
Martin Glinz
Nancy Schett

Preliminary Validation of a
Lightweight Approach to

Consistency of Scenarios and
Class Models

June 2000

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

T
E

C
H

N
IC

A
L

R
E

P
O

R
T

–
N

o.
IF

I-2
01

1.
00

04

M. Glinz
N. Schett: Preliminary Validation of a Lightweight Approach to Consistency of Scenarios and Class Models
Technical Report No. IFI-2011.0004, June 2000

Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL:

Preliminary Validation of a Lightweight Approach to Consistency of Scenarios and
Class Models

Martin Glinz Nancy Schett

Technical Report 2000.02

Institut für Informatik, Universität Zürich
Winterthurerstrasse 190

CH-8057 Zurich, Switzerland
+41-1-63 54570

http://www.ifi.unizh.ch/~glinz

Abstract

In [2] we present a lightweight approach to consistency
between a scenario model and a class model that is based
on minimizing overlap between the models and on system-
atic cross-referencing.

In this paper, we describe a preliminary experimental
validation of our approach. The results clearly indicate
that the participants in the experiment preferred our light-
weight approach to a classical approach.

1 Introduction

Today, most approaches to object-oriented requirements
specification use a combination of structure, behavior and
interaction models for (functional) requirements specifica-
tion. Typically, structure and behavior are represented in
class models that consist of a combination of class dia-
grams and statecharts, whereas interaction is modeled with
use cases / scenarios [1], [3].

As soon as more than one model is used, the problem of
inter-model consistency arises: how can we ensure that
information in these models is neither contradictory nor
partially incomplete? (A partial incompleteness is a situa-
tion where information given in one model requires corre-
sponding information in another model which, however, is
missing from that model.)

Nearly all requirements modeling techniques that use
more than one model have no systematic approach to
combining the models consistently. The consistency prob-
lem is simply ignored (and thus left to the requirements
engineers and to the users who have to validate a require-
ments specification).

In [2], we investigate the consistency problem between
a scenario model (or use case model) and a class model and
introduce a concept for making them consistent. We use a
lightweight approach for loosely coupled, UML-style mod-
els. Our approach is lightweight in the sense that we use
semi-formal models where consistency cannot be estab-
lished formally.

The basic idea of our approach is to achieve consistency
by minimizing overlap between the two models and by
systematically cross-referencing corresponding informa-

tion. We introduce two cross-referencing schemes, a sim-
ple one and an elaborate one. We give a set of rules that
can be used both for developing a consistent specification
and for checking the consistency of a completed specifica-
tion. Some rules can be checked automatically, the others
are rules for manual inspection.

In this paper, we describe a small experiment we con-
ducted with graduate and PhD students in order to validate
our approach.

2 Goal of the experiment

The goal of this experiment was to compare models
with and without cross-references with respect to their
acceptance both for writing consistent specifications and
for consistency checking.

3 Setup of the experiment

We used the department library system given in [2] as
an example (see below).

Sample Application: The Department Library System
Goal: The system shall support a department library,

where students themselves can take books from the
shelves, read them, borrow or return books, and query the
library catalog. Self-service terminals shall be used for
borrowing and returning books.

Constraints: Users identify themselves with a personal
library card. Every book has a barcode label. Additionally,
there is an electronic safety device located under that bar-
code label which can be turned on and off by the system.
At the exit of the library, a security gate sounds an alarm
when a user tries to leave the library with a non-checked-
out book. A user may not borrow a book if she has cur-
rently borrowed books that are overdue. A book may not
be borrowed if it is reserved for another user.

Based on this example, we set up three specifications of
the same requirements.
• Specification A: a conventional UML model collection.
• Specification B: the simple scheme of cross-referencing

(as defined in [2], Section 3.4)

– 2 –

• Specification C: the elaborate scheme of cross-refer-
encing as defined in [2], Section 3.5).

The three specifications are given in Appendix 1.

Twelve students participated in the experiment. They
first received the three specifications and had to answer
some questions about each of them (to make sure that they
thoroughly studied and understood the models). For each
model they were given 20 minutes time to study the model
and to answer the questions (Questionnaire I in Appendix
2). Then they had to answer questions about their prefer-
ences concerning the three types of specifications. For this
questionnaire (Questionnaire II in Appendix 2) they had 10
minutes time. As all participants were German speaking,
we gave them the questionnaires in German (see Appendix
2). A translation of Questionnaire II into English is given
in Appendix 3.

4 Threats to the validity of the experiment
4.1 Sequence bias

In order to exclude bias due to the sequence of working
through the tree specifications, we divided the participants
into four groups that did the specification in different
order:
• Group 1: A B C
• Group 2: C A B
• Group 3: B A C
• Group 4: C B A.

