no program modification is neces-
sary.

Apply Θ to c9′ and produce the two new clauses:

c12 : New(cons(H1, T1), Y 1, Y 2, Z1, Z2)← (A7 = C1, nil = N,

A8 = C2), A3 = Y 1, A4 = Y 2, P1(A5, T1, A6), {Z1 = C1,

N = cons(H1, T1), Z2 = C2}.
c13 : New(cons(H1, T1), Y 1, Y 2, Z1, Z2)← (A9 = C1, cons(H2, T2) = N,

A10 = C2), A3 = Y 1, A4 = Y 2, P1(A5, T1, A6), P2(A11, T2, A12),
F (A13), {Z1 = C1, N = cons(H1, T1), Z2 = C2}.

Clearly the body of c12 contains an inconsistent substitution and so is finitely
failing and can be omitted from the final program.

As before, we can eliminate the variables C1, C2, and N which were intro-
duced during the pattern unification process.

c13′ : New(cons(H1, T1), Y 1, Y 2, Z1, Z2)← Z1 = A9, H1 = H2, T1 = T2,

Z2 = A10, A3 = Y 1, A4 = Y 2, P1(A5, T1, A6), P2(A11, T1, A12), F (A13).

Now we fold c13′ using c6′. As noted in the second item of §7.3, we must check
the unifying substitution. In general this condition can only be checked when
the schema is instantiated with a Prolog program, but in this case we can easily
see that vars(bd(c6)) − vars(hd(c6)) = {}. We produce the new clause:

c14 : New(cons(H1, T1), Y 1, Y 2, Z1, Z2)← Z1 = A9, H1 = H2, T1 = T2,

Z2 = A10, A3 = Y 1, A4 = Y 2, New(T1, A5, A6, A11, A12), F (A13).

The final program is made up from clauses c7, c10′, c14, c2, c3, c4, c5. By tracing
through the substitutions we can eliminate the intermediate variables introduced
in the presentation above to produce an equivalent list of clauses using variable
names from the original schema:

c7 : P (X1)← New(L, Y 1, Y 2, Z1, Z2), R.

c10′ : New(nil, Y 1, Y 2, Z1, Z2)← Z1 = A7, Z2 = A8, A1 = Y 1, A2 = Y 2.

c14 : New(cons(H1, T1), Y 1, Y 2, Z1, Z2)← Z1 = A9, H1 = H2, T1 = T2,

Z2 = A10, A3 = Y 1, A4 = Y 2, New(T1, A5, A6, A11, A12), F (A13).
c2 : P1(A1, nil, A2)← .

c3 : P1(A3, cons(H1, T1), A4)← P1(A5, T1, A6).
c4 : P2(A7, nil, A8)← .

c5 : P2(A9, cons(H2, T2), A10)← P2(A11, T2, A12), F (A13).

The transformation schema is made up of the initial and final schema patterns.
Note that the schema we have derived has some generality. For example, the
use of vectors in the heads of P1 and P2 means that we do not require the list
argument to be in any particular position.



Development of Correct Transformation Schemata for Prolog Programs 281

B.3 Application of the Schema to a Program: An Example

Consider the program from [6][p.264]:

c1 : average(L, A)← length(L, N), sumlist(L, S), div(S, N, A).
c2 : length(nil, 0)← .

c3 : length(cons(H1, T 1), s(N1))← length(T 1, N1).
c4 : sumlist(nil, 0)← .

c5 : sumlist(cons(H2, T 2), S1)← sumlist(T 2, S2), sum(H2, S2, S1).

Matching the input schema with the program above gives:

P = average P1 = length P2 = sumlist A1 = ()

A2 = 0 A3 = () A4 = s(N1) A5 = ()

A6 = N1 A7 = () A8 = 0 A9 = ()

A10 = S1 A11 = () A12 = S2 A13 = (H2, S2, S1)

R = div(S, N, A) X1 = (L, A) Y 1 = () Y 2 = N

Z1 = () Z2 = S L = L H1 = H1

H2 = H2 T1 = T 1 T2 = T 2

Applying this substitution (omitting trivial variable assignments) to the final
program schema gives the following program, as expected:

c7 : average(L, A)← new(L, N, S), div(S, N, A).
c10 : new(nil, N, S)← S = 0, N = 0.

c14 : new(cons(H1, T 1), N, S)← H1 = H2, T 1 = T 2, s(N1) = N, S = S1,
new(T 1, N1, S2), sum(H2, S2, S1).

c2 : length(nil, 0)← .

c3 : length(cons(H1, T 1), s(N1))← length(T 1, N1).
c4 : sumlist(nil, 0)← .

c5 : sumlist(cons(H2, T 2), S1)← sumlist(T 2, S2), sum(H2, S2, S1).


	Schema-Based Transformations
	Related Work
	Choice of Semantics
	Correctness by Construction
	The Schema Language
	Unification of Schemata
	There Is No Single Most General Unifier
	The Unification Algorithm

	Transformation Operations on Program Patterns
	Schema Initialisation, Clause Addition, Specialisation
	Abstract Unfold
	Abstract Fold
	Definition Introduction

	Transformation Correctness Conditions
	Implementation
	Exploiting Predicate Termination Information
	Laws
	Further Work
	Conclusions
	Acknowledgements
	The Schema Unification Algorithm
	Fold/Unfold Example
	Initial Program Schema
	Schema Development
	Application of the Schema to a Program: An Example