4.2 Number of participants

The fact that we had only 12 participants is the weakest
point in this experiment. This number is too small for cal-
culating percentages and statistical significance. So we can
only deduct trends from the results but no statistically sig-
nificant quantitative values.

4.3 Kind of participants

As the participants were students, the experiment is not
representative for industrial practice. Practitioners might
have different needs and perceptions concerning consis-
tency of models.

5 Results

The evaluation of Questionnaire II is given in Figures 1
to 4. Figure 1 shows the overall preference of the partici-
pants. Figures 2 and three show how the participants rated
the three specifications with respect to their suitability for
writing a consistent specification (Figure 2) and for
checking an existing specification for consistency (Figure
3). Finally, Figure 4 shows how the participants rated the
overall benefit/cost ratio of the three approaches.

Due to the small number of participants, we do not cal-
culate statistics. However, the figures show a very clear
preference for specifications using either the simple or the
elaborate cross-referencing scheme.

A No referencing

B Simple scheme

C Elaborate scheme

0 2 4 6 8 10 12

Preference for reading/checking Preference for writing

Figure 1. Overall preferences of participants

very good good average fair bad

Elaborate schemeNo referencing Simple scheme

Figure 2. Suitability for writing a consistent specification

very good good average fair bad
0

1

2

3

4

5

Elaborate schemeNo referencing Simple scheme

Figure 3. Suitability for checking consistency1

1 Unfortunately, we found two counting errors in the first evaluation of
the questionnaires when we cross-checked the data while preparing the
final version of this report. As a consequence, Figure 9 in [2] is slightly
incorrect: the correct results for the simple scheme are good: 3, bad: 1,
while Figure 9 in [2] reports good: 2, bad: 2. For the elaborate scheme, the
correct figures are very good: 4, good: 3, while Figure 9 in [2] reports very
good: 3, good: 4. However, both errors do not falsify our conclusions
because the correct data are even more in favor of our approach than the
data given in [2].

– 3 –

very good good average fair bad
0

1

2

3

4

5

Elaborate schemeNo referencing Simple scheme

6

Figure 4. Benefit/cost ratio

6 Conclusions

As already mentioned, the small number of participants
does not allow us calculating statistically significant values
about the differences between the three approaches. How-
ever, all four figures clearly show the same trend: the sim-
ple and the elaborate scheme of cross-referencing are rated
considerably better than the classic approach with no refer-
encing.

The elaborate scheme is rated higher than the simple
scheme concerning the suitability both for writing a con-
sistent specification and for checking a specification for

consistency. In the overall preference, there is not much
difference between the two approaches. We suspect that
the relatively high rating of the elaborate scheme (specifi-
cation variant C) is due to the fact that students prefer pre-
cise, programming language-like approaches. Practitioners
presumably would rate the simple scheme higher than the
elaborate one.

The high rating of the benefit/cost ratio for the simple
scheme is remarkable.

Summing up we can state that this experiment has been
a small and preliminary one and hence we can draw limited
conclusions only. However, we have a clear indication that
the experimental results support our approach and that it is
worthwhile to continue our work on a lightweight approach
to inter-model consistency.

References

[1] Firesmith, D., Henderson-Sellers, B. H., Graham, I.,
Page-Jones, M. (1998). Open Modeling Language
(OML) – Reference Manual. SIGS reference library
series. Cambridge, etc.: Cambridge University Press.

 [2] Glinz, M. (2000). A Lightweight Approach to Con-
sistency of Scenarios and Class Models. To appear in
Proceedings of the IEEE International Conference on
Requirements Engineering.
http://www.ifi.unizh.ch/groups/req/ftp/papers/ICRE2000.pdf

[3] Rumbaugh, J., Jacobson, I., Booch, G. (1999). The
Unified Modeling Language Reference Manual.
Reading, Mass., etc.: Addison-Wesley.

– 4 –

Appendix 1: Specifications A, B, C

Variant A: Classic UML Model

1. Scenario/use case Borrow Books (Variant A)

Use Case: Borrow books
Actor: User
Precondition: User has personal library card
Started by: User wants to borrow books

Normal flow:
1 User scans her library card

System validates the card, returns the card, displays user
data, displays ‘Select function’ dialog

2 User selects ‘Borrow’ function
System displays ‘Borrow’ dialog

3 User scans label of book to be borrowed
System identifies book, creates an ‘on-loan’ record
(consisting of book, user and current date), unlocks safety
label, displays book data

4 If user presses ‘More books’ key,
System displays ‘Borrow’ dialog. Repeat step 3

5 User presses ‘Finish’ key
System prints loan slip, displays ‘Finished’ message

Alternative flows:
1a Card is invalid: System returns the card, displays ‘Invalid’

message (scenario terminates)
2a User has overdue books: System displays ‘Denied’ message

(scenario terminates)
3a Book is reserved for another person: System displays

‘Reserved’ dialog (scenario continues)

2. Class model of the library (Variants A and B)

Name
First Name
Address
CardNumber

BookBarcode
DateBorrowed
DateReserved

Identify
Borrow
Return
Reserve
Inspect
IsOverdue

borrows cataloged by

Inspect
Modify
Register
Validate

User Book

Catalog item

0..*0..1

reserves
0..60..1

TerminalLoan slip

AddBook
Print

1..*

1

3. Behavior model for objects of class Terminal

dle

checking-out checking-in reserving uerying

enable
Borrow

enable
Return

enable
Reserve

enable
Query

Terminal

disableBorrow or disableReturn
or disableReserve or disableQuery

userIs
Authorized waiting for

election

Variant B: UML Model with cross-references
in the scenarios/use cases to other elements of
the model

1. Scenario/use case Borrow Books (Variant B)

Use Case: Borrow books
Actor: User
Precondition: User has personal library card
Started by: User wants to borrow books

Normal flow:
1 User scans her library card

System validates the card (↑User.Validate), returns the card,
displays user data, enables selection (↑Terminal.
userIsAuthorized), displays ‘Select function’ dialog

2 User selects ‘Borrow’ function
System enables borrowing (↑Terminal.enableBorrow),
displays ‘Borrow’ dialog

3 User scans label of book to be borrowed
System identifies book (↑Book.Identify), records the book as
borrowed (↑Book.Borrow), unlocks safety label, displays
book data

4a User presses ‘More books’ key
System displays ‘Borrow’ dialog. Repeat step 3

4b User presses ‘Finish’ key
System disables borrowing (↑Terminal.disableBorrow), prints
loan slip (↑LoanSlip.Print), displays ‘Finished’ message

Alternative flows
1’ If Card is invalid (determined by ↑User.Validate): System

returns the card, displays ‘Invalid’ message (scenario
terminates)

2’ If User has overdue books (determined by ↑User.Validate):
System displays ‘Denied’ message (scenario terminates)

3’ If Book is reserved for another person (determined by
↑Book.Borrow): System displays ‘Reserved’ dialog (scenario
continues)

– 5 –

2. Class model of the library (Variants A and B)

Name
First Name
Address
CardNumber

BookBarcode
DateBorrowed
DateReserved

Identify
Borrow
Return
Reserve
Inspect
IsOverdue

borrows cataloged by

Inspect
Modify
Register
Validate

User Book

Catalog item

0..*0..1

reserves
0..60..1

TerminalLoan slip

AddBook
Print

1..*

1

3. Behavior model for objects of class Terminal

idle

checking-out checking-in reserving querying

enable
Borrow

enable
Return

enable
Reserve

enable
Query

Terminal

disableBorrow or disableReturn
or disableReserve or disableQuery

userIs
Authorized waiting for

selection

Variant C: Extended UML Model with elabo-
rate cross-references between scenarios/use
cases and class model

1. Scenario/use case Borrow Books (Variant C)

Use Case: Borrow books
Actor: User
Precondition: User has personal library card
Started by: User wants to borrow books

Normal flow:
1 User scans her library card {delivers numberOfCard}

System validates the card {↑User.Validate (in numberOfCard,
out result, out currentUser, out userData); return card;
check step 1’; display userData; ↑Terminal.userIsAuthorized;
display ‘Select function’ dialog}

2 User selects ‘Borrow’ function
System begins check-out session {check step 2’; ↑Terminal.
enableBorrow; display ‘Borrow’ dialog}

3 User scans label of book to be borrowed {delivers label}

System checks-out book {↑Book.Identify (in label, out
theBook); ↑ theBook.Borrow (in currentUser, out bookData, out
status); check step 3’; unlock safety label; display bookData}

4a User presses ‘More books’ key
System iterates {display ‘Borrow’ dialog; go to step 3}

4b User presses ‘Finish’ key
System terminates check-out session {↑Terminal.disable-
Borrow; ↑currentLoanSlip.Print; display ‘Finished’ message;
terminate}

Alternative flows:
1’ Card is invalid {if (result = "invalid card") display ‘Invalid’

message; terminate; endif}
2’ User has overdue books {if (result = "valid user with overdue

books") display ‘Denied’ message; terminate; endif}
3’ Book is reserved for another person {if (status = "reserved")

display ‘Reserved’ dialog; go to step 4; endif}

2. Class model of the library (VariantC)

«uses»
Identify, Borrow

«uses»
Validate

«uses»
IsOverdue

«uses»
Print

«sends»
userIsAuthorized,
enableBorrow,
disableBorrow

«scenario»
Borrow Books

Name
First Name
Address
CardNumber

BookBarcode
DateBorrowed
DateReserved

Identify
Borrow
Return
Reserve
Inspect
IsOverdue

borrows cataloged by

Inspect
Modify
Register
Validate

User Book

Catalog item

0..*0..1

reserves
0..60..1

TerminalLoan slip

AddBook
Print

1..*

1

3. Behavior model for objects of class Terminal

dle

checking-out checking-in reserving uerying

enable
Borrow

enable
Return

enable
Reserve

enable
Query

Terminal

disableBorrow or disableReturn
or disableReserve or disableQuery

userIs
Authorized waiting for

election

– 6 –

4. Specification of the operation Validate in
class User (Variant C)

class operation Validate (in numberOfCard: Number, out result:
ValidationResult, out id: User, out userData: String)

in class User
pre Terminal is in state "idle"
post if (exists x in User • x.CardNumber = numberOfCard)

if (for all b in x.borrows • b.IsOverdue = false)
result = "valid user"; id = x, userData = (x.FirstName,
x.Name, x.CardNumber) // x.borrows is the set of all

// books that have been
// borrowed by user x

else result = "valid user with overdue books"
endif

else result = "invalid card"
endif

end

Appendix 2: Questionnaires (in German)

I. Sachfragen Modellvariante: Versuchsperson Nr.

Frage Aufwand für Antwort
gering mittel hoch

1. Wo sind die Anforderungen, wie eine Karte zu validieren ist, modelliert?
❏ ❏ ❏

2. Sind die modellierten Anforderungen zur Validierung der Karte ausreichend für

eine Implementierung?

❏ ja ❏ weitgehend ja ❏ weitgehend nein ❏ nein

❏ ❏ ❏

3. Ist die Spezifikation eines ausgeliehenen Buchs im Szenario konsistent mit der

Spezifikation im Klassenmodell?

❏ ja ❏ weitgehend ja ❏ weitgehend nein ❏ nein

❏ ❏ ❏

4. Wo sind die Ereignisse, welche das Verhalten eines Terminals steuern, modelliert?
❏ ❏ ❏

5. Ist die Spezifikation des Ausleihens eines Buchs vollständig?

❏ ja ❏ nein

Wenn nein: Was fehlt?

❏ ❏ ❏

– 8 –

II. Beurteilungsfragen Versuchsperson Nr.

(gemeinsam für alle Varianten)

Frage Variante
A B C

1. Welche der drei Varianten würden Sie persönlich bevorzugen

a) als Leser/Prüfer einer Spezifikation?

b) als Requirements Ingenieur, der eine Spezifikation schreibt?

❏

❏

❏

❏

❏

❏

Frage
sehr
gut

gut befrie-
digend

ausrei-
chend

schlecht

2. Wie beurteilen Sie die drei Varianten in Bezug auf ihre Eignung

a) eine konsistente Spezifikation zu schreiben? A ❏ ❏ ❏ ❏ ❏

B ❏ ❏ ❏ ❏ ❏

C ❏ ❏ ❏ ❏ ❏

b) eine Spezifikation auf Konsistenz zu prüfen? A ❏ ❏ ❏ ❏ ❏

B ❏ ❏ ❏ ❏ ❏

C ❏ ❏ ❏ ❏ ❏

3. Wie beurteilen Sie die drei Varianten in Bezug auf ihren Nutzen im

Vergleich zum Aufwand?

A ❏ ❏ ❏ ❏ ❏

B ❏ ❏ ❏ ❏ ❏

C ❏ ❏ ❏ ❏ ❏

Zur Erinnerung: Die drei Varianten sind
A klassisch, ohne Querverweise

B mit einfachen Querverweisen im Szenario/Anwendungsfall

C mit ausführlichen, gegenseitigen Querverweisen

– 9 –

Appendix 3: English translation of Questionnaire II

II. Rating Questions Participant No.

(Jointly for all three variants)

Question Variant
A B C

1. Which of the three variants would you personally prefer

a) as a reader/checker of a specification?

b) as a requirements engineer who is writing a specification?

❏

❏

❏

❏

❏

❏

Question
very
good

good average fair bad

2. How do you rate the three variants with respect to their suitability for

a) writing a consistent specification? A ❏ ❏ ❏ ❏ ❏

B ❏ ❏ ❏ ❏ ❏

C ❏ ❏ ❏ ❏ ❏

b) checking a specification for consistency? A ❏ ❏ ❏ ❏ ❏

B ❏ ❏ ❏ ❏ ❏

C ❏ ❏ ❏ ❏ ❏

3. How do you rate the three variants with respect to their benefit/cost

ratio?

A ❏ ❏ ❏ ❏ ❏

B ❏ ❏ ❏ ❏ ❏

C ❏ ❏ ❏ ❏ ❏

Remember: the variants are
A classic, no references

B with simple references in the scenarios/use cases

C with elaborate references

